SiHA15N50E Datasheet

SiHA15N50E
www.vishay.com
Vishay Siliconix
E Series Power MOSFET
FEATURES
PRODUCT SUMMARY
VDS (V) at TJ max.
• Low figure-of-merit (FOM) Ron x Qg
550
RDS(on) max. at 25 °C (Ω)
VGS = 10 V
Qg max. (nC)
•
•
•
•
•
0.243
66
Qgs (nC)
8
Qgd (nC)
14
Configuration
Single
Low input capacitance (Ciss)
Reduced switching and conduction losses
Low gate charge (Qg)
Avalanche energy rated (UIS)
Material categorization: for definitions of compliance
please see www.vishay.com/doc?99912
APPLICATIONS
Thin-Lead TO-220 FULLPAK
• Computing
- PC silver box / ATX power supplies
• Lighting
- Two stage LED lighting
• Consumer electronics
D
G
GD
S
• Applications using hard switched topologies
- Power factor correction (PFC)
- Two switch forward converter
- Flyback converter
• Switch mode power supplies (SMPS)
S
N-Channel MOSFET
ORDERING INFORMATION
Package
Thin-Lead TO-220 FULLPAK
Lead (Pb)-free
SiHA15N50E-E3
ABSOLUTE MAXIMUM RATINGS (TC = 25 °C, unless otherwise noted)
PARAMETER
SYMBOL
LIMIT
Drain-Source Voltage
VDS
500
Gate-Source Voltage
VGS
± 30
Continuous Drain Current (TJ = 150 °C) e
VGS at 10 V
TC = 25 °C
TC = 100 °C
Pulsed Drain Current a
UNIT
V
14.5
ID
A
9.2
IDM
28
Linear Derating Factor
1.25
W/°C
Single Pulse Avalanche Energy b
EAS
136
mJ
Maximum Power Dissipation
PD
33
W
TJ, Tstg
-55 to +150
°C
Operating Junction and Storage Temperature Range
Drain-Source Voltage Slope
VDS = 0 V to 80 % VDS
Reverse Diode dV/dt d
Soldering Recommendations (Peak Temperature) c
70
dV/dt
V/ns
27
for 10 s
300
°C
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature.
b. VDD = 50 V, starting TJ = 25 °C, L = 28.2 mH, Rg = 25 Ω, IAS = 3.1 A.
c. 1.6 mm from case.
d. ISD ≤ ID, dI/dt = 100 A/μs, starting TJ = 25 °C.
e. Limited by maximum junction temperature.
THERMAL RESISTANCE RATINGS
PARAMETER
SYMBOL
TYP.
MAX.
Maximum Junction-to-Ambient
RthJA
-
65
Maximum Junction-to-Case (Drain)
RthJC
-
3.8
S15-0278-Rev. B, 23-Feb-15
UNIT
°C/W
Document Number: 91631
1
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
SiHA15N50E
www.vishay.com
Vishay Siliconix
SPECIFICATIONS (TJ = 25 °C, unless otherwise noted)
PARAMETER
SYMBOL
TEST CONDITIONS
MIN.
TYP.
MAX.
UNIT
Static
Drain-Source Breakdown Voltage
VDS Temperature Coefficient
Gate-Source Threshold Voltage (N)
Gate-Source Leakage
Zero Gate Voltage Drain Current
VDS
VGS = 0 V, ID = 250 μA
500
-
-
V
ΔVDS/TJ
Reference to 25 °C, ID = 1 mA
-
0.62
-
V/°C
VGS(th)
VDS = VGS, ID = 250 μA
2.0
-
4.0
V
VGS = ± 20 V
-
-
± 100
nA
μA
IGSS
IDSS
VGS = ± 30 V
-
-
±1
VDS = 500 V, VGS = 0 V
-
-
10
VDS = 400 V, VGS = 0 V, TJ = 125 °C
-
-
25
μA
-
0.243
0.280
Ω
gfs
VDS = 30 V, ID = 7.5 A
-
3.9
-
S
Input Capacitance
Ciss
1162
-
Coss
-
51
-
Reverse Transfer Capacitance
Crss
VGS = 0 V,
VDS = 100 V,
f = 1 MHz
-
Output Capacitance
-
7
-
Effective Output Capacitance, Energy
Related a
Co(er)
-
55
-
Effective Output Capacitance, Time
Related b
Co(tr)
-
164
-
-
33
66
-
8
-
-
14
-
Drain-Source On-State Resistance
Forward Transconductance
RDS(on)
VGS = 10 V
ID = 7.5 A
Dynamic
pF
VDS = 0 V to 400 V, VGS = 0 V
Total Gate Charge
Qg
Gate-Source Charge
Qgs
Gate-Drain Charge
Qgd
Turn-On Delay Time
td(on)
-
15
30
tr
-
24
48
-
34
68
-
18
36
-
0.85
-
-
-
14.5
S
-
-
28
TJ = 25 °C, IS = 7.5 A, VGS = 0 V
-
-
1.2
-
265
-
ns
-
3.2
-
μC
-
23
-
A
Rise Time
Turn-Off Delay Time
td(off)
Fall Time
tf
Gate Input Resistance
Rg
VGS = 10 V
ID = 7.5 A, VDS = 400 V
VDD = 400 V, ID = 12 A,
VGS = 10 V, Rg = 9.1 Ω
f = 1 MHz, open drain
nC
ns
Ω
Drain-Source Body Diode Characteristics
Continuous Source-Drain Diode Current
IS
Pulsed Diode Forward Current
ISM
Diode Forward Voltage
VSD
Reverse Recovery Time
trr
Reverse Recovery Charge
Qrr
Reverse Recovery Current
IRRM
MOSFET symbol
showing the
integral reverse
p - n junction diode
D
A
G
TJ = 25 °C, IF = IS = 7.5 A,
dI/dt = 100 A/μs, VR = 25 V
V
Notes
a. Coss(er) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 % to 80 % VDSS.
b. Coss(tr) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 % to 80 % VDSS.
S15-0278-Rev. B, 23-Feb-15
Document Number: 91631
2
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
SiHA15N50E
www.vishay.com
Vishay Siliconix
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)
3.0
40
15 V
14 V
13 V
12 V
11 V
10 V
9V
8V
7V
6V
BOTTOM 5 V
30
TJ = 25 °C
ID = 7.5 A
RDS(on), Drain-to-Source On-Resistance
(Normalized)
ID, Drain-to-Source Current (A)
TOP
20
10
2.0
1.5
1.0
VGS = 10 V
0.5
0
0
0
5
10
15
20
25
VDS, Drain-to-Source Voltage (V)
- 60 - 40 - 20
30
Fig. 1 - Typical Output Characteristics
0 20 40 60 80 100 120 140 160
TJ, Junction Temperature (°C)
Fig. 4 - Normalized On-Resistance vs. Temperature
10 000
24
TOP
15 V
14 V
13 V
12 V
11 V
10 V
9V
8V
7V
6V
BOTTOM 5 V
18
TJ = 150 °C
Ciss
1000
C, Capacitance (pF)
ID, Drain-to-Source Current (A)
2.5
12
100
Coss
Crss
10
6
VGS = 0 V, f = 1 MHz
Ciss = Cgs + Cgd, Cds shorted
Crss = Cgd
Coss = Cds + Cgd
1
0
0
5
10
15
20
25
VDS, Drain-to-Source Voltage (V)
0
30
Fig. 2 - Typical Output Characteristics
100
200
300
400
VDS, Drain-to-Source Voltage (V)
500
Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage
40
7
10 000
1000
20
TJ = 150 °C
10
5
4
Eoss
Coss
100
3
Eoss (μJ)
30
Coss (pF)
ID, Drain-to-Source Current (A)
6
TJ = 25 °C
2
10
VDS = 30 V
1
1
0
0
5
10
15
20
VGS, Gate-to-Source Voltage (V)
Fig. 3 - Typical Transfer Characteristics
S15-0278-Rev. B, 23-Feb-15
25
0
0
100
200
300
400
500
VDS
Fig. 6 - Coss and Eoss vs. VDS
Document Number: 91631
3
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
SiHA15N50E
www.vishay.com
Vishay Siliconix
16
VDS = 400 V
VDS = 250 V
VDS = 100 V
20
12
ID, Drain Current (A)
VGS, Gate-to-Source Voltage (V)
24
16
12
8
4
4
0
0
0
10
20
30
40
Qg, Total Gate Charge (nC)
50
60
Fig. 7 - Typical Gate Charge vs. Gate-to-Source Voltage
25
50
75
100
125
TC, Case Temperature (°C)
150
Fig. 10 - Maximum Drain Current vs. Case Temperature
100
650
VDS, Drain-to-Source Breakdown Voltage (V)
ISD, Reverse Drain Current (A)
8
TJ = 150 °C
10
TJ = 25 °C
1
VGS = 0 V
0.1
0.2
0.4
0.6
0.8
1.0
1.2
1.4
VSD, Source-Drain Voltage (V)
Fig. 8 - Typical Source-Drain Diode Forward Voltage
100
Operation in this Area
Limited by RDS(on)
625
600
575
550
525
500
475
ID = 250 μA
450
- 60 - 40 - 20
0 20 40 60 80 100 120 140 160
TJ, Junction Temperature (°C)
Fig. 11 - Temperature vs. Drain-to-Source Voltage
IDM Limited
ID, Drain Current (A)
10
100 μs
Limited by RDS(on)*
1
1 ms
0.1
10 ms
TC = 25 °C
TJ = 150 °C
Single Pulse
BVDSS Limited
0.01
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
* VGS > minimum VGS at which RDS(on) is specified
Fig. 9 - Maximum Safe Operating Area
S15-0278-Rev. B, 23-Feb-15
Document Number: 91631
4
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
SiHA15N50E
www.vishay.com
Vishay Siliconix
1
Normalized Effective Transient
Thermal Impedance
Duty Cycle = 0.5
0.2
0.1
0.1
0.05
0.02
Single Pulse
0.01
0.0001
0.001
0.01
0.1
1
10
Pulse Time (s)
Fig. 12 - Normalized Thermal Transient Impedance, Junction-to-Case
RD
VDS
VDS
tp
VGS
VDD
D.U.T.
RG
+
- VDD
VDS
10 V
Pulse width ≤ 1 µs
Duty factor ≤ 0.1 %
IAS
Fig. 13 - Switching Time Test Circuit
Fig. 16 - Unclamped Inductive Waveforms
VDS
QG
10 V
90 %
QGS
10 %
VGS
QGD
VG
td(on)
td(off) tf
tr
Charge
Fig. 14 - Switching Time Waveforms
Fig. 17 - Basic Gate Charge Waveform
L
Vary tp to obtain
required IAS
Current regulator
Same type as D.U.T.
VDS
50 kΩ
D.U.T
RG
+
-
IAS
12 V
0.2 µF
0.3 µF
V DD
+
D.U.T.
10 V
tp
0.01 Ω
-
VDS
VGS
3 mA
Fig. 15 - Unclamped Inductive Test Circuit
IG
ID
Current sampling resistors
Fig. 18 - Gate Charge Test Circuit
S15-0278-Rev. B, 23-Feb-15
Document Number: 91631
5
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
SiHA15N50E
www.vishay.com
Vishay Siliconix
Peak Diode Recovery dV/dt Test Circuit
+
D.U.T.
Circuit layout considerations
• Low stray inductance
• Ground plane
• Low leakage inductance
current transformer
+
-
-
Rg
•
•
•
•
+
dV/dt controlled by Rg
Driver same type as D.U.T.
ISD controlled by duty factor “D”
D.U.T. - device under test
+
-
VDD
Driver gate drive
P.W.
Period
D=
P.W.
Period
VGS = 10 Va
D.U.T. lSD waveform
Reverse
recovery
current
Body diode forward
current
dI/dt
D.U.T. VDS waveform
Diode recovery
dV/dt
Re-applied
voltage
Inductor current
VDD
Body diode forward drop
Ripple ≤ 5 %
ISD
Note
a. VGS = 5 V for logic level devices
Fig. 19 - For N-Channel
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and
reliability data, see www.vishay.com/ppg?91631.
S15-0278-Rev. B, 23-Feb-15
Document Number: 91631
6
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Package Information
www.vishay.com
Vishay Siliconix
TO-220 FULLPAK Thin Lead
E
ØP
A
n
A2
d2
d3
d1
D
L2
L1
b2 x 3
bx3
A2
c
e
DIMENSIONS
SYMBOL
MILLIMETERS
INCHES
MIN.
MAX.
MIN.
MAX.
A
4.30
4.70
0.169
0.185
A1
2.50
2.90
0.098
0.114
A2
2.50
2.70
0.098
0.106
b
0.60
0.80
0.024
0.031
b2
0.60
0.90
0.024
0.035
c
-
0.60
-
0.024
D
8.30
8.70
0.327
0.342
d1
14.70
15.30
0.579
0.602
d2
2.90
3.10
0.114
0.122
d3
3.40
3.60
0.134
0.142
E
9.70
10.30
0.382
0.406
e
2.50
2.70
0.098
0.106
0.543
L
13.40
13.80
0.528
L1
2.50
2.80
0.098
0.110
L2
-
1.20
-
0.047
n
6.05
6.15
0.238
0.242
ØP
3.00
3.40
0.118
0.134
ECN: X15-0319-Rev. B, 12-Oct-15
DWG: 6021
Revision: 12-Oct-15
1
Document Number: 62649
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Legal Disclaimer Notice
www.vishay.com
Vishay
Disclaimer
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other
disclosure relating to any product.
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular
purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements
about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular
product with the properties described in the product specification is suitable for use in a particular application. Parameters
provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All
operating parameters, including typical parameters, must be validated for each customer application by the customer’s
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,
including but not limited to the warranty expressed therein.
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please
contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.
Material Category Policy
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the
definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council
of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment
(EEE) - recast, unless otherwise specified as non-compliant.
Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that
all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free
requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference
to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21
conform to JEDEC JS709A standards.
Revision: 02-Oct-12
1
Document Number: 91000