HA-5101 T UCT R OD RODU C P E P T E E OL UT OBS UBSTIT -2842 S A H E 525, SIBL Data HA-2 Sheet P OS ® May 2003 FN2905.5 10MHz, Low Noise, Operational Amplifiers Features The HA-5101 is a dielectrically isolated operational amplifier featuring low noise, (3.0nV/√Hz at 1kHz). • Low Noise . . . . . . . . . . . . . . . . . . . . . 3.0nV/√Hz at 1kHz DC characteristics of the HA-5101 assure accurate performance. The 0.5mV offset voltage is externally adjustable and offset voltage drift is just 3µV/oC. An offset current of only 30nA reduces input current errors and an open loop voltage gain of 1 x 106V/V increases loop gain for low distortion amplification. The HA-5101 is ideal for audio applications, especially lowlevel signal amplifiers such as microphone, tape head and phono cartridge preamplifiers. Additionally, it is well suited for low distortion oscillators, low noise function generators and high Q filters. • Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10MHz • Slew Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10V/µs • Low Offset Voltage Drift . . . . . . . . . . . . . . . . . . . . 3µV/oC • High Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 x 106V/V • High CMRR/PSRR . . . . . . . . . . . . . . . . . . . . . . . . . 100dB • High Output Drive Capability . . . . . . . . . . . . . . . . . . 30mA Applications • High Quality Audio Preamplifiers • High Q Active Filters • Low Noise Function Generators Pinout • Low Distortion Oscillators HA-5101(SOIC) TOP VIEW • Low Noise Comparators • For Further Design Ideas, See Application Note AN554 BAL 1 -IN 2 - 8 COMP 7 V+ + +IN 3 6 OUT V- 4 5 BAL 1 Part Number Information PART NUMBER (BRAND) HA9P5101-9 (H51019) TEMP. RANGE (oC) -40 to 85 PACKAGE 8 Ld SOIC PKG. NO. M8.15 CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc. Copyright © Intersil Americas Inc. 2003. All Rights Reserved All other trademarks mentioned are the property of their respective owners. HA-5101 Schematic -IN R25 R24 +IN R23 R26 Q23 Q26 V+ R28 R60 Q47 Q28 Q24 Q25 R35 QL41 QL1 Q16 QL2 R34 Q14 Q45 R37 R36 Q37 Q43 Q36 R15 Q1A Q1B Q29 Q2B Q46 Q44 R22 Q35 Q15 Q41 Q33 OUTPUT Q30 Q38 Q2A Q13 Q31 Q21 R17A Q42 Q32 Q17 Q19B R20 Q20 Q5 Q10 Q19A Q11 Q27 C1 Q6 Q4 Q3 Q7 Q9 Q12 R58 Q34 R4A R3A R11 R10 R12 R27 R3B Q8 Q18 Q49 Q50 Q39 R19A C2 Q48 R4B Q51 R18 V- R19B BAL 2 BAL HA-5101 Absolute Maximum Ratings Thermal Information Voltage Between V+ and V- Terminals . . . . . . . . . . . . . . . . . . . 40V Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7V Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±VSUPPLY Output Current . . . . . . . . . . . . . . . . . . . Full Short Circuit Protection Thermal Resistance (Typical, Note 2) θJA (oC/W) θJC (oC/W) SOIC Package . . . . . . . . . . . . . . . . . . . 160 N/A Maximum Junction Temperature (Note 1) . . . . . . . . . . . . . . 150oC Maximum Storage Temperature Range . . . . . . . . . -65oC to 150oC Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300oC (Lead Tips Only) Operating Conditions Temperature Range HA-5101-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40oC to 85oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTES: 1. Maximum power dissipation, including output load, must be designed to maintain the maximum junction temperature below 150oC for the plastic packages. 2. θJA is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details. VSUPPLY = ±15V, RS = 100Ω, RL = 2kΩ, CL = 50pF, Unless Otherwise Specified Electrical Specifications TEMP (oC) MIN TYP MAX UNITS 25 - 0.5 3 mV Full - - 4 mV Offset Voltage Drift Full - 3 - µV/oC Bias Current 25 - 100 200 nA Full - - 325 nA 25 - 30 75 nA Full - - 125 nA Input Resistance 25 - 500 - kΩ Common Mode Range Full ±12 - - V 25 - 1000 - kV/V Full 100 250 - kV/V PARAMETER TEST CONDITIONS INPUT CHARACTERISTICS Offset Voltage Offset Current TRANSFER CHARACTERISTICS VOUT = ±10V Large Signal Voltage Gain Common Mode Rejection Ratio VCM = ±10V Full 80 100 - dB Small Signal Bandwidth AV = 1 25 - 10 - MHz Full 1 - - V/V RL = 10kΩ Full ±12 ±13 - V RL = 2kΩ Full ±12 ±13 - V VS = ±18V, RL = 600Ω 25 ±15 - - V Output Current (Note 3) 25 25 30 - mA Full Power Bandwidth (Note 4) 25 95 160 - kHz Output Resistance 25 - 110 - Ω Maximum Load Capacitance 25 - 800 - pF Rise Time 25 - 50 100 ns Overshoot 25 - 20 35 % Minimum Stable Gain OUTPUT CHARACTERISTICS Output Voltage Swing TRANSIENT RESPONSE (Note 5) 3 HA-5101 VSUPPLY = ±15V, RS = 100Ω, RL = 2kΩ, CL = 50pF, Unless Otherwise Specified (Continued) Electrical Specifications TEMP (oC) MIN TYP MAX UNITS 25 6 10 - V/µs - - 2.6 - µs f = 10Hz 25 - 5 7 nV/√Hz f = 1kHz 25 - 3.0 4.0 nV/√Hz f = 10Hz 25 - 4.0 9 pA/√Hz - 0.6 2.5 pA/√Hz 25 - 0.870 - µVRMS Full - 4 7 mA Full 80 100 - dB PARAMETER TEST CONDITIONS Slew Rate Settling Time (Note 6) 0.01% NOISE CHARACTERISTICS (Note 7) Input Noise Voltage Input Noise Current f = 1kHz Broadband Noise Voltage f = DC To 30kHz POWER SUPPLY CHARACTERISTICS Supply Current ∆VS = ±5V Power Supply Rejection Ratio NOTES: 3. Output current is measured with VOUT = ±15V with VSUPPLY = ±18V. Slew Rate 4. Full power bandwidth is guaranteed by equation: Full power bandwidth = --------------------------- , V PEAK = 10V. 2πV P EAK 5. Refer to Test Circuits section of the data sheet. 6. Settling time is measured to 0.01% of final value for a 10V output step, and AV = -1. 7. The limits for these parameters are guaranteed based on lab characterization, and reflect lot-to-lot variation. Test Circuits and Waveforms 2kΩ 2kΩ IN IN - OUT + + OUT - 2kΩ 50pF 50pF 1kΩ FIGURE 1. LARGE SIGNAL RESPONSE CIRCUIT 4 FIGURE 2. SMALL SIGNAL RESPONSE CIRCUIT HA-5101 Test Circuits and Waveforms (Continued) +5V +100mV 0V 0V -5V -100mV Ch. 1 = 2.5V/Div. Timebase = 1.00µs/Div. Ch. 1 = 50mV/Div. Timebase = 100ns/Div. FIGURE 3. LARGE SIGNAL TRANSIENT RESPONSE FIGURE 4. SMALL SIGNAL TRANSIENT RESPONSE +15V 2N4416 5kΩ (NOTE 9) TO OSCILLOSCOPE 5kΩ 2kΩ +15V VOUT + VIN (NOTE 9) 2kΩ -15V 50pF 2kΩ NOTES: 8. AV = -1. 9. Feedback and summing resistors should be 0.1% matched. 10. Clipping diodes are optional, HP5082-2810 recommended. FIGURE 5. SETTLING TIME CIRCUIT Application Information The following is the recommended VIO adjust configuration: Operation At ±5V Supply +15V The HA-5101 performs well at VS = ±5V exhibiting typical characteristics as listed below: ICC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IBIAS. . . . . . . . . . . . . . . . . . . . . . . . . . . . AVOL (VO = ±3V) . . . . . . . . . . . . . . . . . . VOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . IOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . CMRR (∆VCM = ±2.5V) . . . . . . . . . . . . . PSRR (∆VS = 0.5V) . . . . . . . . . . . . . . . . Unity Gain Bandwidth . . . . . . . . . . . . . . Slew Rate. . . . . . . . . . . . . . . . . . . . . . . . 3.7mA 0.5mV 56nA 106kV/V 3.7V 13mA 90dB 90dB 10MHz 7V/µs 7 3 (NOTE) + 6 2 1 4 (NOTE) 5 RP RP = 100kΩ -15V NOTE: Proper decoupling is always recommended, 0.1µF high quality capacitor should be at or very near the device’s supply pins. Input Protection Offset Adjustment The HA-5101 has built-in back-to-back protection diodes which will limit the differential input voltage to approximately 5 HA-5101 7V. If the 5101 will be used in conditions where that voltage may be exceeded, then current limiting resistors must be used. No more than 25mA should be allowed to flow in the HA-5101’s input. If saturation cannot be avoided the HA-5101 recovers from a 25% overdrive in about 6.5µs (see photos). Comparator Circuit IN V+ ∆VIN RLIM ∆VIN RLIM 2 7 - 6 + 3 4 OUT V- ( ∆V INMAX – 7V ) --------------------------------------------- ≤ 2R LIM 25mA Choose RLIM Such That: Top: Input Bottom: Output, 5V/Div., 2µs/Div. Output is overdriven negative and recovers in 6µs. Output Saturation When an op amp is overdriven, output devices can saturate and sometimes take a long time to recover. Saturation can be avoided (sometimes) by using circuits such as: V+ R1 R2 + R3 VSOURCE R4 V- Typical Performance Curves 1500 6 5 VOLTAGE 4 3 2 CURRENT 1 0 10 100 1K 10K FREQUENCY (Hz) FIGURE 6. NOISE SPECTRUM 6 100K OFFSET VOLTAGE (µV) 7 INPUT NOISE CURRENT (pA/√Hz) INPUT NOISE VOLTAGE (nV/√Hz) 8 1000 500 0 -50 -25 0 25 50 75 100 TEMPERATURE (oC) FIGURE 7. OFFSET VOLTAGE vs TEMPERATURE 125 HA-5101 Typical Performance Curves (Continued) AV = 25000 VS = ±15V (2.25µVP-P RTO) AV = 25000, VS = ±15V (12.89mVP-P RTO) PEAK-TO-PEAK NOISE 0.1Hz TO 10Hz PEAK-TO-PEAK TOTAL NOISE 0.1Hz TO 1MHz 250 200 0 BIAS CURRENT (nA) -20 -40 150 100 50 -60 -55 -25 0 25 50 75 100 0 -55 125 -25 0 TEMPERATURE (oC) FIGURE 8. INPUT OFFSET CURRENT vs TEMPERATURE 1.1 0.9 0.8 0.8 RL = 2kΩ, CL = 50pF VS = ±15V 0.7 20 40 60 80 100 120 TEMPERATURE (oC) FIGURE 10. SLEW RATE/RISE TIME vs TEMPERATURE 7 80 GAIN 60 40 0 20 45 90 0 PHASE 135 180 0.6 0 125 100 VOLTAGE GAIN (dB) 0.9 RISE TIME (NORMALIZED) SLEW RATE (NORMALIZED) 1.0 SLEW RATE -20 100 120 1.0 -40 75 140 RISE TIME 0.6 -60 50 FIGURE 9. INPUT BIAS CURRENT vs TEMPERATURE 1.1 0.7 25 TEMPERATURE (oC) 10 100 1K 10K 100K 1M 10M 100M FREQUENCY (Hz) FIGURE 11. OPEN-LOOP GAIN/PHASE vs FREQUENCY PHASE SHIFT (DEGREES) INPUT OFFSET CURRENT (nA) 20 HA-5101 Typical Performance Curves 30 (Continued) 5 TA = 25oC, VS = ±15V MAXIMUM 4 SUPPLY CURRENT (mA) 20 OFFSET CHANGE (µV) TA = 25oC 10 0 -10 -20 -30 0 50 100 150 200 250 300 350 400 450 MINIMUM 3 TYPICAL 2 1 0 500 0 2 4 6 TIME (SECONDS) 16 18 20 FIGURE 13. SUPPLY CURRENT vs SUPPLY VOLTAGE FIGURE 12. INPUT OFFSET WARMUP DRIFT vs TIME (NORMALIZED TO ZERO FINAL VALUE) (SIX REPRESENTATIVE UNITS) V/V 10M (dB) (140) 60 TA = 25oC, VS = ±15V D 50 OUTPUT CURRENT (mA) OPEN LOOP VOLTAGE GAIN 8 10 12 14 SUPPLY VOLTAGE (±V) 1M (120) 100K (100) B 40 C 30 A A B C D 10 10K (80) VIN VOUT +15mV -15mV +15mV -15mV ±15V ±15V 0V 0V 20 0 5 10 15 SUPPLY VOLTAGE (±V) FIGURE 14. DC OPEN-LOOP VOLTAGE GAIN vs SUPPLY VOLTAGE 8 18 0 20 40 60 80 100 120 140 TIME (S) FIGURE 15. SHORT CIRCUIT CURRENT vs TIME 160 HA-5101 Typical Performance Curves (Continued) 3 -55oC GAIN 0 VERROR 125oC GAIN -3 -6 -9 -12 0 -55oC PHASE 125oC -45 PHASE -90 -135 Vs = ±15V, AV = 1V/V RL = 2kΩ, CL = 50pF 10K 100K PHASE SHIFT (DEGREES) CLOSED LOOP VOLTAGE GAIN (dB) 6 1mV 2.65µS -180 1M FREQUENCY (Hz) -225 100M 10M FIGURE 17. SETTLING WAVEFORM 1.5µs/DIV. FIGURE 16. FREQUENCY RESPONSE -40 40 AV = 100 REJECTION RATIO (dB) GAIN (dB) 30 AV = 10 20 10 AV = 1 0 -10 -20 TA = 25oC, Vs = ±15V -60 -PSRR/CMRR -80 +PSRR -100 TA = 25oC, VS = ±15V RL = 2kΩ, CL = 50pF 10K 100K 1M FREQUENCY (Hz) 10M -120 100M 100 13 1M 100Ω 10kΩ +0.2V -8 - -55oC RLOAD -VOUT (V) 100Ω 10kΩ -0.2V 11 - VOUT + -10 25oC 300 400 RLOAD (Ω) FIGURE 20. +VOUT vs RL 9 500 600 125oC -12 -13 9 25oC -11 RLOAD 10 200 VOUT + -9 12 100 100K -7 VSUPPLY = ±15V 125oC +VOUT (V) 10K FREQUENCY (Hz) FIGURE 19. REJECTION RATIOS vs FREQUENCY FIGURE 18. CLOSED-LOOP GAIN vs FREQUENCY 14 1K VSUPPLY = ±15V -55oC -14 100 200 300 400 RLOAD (Ω) FIGURE 21. -VOUT vs RL 500 600 HA-5101 Die Characteristics SUBSTRATE POTENTIAL (Powered Up): VTRANSISTOR COUNT: 54 PROCESS: Bipolar Dielectric Isolation Metallization Mask Layout HA-5101 BAL -IN NC V+ +IN OUT V- BAL All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com 10