IRF614, SiHF614 Vishay Siliconix Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) • Dynamic dV/dt Rating 250 RDS(on) () VGS = 10 V RoHS* Qg (Max.) (nC) 8.2 • Fast Switching Qgs (nC) 1.8 • Ease of Paralleling Qgd (nC) 4.5 • Simple Drive Requirements Configuration D DESCRIPTION TO-220AB Third generation Power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness. The TO-220AB package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 W. The low thermal resistance and low package cost of the TO-220AB contribute to its wide acceptance throughout the industry. G D COMPLIANT • Compliant to RoHS Directive 2002/95/EC Single G Available • Repetitive Avalanche Rated 2.0 S S N-Channel MOSFET ORDERING INFORMATION Package TO-220AB IRF614PbF SiHF614-E3 IRF614 SiHF614 Lead (Pb)-free SnPb ABSOLUTE MAXIMUM RATINGS (TC = 25 °C, unless otherwise noted) PARAMETER SYMBOL LIMIT Drain-Source Voltage VDS 250 Gate-Source Voltage VGS ± 20 Continuous Drain Current VGS at 10 V TC = 25 °C TC = 100 °C Pulsed Drain Currenta ID IDM Linear Derating Factor UNIT V 2.7 1.7 A 8.0 0.29 W/°C EAS 61 mJ Currenta IAR 2.7 A Repetitive Avalanche Energya EAR 3.6 mJ Single Pulse Avalanche Energyb Repetitive Avalanche Maximum Power Dissipation TC = 25 °C Peak Diode Recovery dV/dtc Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) Mounting Torque for 10 s 6-32 or M3 screw PD 36 W dV/dt 4.8 V/ns TJ, Tstg - 55 to + 150 300d °C 10 lbf · in 1.1 N·m Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. VDD = 50 V, starting TJ = 25 °C, L = 13 mH, Rg = 25 , IAS = 2.7 A (see fig. 12). c. ISD 2.7 A, dI/dt 65 A/μs, VDD VDS, TJ 150 °C. d. 1.6 mm from case. * Pb containing terminations are not RoHS compliant, exemptions may apply Document Number: 91025 S11-0510-Rev. B, 21-Mar-11 www.vishay.com 1 This datasheet is subject to change without notice. THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRF614, SiHF614 Vishay Siliconix THERMAL RESISTANCE RATINGS PARAMETER SYMBOL TYP. MAX. Maximum Junction-to-Ambient RthJA - 62 Case-to-Sink, Flat, Greased Surface RthCS 0.50 - Maximum Junction-to-Case (Drain) RthJC - 3.5 UNIT °C/W SPECIFICATIONS (TJ = 25 °C, unless otherwise noted) PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT VDS VGS = 0 V, ID = 250 μA 250 - - V VDS/TJ Reference to 25 °C, ID = 1 mA - 0.39 - V/°C VGS(th) VDS = VGS, ID = 250 μA 2.0 - 4.0 V Gate-Source Leakage IGSS VGS = ± 20 V - - ± 100 nA Zero Gate Voltage Drain Current IDSS VDS = 250 V, VGS = 0 V - - 25 VDS = 200 V, VGS = 0 V, TJ = 125 °C - - 250 Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage μA - - 2.0 gfs VDS = 50 V, ID = 1.6 Ab 0.90 - - S Input Capacitance Ciss VGS = 0 V, - 140 - Output Capacitance Coss VDS = 25 V, - 42 - Reverse Transfer Capacitance Crss f = 1.0 MHz, see fig. 5 - 9.6 - Total Gate Charge Qg - - 8.2 - - 1.8 Drain-Source On-State Resistance Forward Transconductance RDS(on) ID = 1.6 Ab VGS = 10 V Dynamic VGS = 10 V ID = 2.7 A, VDS = 200 V pF Gate-Source Charge Qgs Gate-Drain Charge Qgd - - 4.5 Turn-On Delay Time td(on) - 7.0 - VDD = 125 V, ID = 2.7 A , - 7.6 - Rg = 24 , RD = 45, see fig. 10b - 16 - - 7.0 - - 4.5 - - 7.5 - - - 2.7 - - 8.0 - - 2.0 V - 190 390 ns - 0.64 1.3 μC Rise Time Turn-Off Delay Time Fall Time tr td(off) see fig. 6 and 13b tf Internal Drain Inductance LD Internal Source Inductance LS Between lead, 6 mm (0.25") from package and center of die contact D nC ns nH G S Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current Pulsed Diode Forward Currenta Body Diode Voltage IS ISM VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Forward Turn-On Time ton MOSFET symbol showing the integral reverse p - n junction diode D A G S TJ = 25 °C, IS = 2.7 A, VGS = 0 Vb TJ = 25 °C, IF = 2.7 A, dI/dt = 100 A/μsb Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width 300 μs; duty cycle 2 %. www.vishay.com 2 Document Number: 91025 S11-0510-Rev. B, 21-Mar-11 This datasheet is subject to change without notice. THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRF614, SiHF614 Vishay Siliconix TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted) VGS 15 V 10 V 8.0 V 7.0 V 6.0 V 5.5 V 5.0 V Bottom 4.5 V 100 10-1 4.5 V 100 100 25 °C 10-1 101 4.5 V 10-1 20 µs Pulse Width TC = 150 °C 10-2 100 10-1 91025_02 101 6 7 8 9 10 Fig. 3 - Typical Transfer Characteristics RDS(on), Drain-to-Source On Resistance (Normalized) ID, Drain Current (A) Top 5 VGS, Gate-to-Source Voltage (V) 91025_03 Fig. 1 - Typical Output Characteristics, TC = 25 °C 100 20 µs Pulse Width VDS = 50 V 4 VDS, Drain-to-Source Voltage (V) VGS 15 V 10 V 8.0 V 7.0 V 6.0 V 5.5 V 5.0 V Bottom 4.5 V 150 °C 10-2 20 µs Pulse Width TC = 25 °C 10-2 10-1 91025_01 ID, Drain Current (A) ID, Drain Current (A) Top VDS, Drain-to-Source Voltage (V) 91025_04 3.0 2.5 ID = 2.7 A VGS = 10 V 2.0 1.5 1.0 0.5 0.0 - 60 - 40 - 20 0 20 40 60 80 100 120 140 160 TJ, Junction Temperature (°C) Fig. 2 - Typical Output Characteristics, TC = 150 °C Fig. 4 - Normalized On-Resistance vs. Temperature Document Number: 91025 S11-0510-Rev. B, 21-Mar-11 www.vishay.com 3 This datasheet is subject to change without notice. THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRF614, SiHF614 Vishay Siliconix 300 ISD, Reverse Drain Current (A) 250 Capacitance (pF) 101 VGS = 0 V, f = 1 MHz Ciss = Cgs + Cgd, Cds Shorted Crss = Cgd Coss = Cds + Cgd 200 Ciss 150 100 Coss 50 Crss 150 °C 25 °C 100 VGS = 0 V 0 100 0.5 101 VDS, Drain-to-Source Voltage (V) 91025_05 ID, Drain Current (A) VGS, Gate-to-Source Voltage (V) 5 VDS = 200 V VDS = 125 V VDS = 50 V 8 4 For test circuit see figure 13 0 91025_06 2 4 6 QG, Total Gate Charge (nC) Operation in this area limited by RDS(on) 2 10 5 100 µs 2 1 1 ms 5 TC = 25 °C TJ = 150 °C Single Pulse 2 0.1 1 8 Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage www.vishay.com 4 1.5 102 16 0 1.3 1.1 Fig. 7 - Typical Source-Drain Diode Forward Voltage ID = 2.7 A 12 0.9 VSD, Source-to-Drain Voltage (V) 91025_07 Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage 20 0.7 91025_08 2 5 10 2 5 10 ms 102 2 5 103 VDS, Drain-to-Source Voltage (V) Fig. 8 - Maximum Safe Operating Area Document Number: 91025 S11-0510-Rev. B, 21-Mar-11 This datasheet is subject to change without notice. THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRF614, SiHF614 Vishay Siliconix RD VDS VGS 3.0 D.U.T. RG + - VDD ID, Drain Current (A) 2.5 10 V Pulse width ≤ 1 µs Duty factor ≤ 0.1 % 2.0 1.5 Fig. 10a - Switching Time Test Circuit 1.0 VDS 0.5 90 % 0.0 25 50 75 100 125 150 TC, Case Temperature (°C) 91025_09 10 % VGS td(on) Fig. 9 - Maximum Drain Current vs. Case Temperature td(off) tf tr Fig. 10b - Switching Time Waveforms Thermal Response (ZthJC) 10 0 − 0.5 1 0.2 0.1 0.1 PDM 0.05 0.02 0.01 Single Pulse (Thermal Response) t1 t2 Notes: 1. Duty Factor, D = t1/t2 2. Peak Tj = PDM x ZthJC + TC 10-2 10-5 91025_11 10-4 10-3 10-2 0.1 1 10 t1, Rectangular Pulse Duration (s) Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case Document Number: 91025 S11-0510-Rev. B, 21-Mar-11 www.vishay.com 5 This datasheet is subject to change without notice. THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRF614, SiHF614 Vishay Siliconix L Vary tp to obtain required IAS VDS VDS tp VDD D.U.T RG + - IAS V DD VDS A 10 V 0.01 Ω tp IAS Fig. 12a - Unclamped Inductive Test Circuit Fig. 12b - Unclamped Inductive Waveforms EAS, Single Pulse Energy (mJ) 140 ID 1.2 A 1.7 A Bottom 2.7 A Top 120 100 80 60 40 20 0 VDD = 50 V 25 91025_12c 50 75 100 125 150 Starting TJ, Junction Temperature (°C) Fig. 12c - Maximum Avalanche Energy vs. Drain Current Current regulator Same type as D.U.T. 50 kΩ QG 10 V 12 V 0.2 µF 0.3 µF QGS QGD + D.U.T. VG - VDS VGS 3 mA Charge IG ID Current sampling resistors Fig. 13a - Basic Gate Charge Waveform www.vishay.com 6 Fig. 13b - Gate Charge Test Circuit Document Number: 91025 S11-0510-Rev. B, 21-Mar-11 This datasheet is subject to change without notice. THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRF614, SiHF614 Vishay Siliconix Peak Diode Recovery dV/dt Test Circuit + D.U.T. Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - Rg • • • • + dV/dt controlled by Rg Driver same type as D.U.T. ISD controlled by duty factor “D” D.U.T. - device under test + - VDD Driver gate drive P.W. Period D= P.W. Period VGS = 10 Va D.U.T. lSD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage Inductor current VDD Body diode forward drop Ripple ≤ 5 % ISD Note a. VGS = 5 V for logic level devices Fig.14 - For N-Channel Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91025. Document Number: 91025 S11-0510-Rev. B, 21-Mar-11 www.vishay.com 7 This datasheet is subject to change without notice. THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Package Information www.vishay.com Vishay Siliconix TO-220-1 A E DIM. Q H(1) D 3 2 L(1) 1 M* L b(1) INCHES MIN. MAX. MIN. MAX. A 4.24 4.65 0.167 0.183 b 0.69 1.02 0.027 0.040 b(1) 1.14 1.78 0.045 0.070 F ØP MILLIMETERS c 0.36 0.61 0.014 0.024 D 14.33 15.85 0.564 0.624 E 9.96 10.52 0.392 0.414 e 2.41 2.67 0.095 0.105 e(1) 4.88 5.28 0.192 0.208 F 1.14 1.40 0.045 0.055 H(1) 6.10 6.71 0.240 0.264 0.115 J(1) 2.41 2.92 0.095 L 13.36 14.40 0.526 0.567 L(1) 3.33 4.04 0.131 0.159 ØP 3.53 3.94 0.139 0.155 Q 2.54 3.00 0.100 0.118 ECN: X15-0364-Rev. C, 14-Dec-15 DWG: 6031 Note • M* = 0.052 inches to 0.064 inches (dimension including protrusion), heatsink hole for HVM C b e J(1) e(1) Package Picture ASE Revison: 14-Dec-15 Xi’an Document Number: 66542 1 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Legal Disclaimer Notice www.vishay.com Vishay Disclaimer ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners. Material Category Policy Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant. Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU. Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards. Revision: 02-Oct-12 1 Document Number: 91000