TAS5000 Digital Audio PWM Processor Data Manual December 2000 Digital Audio SLAS270 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Customers are responsible for their applications using TI components. In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof. Copyright 2000, Texas Instruments Incorporated Contents Section 1 2 3 Title Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Suggested System Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4 Terminal Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6 Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Serial Audio Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 System Clocks – Master Mode and Slave Mode . . . . . . . . . . . . . . . . . 2.3 Oscillator/Sampling Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 Phase Locked Loop (PLL)/Clock Generation . . . . . . . . . . . . . . . . . . . . 2.5 Digital Interpolation Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6 Digital PWM Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7 Control, Status, and Operational Modes . . . . . . . . . . . . . . . . . . . . . . . . 2.7.1 Power Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7.2 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7.3 Power Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7.4 Mute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7.5 Double Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7.6 De-Emphasis Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7.7 Error Status Reporting (ERR pin) . . . . . . . . . . . . . . . . . . . . . . 2.8 Serial Interface Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.8.1 MSB First Right Justified (for 16-, 20-, 24-bits) . . . . . . . . . . 2.8.2 IIS Compatible Serial Format (for 16-, 20-, 24-bits) . . . . . . 2.8.3 MSB Left Justified Serial Interface Format (for 16 bits) . . . 2.8.4 DSP Compatible Serial Interface Format (for 16 bits) . . . . 2.9 PWM Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.1 Static Digital Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.2 Digital Interpolation Filter and PWM Modulator . . . . . . . . . . 3.3.3 TAS5000/TAS5100 System Performance Measured at the Speaker Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 1–1 1–1 1–2 1–3 1–5 1–5 1–6 2–1 2–1 2–1 2–1 2–1 2–2 2–2 2–2 2–2 2–3 2–3 2–3 2–4 2–4 2–4 2–4 2–5 2–5 2–6 2–6 2–6 3–1 3–1 3–1 3–2 3–2 3–2 3–2 3–2 iii 4 5 3.4.1 Serial Audio Ports Slave Mode . . . . . . . . . . . . . . . . . . . . . . . 3.4.2 Serial Audio Ports Master Mode . . . . . . . . . . . . . . . . . . . . . . 3.4.3 DSP Serial Interface Switching Characteristics . . . . . . . . . Parameter Measurement Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2 3–3 3–3 4–1 5–1 List of Illustrations Figure Title Page 1–1 System #1: Stereo Configuration Using Two TAS5100 Amplifiers . . . . . . . . 1–3 1–2 System #2: Stereo Configuration With DSP . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3 1–3 System #3: 6-Channel Audio Playback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4 2–1 Power-Up Timing (RESET preceding PDN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–2 2–2 Power-Up Timing (PDN preceding (RESET) . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–3 2–3 Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–3 2–4 Power-Down Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–3 2–5 De-Emphasis Filter Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4 2–6 MSB First Right Justified . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–5 2–7 IIS Compatible Serial Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–5 2–8 MSB Left Justified Serial Interface Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–6 2–9 DSP Compatible Serial Interface Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–6 4–1 Right Justified, IIS, Left Justified Serial Protocol Timing . . . . . . . . . . . . . . . . 4–1 4–2 Right, Left, and IIS Serial Mode Timing Requirement . . . . . . . . . . . . . . . . . . 4–1 4–3 Serial Audio Ports Master Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–1 4–4 DSP Serial Port Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–1 4–5 DSP Serial Port Expanded Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–2 4–6 DSP Absolute Timing Requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–2 5–1 Connection Diagram, Slave Mode (typical) . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1 List of Tables Table Title Page 2–1 Oscillator, External Clock, and PLL Functions . . . . . . . . . . . . . . . . . . . . . . . . . 2–2 2–2 Mute Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4 2–3 De-Emphasis Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4 2–4 Hardware Selection of Serial Audio Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–5 iv 1 Introduction The TAS5000 is an innovative, cost-effective, high-performance 24-bit stereo digital modulator based on Equibit technology. This product converts input PCM serial digital audio data to an output PWM audio data stream. The TAS5000 is designed to be connected to two TAS5100 mono true digital amplifiers for driving loudspeakers. This all-digital audio system contains only two analog components in the signal chain—an L-C low-pass filter at the speaker terminals. It can provide up to 90 dB SNR at the speaker terminals. It has a wide variety of serial input options including right justified (16, 20, or 24-bit), IIS (16, 20, or 24-bit), left justified (16-bit), or DSP (16-bit) data formats. It is fully compatible with AES standard sampling rates of 44.1 kHz, 48 kHz, 88.2 kHz, and 96 kHz including providing de-emphasis for 44.1 kHz, and 48 kHz sample rates. The TAS5000 and TAS5100 system can be used in a range of products such as microcomponent systems, PC speakers, home theater in a box, convergence products, A/V receivers, or TV sets. 1.1 Features • True Digital Audio Amplifier • High Quality Audio • 16-, 20-, or 24 Bit Input Data • Sampling Rates: 44.1 kHz, 48 kHz, 88.2 kHz, and 96 kHz • Supports Master and Slave Modes • 90 dB SNR (EIAJ) and Dynamic Range at the Speaker Terminals • 3.3 V Power Supply Operation • Economical 48-Pin TQFP Package • Digital De-Emphasis: 44.1 kHz and 48 kHz • High Power Efficiency • Clock Oscillator Circuit for Master Modes • Low Jitter Internal PLL • Mute • Good Phase Characteristics • Excellent PSRR Equibit is the trademark of Texas Instruments. 1–1 PLL/Clock Generator OSC_CAP XTL_OUT XTL_IN MCLK_OUT ERR MCLK_IN PLL_FLT_RET PLL_FLT_OUT 1.2 Functional Block Diagram OSC PWM_P_L PWM_M_L LRCLK Serial Audio Port SCLK Digital Interpolation Filter Equibit Modulator Buffer SDIN PWM_P_R PWM_M_R Control Section 1–2 DVDD1 DVSS1 DVDD2 DVSS2 DVDD3_L DVSS3_L DVDD3_R DVSS3_R AVDD1 AVSS1 AVDD2 AVSS2 FTEST STEST PTEST DBSPD M_S PDN RESET MUTE DEM_EN MOD2 DEM_SEL MOD1 MOD0 Audio Port Configuration 1.3 Suggested System Block Diagrams See application notes for more details. Digital Audio • USB • IEEE 1394 • SPDIF • ADC • Automotive MOST Network Left TAS3001 IIC Audio Control TAS5100 TAS5000 Right TAS5100 • Digital Parametric EQ • Serial Audio Input Port • Volume • Internal PLL • DRC • 2 Mono H-Bridges • Bass • Treble Figure 1–1. System #1: Stereo Configuration Using Two TAS5100 Amplifiers Left TAS5100 Digital Audio • DSP TAS5000 Right TAS5100 • Volume • Serial Audio Input Port • EQ • Internal PLL • DRC • 2 Mono H-Bridges • Bass • Treble • Surround Processing • AC-3 DTS Decode Figure 1–2. System #2: Stereo Configuration With DSP 1–3 CH1 TAS5000 TAS5100 CH2 TAS5100 Home Theater DVD 6-Channel Encoded Digital Audio Source 6 DSP 6-Channel Decode • Dolby AC-3 • DTS • Volume • EQ • DRC • Bass • Treble CH3 TAS5000 TAS5100 CH4 TAS5100 CH5 TAS5000 TAS5100 CH6 TAS5100 Figure 1–3. System #3: 6-Channel Audio Playback 1–4 1.4 Terminal Assignments DEM_SEL FTEST STEST DBSPD MUTE DVSS3_L AVDD1 XTL_IN XTL_OUT OSC_CAP AVSS1 DEM_EN 48-Pin TQFP PACKAGE (TOP VIEW) 48 47 46 45 44 43 42 41 40 39 38 37 MCLK_IN AVDD2 PLL_FLT_OUT PLL_FLT_RET AVSS2 NC RESET PDN PTEST M_S NC DVDD1 1 36 2 35 3 34 4 33 5 32 6 31 7 30 8 29 9 28 10 27 11 26 12 25 DVDD3_L PWM_P_L PWM_M_L NC NC DVDD2 DVSS2 PWM_P_R PWM_M_R NC NC DVDD3_R DVSS1 DVDD1 DVSS1 MCLK_OUT SCLK LRCLK SDIN MOD2 MOD1 MOD0 ERR DVSS3_R 13 14 15 16 17 18 19 20 21 22 23 24 NC – No internal connection 1.5 Ordering Information TA 0°C to 70°C PACKAGE TAS5000PFB 1–5 1.6 Terminal Functions TERMINAL NAME NO. I/O DESCRIPTION AVDD1 48 I Analog supply for oscillator AVDD2 2 I Analog supply for PLL AVSS1 44 I Analog ground for oscillator AVSS2 5 I Analog ground for PLL DBSPD 39 I Indicates sample rate is double speed (88.2 kHz or 96 kHz), active high DEM_EN 43 I De-emphasis enable, active high DEM_SEL 42 I De-emphasis select (0 = 44.1 kHz, 1 = 48 kHz) DVDD1 12, 14 I Digital voltage supply for logic DVDD2 31 I Digital voltage supply for PWM reclocking DVDD3_L 36 I Digital voltage supply for PWM output (left) DVDD3_R 25 I Digital voltage supply for PWM output (right) DVSS1 13, 15 I Digital ground for Logic DVSS2 30 I Digital ground for PWM reclocking DVSS3_L 37 I Digital ground for PWM output (left) DVSS3_R 24 I Digital ground for PWM output (right) ERR 23 O System error flag, active low FTEST 41 I Tied to DVSS1 for normal operation LRCLK 18 I/O MCLK_IN 1 I MCLK input MCLK_OUT 16 O Buffered system clock output if M_S = 1; otherwise set to 0 MOD0 22 I Serial interface selection pin, bit 0 MOD1 21 I Serial interface selection pin, bit 1 MOD2 20 I Serial interface selection pin, bit 2 (MSB) M_S 10 I Master/slave, Master=1, Slave=0 MUTE 38 I Muted signal = 0, Normal mode = 1 NC 6, 11, 26, 27, 32, 33 Left/right clock (input when M_S = 0; output when M_S = 1) No connection OSC_CAP 45 I Oscillator cap return PDN 8 I Power down, active low PTEST 9 I Tied to DVSS1 for normal operation PLL_FLT_OUT 3 O Output terminal for external PLL filter PLL_FLT_RET 4 I Return for external PLL filter PWM_M_L 34 O PWM left output (differential –) Positive H-bridge side PWM_M_R 28 O PWM right output (differential –) Positive H-bridge side PWM_P_L 35 O PWM left output (differential +) Positive H-bridge side PWM_P_R 29 O PWM right output (differential +) Positive H-bridge side RESET 7 I Reset (active low) SCLK 17 I/O SDIN 19 I Stereo serial audio data input STEST 40 I Tied to DVSS1 for normal operation XTL_IN 47 I Crystal or clock input (MCLK input) XTL_OUT 46 O Crystal output (not for external usage) NC when XTL_IN is MCLK input 1–6 Shift clock (input when M_S = 0, output when M_S = 1) 2 Functional Description 2.1 Serial Audio Port The serial audio port consists of a shift clock (SCLK pin), a left/right frame synchronization clock (LRCLK pin), and a data input (SDIN pin). The serial audio port supports standard serial PCM formats (Fs = 44.1 kHz, 48 kHz, 88.2 kHz, or 96 kHz) stereo. See section 2.8 for Serial Interface Formats. 2.2 System Clocks – Master Mode and Slave Mode The TAS5000 allows multiple system clocking schemes. In this document, master mode indicates that the TAS5000 provides system clocks to other parts of the system (M_S=1). Audio system clocks of frequency 256Fs MCLK_OUT, 64 Fs SCLK, and Fs LRCLK are output from this device when it is configured in master mode. Slave mode indicates that a system master other than the TAS5000 provides system clocks (LRCLK, SCLK, and MCLK_IN) to the TAS5000 (M_S = 0). The TAS5000 operates with LRCLK and SCLK synchronized to MCLK. TAS5000 does not require any specific phase relationship between LRCLK and MCLK, but there must be synchronization. If the synchronization between MCLK and LRCLK changes more than 10 MCLK periods during one sample period (LRCLK), the TAS5000 will initiate an internal reset. In the slave mode MCLK_OUT is driven low. Table 2–1 shows all the possible master and slave modes. 2.3 Oscillator/Sampling Frequency The sampling frequency is determined by the crystal (master mode) or master clock in (slave mode) which should be either 11.2896 MHz (Fs = 44.1 kHz) or 12.288 MHz (Fs = 48 kHz). Twice the normal sampling frequency can be selected by using the DBSPD pin which allows usage of Fs = 88.2 kHz or Fs = 96 kHz. In the double-speed slave mode (DBSPD = 1, M_S = 0), the external clock input is either 22.5796 MHz (Fs = 88.2 kHz) or 24.576 MHz (Fs = 96 kHz). Table 2–1 explains the proper clock selection. 2.4 Phase Locked Loop (PLL)/Clock Generation A low jitter PLL is incorporated for internal use. Connections for the PLL external loop filter are provided as PLL_FLT_RET and PLL_FLT_OUT. See Figure 5–1 for a suggested external loop filter. If the PLL loses lock, the error status pin (ERR) will go low. Note that ERR can go low for other conditions as well. See section 2.7.7 Error Status Reporting. 2–1 Table 2–1. Oscillator, External Clock, and PLL Functions DESCRIPTION MCLK_IN (MHz)‡ SCLK (MHz)¶ LRCLK (kHz)¶ 11.2896 — 2.8224 44.1 0 12.288 48 12.288 — 5.6448 88.2 22.5792 1 1 — — 22.5792§ 24.576§ 3.072 1 0 0 — 0 0 — M_S DBSPD Master, normal speed 1 0 Master, normal speed 1 Master, double speed 1 Master, double speed Slave, normal speed Slave, normal speed Slave, double speed 0 1 XTL_IN (MHz)† — MCLK_OUT (MHz)# 11.2896 6.144 96 24.576 11.2896§ 12.288§ 2.8224 44.1 Digital GND 3.072 48 Digital GND 22.5792§ 24.576§ 5.6448 88.2 Digital GND 6.144 96 Digital GND Slave, double speed 0 1 — † Either a crystal oscillator or an external clock of the specified frequency can be connected to XTL_IN. ‡ MCLK_IN tied low when input to XTL_IN is provided; XTL_IN tied low when MCLK_IN is provided. § External MCLK connected to MCLK_IN input ¶ SCLK and LRCLK are outputs when M_S=1, inputs when M_S=0. # MCLK_OUT is driven low when M_S=0. 2.5 Digital Interpolation Filter The 24-bit high performance linear phase FIR interpolation filter up-samples the input digital data at a rate of 4 times (double speed mode = 88.2 kHz or 96 kHz) or 8 times (normal mode = 44.1 kHz or 48 kHz) the incoming sample rate. This filter provides very low pass-band ripple and optimized time domain transient response for accurate music reproduction. 2.6 Digital PWM Modulator The interpolation filter output is sent to the modulator. This modulator consists of a high performance 4th order digital noise shaper and a PCM to PWM converter. Following the noise shaper, the PCM signal is fed into a very low distortion PCM to PWM conversion block, buffered and output from the chip. The modulation scheme is based on a 2-state control of the H-bridge output. 2.7 Control, Status, and Operational Modes The TAS5000 control section consists of several control-input pins. Three serial mode pins (MOD0, MOD1, and MOD2) are provided to select various serial data formats. During normal operating conditions if any of the MOD0, MOD1, or MOD2 pins changes state, a reset sequence is initiated (see paragraph 2.7.2). Also provided are separate power-down (PDN), reset (RESET), and mute (MUTE) pins. The ERR pin indicates that an error has occurred. 2.7.1 Power Up At power up the ERR pin is asserted low and the PWM outputs go to the hard mute state in which the P outputs are held low and the M outputs are held high. Following initialization, the TAS5000 will come up in the operational state. There are two cases of power-up timing. The first case is shown in Figure 2–1 with RESET preceding PDN. The second case is shown in Figure 2–2 with PDN preceding RESET. RESET PDN Initialization Time = 4224 LRCLK Periods ERR Figure 2–1. Power-Up Timing (RESET preceding PDN) 2–2 Greater Than 16 MCLK Periods RESET PDN Initialization Time = 256 LRCLK Periods ERR Figure 2–2. Power-Up Timing (PDN preceding RESET) 2.7.2 Reset The reset signal for the TAS5000 should be applied whenever toggling the M_S, DBSPD signal. This reset is asynchronous. See Figure 2–3 for reset timing. To initiate the reset sequence the RESET pin is asserted low. As long as the pin is held low the chip is in the reset state. During this reset time the PWM outputs are hard-muted (P-outputs held low and M-outputs held high) and the ERR status pin is held low. Assuming PDN is high, the rising edge of the reset pulse begins chip initialization. After 256 LRCLK periods the TAS5000 will begin normal operation. RESET Initialization Normal Operation ERR Normal Operation PDN Figure 2–3. Reset Timing 2.7.3 Power Down When PDN is low (see Figure 2–4. Power-Down Timing) both the PLL and the oscillator are shut down. Note that power down is an asynchronous operation. To place the device in total power-down mode, both RESET and PDN must be held low. As long as these pins are held low, the chip is in the power-down state and the PWM outputs are hard muted with the P outputs held low and the M outputs held high. To place the device back into normal mode, see section 2.7.1 for power-up timing. NOTE: In order for the dynamic logic to be properly powered down, the clocks should not be stopped before the PDN pin goes low. Otherwise, the device may drain additional supply current. Normal Operation ERR Normal Operation Initialization Chip Power-Down PDN and RESET Figure 2–4. Power-Down Timing 2.7.4 Mute The TAS5000 provides a mute function that is used when the MUTE pin is asserted low. See Table 2–2 for Mute Description. This mute is a quiet mute; that is, the mute is accomplished by outputting a zero value waveform in which both sides of the differential PWM outputs have a 50% duty cycle. 2–3 Table 2–2. Mute Description 2.7.5 MUTE PWM_P PWM_M DESCRIPTION 0 50% Duty cycle 50% Duty cycle Mute 1 DATA DATA Normal operation Double Speed Double-speed mode is used to support sampling rates of 88.2 kHz and 96 kHz. In order to put the TAS5000 in double-speed mode with the device in normal operating conditions, the RESET pin must be held low while switching the DBSPD pin high. After RESET pin is brought high again, a reset sequence takes place (see paragraph 2.7.2). If the change is at power up, a power up sequence is originated (see paragraph 2.7.1). 2.7.6 De-Emphasis Filter For audio sources that have been pre-emphasized, a precision 50 µs/15 µs de-emphasis filter is provided to support the sampling rates of 44.1 kHz and 48 kHz. Pins DEM_SEL and DEM_EN select the de-emphasis functions. See Figure 2–5 for a graph showing the de-emphasis filtering characteristics. See Table 2–3 for de-emphasis selection. Response – dB When the DEM_EN pin or the DEM_SEL pin change state, the PWM outputs go into the quiet mute state. After 128 LRCLK periods for initialization, the PWM outputs are driven to the normal (unmuted) mode. 0 De–emphasis –10 3.18 (50 µs) 10.6 (15 µs) f – Frequency – kHz Figure 2–5. De-Emphasis Filter Characteristics 2.7.6.1 De-Emphasis Selection De-emphasis selection is accomplished by using the DEM_SEL and DEM_EN pins. See Table 2–3 for de-emphasis selection description. Table 2–3. De-Emphasis Selection 2.7.7 DEM_SEL DEM_EN DESCRIPTION X 0 De-emphasis disabled 0 1 De-emphasis enabled for Fs = 44.1 kHz 1 1 De-emphasis enabled for Fs = 48 kHz Error Status Reporting (ERR pin) The following is a list of the error conditions that will cause the ERR status pin to be asserted low: • No clocks • Clock phase errors When any of the above conditions is met, the ERR will go low and the PWM outputs will go to the hard mute state. If the error condition is removed, the TAS5000 is reinitialized and the ERR pin will be asserted high. 2.8 Serial Interface Formats The TAS5000 is compatible with eight different serial interfaces. Available interface options are IIS, right justified, left justified, and DSP Frame. Table 2–4 indicates how these options are selected using the MOD0, MOD1, and MOD2 pins. 2–4 Table 2–4. Hardware Selection of Serial Audio Modes SERIAL INTERFACE SDIN MODE MOD2 PIN MOD1 PIN MOD0 PIN 0 0 0 0 16 bit, MSB first; right justified 1 0 0 1 20 bit, MSB first; right justified 2 0 1 0 24 bit, MSB first; right justified 3 0 1 1 16 bit IIS 4 1 0 0 20 bit IIS 5 1 0 1 24 bit IIS 6 1 1 0 16 bit MSB first, left justified 7 1 1 1 16 bit DSP frame The following figures illustrate the relationship between the SCLK, LRCLK and the serial data I/O for the different interface protocols. Note that there are always 64 SCLKs per LRCLK. The nondata bits are padded with binary 0. 2.8.1 MSB First Right Justified (for 16-, 20-, 24-bits) SCLK LRCLK = Fs SDIN X MSB LSB X Left Channel MSB LSB Right Channel Figure 2–6. MSB First Right Justified Note the following characteristics of this protocol. • • • • • 2.8.2 Left channel is received when LRCLK is high. Right channel is received when LRCLK is low. The SDIN data is justified to the trailing edge of the LRCLK SDIN is sampled at the rising edge of SCLK. If LRCLK phase changes by more than 10 MCLKs, then the chip automatically resets. IIS Compatible Serial Format ( for 16-, 20-, 24-bits) SCLK LRCLK = Fs SDIN X MSB LSB Left Channel X MSB LSB Right Channel Figure 2–7. IIS Compatible Serial Format Note the following characteristics of this protocol. 2–5 • • • 2.8.3 Left channel is received when LRCLK is low. Right channel is received when LRCLK is high. SDIN is sampled with the rising edge of SCLK. MSB Left Justified Serial Interface Format (for 16 bits) SCLK LRCLK = Fs SDIN MSB LSB MSB LSB Left Channel Right Channel Figure 2–8. MSB Left Justified Serial Interface Format Note the following characteristics of this protocol. • Left channel is received when LRCLK is high. • Right channel is received when LRCLK is low. • The SDIN data is justified to the leading edge of the LRCLK. • SDIN is sampled with the rising edge of SCLK. 2.8.4 DSP Compatible Serial Interface Format (for 16 bits) SCLK LRCLK = Fs SDIN 15 14 13 0 15 Left Channel (MSB = 15) 14 13 0 Right Channel (MSB = 15) Figure 2–9. DSP Compatible Serial Interface Format Note the following characteristics of this protocol. • Serial data is sampled with the falling edge of SCLK. 2.9 PWM Outputs Designed to be used with TAS5100. 2–6 3 Electrical Specifications 3.1 Absolute Maximum Ratings† Analog supply voltage range, AVDD1, AVDD2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 4.2 V Digital power supply voltage, DVDD1, DVDD2, DVDD3_L, DVDD3_R . . . . . . . . . . . . . . . . . . . . . –0.3 V to 4.2 V Digital input voltage, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to DVDDX+0.3 V Operating free-air temperature, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C Storage temperature, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C ESD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2000 V † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. DVDD1, DVDD2, DVDD3_L, DVDD3_R 3.2 Recommended Operating Conditions (TA = 25°C; DVDD1 = DVDD2 = DVDD3_L = DVDD3_R = 3.3 V ±10%, AVDD1 = AVDD2 = 3.3 V ±10%, Fs = 44.1 kHz) Voltages at analog inputs and outputs are with respect to ground MIN Supply voltage Digital Supply current Digital Power dissipation Digital Supply voltage Analog Supply current Analog Power dissipation Analog DVDDX‡ 3 Operating 2 Operating Operating Power down§ Operating Power down§ 3.3 MAX 3.6 18 Power down§ Power down§ AVDDX¶ TYP V mA 20 59.4 3 UNIT µA mW 6.6 72 µW 3.3 3.6 V 8 10 mA 100 26.4 33 µA mW 360 µW ‡ DVDD1, DVDD2, DVDD3_L, DVDD3_R § If the clocks are turned off ¶ AVDD1, AVDD2 3–1 3.3 Electrical Characteristics 3.3.1 Static Digital Specifications (TA = 25°C; DVDD1 = DVDD2 = DVDD3_L = DVDD3_R = 3.3 V ±10%, AVDD1 = AVDD2 = 3.3 V ±10%) VIH VIL High-level input voltage VOH VOL High-level output voltage, (IO = –1 mA) Low-level input voltage MAX 2 DVDD1 V 0 0.8 V 2.4 UNIT V Low-level output voltage, (IO = 4 mA) Input leakage current 3.3.2 MIN –10 0.4 V 10 µA Digital Interpolation Filter and PWM Modulator (TA = 25°C; DVDD1 = DVDD2 = DVDD3_L = DVDD3_R = 3.3 V ±10%, AVDD1 = AVDD2 = 3.3 V ±10%, Fs = 44.1 kHz) All the terms characterized by frequency will scale with the normal mode sampling frequency, Fs. MIN Pass band TYP 0 Pass band ripple Stop band Stop band attenuation (24.1 kHz to 152.3 kHz) 20 UNIT kHz ±0.012 dB 24.1 kHz 50 dB Group delay 700 PWM modulation index (gain) 0.93 3.3.3 MAX µS TAS5000/TAS5100 System Performance Measured at the Speaker Terminals Reference section 4.4 in the TAS5100 Data Manual 3.4 Switching Characteristics 3.4.1 Serial Audio Ports Slave Mode (TA = 25°C, DVDD1 = DVDD2 = DVDD3_L = DVDD3_R = AVDD1 = AVDD2 = 3.3 V ±10%) PARAMETER MIN f(SCLK) SCLK frequency tsu(SDIN) th(SDIN) SDIN setup time before SCLK rising edge 20 SDIN hold time from SCLK rising edge 10 F(LRCLK) LRCLK frequency 44.1 3–2 UNIT MHz ns 48 50% SCLK duty cycle 50% LRCLK edge setup before SCLK rising edge MAX 6.144 ns MCLK duty cycle LRCLK duty cycle tsu(LRCLK) TYP 96 kHz 50% 20 ns 3.4.2 Serial Audio Ports Master Mode Load conditions: 50pF (TA = 25°C, DVDD1 = DVDD2 = DVDD3_L = DVDD3_R = AVDD1 = AVDD2 = 3.3 V ±10%) PARAMETER t(MSD) t(MLRD) MIN MCLK to SCLK 0 MLCK to LRCLK 0 SCLK, LRCLK duty cycle 3.4.3 TYP MAX UNIT 5 ns 5 ns 50% DSP Serial Interface Mode (TA = 25°C, DVDD1 = DVDD2 = DVDD3_L = DVDD3_R = AVDD1 = AVDD2 = 3.3 V ±10%) PARAMETER f(SCLK) SCLK frequency tW(FSHIGH) tsu(SDIN), tsu(LRCLK) Pulse duration, sync th(SDIN), th(LRCLK) MIN TYP 1/(64×fs) MAX UNIT 6.144 MHz ns SDIN and LRCLK setup time before SCLK falling edge 20 ns SDIN and LRCLK hold time from SCLK falling edge 10 ns SCLK duty cycle 50% 3–3 3–4 4 Parameter Measurement Information SCLK ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ tsu(SDIN) SDIN th(SDIN) Figure 4–1. Right Justified, IIS, Left Justified Serial Protocol Timing SCLK tsu(LRCLK) LRCLK NOTE: Serial data is sampled with the rising edge of SCLK (setup time = 20 ns and hold time = 10 ns) Figure 4–2. Right, Left, and IIS Serial Mode Timing Requirement SCLK LRCLK (Output) t(MSD) t(MLRD) MCLK (Output) Figure 4–3. Serial Audio Ports Master Mode Timing SCLK th(LRCLK) tsu(LRCLK) LRCLK tw(FSHIGH) tsu(SDIN) SDIN ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ th(SDIN) Figure 4–4. DSP Serial Port Timing 4–1 SCLK LRCLK tw(FSHIGH) 64 fs 16-Bit Left Channel Data SDIN 16-Bit Left Channel Data 32-Bit Ignore 16-Bit Left Channel Data Figure 4–5. DSP Serial Port Expanded Timing SCLK ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ tsu(SDIN) = 20 ns SDIN th(SDIN) = 10 ns NOTE: Serial data is sampled with the falling edge of SCLK (setup time = 20 ns and hold time = 10 ns) Figure 4–6. DSP Absolute Timing Requirement 4–2 5 Application Information PLL_FLT_RET C2† C1† PWM_P_L PWM_M_L TAS5100 H-Bridge R1† PLL_FLT_OUT ERR RESET DEM_SEL Audio Source Clock Generator 3.3 V DIG DEM_EN DBSPD SDIN PWM_P_R PWM_M_R TAS5100 H-Bridge LRCLK SCLK MCLK_IN MOD0 MicroController MOD1 MOD2 M_S MUTE PDN XTL_IN † See application note for values Figure 5–1. Connection Diagram, Slave Mode (typical) 5–1 5–2 PACKAGE OPTION ADDENDUM www.ti.com 12-Jun-2006 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty TAS5000PFB NRND TQFP PFB 48 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR TAS5000PFBG4 ACTIVE TQFP PFB 48 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR Lead/Ball Finish MSL Peak Temp (3) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1