AN2833 Application note Dual step-down controller with auxiliary voltages for industrial system power Introduction The PM6681A is a dual step-down controller with adjustable output voltages that can be used in industrial power systems and this demonstration kit represents a typical application circuit. The PM6681A demonstration kit allows testing all the device's functions and provides two switching sections, with (typically) 3.3 V (OUT1) and 1.8 V (OUT2) outputs from 5.5 V to 36 V input voltage. The typical operating switching frequency of the two available sections is 200 kHz/300 kHz, respectively. Each switching section delivers more than 2.5 A output current. An internal linear regulator provides a fixed 5 V output voltage. Another internal linear regulator provides an adjustable output voltage (default 2.5 V). Both linear regulators can deliver up to 100 mA peak current. Figure 1. PM6681A demonstration kit AM01436v1 February 2009 Rev 2 1/32 www.st.com Contents AN2833 Contents 1 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 Demonstration kit schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4 Component list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5 Demonstration kit layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 6 I/O interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 7 Recommended equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 8 Quick start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 9 Jumper settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 10 Feedback output connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 11 Test setup and performance summary . . . . . . . . . . . . . . . . . . . . . . . . . 18 11.1 Test setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 11.2 Power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 11.3 Soft-start and shutdown waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 11.4 3.3 V and 1.8 V output efficiency vs. load current . . . . . . . . . . . . . . . . . . 22 11.5 Power consumption analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 11.6 Switching frequency vs. load current . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 11.7 Linear regulator output voltages vs. output current . . . . . . . . . . . . . . . . . 26 11.8 Load transient response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 12 Representative waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 13 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2/32 AN2833 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. PM6681A demonstration kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Demonstration kit schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 PM6681A demonstration board layout - top layer (PGND plane and component side) . . . 10 PM6681A demonstration board layout - inner layer 1 (SGND layer and VIN plane) . . . . . 10 PM6681A demonstration board layout - inner layer 2 (SGND layer and signals). . . . . . . . 11 PM6681A demonstration board layout - bottom layer (PM6681A and component side) . . 11 Setup connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 REF, LDO5 and LDO power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Section 1 soft-start waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Section 2 soft-start waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Section 1 shutdown waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Section 2 shutdown waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3 V SMPS efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.8 V SMPS efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Input current vs. input voltage in PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Input current vs. input voltage in skip mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Input current vs. input voltage in non-audible skip mode . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Device current consumption vs. input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Device current consumption vs. input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3 V output switching frequency vs. load current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.8 V output switching frequency vs. load current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 LDO5 output vs. load current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 ADJ_LDO load regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 SMPS 1.5 V load transient response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 SMPS 1.05 V load transient response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 SMPS pulse-skip mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 SMPS non-audible skip mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 SMPS PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3/32 Main features 1 4/32 AN2833 Main features ● 5.5 V to 36 V input voltage range ● Adjustable output voltages ● 0.9 - 3.3 V adjustable LDO delivers 100 mA peak current ● 5 V LDO delivers 100 mA peak current ● 1.237 V ±1% reference voltage available ● Lossless current sensing using low-side MOSFET RDS(ON) ● Negative current limit ● Soft-start internally fixed at 2 ms ● Soft output discharge ● Latched UVP ● Non-latched OVP ● Selectable pulse-skipping at light loads ● Selectable minimum frequency (33 kHz) in pulse-skip mode ● 4 mW maximum quiescent power ● Independent power-good signals ● Output voltage ripple compensation AN2833 2 Applications Applications ● Embedded computer systems ● FPGA system power ● Industrial applications at 24 V ● High-performance and high-density DC/DC modules 5/32 Demonstration kit schematic 3 AN2833 Demonstration kit schematic Figure 2. Demonstration kit schematic AM01437v1 6/32 AN2833 Component list 4 Component list Table 1. Bill of material Qty Component Description Package Part number MFR Value Taiyo-Yuden 10 µF - 50 V 3 C1:C3 Ceramic capacitor 1812 UMK325BJ106KM-T 1 C4 Ceramic capacitor 1812 NM 2 C5, C6 Ceramic capacitor 0805 100 nF – 50 V 1 C19 Ceramic capacitor 0805 100 nF – 50 V 1 C7 POSCAP capacitor 7343 NM 2 C9, C10 Ceramic capacitor 0805 NM 1 C11 POSCAP capacitor 7343 NM Sanyo 1 C8 POSCAP capacitor 7343 6TPE220M Sanyo 220 µF – 25 mR – 6 V 1 C12 POSCAP capacitor 7343 4TPE150MI Sanyo 150 µF – 18 mR – 4 V 2 C13, C14 Ceramic capacitor 0603 10 nF – 50 V 2 C15, C16 Ceramic capacitor 0603 1.5 nF – 50 V 2 C17, C18 Ceramic Capacitor 0603 47 pF – 50 V 1 C20 Ceramic capacitor 0805 1 µF – 10 V 1 C21 Tantalum capacitor 3216 4.7 µF – 16 V 1 C22 Ceramic capacitor 0805 220 nF – 10 V 1 C23 Ceramic capacitor 0805 10 pF 1 CIN Electrolytic capacitor D = 10 mm 1 CREF Ceramic capacitor 0805 100 nF – 50 V 1 C26 Tantalum capacitor 6032 4.7 µF – 35 V 10 µF - 50 Sanyo NM 7/32 Component list Table 1. AN2833 Bill of material (continued) Qty Component Description Package Part number MFR Value 1 C24, C25 Tantalum capacitor 0805 10 µF – 6.3 V 1 C27 Tantalum capacitor 0805 10 µF – 6.3 V 1 C28 Tantalum capacitor 3216 4.7 µF – 16 V 1 D1 Dual Schottky diode SOT23 BAS70 STMicroelectronics 2 D2, D3 Diode 1 A 40 V DO216AA STPS1L40M STMicroelectronics 1 IC1 PM6681A device QFN-32 PM6681A STMicroelectronics 1 L1 Inductor 10 mm x 10 mm TPC 7440650047 Wurth 4.7 µH - 4.2 A 1 L2 Inductor 10 mm x 10 mm TPC 7440650082 Wurth 8.2 µH 2.8 A 4 M1:M4 MOSFET control FET SO-8 STS12NH3LL 1 R3 Resistor 0805 22 kΩ - 1% 1 R4 Resistor 0805 36 kΩ - 1% 1 R5 Resistor 0805 3.3 kΩ - 1% 1 R6 Resistor 0805 3 kΩ - 1% 2 R7, R8 Resistor 0805 680 Ω - 1% 1 R9 Resistor 0805 47 Ω - 1% 2 R10, R11 Resistor 0805 10 Ω – 1% 4 R12:R15 Resistor 0805 100 kΩ – 1% 1 R16 Resistor 0805 150 kΩ – 1% 1 R17 Resistor 0805 560 kΩ – 1% 2 R18, R19 Resistor 0805 4 R20, R21, R22, R23 Resistor 0805 0 Ω – 1% 1 R24 Resistor 0805 1.1 kΩ – 1% 1 R25 Resistor 0805 820 Ω – 1% 1 R26 Resistor 1206 3.9 Ω – 1% 1 R27 Resistor 0805 10 kΩ – 1% 1 R29 Resistor 0805 11 kΩ – 1% 1 R28 Resistor 0805 6.8 kΩ – 1% 1 R30 Resistor 0805 1.8 kΩ – 1% 8/32 NM AN2833 Table 1. Component list Bill of material (continued) Qty Component Description Package Part number MFR Value 1 R31 Resistor 0603 8.2 kΩ – 1% 1 R32 Resistor 0603 15 kΩ – 1% 1 RLD5V, RLD3V Resistor 0805 NM 9/32 Demonstration kit layout 5 AN2833 Demonstration kit layout Figure 3. PM6681A demonstration board layout - top layer (PGND plane and component side) AM01438v1 Figure 4. PM6681A demonstration board layout - inner layer 1 (SGND layer and VIN plane) AM01439v1 10/32 AN2833 Demonstration kit layout Figure 5. PM6681A demonstration board layout - inner layer 2 (SGND layer and signals) AM01440v1 Figure 6. PM6681A demonstration board layout - bottom layer (PM6681A and component side) AM01441v1 11/32 I/O interface 6 AN2833 I/O interface The demonstration board has the following test points given in Table 2. Table 2. 12/32 Test points of the demonstration board Test point Description VIN+ Input voltage VIN- Input voltage ground LDO5 5 V linear regulator output LDO_ADJ Adjustable linear regulator output EXT5V 5 V external input OUT1+ OUT1 switching section output OUT1- OUT1 switching section output ground PGOOD1 OUT1 switching section power-good OUT2+ OUT2 switching section output OUT2+ OUT2 switching section output ground PGOOD2 OUT2 switching section power-good J10 Junction pin between PGND and SGND planes AN2833 7 Recommended equipment Recommended equipment ● 5.5 V to 36 V power supply, notebook battery or AC adapter ● Active loads ● Digital multimeters ● 500 MHz four-trace oscilloscope 13/32 Quick start 8 14/32 AN2833 Quick start 1. Connect VIN+ and VIN- test points of the demonstration board to an external power supply 2. Ensure that all switches of DIP-switch "S2" are "OFF". In this condition all outputs are disabled (shutdown mode) 3. Turn "S21" on (SHDN pin high). The LDO5 and LDO_ADJ outputs are turned on (standby mode) 4. Turn "S22" on (EN1 pin high). The 1.5 V switching controller brings its output in regulation. PGood1 pin goes high after the soft-start 5. Turn "S23" on (EN2 pin high). The 1.05 V switching controller brings its output in regulation. PGood2 pin goes high after the soft-start 6. In order to load the switching outputs, loads must be connected between the "+" and the "-" output test points 7. In order to load the LDO5 linear output, loads must be connected between J10 and LDO5 or resistor RLD5V can be mounted on the demonstration board 8. In order to load the LDO_ADJ linear output, loads must be connected between J10 and LDO_ADJ or the alternative resistor R33 can be mounted on the demonstration board AN2833 9 Jumper settings Jumper settings Different working conditions can be selected by using the jumpers. Note: Please note that the jumpers S1, S12 and S13 are already soldered on the demonstration board and it is not necessary to change them. Refer to the schematic (Figure 2) to check their correct connections. ● External bypass connections for the linear regulator LDO5(V5SW) Table 3. Jumper S11 (connect V5SW pin to S11) Position OUT5V SGND EXT5V ● LDO5 working conditions When the main ouput voltage is greater than the boostrap-switchover threshold, an internal 3 Ω (max) P-channel MOSFET switch connects the V5SW pin to the LDO5 pin, shutting down the LDO5 internal linear regulator. If not used, it must be tied to ground. The internal linear regulator LDO5 is always on. In this case LDO5 supplies all gate drivers and the internal circuitry. It can provide an output peak current of 100 mA. The internal linear regulator LDO5 remains off if an alternative 5 V external voltage is applied to the EXT5V test point. An internal 3 Ω (max) P-channel MOSFET switch connects the V5SW pin to the LDO5 output. The gate drivers and internal circuitry are supplied by the same 5 V external voltage applied. SMPS frequency selection (FSEL) Table 4. Jumper S3 (connect FSEL pin to S3) Position SMPS OUT1 SMPS OUT2 200 kHz 325 kHz 290 kHz 425 kHz 390 kHz 590 kHz SGND VREF LDO5 15/32 Jumper settings ● AN2833 SMPS-mode selection (skip) Table 5. Jumper S10 (connect skip pin to S10) Position GND Switching operating mode If the skip pin is tied to ground, a pulse-skip mode takes place at light loads. A zero-crossing comparator prevents the inductor current from going negative. VREF If the skip pin is tied to the VREF pin, the pulse-skip mode is enabled with a minimum switching frequency of about 25 kHz (ultrasonic mode). LDO5 If the skip pin is tied to 5 V, the fixed PWM mode is enabled. The switching output is in a position to sink and source current from the load. 16/32 AN2833 10 Feedback output connections Feedback output connections ● Loop compensation network for very low output voltage ripple. Table 6. Jumper S4, S5 Position Output ripple compensation Short Virtual ESR output ripple is generated by using a compensation network connected between the output and the PHASE pin of the switching section. Table 7. Jumper S8, S9 Position Feedback connection Controller feedback signal connected to the compensation network ● Loop compensation network for high output voltage ripple Table 8. Jumper S4, S5 Position Output ripple compensation Open ESR output ripple is used. Table 9. Position Jumper S8, S9 Feedback connection Controller feedback signal connected directly to the output capacitor 17/32 Test setup and performance summary AN2833 11 Test setup and performance summary 11.1 Test setup The PM6681A demonstration board has the following input/output connections: ● 24 V input through J5 - J2 (VIN+ and VIN-) ● 3.3 V SMPS output through J4 - J13 (OUT1+ and OUT1-) ● 1.8 V SMPS output through J1 - J12 (OUT2+ and OUT2-) ● 2.5 V linear regulator output through LDO_ADJ - J10 ● 5 V linear regulator output through LDO5 - J3 (LDO5) A power supply capable of supplying at least 6 A should be connected to VIN+, VIN- and two active loads should be connected respectively to OUT1+, OUT1- and OUT2+, OUT2-. Figure 7. Setup connections Active load Active load 5 V @: 2.5 V @: 50 mA cont 100 mA pk 50 mA cont 100 mA pk Active load Active load 3.3 V @ 5 A 1.8 V @ 5 A DC supply 24 V AM01442v1 18/32 AN2833 11.2 Test setup and performance summary Power-up As shown in Figure 8 power-up starts when the input voltage is applied and the voltage on the SHDN pin is above the SHDN on threshold (1.5 V). First LDO5 goes up with a masking time of about 4 ms. If the LDO5 output is above the UVLO threshold at this time, the device enters standby mode and the adjustable internal linear regulator LDO is turned on. Figure 8. REF, LDO5 and LDO power-up AM01443v1 11.3 Soft-start and shutdown waveforms Figure 9, 10, 11 and 12 show respectively the soft-start and shutdown waveforms. The PM681A has an independent internal digital soft-start for each switching section. During the soft-start phase the internal current limit increases from 25% to 100% with steps of 25% to avoid that the inductor current rises abruptly. 19/32 Test setup and performance summary Figure 9. AN2833 Section 1 soft-start waveforms AM01444v1 Figure 10. Section 2 soft-start waveforms AM01445v1 Driving the EN1, EN2 pins below the EN off threshold (0.8 V), the switching outputs are connected to ground through an internal 12 Ω P-MOSFET and are discharged gradually, (discharge mode). When the output voltages reach 0.3 V, the low-side MOSFETs are turned on, quickly discharging them to ground. 20/32 AN2833 Test setup and performance summary Figure 11. Section 1 shutdown waveforms AM01446v1 Figure 12. Section 2 shutdown waveforms AM01447v1 21/32 Test setup and performance summary 11.4 AN2833 3.3 V and 1.8 V output efficiency vs. load current Figure 13 and 14 show the efficiency versus load current at 24 V of input voltage, in PWM mode, skip mode and non-audible skip mode. Figure 13. 3.3 V SMPS efficiency /546EFFICIENCYVSLOADCURRENT %FFICIENCY;= ,OADCURRENT;!= !-V Figure 14. 1.8 V SMPS efficiency /546EFFICIENCYVSLOADCURRENT %FFICIENCY;= ,OADCURRENT;!= 11.5 !-V Power consumption analysis To measure the device consumption in real working conditions, an external power supply of +5 V is connected to EXT5V. The two traces in the following figures show the differentiation in the two input currents. Once the internal linear regulator is turned on, the device consumption increases. 22/32 AN2833 Test setup and performance summary Figure 15 shows the input current consumption measured at VIN+ (includes ISHDN) and the input device current consumption measured by the VCC pin. Both switching sections are working in forced PWM mode. No load is applied on the outputs. Figure 15. Input current vs. input voltage in PWM mode 07-NOLOADBATTERYCURRENT VSINPUTVOLTAGE )NPUTCURRENT;M!= )INPUT )%846 )NPUTVOLTAGE;6= !-V Figure 16 shows the input current consumption measured at VIN+, with both switching sections working in pulse-skip mode. No load is applied on the outputs. Figure 16. Input current vs. input voltage in skip mode 3+)0NOLOADBATTERYCURRENT VSINPUTVOLTAGE )NPUTCURRENT;M!= )%846 )INPUT )NPUTVOLTAGE;6= !-V Figure 17 shows the input current consumption measured at VIN+, with both switching sections working in non-audible skip mode. No load is applied on the outputs. 23/32 Test setup and performance summary AN2833 Figure 17. Input current vs. input voltage in non-audible skip mode NONAUDIBLE3+)0NOLOADBATTERYCURRENT VSINPUTVOLTAGE )NPUTCURRENT;M!= )INPUT )%846 )NPUTVOLTAGE;6= !-V Figure 18 and 19 show the device current consumption measured in shutdown mode. In shutdown mode and in standby mode all outputs are off (SHDN pin low). In standby mode only the linear regulators output are on (V5SW = SGND; SHDN pin high; EN5, EN3 pins low). Figure 18. Device current consumption vs. input voltage 3HUTDOWNMODEINPUTBATTERYCURRENT VSINPUTVOLTAGE )NPUTCURRENT;U!= )NPUTVOLTAGE;6= 24/32 !-V AN2833 Test setup and performance summary Figure 19. Device current consumption vs. input voltage Standby mode input battery current vs input voltage 380 Input current [uA] 360 340 320 300 280 260 240 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 Input voltage [V] Switching frequency vs. load current Figure 20 and 21 show the switching frequency variation with the load current in PWM mode, skip mode and non-audible skip mode. 12 V is applied at VIN+ and VIN- test points. Figure 20. 3.3 V output switching frequency vs. load current OUT1=3.3 V switching frequency 250 SKIP @ 12 V SKIP @ 24 V 200 SKIP @ 32 V fsw [kHz] 11.6 AM01454v1 NO aud. SKIP @ 12 V 150 NO aud. SKIP @ 24 V NO aud. SKIP @ 32 V 100 PWM @ 12 V 50 PWM @ 24 V PWM @ 32 V 0 0.01 0.10 1.00 10.00 Load current [A] AM01455v1 25/32 Test setup and performance summary AN2833 Figure 21. 1.8 V output switching frequency vs. load current OUT2=1.8 V switching frequency 300 SKIP @ 12 V 250 SKIP @ 24 V fsw [kHz] 200 SKIP @ 32 V No aud. SKIP @ 12 V 150 No aud. SKIP @ 24 V No aud. SKIP @ 32 V 100 PWM @ 12 V 50 PWM @ 24 V PWM @ 32 V 0 0.01 0.10 1.00 10.00 Load current [A] 11.7 AM01456v1 Linear regulator output voltages vs. output current Figure 22 and 23 show the load regulation respectively for the internal linear regulators LDO5 and the adjustable linear regulator LDO_ADJ. Both switching sections are disabled. 12 V is applied at VIN+ and VIN- test points. Figure 22. LDO5 output vs. load current LDO5 vs. output current 4.9890 Linear output voltage [V] 4.9880 4.9870 4.9860 4.9850 4.9840 4.9830 4.9820 4.9810 4.9800 4.9790 0 10 20 30 40 50 60 Load current [mA] 26/32 70 80 90 100 AM01457v1 AN2833 Test setup and performance summary Figure 23. ADJ_LDO load regulation ADJ_LDO vs. output current 2.5670 LDO output voltage [V] 2.5660 2.5650 2.5640 2.5630 2.5620 2.5610 2.5600 2.5590 2.5580 2.5570 0 10 20 30 40 50 60 70 80 90 100 Load current [mA] AM01458v1 11.8 Load transient response Figure 24 and 25 show the load transient response from 1 A to 4 A for both switching outputs. In both cases the PM6681A works in forced PWM mode (the skip pin is high). Figure 24. SMPS 1.5 V load transient response OUT1 I_L Vphase AM01459v1 27/32 Test setup and performance summary AN2833 Figure 25. SMPS 1.05 V load transient response OUT2 I_L Vphase AM01460v1 28/32 AN2833 12 Representative waveforms Representative waveforms Figure 26, 27, and 28 show the relevant waveforms of a switching section in different working conditions: pulse-skip mode, non-audible skip mode, forced PWM mode. Figure 26. SMPS pulse-skip mode AM01600v1 Figure 27. SMPS non-audible skip mode AM01601v1 29/32 Representative waveforms AN2833 Figure 28. SMPS PWM mode AM01602v1 30/32 AN2833 13 Revision history Revision history Table 10. Document revision history Date Revision Changes 10-Feb-2009 1 Initial release 24-Feb-2009 2 Modified: Table 1 (value of component 31) 31/32 AN2833 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2009 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 32/32