DATASHEET

NS
W DESIG
F O R NE
D
T
E
N
D
E
N
M
COMME
E PL ACE
NO T R E
NDED R
E
nter at
e
M
C
M
rt
O
o
upp
S
l
NO REC
a
/tsc
ic
n
o
h
rsil.c m
ur Tec
te
o
n
t
.i
c
w
ta
w
n
co
or w
TERSIL
1-888-IN
Automotive Single-Phase Core Regulator for IMVP-6™
CPUs
ISL78211
Features
The ISL78211 is a single-phase buck regulator implementing
lntel™ IMVP-6™ protocol, with embedded gate drivers. lntel™
Mobile Voltage Positioning (IMVP) is a smart voltage regulation
technology effectively reducing power dissipation in lntel™
Pentium processors.
• Precision single-phase CORE voltage regulator
- 0.5% system accuracy over -10°C to 100°C temperature
range
- 0.8% system accuracy over entire temperature range
- Enhanced load line accuracy
The heart of the ISL78211 is the patented R3 Technology™,
Intersil’s Robust Ripple Regulator modulator. Compared with the
traditional multi-phase buck regulator, the R3 Technology™ has
faster transient response. This is due to the R3 modulator
commanding variable switching frequency during a load
transient.
The ISL78211 provides three operation modes: the Continuous
Conduction Mode (CCM), the Diode Emulation Mode (DEM) and
the Enhanced Diode Emulation Mode (EDEM). To boost battery
life, the ISL78211 changes its operation mode based on CPU
mode signals DPRSLRVR and DPRSTP#, and the FDE pin setting,
to maximize the efficiency. In CPU active mode, the ISL78211
commands the CCM operation. When the CPU enters deeper
sleep mode, the ISL78211 enables the DEM to maximize the
efficiency at light load. Asserting the FDE pin of the ISL78211 in
CPU deeper sleep mode will enable the EDEM to further decrease
the switching frequency at light load and increase the regulator
efficiency.
A 7-bit Digital-to-Analog Converter (DAC) allows dynamic
adjustment of the core output voltage from 0.300V to 1.500V.
The ISL78211 has 0.8% system voltage accuracy over entire
temperature.
• Internal gate driver with 2A driving capability
• Microprocessor voltage identification input
- 7-Bit VID input
- 0.300V to 1.500V in 12.5mV steps
- Support VID change on-the-fly
• Multiple current sensing schemes supported
- Lossless inductor DCR current sensing
- Precision resistive current sensing
• Thermal monitor
• Power monitor indicating CPU instantaneous power
• User programmable switching frequency
• Differential remote voltage sensing at CPU die
• Overvoltage, undervoltage, and overcurrent protection
• AEC-Q100 tested
• Pb-free (RoHS compliant)
A unity-gain differential amplifier provides remote voltage
sensing at the CPU die. This allows the voltage on the CPU die to
be accurately measured and regulated per lntel™ IMVP-6
specification. Current sensing can be implemented through
either lossless inductor DCR sensing or precise resistor sensing.
If DCR sensing is used, an NTC thermistor network will thermally
compensates the gain and the time constant variations caused
by the inductor DCR change.
The ISL78211 provides the power monitor function through the
PMON pin. PMON output is a high-bandwidth analog voltage
signal representing the CPU instantaneous power. The power
monitor function can be used by the system to optimize the
overall power consumption, extending battery run time.
The ISL78211 is tested to AEC-Q100 specifications.
December 4, 2013
FN7578.1
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 1-888-468-3774 | Copyright Intersil Americas LLC 2010, 2013. All Rights Reserved
Intersil (and design) and R3 Technology are trademarks owned by Intersil Corporation or one of its subsidiaries.
All other trademarks mentioned are the property of their respective owners.
ISL78211
Table of Contents
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Pin Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Functional Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Gate Driver Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Function Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Simplified Application Circuit for DCR Current Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Simplified Application Circuit for Resistive Current Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Theory of Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Start-up Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Static Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
High Efficiency Operation Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dynamic Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12
12
12
15
15
16
Component Selection and Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Soft-Start and Mode Change Slew Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Selecting Rbias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Start-up Operation - CLK_EN# and PGOOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Static Mode of Operation - Processor Die Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Setting the Switching Frequency - FSET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Voltage Regulator Thermal Throttling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Static Mode of Operation - Static Droop Using DCR Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dynamic Mode of Operation – Droop Capacitor Design in DCR Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dynamic Mode of Operation - Compensation Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Droop using Discrete Resistor Sensing - Static/Dynamic Mode of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16
16
17
17
17
18
18
20
21
22
22
Typical Performance Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
ISL78211EVAL1Z Evaluation Board Schematics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Socket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dynamic Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Geyserville Transition Gen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
29
29
30
31
32
33
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
About Intersil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2
FN7578.1
December 4, 2013
ISL78211
Ordering Information
PART NUMBER
(Notes 2, 3)
PART
MARKING
TEMP. RANGE
(°C)
PACKAGE
(Pb-Free)
PKG.
DWG. #
ISL78211ARZ
ISL7821 1ARZ
-40 to +105
40 Ld 6x6 QFN
L40.6x6
ISL78211ARZ-T (Note 1)
ISL7821 1ARZ
-40 to +105
40 Ld 6x6 QFN Tape and Reel
L40.6x6
NOTES:
1. Please refer to TB347 for details on reel specifications.
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pbfree products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL78211. For more information on MSL please see techbrief TB363.
Pin Configuration
PGOOD
3V3
CLK_EN
DPRSTP#
DPRSLPVR
VR_ON
VID6
VID5
VID4
VID3
ISL78211
(40 LD QFN)
TOP VIEW
40
39
38
37
36
35
34
33
32
31
FDE
1
30 VID2
PMON
2
29 VID1
RBIAS
3
28 VID0
VR_TT#
4
27 VCCP
NTC
5
SOFT
6
OCSET
7
24 PHASE
VW
8
23 UGATE
COMP
9
22 BOOT
FB
10
21 NC
3
26 LGATE
GND PAD
(BOTTOM)
11
12
13
14
15
16
17
18
19
20
VDIFF
VSEN
RTN
DROOP
DFB
VO
VSUM
VIN
VSS
VDD
25 VSSP
FN7578.1
December 4, 2013
ISL78211
Functional Pin Descriptions
PIN
SYMBOL
DESCRIPTION
1
FDE
Forced diode emulation enable signal. Logic high of FDE with logic low of DPRSTP# forces the ISL78211 to
operate in diode emulation mode with an increased VW-COMP voltage window.
2
PMON
Analog voltage output pin. The voltage potential on this pin indicates the power delivered to the output.
3
RBIAS
A 147k resistor to VSS sets internal current reference.
4
VR_TT#
Thermal overload output indicator with open-drain output. Over-temperature pull-down resistance is 10.
5
NTC
Thermistor input to VR_TT# circuit and a 60µA current source is connected internally to this pin.
6
SOFT
A capacitor from this pin to GND pin sets the maximum slew rate of the output voltage. The SOFT pin is the
non-inverting input of the error amplifier.
7
OCSET
Overcurrent set input. A resistor from this pin to VO sets DROOP voltage limit for OC trip. A 10µA current source
is connected internally to this pin.
8
VW
A resistor from this pin to COMP programs the switching frequency (eg. 6.81k = 300kHz).
9
COMP
10
FB
The output of the error amplifier.
11
VDIFF
The output of the differential amplifier.
12
VSEN
Remote core voltage sense input.
13
RTN
Remote core voltage sense return.
14
DROOP
15
DFB
The inverting input of the droop amplifier.
16
VO
An input to the IC that reports the local output voltage.
The inverting input of the error amplifier.
The output of the droop amplifier. DROOP-VO voltage is the droop voltage.
17
VSUM
18
VIN
Power stage input voltage. It is used for input voltage feed-forward to improve the input line transient
performance.
This pin is connected to one terminal of the capacitor in the current sensing R-C network.
19
VSS
Signal ground. Connect to controller local ground.
20
VDD
5V control power supply.
21
NC
Not connected. Ground this pin in the practical layout.
22
BOOT
Upper gate driver supply voltage. An internal bootstrap diode is connected to the VCCP pin.
23
UGATE
The upper-side MOSFET gate signal.
24
PHASE
25
VSSP
26
LGATE
The lower-side MOSFET gate signal.
27
VCCP
5V power supply for the gate driver.
28, 29, 30,
31, 32, 33,
34
VID0, VID1, VID2, VID3,
VID4, VID5, VID6
35
VR_ON
36
DPRSLPVR
Deeper sleep enable signal. A logic high indicates that the microprocessor is in Deeper Sleep Mode and also
indicates a slow Vo slew rate with 41mA discharging or charging the SOFT capacitor.
37
DPRSTP#
Deeper sleep slow wake up signal. A logic low signal on this pin indicates that the microprocessor is in Deeper
Sleep Mode.
Digital output for system PLL clock. Goes active 13 clock cycles after VCORE is within 20mV of the boot voltage.
38
CLK_EN
39
3V3
40
PGOOD
The phase node. This pin should connect to the source of upper MOSFET.
The return path of the lower gate driver.
VID input with VID0 as the least significant bit (LSB) and VID6 as the most significant bit (MSB).
VR enable pin. A logic high signal on this pin enables the regulator.
3.3V supply voltage for CLK_EN#.
Power-good open-drain output. Needs to be pulled up externally by a 680 resistor to VCCP or 1.9k to 3.3V.
4
FN7578.1
December 4, 2013
ISL78211
Absolute Maximum Ratings
Thermal Information
Supply Voltage (VDD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +7V
Battery Voltage (VIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +28V
Boot Voltage (BOOT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +33V
Boot to Phase Voltage (BOOT-PHASE) . . . . . . . . . . . . . . . . -0.3V to +7V(DC)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +9V(<10ns)
Phase Voltage (PHASE) . . . . . . . . . . . . . . . . -7V (<20ns Pulse Width, 10µJ)
UGATE Voltage (UGATE) . . . . . . . . . . . . . . . . . . . . PHASE-0.3V (DC) to BOOT
. . . . . . . . . . . . . . . . . . . . . PHASE-5V (<20ns Pulse Width, 10µJ) to BOOT
LGATE Voltage (LGATE). . . . . . . . . . . . . . . . . . . . . . . -0.3V (DC) to VDD+0.3V
. . . . . . . . . . . . . . . . . . . . . . -2.5V (<20ns Pulse Width, 5µJ) to VDD+0.3V
All Other Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to (VDD +0.3V)
Open Drain Outputs, PGOOD, VR_TT# . . . . . . . . . . . . . . . . . . . . . -0.3 to +7V
ESD Rating
Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3000V
Machine Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250V
Charged Device Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2000V
Latch Up. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Tested per JESD-78A)
Thermal Resistance (Typical, Notes 4, 5)
JA (°C/W) JC (°C/W)
QFN Package . . . . . . . . . . . . . . . . . . . . . . . .
33
6
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . .+150°C
Maximum Storage Temperature Range . . . . . . . . . . . . . .-65°C to +150°C
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below
http://www.intersil.com/pbfree/Pb-FreeReflow.asp
Recommended Operating Conditions
Supply Voltage, VDD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +5V ±5%
Battery Voltage, VIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +5V to 21V
Ambient Temperature
ISL78211ARZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40°C to 105°C
Junction Temperature
ISL78211ARZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +125°C
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product
reliability and result in failures not covered by warranty.
NOTES:
4. JA is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech
Brief TB379.
5. For JC, the “case temp” location is the center of the exposed metal pad on the package underside.
Electrical Specifications
temperature range, -40°C to +105°C.
PARAMETER
VDD = 5V, TA = -40°C to +105°C, unless otherwise specified. Boldface limits apply over the operating
SYMBOL
MIN
(Note 7)
TYP
MAX
(Note 7)
UNITS
VR_ON = 3.3V
-
3.1
3.6
mA
TEST CONDITIONS
INPUT POWER SUPPLY
+5V Supply Current
IVDD
VR_ON = 0V
-
-
1
µA
+3.3V Supply Current
I3V3
No load on CLK_EN# pin
-
-
1
µA
Battery Supply Current at VIN Pin
IVIN
VR_ON = 0, VIN = 25V
-
-
1
µA
POR (Power-On Reset) Threshold
PORr
VDD rising
-
4.35
4.5
V
PORf
VDD falling
3.85
4.1
-
V
No load, close loop, active mode,
TA = -10°C to +100°C,
VID = 0.75V to 1.5V
-0.5
-
0.5
%
-8
-
8
mV
SYSTEM AND REFERENCES
System Accuracy
%Error
(VCC_CORE)
VID = 0.5V to 0.7375V
%Error
(VCC_CORE)
VID = 0.3V to 0.4875V
-15
-
15
mV
No load, close loop, active mode,
VID = 0.75V to 1.5V
-0.8
-
0.8
%
VID = 0.5V to 0.7375V
-10
-
10
mV
VID = 0.3V to 0.4875V
RBIAS Voltage
RRBIAS
Boot Voltage
RRBIAS = 147k
VCC_CORE (max)
Minimum Output Voltage
VCC_CORE (min)
VID Off State
-
18
mV
1.47
1.49
V
1.188
1.2
1.212
V
VID = [0000000]
-
1.5
-
V
VID = [1100000]
-
0.3
-
V
VID = [1111111]
-
0.0
-
V
318
333
348
kHz
200
-
500
kHz
VBOOT
Maximum Output Voltage
-18
1.45
CHANNEL FREQUENCY
Nominal Channel Frequency
fSW
Adjustment Range
5
RFSET = 7k, VCOMP = 2V
FN7578.1
December 4, 2013
ISL78211
Electrical Specifications VDD = 5V, TA = -40°C to +105°C, unless otherwise specified. Boldface limits apply over the operating
temperature range, -40°C to +105°C. (Continued)
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
(Note 7)
TYP
MAX
(Note 7)
UNITS
-0.3
-
0.3
mV
-
90
-
dB
-
18
-
MHz
AMPLIFIERS
Droop Amplifier Offset
Error Amp DC Gain (Note 6)
AV0
Error Amp Gain-Bandwidth
Product (Note 6)
GBW
CL = 20pF
SR
CL = 20pF
Error Amp Slew Rate (Note 6)
FB Input Current
-
5.0
-
V/µs
IIN(FB)
-
10
150
nA
ISS
-47
-42
-37
µA
±180
±205
±230
µA
-46
-41
-36
µA
SOFT-START CURRENT
Soft-start Current
Soft Geyserville Current
IGV
|SOFT - REF|>100mV
Soft Deeper Sleep Entry Current
IC4
DPRSLPVR = 3.3V
Soft Deeper Sleep Exit Current
IC4EA
DPRSLPVR = 3.3V
36
41
46
µA
Soft Deeper Sleep Exit Current
IC4EB
DPRSLPVR = 0V
175
200
225
µA
VPMON
VSEN = 1.2V,
VDROOP - VO = 40mV
1.638
1.680
1.722
V
VSEN = 1V,
VDROOP - VO = 10mV
0.308
0.350
0.392
V
2.8
3.0
-
V
POWER MONITOR
PMON Output Voltage Range
PMON Maximum Voltage
VPMONMAX
PMON Sourcing Current
ISC_PMON
VSEN = 1V,
VDROOP - VO = 25mV
2
-
-
mA
PMON Sinking Current
ISK_PMON
VSEN = 1V,
VDROOP - VO = 25mV
2
-
-
mA
PMON/250
PMON/180
PMON/130
A
-
7
-

Maximum Current Sinking
Capability
PMON Impedance
ZPMON
When PMON current is within its
sourcing/sinking current range
(Note 6)
GATE DRIVER DRIVING CAPABILITY (Note 6)
UGATE Source Resistance
RSRC(UGATE)
500mA source current
-
1
1.5

UGATE Source Current
ISRC(UGATE)
VUGATE_PHASE = 2.5V
-
2
-
A
UGATE Sink Resistance
RSNK(UGATE)
500mA sink current
-
1
1.5

UGATE Sink Current
ISNK(UGATE)
VUGATE_PHASE = 2.5V
-
2
-
A
LGATE Source Resistance
RSRC(LGATE)
500mA source current
-
1
1.5

LGATE Source Current
ISRC(LGATE)
VLGATE = 2.5V
-
2
-
A
LGATE Sink Resistance
RSNK(LGATE)
500mA sink current
-
0.5
0.9

LGATE Sink Current
ISNK(LGATE)
VLGATE = 2.5V
-
4
-
A
UGATE to PHASE Resistance
RP(UGATE)
-
1.1
-
k
GATE DRIVER SWITCHING TIMING (Refer to “Gate Driver Timing Diagram” on page 8)
UGATE Turn-on Propagation Delay
tPDHU
PVCC = 5V, output unloaded
18
30
44
ns
LGATE Turn-on Propagation Delay
tPDHL
PVCC = 5V, output unloaded
5
15
30
ns
0.43
0.58
0.72
V
BOOTSTRAP DIODE
Forward Voltage
VDDP = 5V, forward bias
current = 2mA
Leakage
VR = 16V
-
-
1
µA
IPGOOD = 4mA
-
0.11
0.4
V
POWER GOOD and PROTECTION MONITOR
PGOOD Low Voltage
VOL
6
FN7578.1
December 4, 2013
ISL78211
Electrical Specifications VDD = 5V, TA = -40°C to +105°C, unless otherwise specified. Boldface limits apply over the operating
temperature range, -40°C to +105°C. (Continued)
PARAMETER
SYMBOL
PGOOD Leakage Current
IOH
TEST CONDITIONS
PGOOD = 3.3V
MIN
(Note 7)
TYP
MAX
(Note 7)
UNITS
-1
-
1
µA
PGOOD Delay
tpgd
CLK_EN# low to PGOOD high
5.5
6.8
8.75
ms
Overvoltage Threshold
OVH
VO rising above setpoint
> 1ms
145
195
250
mV
Severe Overvoltage Threshold
OVHS
VO rising above setpoint
> 0.5µs
1.675
1.7
1.725
V
OCSET Reference Current
I(RBIAS) = 10µA
9.8
10
10.2
µA
OC Threshold Offset
DROOP rising above OCSET >
120µs
-3.5
-
3.5
mV
VO below set point for > 1ms
-380
-300
-220
mV
-
-
1
V
2.3
-
-
V
-1
0
-
µA
Undervoltage Threshold
(VDIFF-SOFT)
UVf
LOGIC THRESHOLDS
VR_ON and DPRSLPVR Input Low
VIL(3.3V)
VR_ON and DPRSLPVR Input High
VIH(3.3V)
Leakage Current on VR_ON
Leakage Current on DPRSLPVR
IIL
Logic input is low
IIH
Logic input is high
-
0
1
µA
IIL_DPRSLP
DPRSLPVR logic input is low
-1
0
-
µA
IIH_DPRSLP
DPRSLPVR logic input is high
-
0.45
1
µA
DAC(VID0-VID6), PSI# and
DPRSTP# Input Low
VIL(1.0V)
-
-
0.3
V
DAC(VID0-VID6), PSI# and
DPRSTP# Input High
VIH(1.0V)
0.7
-
-
V
Leakage Current of DAC
(VID0-VID6) and DPRSTP#
IIL
DPRSLPVR logic input is low
-1
0
-
µA
IIH
DPRSLPVR logic input is high
-
0.45
1
µA
THERMAL MONITOR
NTC Source Current
NTC = 1.3 V
Over-temperature Threshold
V(NTC) falling
RTT
I = 20mA
CLK_EN# High Output Voltage
VOH
3V3 = 3.3V, I = -4mA
CLK_EN# Low Output Voltage
VOL
ICLK_EN# = 4mA
VR_TT# Low Output Resistance
53
60
67
µA
1.17
1.2
1.25
V
-
5
9

CLK_EN# OUTPUT LEVELS
2.9
3.1
-
V
-
0.18
0.4
V
NOTES:
6. Limits established by characterization and are not production tested.
7. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization
and are not production tested.
7
FN7578.1
December 4, 2013
ISL78211
Gate Driver Timing Diagram
PWM
tPDHU
tFU
tRU
1V
UGATE
1V
LGATE
tRL
tFL
tPDHL
8
FN7578.1
December 4, 2013
Function Block Diagram
RBIAS
VR_ON
FDE
DPRSLPVR
DPRSTP#
CLK_EN#
PGOOD
3V3
VIN
VDD
VCCP
VID0
MODE CONTROL
VID1
VIN
PGOOD MONITOR AND LOGIC
VCCP
60µA
VID2
FLT
9
VID3
DAC
SOFT
PGOOD
FAULT AND PGOOD LOGIC
VID4
VID5
VO
1.22V
VID6
10µA
OCSET
VCCP
OC
VSUM
OC
VIN
VSOFT
FLT
DROOP
1
E/A
DRIVER
LOGIC
MODULATOR
VCCP
VO
1
Mupti-plier
VW
VO
VSEN
RTN
PMON
VDIFF
SOFT
FB
COMP
VW
FIGURE 1. SIMPLIFIED FUNCTIONAL BLOCK DIAGRAM OF ISL78211
VSS
ISL78211
DROOP
DFB
FN7578.1
December 4, 2013
ISL78211
Simplified Application Circuit for DCR Current Sensing
V+3.3
V+5
VIN
R4
C4
3V3
R5
VDD
RBIAS
VCCP
VIN
R6
C8
NTC
C5
UGATE
SOFT
VR_TT#
BOOT
LO
C6
VR_TT#
VO
PHASE
VID<0:6>
CO
VIDs
DPRSTP#
DPRSTP#
DPRSLPVR
DPRSLPVR
LGATE
FDE
PMON
VSSP
PMON
CLK_ENABLE#
CLK_EN#
VR_ON
R8
VR_ON
IMVP6_PWRGD
VSUM
PGOOD
VCC-SENSE
C9
VSEN
VSS-SENSE
R7
RTN
VO
ISL6261A
C7
C3
R9
NTC
NETWORK
R10
R11
VW
OCSET
C2
R2
C10
DFB
COMP
R12
FB
C1
R3
DROOP
VDIFF
R1
VSS
FIGURE 2. ISL78211-BASED IMVP-6® SOLUTION WITH INDUCTOR DCR CURRENT SENSING
10
FN7578.1
December 4, 2013
ISL78211
Simplified Application Circuit for Resistive Current Sensing
V+5
V+3.3
VIN
R4
C4
3V3
R5
VDD
RBIAS
VCCP
VIN
R6
C8
NTC
C5
UGATE
SOFT
BOOT
LO
C6
VR_TT#
VR_TT#
RSEN
VO
PHASE
VIDs
VID<0:6>
CO
DPRSTP#
DPRSTP#
DPRSLPVR
DPRSLPVR
LGATE
FDE
PMON
PMON
VSSP
CLK_EN#
CLK_ENABLE#
R8
VR_ON
VR_ON
VSUM
PGOOD
IMVP6_PWRGD
VCC-SENSE
C9
VSEN
VSS-SENSE
R7
RTN
VO
ISL6261A
C7
C3
R10
R11
VW
OCSET
C2
R2
C10
COMP
DFB
R12
FB
C1
R3
DROOP
VDIFF
R1
VSS
FIGURE 3. ISL78211-BASED IMVP-6® SOLUTION WITH RESISTIVE CURRENT SENSING
11
FN7578.1
December 4, 2013
ISL78211
Theory of Operation
The ISL78211 is a single-phase regulator implementing Intel™
IMVP-6™ protocol and includes an integrated gate driver for
reduced system cost and board area. The ISL78211 IMVP-6™
solution provides optimum steady state and transient
performance for microprocessor core voltage regulation
applications up to 25A. Implementation of Diode Emulation
Mode (DEM) operation further enhances system efficiency.
The heart of the ISL78211 is the patented R3 Technology™,
Intersil’s Robust Ripple Regulator modulator. The R3™ modulator
combines the best features of fixed frequency and hysteretic
PWM controllers while eliminating many of their shortcomings.
The ISL78211 modulator internally synthesizes an analog of the
inductor ripple current and uses hysteretic comparators on those
signals to establish PWM pulses. Operating on the largeamplitude and noise-free synthesized signals allows the
ISL78211 to achieve lower output ripple and lower phase jitter
than either conventional hysteretic or fixed frequency PWM
controllers. Unlike conventional hysteretic converters, the
ISL78211 has an error amplifier that allows the controller to
maintain 0.5% voltage regulation accuracy throughout the VID
range from 0.75V to 1.5V.
The hysteretic window voltage is with respect to the error
amplifier output. Therefore, the load current transient results in
increased switching frequency, which gives the R3™ regulator a
faster response than conventional fixed frequency PWM
regulators.
Start-up Timing
With the controller’s VDD pin voltage above the POR threshold,
the start-up sequence begins when VR_ON exceeds the 3.3V
logic HIGH threshold. In approximately 100s, SOFT and VO start
ramping to the boot voltage of 1.2V. At start-up, the regulator
always operates in Continuous Current Mode (CCM), regardless
of the control signals. During this interval, the SOFT cap is
charged by a 41µA current source. If the SOFT capacitor is 20nF,
the SOFT ramp will be 2mV/µs for a soft-start time of 600µs.
Once VO is within 20mV of the boot voltage the ISL78211 will
count 13 clock cycles, then pull CLK_EN# low, and
charge/discharge the SOFT cap with approximately 200µA,
therefore VO slews at 10mV/µs to the voltage set by the VID pins.
In approximately 7ms, PGOOD is asserted HIGH. Figure 4 shows
typical start-up timing.
Static Operation
After the start-up sequence, the output voltage will be regulated
to the value set by the VID inputs per Table 1, which is presented
in the lntel™ IMVP-6™ specification. The ISL78211 regulates the
output voltage with ±0.5% accuracy over the range of 0.7V to
1.5V.
12
VDD
10mV/µs
VR_ON
100µs
20mV
SOFT AND VO
VBOOT
13xTs
2mV/µs
CLK_EN#
~7ms
IMVP-VI PGOOD
FIGURE 4. SOFT-START WAVEFORMS USING A 20nF SOFT
CAPACITOR
A true differential amplifier remotely senses the core voltage to
precisely control the voltage at the microprocessor die. VSEN and
RTN pins are the inputs to the differential amplifier.
As the load current increases from zero, the output voltage
droops from the VID value proportionally to achieve the IMVP-6™
load line. The ISL78211 can sense the inductor current through
the intrinsic series resistance of the inductors, as shown in Figure
2, or through a precise resistor in series with the inductor, as
shown in Figure 3. The inductor current information is fed to the
VSUM pin, which is the non-inverting input to the droop amplifier.
The DROOP pin is the output of the droop amplifier, and DROOPVO voltage is a high-bandwidth analog representation of the
inductor current. This voltage is used as an input to a differential
amplifier to achieve the IMVP-6™ load line, and also as the input
to the overcurrent protection circuit.
The PMON pin is the power monitor output. The voltage potential on
this pin (VPMON) is given by VPMON = 35x(VSEN-VRTN)x(VDROOP-VO).
Since VSEN-VRTN is the CPU voltage and VDROOP-VO represents the
inductor current, VPMON is an analog voltage indicating the power
consumed by the CPU. VPMON has high bandwidth so it represents
the instantaneous power including the pulsation caused inductor
current switching ripple. The maximum available VPMON is
approximately 3V.
When using inductor DCR current sensing, an NTC thermistor is
used to compensate the positive temperature coefficient of the
copper winding resistance to maintain the load-line accuracy.
The switching frequency of the ISL78211 controller is set by the
resistor RFSET between pins VW and COMP, as shown in Figures 2
and 3.
TABLE 1. VID TABLE FROM INTEL IMVP-6 SPECIFICATION
VID6
VID5
VID4
VID3
VID2
VID1
VID0
VO (V)
0
0
0
0
0
0
0
1.5000
0
0
0
0
0
0
1
1.4875
0
0
0
0
0
1
0
1.4750
0
0
0
0
0
1
1
1.4625
FN7578.1
December 4, 2013
ISL78211
TABLE 1. VID TABLE FROM INTEL IMVP-6 SPECIFICATION (Continued)
TABLE 1. VID TABLE FROM INTEL IMVP-6 SPECIFICATION (Continued)
VID6
VID5
VID4
VID3
VID2
VID1
VID0
VO (V)
VID6
VID5
VID4
VID3
VID2
VID1
VID0
VO (V)
0
0
0
0
1
0
0
1.4500
0
1
0
1
1
1
1
0.9125
0
0
0
0
1
0
1
1.4375
0
1
1
0
0
0
0
0.9000
0
0
0
0
1
1
0
1.4250
0
1
1
0
0
0
1
0.8875
0
0
0
0
1
1
1
1.4125
0
1
1
0
0
1
0
0.8750
0
0
0
1
0
0
0
1.4000
0
1
1
0
0
1
1
0.8625
0
0
0
1
0
0
1
1.3875
0
1
1
0
1
0
0
0.8500
0
0
0
1
0
1
0
1.3750
0
1
1
0
1
0
1
0.8375
0
0
0
1
0
1
1
1.3625
0
1
1
0
1
1
0
0.8250
0
0
0
1
1
0
0
1.3500
0
1
1
0
1
1
1
0.8125
0
0
0
1
1
0
1
1.3375
0
1
1
1
0
0
0
0.8000
0
0
0
1
1
1
0
1.3250
0
1
1
1
0
0
1
0.7875
0
0
0
1
1
1
1
1.3125
0
1
1
1
0
1
0
0.7750
0
0
1
0
0
0
0
1.3000
0
1
1
1
0
1
1
0.7625
0
0
1
0
0
0
1
1.2875
0
1
1
1
1
0
0
0.7500
0
0
1
0
0
1
0
1.2750
0
1
1
1
1
0
1
0.7375
0
0
1
0
0
1
1
1.2625
0
1
1
1
1
1
0
0.7250
0
0
1
0
1
0
0
1.2500
0
1
1
1
1
1
1
0.7125
0
0
1
0
1
0
1
1.2375
1
0
0
0
0
0
0
0.7000
0
0
1
0
1
1
0
1.2250
1
0
0
0
0
0
1
0.6875
0
0
1
0
1
1
1
1.2125
1
0
0
0
0
1
0
0.6750
0
0
1
1
0
0
0
1.2000
1
0
0
0
0
1
1
0.6625
0
0
1
1
0
0
1
1.1875
1
0
0
0
1
0
0
0.6500
0
0
1
1
0
1
0
1.1750
1
0
0
0
1
0
1
0.6375
0
0
1
1
0
1
1
1.1625
1
0
0
0
1
1
0
0.6250
0
0
1
1
1
0
0
1.1500
1
0
0
0
1
1
1
0.6125
0
0
1
1
1
0
1
1.1375
1
0
0
1
0
0
0
0.6000
0
0
1
1
1
1
0
1.1250
1
0
0
1
0
0
1
0.5875
0
0
1
1
1
1
1
1.1125
1
0
0
1
0
1
0
0.5750
0
1
0
0
0
0
0
1.1000
1
0
0
1
0
1
1
0.5625
0
1
0
0
0
0
1
1.0875
1
0
0
1
1
0
0
0.5500
0
1
0
0
0
1
0
1.0750
1
0
0
1
1
0
1
0.5375
0
1
0
0
0
1
1
1.0625
1
0
0
1
1
1
0
0.5250
0
1
0
0
1
0
0
1.0500
1
0
0
1
1
1
1
0.5125
0
1
0
0
1
0
1
1.0375
1
0
1
0
0
0
0
0.5000
0
1
0
0
1
1
0
1.0250
1
0
1
0
0
0
1
0.4875
0
1
0
0
1
1
1
1.0125
1
0
1
0
0
1
0
0.4750
0
1
0
1
0
0
0
1.0000
1
0
1
0
0
1
1
0.4625
0
1
0
1
0
0
1
0.9875
1
0
1
0
1
0
0
0.4500
0
1
0
1
0
1
0
0.9750
1
0
1
0
1
0
1
0.4375
0
1
0
1
0
1
1
0.9625
1
0
1
0
1
1
0
0.4250
0
1
0
1
1
0
0
0.9500
1
0
1
0
1
1
1
0.4125
0
1
0
1
1
0
1
0.9375
1
0
1
1
0
0
0
0.4000
0
1
0
1
1
1
0
0.9250
1
0
1
1
0
0
1
0.3875
13
FN7578.1
December 4, 2013
ISL78211
TABLE 1. VID TABLE FROM INTEL IMVP-6 SPECIFICATION (Continued)
TABLE 1. VID TABLE FROM INTEL IMVP-6 SPECIFICATION (Continued)
VID6
VID5
VID4
VID3
VID2
VID1
VID0
VO (V)
VID6
VID5
VID4
VID3
VID2
VID1
VID0
VO (V)
1
0
1
1
0
1
0
0.3750
1
1
0
1
0
1
1
0.1625
1
0
1
1
0
1
1
0.3625
1
1
0
1
1
0
0
0.1500
1
0
1
1
1
0
0
0.3500
1
1
0
1
1
0
1
0.1375
1
0
1
1
1
0
1
0.3375
1
1
0
1
1
1
0
0.1250
1
0
1
1
1
1
0
0.3250
1
1
0
1
1
1
1
0.1125
1
0
1
1
1
1
1
0.3125
1
1
1
0
0
0
0
0.1000
1
1
0
0
0
0
0
0.3000
1
1
1
0
0
0
1
0.0875
1
1
0
0
0
0
1
0.2875
1
1
1
0
0
1
0
0.0750
1
1
0
0
0
1
0
0.2750
1
1
1
0
0
1
1
0.0625
1
1
0
0
0
1
1
0.2625
1
1
1
0
1
0
0
0.0500
1
1
0
0
1
0
0
0.2500
1
1
1
0
1
0
1
0.0375
1
1
0
0
1
0
1
0.2375
1
1
1
0
1
1
0
0.0250
1
1
0
0
1
1
0
0.2250
1
1
1
0
1
1
1
0.0125
1
1
0
0
1
1
1
0.2125
1
1
1
1
0
0
0
0.0000
1
1
0
1
0
0
0
0.2000
1
1
1
1
0
0
1
0.0000
1
1
0
1
0
0
1
0.1875
1
1
1
1
0
1
0
0.0000
1
1
0
1
0
1
0
0.1750
1
1
1
1
0
1
1
0.0000
1
1
1
1
1
0
0
0.0000
1
1
1
1
1
0
1
0.0000
1
1
1
1
1
1
0
0.0000
1
1
1
1
1
1
1
0.0000
TABLE 2. ISL78211 OPERATING CONFIGURATIONS
DPRSTP#
0
PHASE DETECTOR HISTORY
x
FDE
DPRSLPVR
OPERATIONAL MODE
VW-COMP VOLTAGE
WINDOW INCREASE
0
0
CCM
0%
1
DEM
<3 consecutive PWM with PHASE>0V
1
0
+20%
1
Three consecutive PWM with PHASE>0V
0
1
1
0
EDEM
+40%
CCM
0%
1
1
x
x
14
x
FN7578.1
December 4, 2013
ISL78211
High Efficiency Operation Mode
The operational modes of the ISL78211 depend on the control
signal states of DPRSTP#, FDE, and DPRSLPVR, as shown in
Table 2. These control signals can be tied to lntel™ IMVP-6™
control signals to maintain the optimal system configuration for
all IMVP-6™ conditions.
DPRSTP# = 0, FDE = 0 and DPRSLPVR = 1 enables the ISL78211
to operate in Diode Emulation Mode (DEM) by monitoring the lowside FET current. In diode emulation mode, when the low-side FET
current flows from source to drain, it turns on as a synchronous
FET to reduce the conduction loss. When the current reverses its
direction, trying to flow from drain to source, the ISL78211 turns
off the low-side FET to prevent the output capacitor from
discharging through the inductor, therefore eliminating the extra
conduction loss. When DEM is enabled, the regulator works in
automatic Discontinuous Conduction Mode (DCM), meaning that
the regulator operates in CCM in heavy load, and operates in DCM
in light load. DCM in light load decreases the switching frequency
to increase efficiency. This mode can be used to support the
deeper sleep mode of the microprocessor.
DPRSTP# = 0 and FDE = 1 enables the Enhanced Diode
Emulation Mode (EDEM), which increases the VW-COMP window
voltage by 33%. This further decreases the switching frequency
at light load to boost efficiency in the deeper sleep mode.
For other combinations of DPRSTP#, FDE, and DPRSLPVR, the
ISL78211 operates in forced CCM.
The ISL78211 operational modes can be set according to CPU
mode signals to achieve the best performance. There are two
options: (1) Tie FDE to DPRSLPVR, and tie DPRSTP# and
DPRSLPVR to the corresponding CPU mode signals. This
configuration enables EDEM in deeper sleep mode to increase
efficiency. (2) Tie FDE to “1” and DPRSTP# to “0” permanently,
and tie DPRSLPVR to the corresponding CPU mode signal. This
configuration sets the regulator in EDEM all the time. The
regulator will enter DCM based on load current. Light-load
efficiency is increased in both active mode and deeper sleep
mode.
CPU mode-transition sequences often occur in concert with VID
changes. The ISL78211 employs carefully designed mode-transition
timing to work in concert with the VID changes.
The ISL78211 is equipped with internal counters to prevent
control signal glitches from triggering unintended mode
transitions. For example: Control signals lasting less than seven
switching periods will not enable the diode emulation mode.
Dynamic Operation
The ISL78211 responds to VID changes by slewing to new voltages
with a dv/dt set by the SOFT capacitor and the logic of DPRSLPVR. If
CSOFT = 20nF and DPRSLPVR = 0, the output voltage will move at a
maximum dv/dt of ±10mV/µs for large changes. The maximum
dv/dt can be used to achieve fast recovery from Deeper Sleep to
Active mode. If CSOFT = 20nF and DPRSLPVR = 1, the output voltage
will move at a dv/dt of ±2mV/µs for large changes. The slow dv/dt
into and out of deeper sleep mode will minimize the audible noise.
As the output voltage approaches the VID command value, the
dv/dt moderates to prevent overshoot. The ISL78211 is IMVP-6™
compliant for DPRSTP# and DPRSLPVR logic.
Intersil R3™ has an intrinsic voltage feed-forward function. Highspeed input voltage transients have little effect on the output
voltage.
Intersil R3™ commands variable switching frequency during
transients to achieve fast response. Upon load application, the
ISL78211 will transiently increase the switching frequency to
deliver energy to the output more quickly. Compared with steady
state operation, the PWM pulses during load application are
generated earlier, which effectively increases the duty cycle and
the response speed of the regulator. Upon load release, the
ISL78211 will transiently decrease the switching frequency to
effectively reduce the duty cycle to achieve fast response.
TABLE 3. FAULT-PROTECTION SUMMARY OF ISL78211
FAULT DURATION PRIOR TO
PROTECTION
FAULT TYPE
PROTECTION ACTIONS
FAULT RESET
Overcurrent fault
120µs
PWM tri-state, PGOOD latched low
VR_ON toggle or VDD toggle
Way-Overcurrent fault
<2µs
PWM tri-state, PGOOD latched low
VR_ON toggle or VDD toggle
Overvoltage fault (1.7V)
Immediately
VDD toggle
Low-side FET on until Vcore < 0.85V, then
PWM tri-state, PGOOD latched low (OV to 1.7V
always)
Overvoltage fault (+200mV)
1ms
PWM tri-state, PGOOD latched low
VR_ON toggle or VDD toggle
Undervoltage fault (-300mV)
1ms
PWM tri-state, PGOOD latched low
VR_ON toggle or VDD toggle
Over-temperature fault (NTC<1.18)
Immediately
VR_TT# goes high
N/A
15
FN7578.1
December 4, 2013
ISL78211
Protection
The ISL78211 provides overcurrent (OC), overvoltage (OV),
undervoltage (UV) and over-temperature (OT) protections as
shown in Table 3.
Overcurrent is detected through the droop voltage, which is
designed as described in “Component Selection and Application”
on page 16. The OCSET resistor sets the overcurrent protection
level. An overcurrent fault will be declared when the droop
voltage exceeds the overcurrent set point for more than 120µs. A
way-overcurrent fault will be declared in less than 2µs when the
droop voltage exceeds twice the overcurrent set point. In both
cases, the UGATE and LGATE outputs will be tri-stated and
PGOOD will go low.
The overcurrent condition is detected through the droop voltage.
The droop voltage is equal to Icore Rdroop, where Rdroop is the
load line slope. A 10µA current source flows out of the OCSET pin
and creates a voltage drop across ROCSET (shown as R10 in Figure
2). Overcurrent is detected when the droop voltage exceeds the
voltage across ROCSET. Equation 1 gives the selection of ROCSET.
ROCSET 
I OC  Rdroop
(EQ. 1)
10 A
For example: The desired overcurrent trip level, Ioc, is 30A, Rdroop
is 2.1m, Equation 1 gives ROCSET = 6.3k.
Undervoltage protection is independent of the overcurrent limit. A
UV fault is declared when the output voltage is lower than (VID300mV) for more than 1ms. The gate driver outputs will be tristated and PGOOD will go low. Note that a practical core regulator
design usually trips OC before it trips UV.
There are two levels of overvoltage protection and response. An
OV fault is declared when the output voltage exceeds the VID by
+200mV for more than 1ms. The gate driver outputs will be tristated and PGOOD will go low. The inductor current will decay
through the low-side FET body diode. Toggling of VR_ON or
bringing VDD below 4V will reset the fault latch. A
way-overvoltage (WOV) fault is declared immediately when the
output voltage exceeds 1.7V. The ISL78211 will latch PGOOD low
and turn on the low-side FETs. The low-side FETs will remain on
until the output voltage drops below approximately 0.85V, then
all the FETs are turned off. If the output voltage again rises above
1.7V, the protection process repeats. This mechanism provides
maximum protection against a shorted high-side FET while
preventing the output from ringing below ground. Toggling
VR_ON cannot reset the WOV protection; recycling VDD will reset
it. The WOV detector is active all the time, even when other faults
are declared, so the processor is still protected against the highside FET leakage while the FETs are commanded off.
16
The ISL78211 has a thermal throttling feature. If the voltage on
the NTC pin goes below the 1.2V over-temperature threshold, the
VR_TT# pin is pulled low indicating the need for thermal
throttling to the system oversight processor. No other action is
taken within the ISL78211.
Component Selection and
Application
Soft-Start and Mode Change Slew Rates
The ISL78211 commands two different output voltage slew rates for
various modes of operation. The slow slew rate reduces the in-rush
current during start-up and the audible noise during the entry and
the exit of Deeper Sleep Mode. The fast slew rate enhances the
system performance by achieving active mode regulation quickly
during the exit of Deeper Sleep Mode. The SOFT current is
bidirectional-charging the SOFT capacitor when the output voltage is
commanded to rise, and discharging the SOFT capacitor when the
output voltage is commanded to fall.
Figure 5 shows the circuitry on the SOFT pin. The SOFT pin, the
non-inverting input of the error amplifier, is connected to ground
through capacitor CSOFT. ISS is an internal current source
connected to the SOFT pin to charge or discharge CSOFT. The
ISL78211 controls the output voltage slew rate by connecting or
disconnecting another internal current source IZ to the SOFT pin,
depending on the state of the system, i.e. Start-up or Active
mode, and the logic state on the DPRSLPVR pin. The “Soft-start
Current” on page 6 of the Electrical Specification Table shows the
specs of these two current sources.
I
I
SS
Z
INTERNAL TO
ISL6261A
ERROR
AMPLIFLIER
C
V
SOFT
REF
FIGURE 5. SOFT PIN CURRENT SOURCES FOR FAST AND SLOW
SLEW RATES
ISS is 41µA typical and is used during start-up and mode
changes. When connected to the SOFT pin, IZ adds to ISS to get a
larger current, labeled “IGV” on page 6 in the “Electrical
Specification Table”, on the SOFT pin. IGV is typically 200µA with
a minimum of 175µA.
FN7578.1
December 4, 2013
ISL78211
10µA
OCSET
ROCSET
IPHASE
OC
1
RTN
1000pF
ESR
RNTC
0~10
VCC-SENSE
1000pF
330pF
Ropn2
VSEN
CO
RPAR
Cn
RDRP1
VO
RDRP2
DROOP
1
VO
RSERIES
DFB
Ropn1
DROOP
DCR
Rs
VSUM
INTERNAL TO ISL6261A
L
VSS-SENSE
TO PROCESSOR
SOCKET KELVIN
CONNECTIONS
VDIFF
FIGURE 6. SIMPLIFIED VOLTAGE DROOP CIRCUIT WITH CPU-DIE VOLTAGE SENSING AND INDUCTOR DCR CURRENT SENSING
The IMVP-6™ specification reveals the critical timing associated
with regulating the output voltage. SLEWRATE, given in the IMVP6™ specification, determines the choice of the SOFT capacitor,
CSOFT, through Equation 2:
CSOFT 
I GV
SLEWRATE
(EQ. 2)
If SLEWRATE is 10mV/µs, and IGV is typically 200µA, CSOFT is
calculated as:
C SOFT  200 μA 10 mV μs   20 nF
(EQ. 3)
Choosing 0.015F will guarantee 10mV/µs SLEWRATE at
minimum IGV value. This choice of CSOFT controls the start-up
slew rate as well. One should expect the output voltage to slew to
the Boot value of 1.2V at a rate given by Equation 4:
dV soft
dt

I ss
C SOFT

41μA
 2.8 mV
μs
0.015 μF
(EQ. 4)
Selecting Rbias
To properly bias the ISL78211, a reference current needs to be
derived by connecting a 147k, 1% tolerance resistor from the RBIAS
pin to ground. This provides a very accurate 10µA current source
from which OCSET reference current is derived.
Caution should be used during layout. This resistor should be
placed in close proximity to the RBIAS pin and be connected to
good quality signal ground. Do not connect any other
components to this pin, as they will negatively impact the
performance. Capacitance on this pin may create instabilities
and should be avoided.
17
Start-up Operation - CLK_EN# and PGOOD
The ISL78211 provides a 3.3V logic output pin for CLK_EN#. The
system 3.3V voltage source connects to the 3V3 pin, which
powers internal circuitry that is solely devoted to the CLK_EN#
function. The output is a CMOS signal with 4mA sourcing and
sinking capability. CMOS logic eliminates the need for an
external pull-up resistor on this pin, eliminating the loss on the
pull-up resistor caused by CLK_EN# being low in normal
operation. This prolongs battery run time. The 3.3V supply should
be decoupled to digital ground, not to analog ground, for noise
immunity.
At start-up, CLK_EN# remains high until 13 clock cycles after the
core voltage is within 20mV of the boot voltage. The ISL78211
triggers an internal timer for the IMVP6_PWRGD signal (PGOOD
pin). This timer allows PGOOD to go high approximately 7ms
after CLK_EN# goes low.
Static Mode of Operation - Processor Die
Sensing
Remote sensing enables the ISL78211 to regulate the core
voltage at a remote sensing point, which compensates for
various resistive voltage drops in the power delivery path.
The VSEN and RTN pins of the ISL78211 are connected to Kelvin
sense leads at the die of the processor through the processor
socket. (The signal names are VCC_SENSE and VSS_SENSE
respectively). Processor die sensing allows the voltage regulator
to tightly control the processor voltage at the die, free of the
inconsistencies and the voltage drops due to layouts. The Kelvin
sense technique provides for extremely tight load line regulation
at the processor die side.
FN7578.1
December 4, 2013
ISL78211
These traces should be laid out as noise sensitive traces. For
optimum load line regulation performance, the traces
connecting these two pins to the Kelvin sense leads of the
processor should be laid out away from rapidly rising voltage
nodes (switching nodes) and other noisy traces. Common mode
and differential mode filters are recommended as shown in
Figure 6. The recommended filter resistance range is 0~10 so
it does not interact with the 50k input resistance of the
differential amplifier. The filter resistor may be inserted between
VCC-SENSE and the VSEN pin. Another option is to place one
between VCC-SENSE and the VSEN pin and another between VSSSENSE and the RTN pin. The need of these filters also depends on
the actual board layout and the noise environment.
Since the voltage feedback is sensed at the processor die, if the
CPU is not installed, the regulator will drive the output voltage all
the way up to damage the output capacitors due to lack of output
voltage feedback. ROPN1 and ROPN2 are recommended, as shown
in Figure 6, to prevent this potential issue. ROPN1 and ROPN2,
typically ranging 20~100, provide voltage feedback from the
regulator local output in the absence of the CPU.
Setting the Switching Frequency - FSET
The R3 modulator scheme is not a fixed frequency PWM
architecture. The switching frequency increases during the
application of a load to improve transient performance.
It also varies slightly depending on the input and output voltages
and output current, but this variation is normally less than 10% in
continuous conduction mode.
Resistor RFSET (R7 in Figure 2), connected between the VW and
COMP pins of the ISL78211, sets the synthetic ripple window
voltage, and therefore sets the switching frequency. This
relationship between the resistance and the switching frequency
in CCM is approximately given by Equation 5.
R fset kΩ    period(s)  0.29  2.33
(EQ. 5)
In diode emulation mode, the ISL78211 stretches the switching
period. The switching frequency decreases as the load becomes
lighter. Diode emulation mode reduces the switching loss at light
load, which is important in conserving battery power.
Voltage Regulator Thermal Throttling
lntel™ IMVP-6™ technology supports thermal throttling of the
processor to prevent catastrophic thermal damage to the voltage
regulator. The ISL78211 features a thermal monitor sensing the
voltage across an externally placed negative temperature
coefficient (NTC) thermistor. Proper selection and placement of
the NTC thermistor allows for detection of a designated
temperature rise by the system.
54µA
NTC
V
NTC
R
6µA
Internal to
ISL6261A
VR_TT#
SW1
NTC
SW2
R
S
1.23V
1.20V
FIGURE 7. CIRCUITRY ASSOCIATED WITH THE THERMAL
THROTTLING FEATURE
Figure 7 shows the circuitry associated with the thermal
throttling feature of the ISL78211. At low temperature, SW1 is
on and SW2 connects to the 1.20V side. The total current going
into the NTC pin is 60µA. The voltage on the NTC pin is higher
than 1.20V threshold voltage and the comparator output is low.
VR_TT# is pulled up high by an external resistor. Temperature
increase will decrease the NTC thermistor resistance. This
decreases the NTC pin voltage. When the NTC pin voltage drops
below 1.2V, the comparator output goes high to pull VR_TT# low,
signaling a thermal throttle. In addition, SW1 turns off and SW2
connects to 1.23V, which decreases the NTC pin current by 6uA
and increases the threshold voltage by 30mV. The VR_TT# signal
can be used by the system to change the CPU operation and
decrease the power consumption. As the temperature drops, the
NTC pin voltage goes up. If the NTC pin voltage exceeds 1.23V,
VR_TT# will be pulled high. Figure 8 illustrates the temperature
hysteresis feature of VR_TT#. T1 and T2 (T1>T2) are two threshold
temperatures. VR_TT# goes low when the temperature is higher
than T1 and goes high when the temperature is lower than T2.
VR_TT#
Logic_1
Logic_0
T2
T1
T (oC)
FIGURE 8. VR_TT# TEMPERATURE HYSTERESIS
18
FN7578.1
December 4, 2013
ISL78211
The NTC thermistor’s resistance is approximately given by the
following formula:
R
NTC
(T )  R
NTCTo
1
1
b(

)
 e T  273 To  273
(EQ. 6)
T is the temperature of the NTC thermistor and b is a constant
determined by the thermistor material. To is the reference
temperature at which the approximation is derived. The most
commonly used To is +25C. For most commercial NTC
thermistors, there is b = 2750k, 2600k, 4500k or 4250k.
From the operation principle of VR_TT#, the NTC resistor satisfies
the following equation group:
R NTC (T1 )  Rs 
1.20V
 20kΩ
60 μA
(EQ. 7)
R NTC (T2 )  Rs 
1.23V
 22.78kΩ
54 μA
(EQ. 8)
From Equation 7 and Equation 8, the following can be derived:
RNTC(T2 )  RNTC(T1 )  2.78kΩ
(EQ. 9)
Substitution of Equation 6 into Equation 9 yields the required
nominal NTC resistor value:
2.78kΩ  e
RNTCTo 
e
b(
1
)
T2  273
b(
e
1
)
To  273
b(
(EQ. 10)
1
)
T1  273
In some cases, the constant b is not accurate enough to
approximate the resistor value; manufacturers provide the
resistor ratio information at different temperatures. The nominal
NTC resistor value may be expressed in another way as follows:
RNTCTo 
2.78kΩ
Λ
Λ
R NTC (T2 )  R NTC (T1 )

(EQ. 11)
where R NTC (T ) is the normalized NTC resistance to its nominal
value. The normalized resistor value on most NTC thermistor
datasheets is based on the value at +25°C.
19
Once the NTC thermistor resistor is determined, the series
resistor can be derived by:
Rs 
1.20V
 R NTC (T1 )  20kΩ  R NTC_T1
60 μA
(EQ. 12)
Once RNTCTo and Rs is designed, the actual NTC resistance at T2
and the actual T2 temperature can be found in:
RNTC _ T 2  2.78k  RNTC _ T 1
T2 _ actual 
1
1 R NTC _ T2
ln(
)  1 ( 273  To )
b
R NTCTo
(EQ. 13)
 273
(EQ. 14)
One example of using Equations 10, 11 and 12 to design a
thermal throttling circuit with the temperature hysteresis +100°C
to +105C is illustrated as follows. Since T1 = +105C and
T2 = +100C, if we use a Panasonic NTC with b = 4700, Equation 9
gives the required NTC nominal resistance as Equation 15.
R NTC_To  431kΩ
(EQ. 15)
The NTC thermistor datasheet gives the resistance ratio as
0.03956 at +100C and 0.03322 at +105C. The b value of
4700k in Panasonic datasheet only covers up to +85C;
therefore, using Equation 11 is more accurate for +100C design
and the required NTC nominal resistance at +25C is 438k. The
closest NTC resistor value from manufacturers is 470k. So
Equation 12 gives the series resistance as Equation 16:
Rs  20k  R NTC _ 105C  20k  15.61k  4.39k
(EQ. 16)
The closest standard value is 4.42k. Furthermore, Equation 13
gives the NTC resistance at T2:
RNTC _ T 2  2.78k  RNTC _ T 1  18.39k
(EQ. 17)
The NTC branch is designed to have a 470k NTC and a 4.42k
resistor in series. The part number of the NTC thermistor is
ERTJ0EV474J. It is a 0402 package. The NTC thermistor should
be placed in the spot that gives the best indication of the
temperature of the voltage regulator. The actual temperature
hysteretic window is approximately +105°C to +100°C.
FN7578.1
December 4, 2013
ISL78211
10µA
R ocset
OCSET
VO
OC
Rs
VSUM
Internal to ISL6261A
DROOP
DFB
I
o
DCR
R par
R ntc
Rn
R drp1
VO
Vdcr
R series
Cn
1
R drp2
DROOP
(Rntc +Rseries)
Rpar
Rntc +Rseries +Rpar
FIGURE 9. EQUIVALENT MODEL FOR DROOP CIRCUIT USING DCR SENSING
Static Mode of Operation - Static Droop Using
DCR Sensing
The ISL78211 has an internal differential amplifier to accurately
regulate the voltage at the processor die.
For DCR sensing, the process to compensate the DCR resistance
variation takes several iterative steps. Figure 2 shows the DCR
sensing method. Figure 9 shows the simplified model of the
droop circuitry. The inductor DC current generates a DC voltage
drop on the inductor DCR. Equation 18 gives this relationship.
V DCR  I o  DCR
(EQ. 18)
An R-C network senses the voltage across the inductor to get the
inductor current information. Rn represents the NTC network
consisting of Rntc, Rseries and Rpar. The choice of Rs will be
discussed in the next section.
The first step in droop load line compensation is to choose Rn
and Rs such that the correct droop voltage appears even at light
loads between the VSUM and VO nodes. As a rule of thumb, the
voltage drop across the Rn network, Vn, is set to be 0.5 to 0.8
times VDCR. This gain, defined as G1, provides a fairly reasonable
amount of light load signal from which to derive the droop
voltage.
The NTC network resistor value is dependent on the temperature
and is given by Equation 19:
Rn (T ) 
( Rseries  Rntc )  R par
Rseries  Rntc  R par
(EQ. 19)
G1, the gain of Vn to VDCR, is also dependent on the temperature
of the NTC thermistor:
Rn (T )
G1 (T ) 
Rn (T )  Rs

(EQ. 20)
The inductor DCR is a function of the temperature and is
approximately given by Equation 21:
DCR(T )  DCR25C  (1  0.00393 * (T  25))
(EQ. 21)
in which 0.00393 is the temperature coefficient of the copper.
The droop amplifier output voltage divided by the total load
current is given by Equation 22:
Rdroop  G1(T)  DCR (T )  k droopamp
(EQ. 22)
Rdroop is the actual load line slope. To make Rdroop independent
of the inductor temperature, it is desired to have:
G1 (T )  (1  0.00393 * (T  25))  G1t arg et
(EQ. 23)
where G1target is the desired ratio of Vn/VDCR. Therefore, the
temperature characteristics G1 is described by Equation 24:
G 1 (T ) 
G 1 t arg et
(EQ. 24)
(1  0.00393* (T  25)
For different G1 and NTC thermistor preference, Intersil provides
a design spreadsheet to generate the proper value of Rntc,
Rseries, Rpar.
Rdrp1 and Rdrp2 (R11 and R12 in Figure 2) sets the droop amplifier
gain, according to Equation 25:
k droopamp  1 
Rdrp 2
(EQ. 25)
R drp1
After determining Rs and Rn networks, use Equation 26 to
calculate the droop resistances Rdrp1 and Rdrp2.
Rdrp 2  (
Rdroop
DCR  G1(25 o C )
 1)  Rdrp1
(EQ. 26)
Rdroop is 2.1mV/A per lntel™ IMVP-6™ specification.
20
FN7578.1
December 4, 2013
ISL78211
The effectiveness of the Rn network is sensitive to the coupling
coefficient between the NTC thermistor and the inductor. The NTC
thermistor should be placed in close proximity of the inductor.
To verify whether the NTC network successfully compensates the
DCR change over temperature, one can apply full load current,
wait for the thermal steady state, and see how much the output
voltage deviates from the initial voltage reading. Good thermal
compensation can limit the drift to less than 2mV. If the output
voltage decreases when the temperature increases, that ratio
between the NTC thermistor value and the rest of the resistor
divider network has to be increased. Following the evaluation
board value and layout of NTC placement will minimize the
engineering time.
The current sensing traces should be routed directly to the
inductor pads for accurate DCR voltage drop measurement.
However, due to layout imperfection, the calculated Rdrp2 may
still need slight adjustment to achieve optimum load line slope. It
is recommended to adjust Rdrp2 after the system has achieved
thermal equilibrium at full load. For example, if the max current
is 20A, one should apply 20A load current and look for 42mV
output voltage droop. If the voltage droop is 40mV, the new value
of Rdpr2 is calculated by Equation 27:
R drp 2 _ new
42 mV

( R drp 1  R drp 2 )  R drp 1
40 mV
Vcore
icore
Icore
Vcore
Vcore
Vcore= IcoreRdroop
FIGURE 10. DESIRED LOAD TRANSIENT RESPONSE WAVEFORMS
icore
Vcore
Vcore
FIGURE 11. LOAD TRANSIENT RESPONSE WHEN Cn IS TOO SMALL
icore
(EQ. 27)
For the best accuracy, the effective resistance on the DFB and
VSUM pins should be identical so that the bias current of the
droop amplifier does not cause an offset voltage. The effective
resistance on the VSUM pin is the parallel of Rs and Rn, and the
effective resistance on the DFB pin is the parallel of Rdrp1 and
Rdrp2.
Dynamic Mode of Operation – Droop
Capacitor Design in DCR Sensing
Figure 10 shows the desired waveforms during load transient
response. Vcore needs to be as square as possible at Icore change.
The Vcore response is determined by several factors, namely the
choice of output inductor and output capacitor, the compensator
design, and the droop capacitor design.
The droop capacitor refers to Cn in Figure 9. If Cn is designed
correctly, its voltage will be a high-bandwidth analog voltage of
the inductor current. If Cn is not designed correctly, its voltage will
be distorted from the actual waveform of the inductor current
and worsen the transient response. Figure 11 shows the
transient response when Cn is too small. Vcore may sag
excessively upon load application to create a system failure.
Figure 12 shows the transient response when Cn is too large.
Vcore is sluggish in drooping to its final value. There will be
excessive overshoot if a load occurs during this time, which may
potentially hurt the CPU reliability.
Vcore
Vcore
FIGURE 12. LOAD TRANSIENT RESPONSE WHEN Cn IS TOO LARGE
The current sensing network consists of Rn, Rs and Cn. The
effective resistance is the parallel of Rn and Rs. The RC time
constant of the current sensing network needs to match the
L/DCR time constant of the inductor to get correct
representation of the inductor current waveform as shown in
Equation 28:
 R  Rs 
L
  Cn
  n
DCR  Rn  Rs 
(EQ. 28)
Solving for Cn yields Equation 29:
L
C n  DCR
Rn  Rs
Rn  Rs
(EQ. 29)
For example: L = 0.45µH, DCR = 1.1m, Rs = 7.68k, and
Rn = 3.4k
0.45H
0.0011
 174nF
Cn 
parallel(7.68k ,3.4k )
(EQ. 30)
Since the inductance and the DCR typically have 20% and 7%
tolerance respectively, the L/DCR time constant of each
individual inductor may not perfectly match the RC time constant
of the current sensing network. In mass production, this effect
will make the transient response vary a little bit from board-to21
FN7578.1
December 4, 2013
ISL78211
board. Compared with potential long-term damage on CPU
reliability, an immediate system failure is worse. Thus, it is
desirable to avoid the waveforms shown in Figure 11. It is
recommended to choose the minimum Cn value based on the
maximum inductance so only the scenarios of Figures 10 and 12
may happen. It should be noted that, after calculation, finetuning of Cn value may still be needed to account for board
parasitics. Cn also needs to be a high-grade cap like X7R with low
tolerance. Another good option is the NPO/COG (Class-I)
capacitor, featuring only 5% tolerance and very good thermal
characteristics. But the NPO/COG caps are only available in
small capacitance values. In order to use such capacitors, the
resistors and thermistors surrounding the droop voltage sensing
and droop amplifier need to be scaled up 10x to reduce the
capacitance by 10x. Attention needs to be paid in balancing the
impedance of droop amplifier.
Dynamic Mode of Operation - Compensation
Parameters
The voltage regulator is equivalent to a voltage source equal to
VID in series with the output impedance. The output impedance
needs to be 2.1m in order to achieve the 2.1mV/A load line. It
is highly recommended to design the compensation such that
the regulator output impedance is 2.1m. A type-III compensator
is recommended to achieve the best performance. Intersil
provides a spreadsheet to design the compensator parameters.
Figure 13 shows an example of the spreadsheet. After the user
inputs the parameters in the blue font, the spreadsheet will
calculate the recommended compensator parameters (in the
pink font), and show the loop gain curves and the regulator
output impedance curve. The loop gain curves need to be stable
for regulator stability, and the impedance curve needs to be
equal to or smaller than 2.1m in the entire frequency range to
achieve good transient response.
The user can choose the actual resistor and capacitor values
based on the recommendation and input them in the
spreadsheet, then see the actual loop gain curves and the
regulator output impedance curve.
Droop using Discrete Resistor Sensing Static/Dynamic Mode of Operation
Figure 3 shows a detailed schematic using discrete resistor
sensing of the inductor current. Figure 14 shows the equivalent
circuit. Since the current sensing resistor voltage represents the
actual inductor current information, Rs and Cn simply provide
noise filtering. The most significant noise comes from the ESL of
the current sensing resistor. A low ESL sensing resistor is strongly
recommended. The recommended Rs is 100 and the
recommended Cn is 220pF. Since the current sensing resistance
does not appreciably change with temperature, the NTC network
is not needed for thermal compensation.
Droop is designed the same way as the DCR sensing approach.
The voltage on the current sensing resistor is given by the
following Equation 31:
Vrsen  Rsen  I o
(EQ. 31)
Equation 24 shows the droop amplifier gain. So the actual droop
is given by Equation 32:
 Rdrp 2 

Rdroop  Rsen  1 
 R 
drp
1


(EQ. 32)
Solving for Rdrp2 yields:
 Rdroop 
Rdrp 2  Rdrp1  
 1

 Rsen
(EQ. 33)
For example: Rdroop = 2.1m. If Rsen = 1m and Rdrp1 = 1k, easy
calculation gives that Rdrp2 is 1.1k.
The current sensing traces should be routed directly to the
current sensing resistor pads for accurate measurement.
However, due to layout imperfections, the calculated Rdrp2 may
still need slight adjustment to achieve optimum load line slope. It
is recommended to adjust Rdrp2 after the system has achieved
thermal equilibrium at full load.
Caution needs to be used in choosing the input resistor to the FB
pin. Excessively high resistance will cause an error to the output
voltage regulation due to the bias current flowing in the FB pin. It
is recommended to keep this resistor below 3k.
22
FN7578.1
December 4, 2013
VSS
ISL78211
FIGURE 13. AN EXAMPLE OF ISL78211 COMPENSATION SPREADSHEET
23
FN7578.1
December 4, 2013
ISL78211
10µA
Rocset
OCSET
VO
OC
Rs
VSUM
Internal to ISL6261A
DROOP
DFB
Vrsen
Rsen
R drp1
VO
I
o
Cn
1
R drp2
DROOP
FIGURE 14. EQUIVALENT MODEL FOR DROOP CIRCUIT USING DISCRETE RESISTOR SENSING
Typical Performance Curves
ISL78211 Data, Taken from ISL6261AEVAL1Z Evaluation Board Application Note)
FIGURE 15. CCM EFFICIENCY, VID = 1.1V,
VIN1 = 8V, VIN2 = 12.6V AND VIN3 = 19V
FIGURE 16. CCM LOAD LINE AND THE SPEC, VID = 1.1V,
VIN1 = 8V, VIN2 = 12.6V AND VIN3 = 19V
FIGURE 17. DEM EFFICIENCY, VID = 0.7625V,
VIN1 = 8V, VIN2 = 12.6V AND VIN3 = 19V
FIGURE 18. DEM LOAD LINE AND THE SPEC, VID = 0.7625V,
VIN1 = 8V, VIN2 = 12.6V AND VIN3 = 19V
24
FN7578.1
December 4, 2013
ISL78211
Typical Performance Curves
ISL78211 Data, Taken from ISL6261AEVAL1Z Evaluation Board Application Note) (Continued)
FIGURE 19. ENHANCED DEM EFFICIENCY, VID = 0.7625V,
VIN1 = 8V, VIN2 = 12.6V AND VIN3 = 19V
FIGURE 20. ENHANCED DEM LOAD LINE, VID = 0.7625V,
VIN1 = 8V, VIN2 = 12.6V AND VIN3 = 19V
FIGURE 21. ENHANCED DEM EFFICIENCY, VID = 1.1V,
VIN1 = 8V, VIN2 = 12.6V AND VIN3 = 19V
FIGURE 22. ENHANCED DEM LOAD LINE, VID = 1.1V,
VIN1 = 8V, VIN2 = 12.6V AND VIN3 = 19V
5V/DIV
5V/div
5V/DIV
5V/div
0.5V/DIV
0.5V/div
0.5V/div
1V/DIV
1V/div
1V/DIV
1V/div
0.5V/DIV
10V/DIV
10V/DIV
10V/div
10V/div
FIGURE 23. SOFT-START, VIN = 19V, Io = 0A, VID = 1.5V,
Ch1: VR_ON, Ch2: VO, Ch3: PMON, Ch4: PHASE
25
FIGURE 24. SOFT-START, VIN = 19V, Io = 0A, VID = 1.1V,
Ch1: VR_ON, Ch2: VO, Ch3: PMON, Ch4: PHASE
FN7578.1
December 4, 2013
ISL78211
Typical Performance Curves
ISL78211 Data, Taken from ISL6261AEVAL1Z Evaluation Board Application Note) (Continued)
5V/DIV
5V/div
5V/DIV
5V/div
0.1V/div
0.1V/DIV
0.1V/DIV
0.1V/div
1V/DIV
1V/div
1V/DIV
1V/div
10V/DIV
10V/div
10V/div
10V/DIV
FIGURE 25. VBOOT TO VID, VIN = 19V, Io = 2A, VID = 1.5V,
Ch1: CLK_EN#, Ch2: VO, Ch3: PMON, Ch4: PHASE
FIGURE 26. VBOOT TO VID, VIN = 19V, Io = 2A, VID = 0.7625V,
Ch1: CLK_EN#, Ch2: VO, Ch3: PMON, Ch4: PHASE
5V/DIV
5V/div
0.5V/DIV
0.5V/div
7.68ms
7.68ms
5V/DIV
5V/div
10V/DIV
10V/div
FIGURE 27. CLK_EN AND PGOOD ASSERTION DELAY,
VIN = 19V, Io = 2A, VID = 1.1V, Ch1: CLK_EN#,
Ch2: VO, Ch3: PGOOD, Ch4: PHASE
FIGURE 28. SHUT DOWN, VIN = 12.6V, Io = 2A, VID = 1.1V,
Ch1: VR_ON, Ch2: VO, Ch3: PGOOD, Ch4: PHASE
FIGURE 29. SOFT START IN-RUSH CURRENT, VIN = 19V, Io = 2A,
VID = 1.1V, Ch1: DROOP-VO (2.1mV = 1A), Ch2: VO,
Ch3: VCOMP, Ch4: PHASE
FIGURE 30. VIN TRANSIENT TEST, VIN = 819V, Io = 2A,
VID = 1.1V, Ch2: VO, Ch3: VIN, Ch4: PHASE
26
FN7578.1
December 4, 2013
ISL78211
Typical Performance Curves
ISL78211 Data, Taken from ISL6261AEVAL1Z Evaluation Board Application Note) (Continued)
FIGURE 31. C4 ENTRY/EXIT, VIN = 12.6V, Io = 0.7A,
HFM/LFM/C4 VID = 1.05V/0.8375V/0.7625V,
FDE = DPRSLPVR, Ch1: PMON, Ch2: VO,
Ch3: 40k/100pF FILTERED PMON, Ch4: PHASE
FIGURE 32. VID TOGGLING, VIN = 12.6V, Io= 16.5A,
HFM/LFM VID = 1.05V/0.8375V, FDE = DPRSLPVR,
Ch1: PMON, Ch2: VO, Ch3: 40k/100pF FILTERED
PMON, Ch4: PHASE
FIGURE 33. LOAD TRANSIENT RESPONSE IN CCM
VIN = 12.6V, Io = 2A20A (100A/µs), VID = 1.1V,
Ch1: PMON, Ch2: VO, Ch3: 40k/100pF FILTERED
PMON, Ch4: PHASE
FIGURE 34. LOAD TRANSIENT RESPONSE IN CCM
VIN = 12.6V, Io = 20A2A (50A/µs), VID = 1.1V,
Ch1: PMON, Ch2: VO, Ch3: 40k/100pF FILTERED
PMON, Ch4: PHASE
100A/µs
100A/us
FIGURE 35. LOAD TRANSIENT RESPONSE IN CCM
VIN = 12.6V, Io = 2A20A (100A/µs)2A (50A/µs),
VID = 1.1V, Ch1: PMON, Ch2: VO, Ch3: 40k/100pF
FILTERED PMON, Ch4: PHASE
27
50A/µs
50A/us
FIGURE 36. LOAD TRANSIENT RESPONSE IN EDEM
VIN = 8V, Io = 2A20A, VID = 1.1V,
Ch1: Io, Ch2: VO, Ch3: PMON, Ch4: PHASE
FN7578.1
December 4, 2013
ISL78211
Typical Performance Curves
ISL78211 Data, Taken from ISL6261AEVAL1Z Evaluation Board Application Note) (Continued)
100A/µs
100A/us
FIGURE 37. LOAD TRANSIENT RESPONSE IN EDEM
VIN = 8V, Io = 2A20A, VID = 1.1V,
Ch1: Io, Ch2: VO, Ch3: PMON, Ch4: PHASE
50A/µs
50A/us
FIGURE 38. LOAD TRANSIENT RESPONSE IN EDEM
VIN = 8V, Io = 2A20A, VID = 1.1V,
Ch1: Io, Ch2: VO, Ch3: PMON, Ch4: PHASE
120µs
120us
FIGURE 39. OVERCURRENT PROTECTION, VIN = 12.6V,
Io = 0A28A, VID = 1.1V, Ch1: DROOP-VO
(2.1mV = 1A), Ch2: VO, Ch3: PGOOD, Ch4: PHASE
28
FIGURE 40. OVERVOLTAGE (>1.7V) PROTECTION,
VIN = 12.6V, Io = 2A, VID = 1.1V,
Ch2: VO, Ch3: PGOOD, Ch4: PHASE
FN7578.1
December 4, 2013
ISL78211EVAL1Z Evaluation Board Schematics
FN7578.1
December 4, 2013
IN
J1
100
10
9
8
J3
10
R46
10UF
C30
2
R39
P34
C31
10UF
1UF
C29
0.01UF
C28
11
J4
OUT
OUT
P32
1UF
C27
P30 DNP
DNP
C25
3.57K 10K NTC
R31
4.53K
R29
R28
VSUM
8200PF
R27
IN
0.068UF
C21
VCC_PRM
P22
330PF
0.12UF
C19
1K
2
1
1 2 2 5V
IN
VR_ON1
J16
R44
10K
R45
10K
3
1 S4
J19
OFF
2
VR_ON
ON
1
2 21
3 3
1X3
R34
0
R35
0
R15
C7
J2
+3.3V
R33
R47
10K
10K
R42
10K
R41
10K
R40
10K
R38
10K
R37
10K
R36
P33
P31
P28
P27
P25
P24
P23
P20
RTN
DFB
0.1UF
C16
5.23K
0
C26
C6
C15
P3
R7
DNP R8 DNP
OUT
12
+3.3V
10K
VSEN
0
DROOP
P19
R32
330PF
OUT
13
3.3V
R43
P29
C18
OUT
14
5V
1
DNP
P26
1000PF
LGATE
GND_POWER
PHASE
UGATE
BOOT
VDIFF
VSEN
RTN
DROOP
DFB
VO
VSUM
VIN
VSS
VDD
147K
C17
0
J17
2 2 1
C23
0.22UF
R12
C14
ISL6261A
IN
IN
IN
IN
IN
IN
IN
14
13
12
11
10
9
8
MST7_SPST
+5V
R30
VDIFF1
P15
0
R24
2.21K
R25
P11
R6
C11
0
1000PF
0
P9
10UF
C2
VSSSENSE
C20
390PF
U6
VID2
VID1
VID0
VCCP
LGATE
VSSP
PHASE
UGATE
BOOT
NC
P21
IN
R23
5.49K
R11
FDE
PMON
RBIAS
VR_TT
NTC
SOFT
OCSET
VW
COMP
FB
P17
GND_POWER
R19
464K
VID6
VID5
VID4
VID3
VID2
VID1
VID0
3V3
EP
C9
C12
7
P14
DNP
P1
R22
499
R20
FB
47PF
6
1UF
1X3
150PF
COMP
R5
IN
4
PGOOD
3V3
CLK_EN
DPRSTP
DPRSLPVR
VR_ON
VID6
VID5
VID4
VID3
OUT
P4
P5
IN
VCORE
3
C24
J10
P12
VCCSENSE
2
J15
1 1 2 2
PMON/PGD_IN
RBIAS
VR_TT
1000PF
P8
6.81K
C13
R9
DNP
R13
VW
1
2
3
4
5
6
7
5
1
2 21
3 3
PSI#
0
DNP
C8
R17 DNP R16
P10
P7
2
P18
P16
DNP
C92
10K
10K
R21
10K
R18
10K
R14
10K
R10
R103
OUT
U1
1
P6
R3
0
IN
VR_ON
DPRSLPVR
DPRSTP#
CLK_EN#
SOFT
OCSET
DNP
IN
+3.3V
VIN
IN
NOTE:
RUN LGATE1 TRACE PARALLEL TO TRACE CONNECTING
PGND1 AND SOURCE OF Q3 AND Q4.
TITLE:
ISL6261 EVAL1
CONTROLLER
ENGINEER:
JIA WEI
DRAWN BY:
REV:
?
DATE:
MAR-14
SHEET:
1 OF
ISL78211
R4
6.34K
C3
VCC_PRM
R107
+3.3V
1
Q5
IN
FDE
0.015UF
C10
2N7002
IN
+3.3V
PGOOD
DPRSLPVR
SSL_LXA3025IGC
RED
34
2
PGOOD
D3
GRN
R1 510
29
3 R2 510 J9
1 12 2
1
+3.3V
P2
DPRSLPVR
PSI#
R108
PMON/PGD_IN
DNP
DPRSTP#
SD05H0SK
FDE
10
9
8
7
6
ON
ON
ON
ON
ON
1
2
3
4
5
3
4
5
10K
+3.3V1
S1
J8
1 2 2 21
P13
Controller
C34
VCCSENSE
IN
VSSSENSE
IN
J22 4
1
2
C55
22UF
C61
22UF
C67
C56
22UF
C62
22UF
C68
22UF
C57
22UF
C63
22UF
C69
22UF
22UF
C49
22UF
C50
22UF
C51
22UF
C39
22UF
C42
C43
330UF
C90
330UF
C44
330UF
ISL78211
1
22UF
J13
C45
R82
C52
22UF
C58
22UF
C64
C53
22UF
C59
22UF
C65
22UF
C54
22UF
C60
22UF
C66
22UF
C70
C46
22UF
C47
22UF
C48
22UF
22UF
22UF
C37
C36
P41
P40
P39
P38
56UF
56UF
R83
22UF
22UF
C4
P35
10UF C5
10UF C5B
10UF
1UF
C32
C38
DNP
22UF
R54
22UF
DNP
0.1UF
0
R53
R52
C71
1
2
R60
BUS WIRE
22UF
J21 4
0
R50
1
2
L1
0.45UH
0.1UF
C91
3
DNP
1
DNP
J20 4
3
Q4
D2
IRF7832
Q2
R49
IRF7832
C35
R51
LGATE
0.22UF
1
7.68K
IN
0
Q3
VCC_PRM
VSUM
PHASE
C1
0.1UF
IN
R48
1
OUT
OUT
3
BOOT
IRF7821
Q1
2
IN
IRF7821
DNP
C33
UGATE
OUT
J5
VIN
C40
330UF
C89
330UF
C41
330UF
P37
J6
30
IN
P36
ISL78211EVAL1Z Evaluation Board Schematics (Continued)
Power Stage
VCORE
1
OUT
GND_POWER
J14
OUT
FN7578.1
December 4, 2013
ISL78211EVAL1Z Evaluation Board Schematics (Continued)
F26
G2
G3
G5
G6
G22
G24
G25
H1
H2
H4
H5
H22
H23
H25
H26
J1
J3
J4
J23
J24
J26
K2
K3
K5
K22
K24
K25
L1
L2
L4
L5
L22
L23
L25
L26
M1
M3
M4
M23
M24
M26
N2
N3
N5
N22
N24
N25
P1
P2
VSSSENSE
OUT
IN
W22
W6
W5
W3
W2
V26
V24
V23
V4
V3
U25
U23
U22
U5
U4
U2
T25
T24
T22
T5
T3
T2
R24
R23
R4
R3
R1
P26
P25
P23
P22
P5
P4
K1
K4
K23
K26
L3
L6
L21
L24
M2
M5
M22
M25
N1
N4
N23
N26
AE7
SOCKET1
V1
U26
U1
R26
AA4
AA3
AA1
Y26
Y25
Y23
Y22
Y5
Y4
Y2
Y1
W25
W24
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
AE1
AD25
AD22
AD19
AD16
AD13
AD11
AD8
AD5
AD2
AC24
AC21
AC19
AC16
AC14
AC11
AC8
AC6
AC3
AB26
AB23
AB19
AB16
AB13
AB11
AB8
AB4
AB1
AA25
AA22
AA19
AA16
AA14
AA11
AA8
AA5
AA2
Y24
Y21
Y6
Y3
W26
W23
W4
W1
V25
V22
V5
V2
U24
U21
U6
U3
T26
T23
T4
T1
R25
R22
R5
R2
P24
P21
P6
P3
ISL78211
INTEL_IMPV6
COMP3
COMP1
COMP2
COMP0
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
GND_POWER
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
INTEL_IMPV6
A3
A5
A6
A21
A22
A24
A25
B1
B2
B3
B4
B5
B22
B23
B25
C1
C3
C4
C6
C7
C20
C21
C23
C24
C26
D2
D3
D5
D6
D7
D20
D21
D22
D24
D25
E1
E2
E4
E5
E22
E23
E25
E26
F1
F3
F4
F6
F21
F23
F24
SOCKET1
AF20
AF18
AF17
AF15
AF14
AF12
AF10
AF9
AE20
AE18
AE17
AE15
AE13
AE12
AE10
AE9
AD18
AD17
AD15
AD14
AD12
AD10
AD9
AD7
AC18
AC17
AC15
AC13
AC12
AC10
AC9
AC7
AB20
AB18
AB17
AB15
AB14
AB12
AB10
AB9
AB7
AA20
AA18
PSI
GTLREF
VID6
VID5
VID4
VID3
VID2
VID1
VID0
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
G21
J6
J21
K6
K21
M6
M21
N6
N21
R6
R21
T6
T21
V6
V21
W21
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSSSENSE
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VCCP
VCCP
VCCP
VCCP
VCCP
VCCP
VCCP
VCCP
VCCP
VCCP
VCCP
VCCP
VCCP
VCCP
VCCP
VCCP
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
INTEL_IMPV6
SOCKET1
A7
A9
A10
A12
A13
A15
A17
A18
A20
B7
B9
B10
B12
B14
B15
B17
B18
B20
C9
C10
C12
C13
C15
C17
C18
D9
D10
D12
D14
D15
D17
D18
E7
E9
E10
E12
E13
E15
E17
E18
E20
F7
F9
F10
F12
F14
F15
F17
F18
F20
AA7
AA9
AA10
AA12
AA13
AA15
AA17
VCCA
VCCSENSE
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
31
IN
VCORE
AF7
A4
A8
A11
A14
A16
A19
A23
A26
B6
B8
B11
B13
B16
B19
B21
B24
C2
C5
C8
C11
C14
C16
C19
C22
C25
D1
D4
D8
D11
D13
D16
D19
D23
D26
E3
E6
E8
E11
E14
E16
E19
E21
E24
F2
F5
F8
F11
F13
F16
F19
F22
F25
G1
G4
G23
G26
H3
H6
H21
H24
J2
J5
J22
J25
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
B26
VCCSENSE
OUT
PSI#
AE6
OUT
AD26
AE2 VID6 OUT
AF2 VID5 OUT
AE3 VID4 OUT
AF4 VID3 OUT
AE5 VID2 OUT
AF5 VID1 OUT
AD6 VID0 OUT
AF26
AF25
AF23
AF22
AF1
AE25
AE24
AE22
AE21
AD24
AD23
AD21
AD20
AD4
AD3
AD1
AC26
AC25
AC23
AC22
AC20
AC5
AC4
AC2
AC1
AB25
AB24
AB22
AB21
AB6
AB5
AB3
AB2
AA26
AA24
AA23
AA21
AA6
AF24
AF21
AF19
AF16
AF13
AF11
AF8
AF6
AF3
AE26
AE23
AE19
AE16
AE14
AE11
AE8
AE4
Socket
FN7578.1
December 4, 2013
ISL78211EVAL1Z Evaluation Board Schematics (Continued)
J11
J12
Dynamic Load
+12V
4
LO
VSS
LI
HI
8
7
6
R74
5
249
HIP2100
R73
49.9K
2
3
1
1
BAV99
HUF76129D3S
Q15
1
2
GND_POWER
ON
R72
2
10UF
499
C81
3
R71
+12V
Q14
D1
3
S5 1
OFF
4 J23
ISL78211
+12V
1
2
R75
249
2N7002
VCORE
IN
3
3
VDD
HB
HO
HS
0.12
32
2
2
1
1UF
U5
3
C80
0.1
R76
GND_POWER
FN7578.1
December 4, 2013
ISL78211EVAL1Z Evaluation Board Schematics (Continued)
8
9
MST7_SPST
10
U4
G1
Y8
VCC
G2
A2
Y1
A3
Y2
A4
Y3
A5
Y4
A6
Y5
A7
Y6
A8
Y7
HC540
Y8
20
19
18
+3.3V_GEY
C74
0.1UF
1
+3.3V_GEY
17
16
15
2
12
2
+3.3V_GEY
R59
10K
FN7578.1
December 4, 2013
R61
10K
R62
10K
10K
J25
1 2 2
1
2
+3.3V_GEY
10K
10K
3
EVQPA
PSI# S7
R102
R58
R64
10K
C76
10K
R57
4
LOOP
+3.3V_GEY
0.1UF
+3.3V
J24
1 1 2 2 +3.3V_GEY
10K
R56
1X3
1
2 21
3 3
J7
EVQPA
1
11
4
C87
15PF
15PF
1
10K
2
3
4
3
DPRSLP
S6
14
13
S2
1UF
U12
R77
MODE TRANS
1
R55
C85
+3.3V_GEY
A1
GND
11
C86
5
6
7
Vcc
1A
1Y
2A
2Y
3A
3Y
GND
AC04
6A
6Y
5A
5Y
4A
4Y
14
13
12
11
10
9
BAV99
HC540
12
+3.3V
3
GND
DNP
S9
Y7
CLK_EN#
13
3
EVQPA
J28
1 1 2 2
P45
A8
IN
14
4
2
P43
Y6
0
R67
C79
Y5
A7
15
1
0.01UF
Y4
A6
16
RESETS8
P42
A5
17
8
R80 0
7
Y3
1UF
PIC16F874 +3.3V_GEYR69
R104
10K
2
1
6
A4
0.1UF
2
HCM49
3
10K
10K
R101
10K
R98
10K
R95
10K
R89
10K
R92
5
Y2
18
7
28
R79 0
7
4
A3
19
VDD
VDD
OUT
OUT
OUT
C88
6
3
Y1
6
29
C73
DELAY
DPRSLPVR
DNP
5
2
G2
A2
+3.3V_GEY
OUT
1
P44
4
14 14
13 13
12 12
11 11
10 10
9 9
8 8
A1
20
DIRECT
OUT
U11
C78
BAV99
3
1
2
3
4
5
6
7
1
VCC
31
18
R78 0
1
10K
R86
R83
U9
2
10
25
26
27
DNP
30
DNP
9
MST7_SPST
G1
11
2
1
8
U3
Y8
PSI#
DPRSTP#
PGD_IN
VR_ON1
R106
C84
7
Y7
HC540
12
19
20
21
22
23
24
0
10K
10K
R100
10K
R97
10K
R94
10K
R91
10K
R88
6
GND
38
39
40
41
2
3
4
5
13
ISL78211
7
5
A8
14
S3
6
4
Y6
OUT
OUT
OUT
OUT
OUT
OUT
OUT
33
34
R70 0
5
3
Y5
A7
12
13
15
R105
4
2
A6
16
DNP
3
14 14
13 13
12 12
11 11
10 10
9 9
8 8
1
2
3
4
5
6
7
1
Y4
VID0
VID1
VID2
VID3
VID4
VID5
VID6
8
9
10
11
14
15
16
17
R68
1
10K
R85
R82
U8
2
10
Y3
A5
0.1UF
17
RB0
RB1
RB2
RB3
RB4
RB5
RB6
RB7
NC
NC
RA0
RA1
RA2
RA3
RA4
RA5
OSC1
OSC2
MCLR
10K
MST7_SPST
A4
18
R65
9
Y2
C77
10K
10K
R99
10K
R96
10K
R93
10K
R90
7
8
Y1
A3
C72
RC0
RC1
RC2
RC3
RC4
RC5
RC6
RC7
NC
NC
RD0
RD1
RD2
RD3
RD4
RD5
RD6
RD7
RE0
RE1
RE2
VSS
VSS
0.1UF
7
6
A2
19
32
35
36
37
42
43
44
1
10K
33
6
5
G2
+3.3V_GEY
R66
5
A1
20
10K
4
3
4
VCC
R63
3
2
U2
G1
C75
2
14 14
13 13
12 12
11 11
10 10
9 9
8 8
1
2
3
4
5
6
7
U10
1
0.1UF
1
10K
R87
U7
10K
R84
R81
Geyserville Transition Gen.
4
3
EVQPA
PSI#
J29
1 1 2 2
REV:
TITLE:
ISL6261 EVAL1
GEYSERVILLE TRANSITION GEN.
ENGINEER:
DATE:
MARJIA WEI
DRAWN BY:
SHEET:
5
ISL78211
Revision History
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you
have the latest Rev.
DATE
REVISION
CHANGE
December 4, 2013
FN7578.1
Updated to newest template
page 1 - Updated copyright area
page 34 Updated standard "Products" section verbiage to "About Intersil" verbiage.
March 8, 2010
FN7578.0
Initial Release.
About Intersil
Intersil Corporation is a leader in the design and manufacture of high-performance analog, mixed-signal and power management
semiconductors. The company's products address some of the largest markets within the industrial and infrastructure, personal
computing and high-end consumer markets. For more information about Intersil, visit our website at www.intersil.com.
For the most updated datasheet, application notes, related documentation and related parts, please see the respective product
information page found at www.intersil.com. You may report errors or suggestions for improving this datasheet by visiting
www.intersil.com/en/support/ask-an-expert.html. Reliability reports are also available from our website at
http://www.intersil.com/en/support/qualandreliability.html#reliability
For additional products, see www.intersil.com/en/products.html
Intersil Automotive Qualified products are manufactured, assembled and tested utilizing TS16949 quality systems as noted
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see www.intersil.com
34
FN7578.1
December 4, 2013
ISL78211
Package Outline Drawing
L40.6x6
40 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE
Rev 3, 10/06
4X 4.5
6.00
36X 0.50
A
B
31
6
PIN 1
INDEX AREA
6
PIN #1 INDEX AREA
40
30
1
6.00
4 . 10 ± 0 . 15
21
10
0.15
(4X)
11
20
TOP VIEW
0.10 M C A B
40X 0 . 4 ± 0 . 1
4 0 . 23 +0 . 07 / -0 . 05
BOTTOM VIEW
SEE DETAIL "X"
0.10 C
0 . 90 ± 0 . 1
( 5 . 8 TYP )
(
C
BASE PLANE
SEATING PLANE
0.08 C
SIDE VIEW
4 . 10 )
( 36X 0 . 5 )
C
0 . 2 REF
5
( 40X 0 . 23 )
0 . 00 MIN.
0 . 05 MAX.
( 40X 0 . 6 )
DETAIL "X"
TYPICAL RECOMMENDED LAND PATTERN
NOTES:
1. Dimensions are in millimeters.
Dimensions in ( ) for Reference Only.
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.
3. Unless otherwise specified, tolerance : Decimal ± 0.05
4. Dimension b applies to the metallized terminal and is measured
between 0.15mm and 0.30mm from the terminal tip.
5. Tiebar shown (if present) is a non-functional feature.
6. The configuration of the pin #1 identifier is optional, but must be
located within the zone indicated. The pin #1 indentifier may be
either a mold or mark feature.
35
FN7578.1
December 4, 2013