5962-98624

1. DATE
(YYMMDD)
99-04-13
NOTICE OF REVISION (NOR)
Form Approved
OMB No. 0704-0188
THIS REVISION DESCRIBED BELOW HAS BEEN AUTHORIZED FOR THE DOCUMENT LISTED.
Public reporting burden for this collection is estimated to average 2 hours per response, including the time for reviewing
instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the
collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate
for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the
Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
PLEASE DO NOT RETURN YOUR COMPLETED FORM TO EITHER OF THESE ADDRESSED. RETURN COMPLETED
FORM TO THE GOVERNMENT ISSUING CONTRACTING OFFICER FOR THE CONTRACT/ PROCURING ACTIVITY
NUMBER LISTED IN ITEM 2 OF THIS FORM.
2. PROCURING
ACTIVITY NO.
3. DODAAC
b. ADDRESS (Street, City, State, Zip Code)
Defense Supply Center, Columbus
3990 East Broad Street
Columbus, OH 43216-5000
4. ORIGINATOR
a. TYPED NAME (First, Middle Initial,
Last)
9. TITLE OF DOCUMENT
MICROCIRCUIT, DIGITAL, RADIATION HARDENED, ADVANCED CMOS,
5. CAGE CODE
67268
6. NOR NO.
5962-R059-99
7. CAGE CODE
67268
8. DOCUMENT NO.
5962-98624
11. ECP NO.
10. REVISION LETTER
No users listed.
QUAD 2-INPUT OR GATE, MONOLITHIC SILICON
a. CURRENT
Initial
b. NEW
A
12. CONFIGURATION ITEM (OR SYSTEM) TO WHICH ECP APPLIES
All
13. DESCRIPTION OF REVISION
Sheet 1: Revisions ltr column; add "A".
Revisions description column; add "Changes in accordance with NOR 5962-R059-99".
Revisions date column; add "99-04-13".
Revision level block; add "A".
Rev status of sheets; for sheets 1, 4 and 17 through 23, add "A".
Sheet 4: Add new paragraph which states; "3.1.1 Microcircuit die. For the requirements for microcircuit die, see appendix A to
this document."
Revision level block; add "A".
Sheets
17 through 23: Add attached appendix A.
CONTINUED ON NEXT SHEETS
14. THIS SECTION FOR GOVERNMENT USE ONLY
a. (X one)
X
(1) Existing document supplemented by the NOR may be used in manufacture.
(2) Revised document must be received before manufacturer may incorporate this change.
(3) Custodian of master document shall make above revision and furnish revised document.
b. ACTIVITY AUTHORIZED TO APPROVE CHANGE FOR GOVERNMENT
DSCC-VAC
c. TYPED NAME (First, Middle Initial, Last)
MONICA L. POELKING
d. TITLE
CHIEF, CUSTOM MICROELECTRONICS TEAM
15a. ACTIVITY ACCOMPLISHING REVISION
DSCC-VAC
DD Form 1695, APR 92
e. SIGNATURE
MONICA L. POELKING
b. REVISION COMPLETED (Signature)
JOSEPH A. KERBY
Previous editions are obsolete.
f. DATE SIGNED
(YYMMDD)
99-04-13
c. DATE SIGNED
(YYMMDD)
99-04-13
Document No: 5962-98624
Revision: A
NOR No: 5962-R059-99
Sheet: 2 of 8
APPENDIX A
APPENDIX A FORMS A PART OF SMD 5962-98624
10. SCOPE
10.1 Scope. This appendix establishes minimum requirements for microcircuit die to be supplied under the Qualified
Manufacturers List (QML) Program. QML microcircuit die meeting the requirements of MIL-PRF-38535 and the manufacturers
approved QM plan for use in monolithic microcircuits, multichip modules (MCMs), hybrids, electronic modules, or devices
using chip and wire designs in accordance with MIL-PRF-38534 are specified herein. Two product assurance classes
consisting of military high reliability (device class Q) and space application (device Class V) are reflected in the Part or
Identification Number (PIN). When available a choice of Radiation Hardiness Assurance (RHA) levels are reflected in the PIN.
10.2 PIN. The PIN shall be as shown in the following example:
5962
F
Federal
Stock class
designator
RHA
designator
(see 10.2.1)
98624
01
V
9
A
Device
type
(see 10.2.2)
Device
class
designator
(see 10.2.3)
Die
code
Die
Details
(see 10.2.4)
Drawing Number
10.2.1 RHA designator. Device classes Q and V RHA identified die shall meet the MIL-PRF-38535 specified RHA levels. A
dash (-) indicates a non-RHA die.
10.2.2 Device type(s). The device type(s) shall identify the circuit function as follows:
Device type
Generic number
01
ACS32
Circuit function
Radiation hardened, SOS, advanced CMOS,
quad 2-input OR gate.
10.2.3 Device class designator.
Device class
Q or V
Device requirements documentation
Certification and qualification to the die requirements of MIL-PRF-38535.
STANDARD
MICROCIRCUIT DRAWING
DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000
DSCC FORM 2234
APR 97
SIZE
5962-98624
A
REVISION LEVEL
A
SHEET
17
Document No: 5962-98624
Revision: A
NOR No: 5962-R059-99
Sheet: 3 of 8
APPENDIX A
APPENDIX A FORMS A PART OF SMD 5962-98624
10.2.4 Die Details. The die details designation shall be a unique letter which designates the die’s physical dimensions,
bonding pad location(s) and related electrical function(s), interface materials, and other assembly related information, for each
product and variant supplied to this appendix.
10.2.4.1 Die Physical dimensions.
Die Type
01
Figure number
A-1
10.2.4.2 Die Bonding pad locations and Electrical functions.
Die Type
01
Figure number
A-1
10.2.4.3 Interface Materials.
Die Type
01
Figure number
A-1
10.2.4.4 Assembly related information.
Die Type
01
Figure number
A-1
10.3 Absolute maximum ratings. See paragraph 1.3 within the body of this drawing for details.
10.4 Recommended operating conditions. See paragraph 1.4 within the body of this drawing for details.
20. APPLICABLE DOCUMENTS
20.1 Government specifications, standards, bulletin, and handbooks. Unless otherwise specified, the following
specifications, standards, bulletin, and handbook of the issue listed in that issue of the Department of Defense Index of
Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.
STANDARD
MICROCIRCUIT DRAWING
DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000
DSCC FORM 2234
APR 97
SIZE
5962-98624
A
REVISION LEVEL
A
SHEET
18
Document No: 5962-98624
Revision: A
NOR No: 5962-R059-99
Sheet: 4 of 8
APPENDIX A
APPENDIX A FORMS A PART OF SMD 5962-98624
SPECIFICATION
DEPARTMENT OF DEFENSE
MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.
STANDARDS
DEPARTMENT OF DEFENSE
MIL-STD-883 - Test Methods and Procedures for Microelectronics.
HANDBOOK
DEPARTMENT OF DEFENSE
MIL-HDBK-103 - List of Standardized Military Drawings (SMD’s).
(Copies of the specification, standards, bulletin, and handbook required by manufacturers in connection with specific
acquisition functions should be obtained from the contracting activity or as directed by the contracting activity).
20.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the
text of this drawing shall take precedence.
30. REQUIREMENTS
30.1 Item Requirements. The individual item requirements for device classes Q and V shall be in accordance with
MIL-PRF-38535 and as specified herein or as modified in the device manufacturer’s Quality Management (QM) plan. The
modification in the QM plan shall not effect the form, fit or function as described herein.
30.2 Design, construction and physical dimensions. The design, construction and physical dimensions shall be as
specified in MIL-PRF-38535 and the manufacturer’s QM plan, for device classes Q and V and herein.
30.2.1 Die Physical dimensions. The die physical dimensions shall be as specified in 10.2.4.1 and on figure A-1.
30.2.2 Die bonding pad locations and electrical functions. The die bonding pad locations and electrical functions shall be
as specified in 10.2.4.2 and on figure A-1.
30.2.3 Interface materials. The interface materials for the die shall be as specified in 10.2.4.3 and on figure A-1.
30.2.4 Assembly related information. The assembly related information shall be as specified in 10.2.4.4 and figure A-1.
30.2.5 Truth table. The truth table shall be as defined within paragraph 3.2.3 of the body of this document.
30.2.6 Radiation exposure circuit. The radiation exposure circuit shall be as defined within paragraph 3.2.6 of the body of
this document.
STANDARD
MICROCIRCUIT DRAWING
DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000
DSCC FORM 2234
APR 97
SIZE
5962-98624
A
REVISION LEVEL
A
SHEET
19
Document No: 5962-98624
Revision: A
NOR No: 5962-R059-99
Sheet: 5 of 8
APPENDIX A
APPENDIX A FORMS A PART OF SMD 5962-98624
30.3 Electrical performance characteristics and post- irradiation parameter limits. Unless otherwise specified herein, the
electrical performance characteristics and post-irradiation parameter limits are as specified in table I of the body of this
document.
30.4 Electrical test requirements. The wafer probe test requirements shall include functional and parametric testing
sufficient to make the packaged die capable of meeting the electrical performance requirements in table I.
30.5 Marking. As a minimum, each unique lot of die, loaded in single or multiple stack of carriers, for shipment to a
customer, shall be identified with the wafer lot number, the certification mark, the manufacturer’s identification and the PIN
listed in 10.2 herein. The certification mark shall be a “QML” or “Q” as required by MIL-PRF-38535.
30.6 Certification of compliance. For device classes Q and V, a certificate of compliance shall be required from a
QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 60.4 herein). The certificate of
compliance submitted to DSCC-VA prior to listing as an approved source of supply for this appendix shall affirm that the
manufacturer’s product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and the requirements herein.
30.7 Certificate of conformance. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535
shall be provided with each lot of microcircuit die delivered to this drawing.
40. QUALITY ASSURANCE PROVISIONS
40.1 Sampling and inspection. For device classes Q and V, die sampling and inspection procedures shall be in
accordance with MIL-PRF-38535 or as modified in the device manufacturer’s Quality Management (QM) plan. The
modifications in the QM plan shall not effect the form, fit or function as described herein.
40.2 Screening. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and as defined in the
manufacturer’s QM plan. As a minimum it shall consist of:
a) Wafer Lot acceptance for Class V product using the criteria defined within MIL-STD-883 TM 5007.
b) 100% wafer probe (see paragraph 30.4).
c) 100% internal visual inspection to the applicable class Q or V criteria defined within MIL-STD-883 TM2010
or the alternate procedures allowed within MIL-STD-883 TM5004.
STANDARD
MICROCIRCUIT DRAWING
DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000
DSCC FORM 2234
APR 97
SIZE
5962-98624
A
REVISION LEVEL
A
SHEET
20
Document No: 5962-98624
Revision: A
NOR No: 5962-R059-99
Sheet: 6 of 8
APPENDIX A
APPENDIX A FORMS A PART OF SMD 5962-98624
40.3 Conformance inspection.
40.3.1 Group E inspection. Group E inspection is required only for parts intended to be identified as radiation assured (see
30.5 herein). RHA levels for device classes Q and V shall be as specified in MIL-PRF-38535. End point electrical testing of
packaged die shall be as specified in table IIA herein. Group E tests and conditions are as specified within paragraphs
4.4.4.1, 4.4.4.1.1, 4.4.4.2, 4.4.4.3 and 4.4.4.4.
50. DIE CARRIER
50.1 Die carrier requirements. The requirements for the die carrier shall be in accordance with the manufacturer’s QM plan
or as specified in the purchase order by the acquiring activity. The die carrier shall provide adequate physical, mechanical
and electrostatic protection.
60. NOTES
60.1 Intended use. Microcircuit die conforming to this drawing are intended for use in microcircuits built in accordance with
MIL-PRF-38535 or MIL-PRF-38534 for government microcircuit applications (original equipment), design applications and
logistics purposes.
60.2 Comments. Comments on this appendix should be directed to DSCC-VA, Columbus, Ohio, 43216-5000 or telephone
(614)-692-0674.
60.3 Abbreviations, symbols and definitions. The abbreviations, symbols, and definitions used herein are defined with
MIL-PRF-38535 and MIL-HDBK-1331.
60.4 Sources of Supply for device classes Q and V. Sources of supply for device classes Q and V are listed in QML38535. The vendors listed within QML-38535 have submitted a certificate of compliance (see 30.6 herein) to DSCC-VA and
have agreed to this drawing.
STANDARD
MICROCIRCUIT DRAWING
DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000
DSCC FORM 2234
APR 97
SIZE
5962-98624
A
REVISION LEVEL
A
SHEET
21
Document No: 5962-98624
Revision: A
NOR No: 5962-R059-99
Sheet: 7 of 8
APPENDIX A
APPENDIX A FORMS A PART OF SMD 5962-98624
FIGURE A-1
o DIE PHYSICAL DIMENSIONS
Die Size:
Die Thickness:
2390 x 2390 microns.
21 +/-2 mils.
o DIE BONDING PAD LOCATIONS AND ELECTRICAL FUNCTIONS
The following metallization diagram supplies the locations and electrical functions of the bonding pads. The internal
metallization layout and alphanumeric information contained within this diagram may or may not represent the actual circuit
defined by this SMD.
NOTE: Pad numbers reflect terminal numbers when placed in Case Outlines C, X (see Figure 1).
STANDARD
MICROCIRCUIT DRAWING
DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000
DSCC FORM 2234
APR 97
SIZE
5962-98624
A
REVISION LEVEL
A
SHEET
22
Document No: 5962-98624
Revision: A
NOR No: 5962-R059-99
Sheet: 8 of 8
APPENDIX A
APPENDIX A FORMS A PART OF SMD 5962-98624
o INTERFACE MATERIALS
Metal 1:
Metal 2
(Top) :
AlSi
AlSi
7.0kA +/- 1.0kA
10.0kA +/- 1.0kA
Backside Metallization
None
Glassivation
Type:
Thickness
PSG
13.0kA +/ - 1.5kA
Substrate:
Silicon on Sapphire (SOS)
o ASSEMBLY RELATED INFORMATION
Substrate Potential:
Insulator.
Special assembly
instructions:
Bond pad #14 (VCC) first.
STANDARD
MICROCIRCUIT DRAWING
DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000
DSCC FORM 2234
APR 97
SIZE
5962-98624
A
REVISION LEVEL
A
SHEET
23
STANDARD MICROCIRCUIT DRAWING BULLETIN
DATE: 99-04-13
Approved sources of supply for SMD 5962-98624 are listed below for immediate acquisition information only and shall be
added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include
the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has
been submitted to and accepted by DSCC-VA. This bulletin is superseded by the next dated revision of MIL-HDBK-103 and
QML-38535.
Standard
microcircuit drawing
PIN
Vendor
CAGE
number
Vendor
similar
PIN 1/
5962F9862401V9A
34371
ACS32HMSR-03
1/ Caution. Do not use this number for item acquisition.
Items acquired to this number may not satisfy the
performance requirements of this drawing.
Vendor CAGE
number
34371
Vendor name
and address
Harris Semiconductor
P.O. Box 883
Melbourne, FL 32902-0883
The information contained herein is disseminated for convenience only and the
Government assumes no liability whatsoever for any inaccuracies in the
information bulletin.
REVISIONS
LTR
DESCRIPTION
DATE (YR-MO-DA)
APPROVED
REV
SHEET
REV
SHEET
15
16
REV STATUS
REV
OF SHEETS
SHEET
PMIC N/A
PREPARED BY
1
2
3
4
5
6
7
8
9
10
11
12
13
Charles F. Saffle, Jr.
DEFENSE SUPPLY CENTER COLUMBUS
STANDARD
MICROCIRCUIT
DRAWING
COLUMBUS, OHIO 43216
CHECKED BY
Charles F. Saffle, Jr.
APPROVED BY
THIS DRAWING IS AVAILABLE
FOR USE BY ALL
DEPARTMENTS
AND AGENCIES OF THE
DEPARTMENT OF DEFENSE
Monica L. Poelking
DRAWING APPROVAL DATE
MICROCIRCUIT, DIGITAL, RADIATION HARDENED,
ADVANCED CMOS, QUAD 2-INPUT OR GATE,
MONOLITHIC SILICON
98-11-11
AMSC N/A
REVISION LEVEL
SIZE
CAGE CODE
A
67268
SHEET
DSCC FORM 2233
APR 97
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
1 OF
5962-98624
16
5962-E409-98
14
1. SCOPE
1.1 Scope. This drawing documents two product assurance class levels consisting of high reliability (device classes Q and M)
and space application (device class V). A choice of case outlines and lead finishes are available and are reflected in the Part or
Identifying Number (PIN). When available, a choice of Radiation Hardness Assurance (RHA) levels are reflected in the PIN.
1.2 PIN. The PIN is as shown in the following example:
5962
*
*
*
Federal
stock class
designator
\
F
*
*
*
RHA
designator
(see 1.2.1)
98624
01
*
*
*
Device
type
(see 1.2.2)
V
*
*
*
Device
class
designator
(see 1.2.3)
/
X
*
*
*
Case
outline
(see 1.2.4)
C
*
*
*
Lead
finish
(see 1.2.5)
\/
Drawing number
1.2.1 RHA designator. Device classes Q and V RHA marked devices meet the MIL-PRF-38535 specified RHA levels and are
marked with the appropriate RHA designator. Device class M RHA marked devices meet the MIL-PRF-38535, appendix A
specified RHA levels and are marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device.
1.2.2 Device type(s). The device type(s) identify the circuit function as follows:
Device type
Generic number
Circuit function
ACS32
Radiation hardened, SOS, advanced CMOS,
quad 2-input OR gate
01
1.2.3 Device class designator. The device class designator is a single letter identifying the product assurance level as follows:
Device class
Device requirements documentation
M
Vendor self-certification to the requirements for MIL-STD-883 compliant, non-JAN
class level B microcircuits in accordance with MIL-PRF-38535, appendix A
Q or V
Certification and qualification to MIL-PRF-38535
1.2.4 Case outline(s). The case outline(s) are as designated in MIL-STD-1835 and as follows:
Outline letter
C
X
Descriptive designator
CDIP2-T14
CDFP3-F14
Terminals
14
14
Package style
Dual-in-line
Flat pack
1.2.5 Lead finish. The lead finish is as specified in MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535,
appendix A for device class M.
STANDARD
MICROCIRCUIT DRAWING
DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000
DSCC FORM 2234
APR 97
SIZE
5962-98624
A
REVISION LEVEL
SHEET
2
1.3 Absolute maximum ratings. 1/ 2/ 3/
Supply voltage range (VCC) ......................................................................................
DC input voltage range (VIN).....................................................................................
DC output voltage range (VOUT)................................................................................
DC input current, any one input (IIN).........................................................................
DC output current, any one output (IOUT) .................................................................
Storage temperature range (TSTG)............................................................................
Lead temperature (soldering, 10 seconds) ..............................................................
Thermal resistance, junction-to-case (θJC):
Case outline C ........................................................................................................
Case outline X ........................................................................................................
Thermal resistance, junction-to-ambient (θJA):
Case outline C ........................................................................................................
Case outline X ........................................................................................................
Junction temperature (TJ).........................................................................................
Maximum package power dissipation at TA = +125°C (PD): 4/
Case outline C ........................................................................................................
Case outline X ........................................................................................................
-0.5 V dc to +7.0 V dc
-0.5 V dc to VCC + 0.5 V dc
-0.5 V dc to VCC + 0.5 V dc
±10 mA
±50 mA
-65°C to +150°C
+265°C
24°C/W
29°C/W
73°C/W
114°C/W
+175°C
0.68 W
0.43 W
1.4 Recommended operating conditions. 2/ 3/
Supply voltage range (VCC).......................................................................................
Input voltage range (VIN) ...........................................................................................
Output voltage range (VOUT) .....................................................................................
Maximum low level input voltage (VIL).......................................................................
Minimum high level input voltage (VIH)......................................................................
Case operating temperature range (TC) ...................................................................
Maximum input rise and fall time at VCC = 4.5 V (tr, tf)..............................................
+4.5 V dc to +5.5 V dc
+0.0 V dc to VCC
+0.0 V dc to VCC
30% of VCC
70% of VCC
-55°C to +125°C
10 ns/V
1.5 Radiation features:
Total dose ...............................................................................................................
Single event phenomenon (SEP) effective
linear energy threshold (LET) no upsets (see 4.4.4.4) .........................................
Dose rate upset (20 ns pulse) .................................................................................
Latch-up....................................................................................................................
Dose rate survivability ..............................................................................................
1/
2/
3/
4/
5/
5
> 3 x 10 Rads (Si)
2
> 100 MeV/(cm /mg) 5/
Not tested
None 5/
Not tested
Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the
maximum levels may degrade performance and affect reliability.
Unless otherwise noted, all voltages are referenced to GND.
The limits for the parameters specified herein shall apply over the full specified VCC range and case temperature range of
-55°C to +125°C unless otherwise noted.
If device power exceeds package dissipation capability, provide heat sinking or derate linearly (the derating is based on θJA) at
the following rate:
Case outline C ........................................................................................................... 13.5 mW/°C
Case outline X ............................................................................................................ 8.6 mW/°C
Guaranteed by design or process but not tested.
STANDARD
MICROCIRCUIT DRAWING
DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000
DSCC FORM 2234
APR 97
SIZE
5962-98624
A
REVISION LEVEL
SHEET
3
2. APPLICABLE DOCUMENTS
2.1 Government specification, standards, and handbooks. The following specification, standards, and handbooks form a part of
this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those listed in the issue
of the Department of Defense Index of Specifications and Standards (DoDISS) and supplement thereto, cited in the solicitation.
SPECIFICATION
DEPARTMENT OF DEFENSE
MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.
STANDARDS
DEPARTMENT OF DEFENSE
MIL-STD-883 MIL-STD-973 MIL-STD-1835 -
Test Method Standard Microcircuits.
Configuration Management.
Interface Standard For Microcircuit Case Outlines.
HANDBOOKS
DEPARTMENT OF DEFENSE
MIL-HDBK-103 MIL-HDBK-780 -
List of Standard Microcircuit Drawings (SMD's).
Standard Microcircuit Drawings.
(Unless otherwise indicated, copies of the specification, standards, and handbooks are available from the Standardization
Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)
2.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of
this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific
exemption has been obtained.
3. REQUIREMENTS
3.1 Item requirements. The individual item requirements for device classes Q and V shall be in accordance with
MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The
modification in the QM plan shall not affect the form, fit, or function as described herein. The individual item requirements for device
class M shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein.
3.2 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in
MIL-PRF-38535 and herein for device classes Q and V or MIL-PRF-38535, appendix A and herein for device class M.
3.2.1 Case outline(s). The case outline(s) shall be in accordance with 1.2.4 herein.
3.2.2 Terminal connections. The terminal connections shall be as specified on figure 1.
3.2.3 Truth table. The truth table shall be as specified on figure 2.
3.2.4 Logic diagram. The logic diagram shall be as specified on figure 3.
3.2.5 Switching waveforms and test circuit. The switching waveforms and test circuit shall be as specified on figure 4.
3.2.6 Irradiation test connections. The irradiation test connections shall be as specified in table III.
STANDARD
MICROCIRCUIT DRAWING
DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000
DSCC FORM 2234
APR 97
SIZE
5962-98624
A
REVISION LEVEL
SHEET
4
3.3 Electrical performance characteristics and postirradiation parameter limits. Unless otherwise specified herein, the electrical
performance characteristics and postirradiation parameter limits are as specified in table I and shall apply over the full case operating
temperature range.
3.4 Electrical test requirements. The electrical test requirements shall be the subgroups specified in table IIA. The electrical tests
for each subgroup are defined in table I.
3.5 Marking. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked
as listed in MIL-HDBK-103. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the
manufacturer has the option of not marking the "5962-" on the device. For RHA product using this option, the RHA designator
shall still be marked. Marking for device classes Q and V shall be in accordance with MIL-PRF-38535. Marking for device class M
shall be in accordance with MIL-PRF-38535, appendix A.
3.5.1 Certification/compliance mark. The certification mark for device classes Q and V shall be a "QML" or "Q" as required in
MIL-PRF-38535. The compliance mark for device class M shall be a "C" as required in MIL-PRF-38535, appendix A.
3.6 Certificate of compliance. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed
manufacturer in order to supply to the requirements of this drawing (see 6.6.1 herein). For device class M, a certificate of
compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see
6.6.2 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply for this drawing
shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and herein or
for device class M, the requirements of MIL-PRF-38535, appendix A and herein.
3.7 Certificate of conformance. A certificate of conformance as required for device classes Q and V in
MIL-PRF-38535 or for device class M in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to
this drawing.
3.8 Notification of change for device class M. For device class M, notification to DSCC-VA of change of product (see 6.2 herein)
involving devices acquired to this drawing is required for any change as defined in MIL-STD-973.
3.9 Verification and review for device class M. For device class M, DSCC, DSCC's agent, and the acquiring activity retain the
option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available
onshore at the option of the reviewer.
3.10 Microcircuit group assignment for device class M. Device class M devices covered by this drawing shall be in microcircuit
group number 36 (see MIL-PRF-38535, appendix A).
STANDARD
MICROCIRCUIT DRAWING
DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000
DSCC FORM 2234
APR 97
SIZE
5962-98624
A
REVISION LEVEL
SHEET
5
TABLE I. Electrical performance characteristics.
Test
Symbol
Conditions 1/
-55°C ≤ TC ≤+125°C
unless otherwise specified
Device
Type
Group A
subgroups
VCC
Limits 2/
Min
High level output
voltage
VOH
For all inputs affecting
output under test
VIN = 3.15 V or 1.35 V
For all other inputs
VIN = VCC or GND
IOH = -50 µA
M, D, L, R, F 3/
For all inputs affecting
output under test
VIN = 3.85 V or 1.65 V
For all other inputs
VIN = VCC or GND
IOH = -50 µA
M, D, L, R, F 3/
Low level output
voltage
VOL
For all inputs affecting
output under test
VIN = 3.15 V or 1.35 V
For all other inputs
VIN = VCC or GND
IOL = 50 µA
M, D, L, R, F 3/
For all inputs affecting
output under test
VIN = 3.85 V or 1.65 V
For all other inputs
VIN = VCC or GND
IOL = 50 µA
M, D, L, R, F 3/
Input current high
IIH
For input under test,
VIN = 5.5 V
For all other inputs
All
4.5 V
All
All
5.5 V
All
All
4.5 V
All
All
5.5 V
All
All
5.5 V
VIN = VCC or GND
M, D, L, R, F 3/
Input current
low
IIL
For input under test,
VIN = GND
For all other inputs
All
All
5.5 V
VIN = VCC or GND
M, D, L, R, F 3/
All
1, 2, 3
4.40
1
4.40
1, 2, 3
5.40
1
5.40
Unit
Max
V
1, 2, 3
0.1
1
0.1
1, 2, 3
0.1
1
0.1
1
+0.5
2, 3
+3.0
1
+3.0
1
-0.5
2, 3
-3.0
1
-3.0
V
µA
µA
See footnotes at end of table.
STANDARD
MICROCIRCUIT DRAWING
DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000
DSCC FORM 2234
APR 97
SIZE
5962-98624
A
REVISION LEVEL
SHEET
6
TABLE I. Electrical performance characteristics - Continued.
Test
Symbol
Conditions 1/
-55°C ≤ TC ≤+125°C
unless otherwise specified
Device
Type
Group A
subgroups
VCC
Limits 2/
Min
Output current high
(Source)
IOH
4/
For all inputs affecting
output under test,
VIN = 4.5 V or 0.0 V
For all other inputs
VIN = VCC or GND
VOUT = 4.1 V
M, D, L, R, F 3/
Output current low
(Sink)
IOL
4/
For all inputs affecting
output under test,
VIN = 4.5 V or 0.0 V
For all other inputs
VIN = VCC or GND
VOUT = 0.4 V
M, D, L, R, F 3/
Quiescent supply
ICC
VIN = VCC or GND
All
4.5 V
All
All
4.5 V
All
All
5.5 V
current
M, D, L, R, F 3/
All
1
-12.0
2, 3
-8.0
1
-8.0
1
12.0
2, 3
8.0
1
8.0
Unit
Max
mA
mA
1
5.0
2, 3
200.0
1
200.0
µA
Input capacitance
CIN
VIH = 5.0 V, VIL = 0.0 V
f = 1 MHz, see 4.4.1c
All
5.0 V
4
10.0
pF
Power dissipation
All
5.0 V
4
11.0
pF
5, 6
14.0
CPD
VIH = 5.0 V, VIL = 0.0 V
capacitance
5/
f = 1 MHz, see 4.4.1c
Functional test
6/
VIH = 3.15 V, VIL = 1.35 V
See 4.4.1b
M, D, L, R, F 3/
Propagation delay
time, An or Bn
to Yn
tPHL
CL = 50 pF
RL = 500Ω
7/
See figure 4
4.5 V
All
All
M, D, L, R, F 3/
tPLH
CL = 50 pF
RL = 500Ω
7/
See figure 4
4.5 V
All
All
M, D, L, R, F 3/
Output transition
time
All
tTHL,
tTLH
CL = 50 pF
RL = 500Ω
7/
See figure 4
4.5 V
All
All
4.5 V
7, 8
L
H
7
L
H
9
2.0
12.0
10, 11
2.0
12.0
9
2.0
12.0
9
2.0
12.0
10, 11
2.0
12.0
9
2.0
12.0
9
5.0
10, 11
5.0
ns
ns
ns
See footnotes at end of table.
STANDARD
MICROCIRCUIT DRAWING
DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000
DSCC FORM 2234
APR 97
SIZE
5962-98624
A
REVISION LEVEL
SHEET
7
TABLE I. Electrical performance characteristics - Continued.
1/
Each input/output, as applicable, shall be tested at the specified temperature, for the specified limits, to the tests in table I
herein. Output terminals not designated shall be high level logic, low level logic, or open, except for the ICC test, the output
terminals shall be open. When performing the ICC test, the current meter shall be placed in the circuit such that all current flows
through the meter.
2/
For negative and positive voltage and current values, the sign designates the potential difference in reference to GND and the
direction of current flow respectively; and the absolute value of the magnitude, not the sign, is relative to the minimum and
maximum limits, as applicable, listed herein.
3/
Devices supplied to this drawing meet all levels M, D, L, R and F of irradiation. However, this device is only tested at the "F"
level. Pre and post irradiation values are identical unless otherwise specified in table I. When performing post irradiation
electrical measurements for any RHA level, TA = +25°C.
4/
Force/Measure functions may be interchanged.
5 / Power dissipation capacitance (CPD) determines both the power consumption (PD) and current consumption (IS). Where
PD = (CPD + CL) (VCC x VCC)f + (ICC x VCC)
IS = (CPD + CL) VCCf + ICC
f is the frequency of the input signal.
6/
The test vectors used to verify the truth table shall, at a minimum, test all functions of each input and output. All possible input
to output logic patterns per function shall be guaranteed, if not tested, to the truth table in figure 2 herein. For VOUT
measurements, L ≤ 0.5 V and H ≥ 4.0 V.
7/
AC limits at VCC = 5.5 V are equal to the limits at VCC = 4.5 V. For propagation delay tests, all paths must be tested.
STANDARD
MICROCIRCUIT DRAWING
DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000
DSCC FORM 2234
APR 97
SIZE
5962-98624
A
REVISION LEVEL
SHEET
8
Device type
All
Case outlines
C and X
Terminal number
Terminal symbol
1
A1
2
B1
3
Y1
4
A2
5
B2
6
Y2
7
GND
8
Y3
9
A3
10
B3
11
Y4
12
A4
13
B4
14
VCC
FIGURE 1. Terminal connections.
Inputs
Outputs
An
Bn
Yn
L
L
H
H
L
H
L
H
L
H
H
H
H = High voltage level
L = Low voltage level
FIGURE 2. Truth table.
STANDARD
MICROCIRCUIT DRAWING
DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000
DSCC FORM 2234
APR 97
SIZE
5962-98624
A
REVISION LEVEL
SHEET
9
FIGURE 3. Logic diagram.
STANDARD
MICROCIRCUIT DRAWING
DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000
DSCC FORM 2234
APR 97
SIZE
5962-98624
A
REVISION LEVEL
SHEET
10
NOTES:
1.
CL = 50 pF minimum or equivalent (includes test jig and probe capacitance).
2.
RL = 500Ω or equivalent.
3.
Input signal from pulse generator: VIN = 0.0 V to VCC; PRR ≤ 10 MHz; tr ≤ 3.0 ns; tf ≤ 3.0 ns; tr and tf shall be measured from
10% VCC to 90% VCC and from 90% VCC to 10% VCC, respectively.
FIGURE 4. Switching waveforms and test circuit.
STANDARD
MICROCIRCUIT DRAWING
DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000
DSCC FORM 2234
APR 97
SIZE
5962-98624
A
REVISION LEVEL
SHEET
11
4. QUALITY ASSURANCE PROVISIONS
4.1 Sampling and inspection. For device classes Q and V, sampling and inspection procedures shall be in accordance with MILPRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not
affect the form, fit, or function as described herein. For device class M, sampling and inspection procedures shall be in accordance
with MIL-PRF-38535, appendix A.
4.2 Screening. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and shall be conducted on
all devices prior to qualification and technology conformance inspection. For device class M, screening shall be in accordance with
method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection.
4.2.1 Additional criteria for device class M.
a.
Burn-in test, method 1015 of MIL-STD-883.
(1) Test condition A, B, C or D. The test circuit shall be maintained by the manufacturer under document revision level
control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify
the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test
method 1015.
(2) TA = +125°C, minimum.
b.
Interim and final electrical test parameters shall be as specified in table IIA herein.
4.2.2 Additional criteria for device classes Q and V.
a.
The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device
manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document
revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with
MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall
specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test
method 1015 of MIL-STD-883.
b.
Interim and final electrical test parameters shall be as specified in table IIA herein.
c.
Additional screening for device class V beyond the requirements of device class Q shall be as specified in
MIL-PRF-38535, appendix B or as modified in the device manufacturer’s quality management (QM) plan.
4.3 Qualification inspection for device classes Q and V. Qualification inspection for device classes Q and V shall be in
accordance with MIL-PRF-38535. Inspections to be performed shall be those specified in MIL-PRF-38535 and herein for groups
A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).
4.3.1 Electrostatic discharge sensitivity (ESDS) qualification inspection. ESDS testing shall be performed in accordance with
MIL-STD-883, method 3015. ESDS testing shall be measured only for initial qualification and after process or design changes
which may affect ESDS classification.
4.4 Conformance inspection. Technology conformance inspection for classes Q and V shall be in accordance with
MIL-PRF-38535 or as specified in QM plan including groups A, B, C, D, and E inspections and as specified herein except where
option 2 of MIL-PRF-38535 permits alternate in-line control testing. Quality conformance inspection for device class M shall be in
accordance with MIL-PRF-38535, appendix A and as specified herein. Inspections to be performed for device class M shall be
those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).
STANDARD
MICROCIRCUIT DRAWING
DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000
DSCC FORM 2234
APR 97
SIZE
5962-98624
A
REVISION LEVEL
SHEET
12
4.4.1 Group A inspection.
a.
Tests shall be as specified in table IIA herein.
b.
For device class M, subgroups 7 and 8 tests shall be sufficient to verify the truth table in figure 2 herein. For device
classes Q and V, subgroups 7 and 8 shall include verifying the functionality of the device.
c.
CIN and CPD shall be measured only for initial qualification and after process or design changes which may affect
capacitance. CIN shall be measured between the designated terminal and GND at a frequency of 1 MHz. For CIN and CPD,
tests shall be sufficient to validate the limits defined in table I herein.
TABLE IIA. Electrical test requirements.
Test requirements
Subgroups
(in accordance with
MIL-STD-883,
method 5005, table I)
Subgroups
(in accordance with
MIL-PRF-38535, table III)
Device
class M
Device
class Q
1, 7, 9
1, 7, 9
1, 7, 9
1, 2, 3, 7,
8, 9, 10, 11
1/
1, 2, 3, 7,
8, 9, 10, 11
1/
1, 2, 3, 7,
8, 9, 10, 11
2/ 3/
1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11
1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11
1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11
1, 2, 3, 7, 8, 9,
10, 11
1, 2, 3, 7, 8, 9,
10, 11
1, 2, 3, 7, 8, 9,
10, 11 3/
Group D end-point electrical
parameters (see 4.4)
1, 7, 9
1, 7, 9
1, 7, 9
Group E end-point electrical
parameters (see 4.4)
1, 7, 9
1, 7, 9
1, 7, 9
Interim electrical
parameters (see 4.2)
Final electrical
parameters (see 4.2)
Group A test
requirements (see 4.4)
Group C end-point electrical
parameters (see 4.4)
Device
class V
1/ PDA applies to subgroups 1 and 7.
2/ PDA applies to subgroups 1, 7, 9 and ∆’s.
3/ Delta limits as specified in table IIB herein shall be required where specified, and the delta
values shall be completed with reference to the zero hour electrical parameters (see table I).
TABLE IIB. Burn-in and operating life test, Delta parameters (+25°C).
Parameters 1/
Delta limits
ICC
±1 µA
IOL/IOH
±15%
1/ These parameters shall be recorded before and after the required burn-in
and life test to determine delta limits.
STANDARD
MICROCIRCUIT DRAWING
DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000
DSCC FORM 2234
APR 97
SIZE
5962-98624
A
REVISION LEVEL
SHEET
13
TABLE III. Irradiation test connections.
Open
Ground
VCC = 5 V ± 0.5 V
3, 6, 8, 11
7
1, 2, 4, 5, 9, 10,
12, 13, 14
NOTE: Each pin except VCC and GND will have a resistor of 47 kΩ ± 5% for irradiation testing.
4.4.2 Group C inspection. The group C inspection end-point electrical parameters shall be as specified in table IIA herein.
4.4.2.1 Additional criteria for device class M. Steady-state life test conditions, method 1005 of MIL-STD-883:
a.
Test condition A, B, C or D. The test circuit shall be maintained by the manufacturer under document revision level control
and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs,
outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MILSTD-883.
b.
TA = +125°C, minimum.
c.
Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.
4.4.2.2 Additional criteria for device classes Q and V. The steady-state life test duration, test condition and test temperature, or
approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The test
circuit shall be maintained under document revision level control by the device manufacturer's TRB in accordance with
MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the
inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MILSTD-883.
4.4.3 Group D inspection. The group D inspection end-point electrical parameters shall be as specified in table IIA herein.
4.4.4 Group E inspection. Group E inspection is required only for parts intended to be marked as radiation hardness assured
(see 3.5 herein).
a.
End-point electrical parameters shall be as specified in table IIA herein.
b.
For device classes Q and V, the devices or test vehicle shall be subjected to radiation hardness assured tests as specified
in MIL-PRF-38535 for the RHA level being tested. For device class M, the devices shall be subjected to radiation
hardness assured tests as specified in MIL-PRF-38535, appendix A for the RHA level being tested. All device classes
must meet the postirradiation end-point electrical parameter limits as defined in table I at
TA = +25°C ±5°C, after exposure, to the subgroups specified in table II herein.
c.
When specified in the purchase order or contract, a copy of the RHA delta limits shall be supplied.
4.4.4.1 Total dose irradiation testing. Total dose irradiation testing shall be performed in accordance with MIL-STD-883, test
method 1019 and as specified herein.
4.4.4.1.1 Accelerated aging testing. Accelerated aging testing shall be performed on all devices requiring a RHA level greater
than 5k rads (Si). The post-anneal end-point electrical parameter limits shall be as specified in table I herein and shall be the preirradiation end-point electrical parameter limits at 25°C ±5°C. Testing shall be performed at initial qualification and after any design
or process changes which may affect the RHA response of the device.
4.4.4.2 Dose rate induced latchup testing. Dose rate induced latchup testing shall be performed in accordance with test method
1020 of MIL-STD-883 and as specified herein (see 1.5 herein). Tests shall be performed on devices, SEC, or approved test
structures at technology qualification and after any design or process changes which may effect the RHA capability of the process.
STANDARD
MICROCIRCUIT DRAWING
DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000
DSCC FORM 2234
APR 97
SIZE
5962-98624
A
REVISION LEVEL
SHEET
14
4.4.4.3 Dose rate upset testing. Dose rate upset testing shall be performed in accordance with test method 1021 of
MIL-STD-883 and herein (see 1.5 herein).
a.
Transient dose rate upset testing shall be performed at initial qualification and after any design or process changes which
may affect the RHA performance of the devices. Test 10 devices with 0 defects unless otherwise specified.
b.
Transient dose rate upset testing for class Q and V devices shall be performed as specified by a TRB approved radiation
hardness assurance plan and MIL-PRF-38535.
4.4.4.4 Single event phenomena (SEP). SEP testing shall be required on class V devices (see 1.5 herein). SEP testing shall be
performed on a technology process on the Standard Evaluation Circuit (SEC) or alternate SEP test vehicle as approved by the
qualifying activity at initial qualification and after any design or process changes which may affect the upset or latchup
characteristics. The recommended test conditions for SEP are as follows:
a.
The ion beam angle of incidence shall be between normal to the die surface and 60° to the normal, inclusive (i.e. 0° ≤
angle ≤ 60°). No shadowing of the ion beam due to fixturing or package related effects is allowed.
b.
The fluence shall be ≥ 100 errors or ≥ 10 ions/cm .
c.
The flux shall be between 10 and 10 ions/cm /s. The cross-section shall be verified to be flux independent by measuring
the cross-section at two flux rates which differ by at least an order of magnitude.
d.
The particle range shall be ≥ 20 micron in silicon.
e.
The test temperature shall be +25°C and the maximum rated operating temperature ±10°C.
f.
Bias conditions shall be defined by the manufacturer for the latchup measurements.
g.
Test four devices with zero failures.
6
2
5
2
2
4.5 Methods of inspection. Methods of inspection shall be specified as follows:
4.5.1 Voltage and current. Unless otherwise specified, all voltages given are referenced to the microcircuit GND terminal.
Currents given are conventional current and positive when flowing into the referenced terminal.
5. PACKAGING
5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-PRF-38535 for device classes Q
and V or MIL-PRF-38535, appendix A for device class M.
6. NOTES
6.1 Intended use. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original
equipment), design applications, and logistics purposes.
6.1.1 Replaceability. Microcircuits covered by this drawing will replace the same generic device covered by a contractor prepared
specification or drawing.
6.1.2 Substitutability. Device class Q devices will replace device class M devices.
6.2 Configuration control of SMD's. All proposed changes to existing SMD's will be coordinated with the users of record for the
individual documents. This coordination will be accomplished in accordance with MIL-STD-973 using DD Form 1692, Engineering
Change Proposal.
6.3 Record of users. Military and industrial users should inform Defense Supply Center Columbus when a system application
requires configuration control and which SMD's are applicable to that system. DSCC will maintain a record of users and this list will
be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC
5962) should contact DSCC-VA, telephone (614) 692-0525.
STANDARD
MICROCIRCUIT DRAWING
DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000
DSCC FORM 2234
APR 97
SIZE
5962-98624
A
REVISION LEVEL
SHEET
15
6.4 Comments. Comments on this drawing should be directed to DSCC-VA , Columbus, Ohio 43216-5000, or telephone (614)
692-0674.
6.5 Abbreviations, symbols, and definitions. The abbreviations, symbols, and definitions used herein are defined in
MIL-PRF-38535 and MIL-HDBK-1331.
6.6 Sources of supply.
6.6.1 Sources of supply for device classes Q and V. Sources of supply for device classes Q and V are listed in QML-38535. The
vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DSCC-VA and have agreed to this
drawing.
6.6.2 Approved sources of supply for device class M. Approved sources of supply for class M are listed in MIL-HDBK-103. The
vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to
and accepted by DSCC-VA.
6.7 Additional information. When applicable, a copy of the following additional data shall be maintained and available from the
device manufacturer:
a. RHA upset levels.
b. Test conditions (SEP).
c. Number of upsets (SEP).
d. Number of transients (SEP).
e. Occurrence of latchup (SEP).
STANDARD
MICROCIRCUIT DRAWING
DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000
DSCC FORM 2234
APR 97
SIZE
5962-98624
A
REVISION LEVEL
SHEET
16
STANDARD MICROCIRCUIT DRAWING BULLETIN
DATE: 98-11-11
Approved sources of supply for SMD 5962-98624 are listed below for immediate acquisition information only and shall
be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised
to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of
compliance has been submitted to and accepted by DSCC-VA. This bulletin is superseded by the next dated revision of
MIL-HDBK-103 and QML-38535.
Standard
microcircuit drawing
PIN 1/
Vendor
CAGE
number
Vendor
similar
PIN 2/
5962F9862401VCC
34371
ACS32DMSR-03
5962F9862401VXC
34371
ACS32KMSR-03
1/
The lead finish shown for each PIN representing
a hermetic package is the most readily available
from the manufacturer listed for that part. If the
desired lead finish is not listed contact the vendor
to determine its availability.
2/
Caution. Do not use this number for item
acquisition. Items acquired to this number may not
satisfy the performance requirements of this drawing.
Vendor CAGE
number
34371
Vendor name
and address
Harris Semiconductor
P.O. Box 883
Melbourne, FL 32902-0883
The information contained herein is disseminated for convenience only and the
Government assumes no liability whatsoever for any inaccuracies in the
information bulletin.