AN2684 Application note STEVAL-IFP006V1: designing with VNI4140K quad high-side smart power solid-state relay ICs Introduction The STEVAL-IFP006V1 demonstration board has been developed to show the new VNI4140K device functionalities within industrial applications such as PLCs (programmable logic controllers) which drive lamps, valves, relays, and similar loads. This tool allows evaluating VNI4140K features, in particular all kinds of embedded selfprotections, power-handling capabilities, operation and diagnostic feedback, thermal behavior and conformity to inherent IEC standards. Figure 1. STEVAL-IFP006V1 A double-sided PCB allows obtaining the best trade-off between a routing solution and thermal management results. The main features of the demonstration board are: May 2009 ■ Four output channels (4 x 0.7 A) ■ Four input channels ■ Four feedback channels for diagnostic purposes ■ Bidirectional opto-isolated interface for MCU safe connection ■ TTL/CMOS compatible signals for MCU direct connection ■ LEDs to indicate output state ■ Compliance to IEC61000-4-4 and IEC61000-4-5 ■ Compatibility with existing STMicroelectronics tools (IBU communication board, CANIC10…) ■ 10.5 V to 36 V DC power supply voltage range Doc ID 14266 Rev 1 1/21 www.st.com Contents AN2684 Contents 1 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Safety precautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 VNI4140K quad high-side smart power solid-state relay IC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4 IFP006V1 demonstration board description . . . . . . . . . . . . . . . . . . . . . . 8 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4.2 IFP006V1 schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.3 IFP006V1 connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.4 IFP006V1 thermal management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.5 EMC immunity test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.5.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.5.2 Test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.5.3 Burst immunity test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.5.4 Surge test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Appendix A Bill of material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Appendix B PCB layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Appendix C References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2/21 Doc ID 14266 Rev 1 AN2684 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. STEVAL-IFP006V1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 IFP006V1 top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 IFP006V1 bottom view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 IFP006V1 schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 J1 connector pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 J5 connector pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 IFP006V1 PCB copper heatsink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Thermal map in steady state condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Thermal map in demagnetization condition (1 Hz repetitive cycling on 48 W 1.2 H load) . 11 Steady state thermal behavior 3D simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Repetitive demagnetization thermal behavior 3D simulation (1 Hz repetitive cycling on 48 W 1.2 H load) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Burst timing waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Surge standard timing waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 IFP006V1 component layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 IFP006V1 copper top layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 IFP006V1 copper bottom layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Doc ID 14266 Rev 1 3/21 Electrical characteristics 1 AN2684 Electrical characteristics The electrical characteristics of the VNI4140k demonstration board (STEVAL-IFP006V1) are given in Table 1. Table 1. STEVAL-IFP006V1 electrical characteristics Parameter Value Min Notes Typ Max Operating conditions Ambient operating temperature 85 °C If the VNI4140K junction temperature exceeds 180 °C, device shuts down Power supply Vcc supply voltage 10.5 V Vdd logic supply voltage 24 V 36 V 5V From eval communication board 250 µA All channels in OFF state Supply current on Vdd 2.4 mA 4.8 mA ON state with Vin = 5 V 1.7 A IC internally limited VCC = 24 V; RLOAD < 10 mΩ Output stage Output channel ON current limitation 0.7 A Maximum DC output current 1.4 A Dynamic load dV/dt(ON) turn-on voltage slope 0.7 V/µs IOUT = 0.5 A, resistive load dV/dt(off) turn-off voltage slope 1.5 V/µs IOUT = 0.5 A, resistive load Demagnetization protection Output voltage on inductive turn-off 4/21 VCC-41 VCC-45 VCC-50 Doc ID 14266 Rev 1 IOUT = 0.5 A; LLOAD >= 1 mH AN2684 2 Safety precautions Safety precautions The board must be used only by expert technicians. The copper areas around the VNI4140K device have a heat sink function, visible in the top layer layout view, refer to Figure 8. In case of short-circuit, current limiting or hard demagnetization, the STEVALIFP006V1 board, or part of it, might reach a very high temperature with consequent danger. No specific protections are implemented for reverse DC accidental connection. Remember that an electrolytic capacitor is connected to the supply bus, therefore a reverse continuous DC voltage applied to it may produce a dangerous explosion. Warning: ST assumes no responsibility for any consequences which may result from the improper use of this tool. Doc ID 14266 Rev 1 5/21 VNI4140K quad high-side smart power solid-state relay IC description 3 AN2684 VNI4140K quad high-side smart power solid-state relay IC description The VNI4140k is a monolithic 4-channel driver featuring a very low supply current. The IC, which uses STMicroelectronics VIPower technology, is intended for driving loads with one side connected to ground. Active channel current limitation, combined with thermal shutdown (independent for each channel) and automatic restart, protect the device against overload. The main features of the VNI4140K IC are: ● Output current: 0.7 A per channel ● Shorted load protections for each channel ● Junction overtemperature protection ● Case overtemperature protection for thermal independence of the channels ● Thermal case shutdown and restart not simultaneous for the various channels ● Protection against ground disconnection ● Current limitation ● Undervoltage shutdown ● Open drain diagnostic outputs ● 3.3 V CMOS/TTL compatible inputs ● Fast demagnetization of inductive loads ● Conforms to IEC 61131-2 Figure 2. Block diagram Active current limitation avoids that the system power supply drops in case of shorted load. In overload condition, the channel turns OFF and back ON automatically after the IC temperatures decrease below a threshold fixed by a temperature hysteresis so that junction 6/21 Doc ID 14266 Rev 1 AN2684 VNI4140K quad high-side smart power solid-state relay IC description temperature is controlled. If this condition makes the case temperature reach the case temperature limit (TCSD), overloaded channels (i.e. the ones for which junction temperature has exceeded the junction protection threshold, TjSD, and has not fallen below the junction protection reset threshold, TjR) are turned OFF. These channels restart, non-simultaneously, only when the case temperature decreases below the case protection reset threshold (TCR). Non-overloaded channels continue to operate normally. The open drain diagnostic outputs indicate related channel overtemperature conditions. Doc ID 14266 Rev 1 7/21 IFP006V1 demonstration board description 4 IFP006V1 demonstration board description 4.1 Overview AN2684 The VNI4140K demonstration board is composed of two main sections: ● Opto-isolated interface for input and status signals ● A four-channel self-protect power stage section with STMicroelectronics Transil™ diode protection The demonstration board consists of a double-sided FR4 printed circuit board with 35 µm copper plating. The PCB dimensions are 52 mm x 68 mm. The top and bottom views are shown below. 8/21 Figure 3. IFP006V1 top view Figure 4. IFP006V1 bottom view Doc ID 14266 Rev 1 VDD 10K 1206 RR4 STAT4 STAT3 STAT2 STAT1 IN4 IN3 IN2 IN1 STAT2 IN1 VDD IN2 IN3 IN4 STAT4 STAT3 1K 1206 RR3 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 11 10 6 7 6 3 4 1 2 11 14 13 16 15 TLP281-4 8 5 9 12 OPT2 7 10 TLP281-4 13 12 4 5 9 15 14 2 3 8 16 OPT1 STAT1 1 EVALCOMMBOARD J1 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 T8 10K 1206 RR2 T7 T9 T6 T10 T5 T11 T12 8 4 2 1 9 7 5 3 10 47K 1206 RR5 STAT4 STAT3 STAT2 STAT1 IN4 IN3 IN2 IN1 Vcc VDD IN1 IN3 STAT1 STAT3 A B TAB J4 CAN7 J5 1 3 5 7 9 11 13 2 4 6 8 10 12 14 GND DISC. TEST J3 OUT4_a OUT4_b OUT4_c OUT3_a OUT3_b OUT3_c OUT2_a OUT2_b OUT2_c OUT1_a OUT1_b OUT1_c Vcc DISC. TEST OR CURRENT PROBE VNI4140K Vcc GND Doc ID 14266 Rev 1 6 VNI4140K 15 14 13 18 17 16 21 20 19 24 23 22 T2 T1 1 2 3 4 1 2 LED LED LED M.4VITEB M1 OUT1 OUT2 OUT3 OUT4 M.2VITEB M2 4.7nF 4.7nF +24Vdc GND C8 C7 10K 1206 RR1 LED DL4 DL3 DL2 DL1 T4 J2 SM15T39AC D1 T3 OPEN FOR OVL TEST 10nF LV 1206 C3 10nF LV 1206 C2 10nF LV 1206 47uF 100nF 1206 IC1 C6 + C5 C1 IN2 IN4 STAT2 STAT4 Figure 5. A B A B 4.2 C4 10nF LV 1206 AN2684 IFP006V1 demonstration board description IFP006V1 schematic IFP006V1 schematic 9/21 IFP006V1 demonstration board description 4.3 AN2684 IFP006V1 connectors The demonstration board is equipped with input and output connectors. Specifically, there are two input header connectors (J5 and J1), one 4-channel output connector (M1), and a supply voltage connector (M2). Both input connectors, J5 and J1, provide the same bidirectional signals guaranteeing the maximum compatibility with existing STMicroelectronics tools such as the industrial communication board (see AN2451) and similar products. 10/21 Figure 6. J1 connector pinout Figure 7. J5 connector pinout Table 2. J1 and J5 pin description J1 pin number J5 pin number Signal Type 11 1 Vdd 5/3.3 V supply voltage 23 2 GND Signal ground 9 3 IN1 Input channel 1 13 4 IN2 Input channel 2 15 5 IN3 Input channel 3 17 6 IN4 Input channel 4 6 7 STAT1 Status channel 1 25 8 STAT2 Status channel 2 21 9 STAT3 Status channel 3 19 10 STAT4 Status channel 4 Doc ID 14266 Rev 1 AN2684 4.4 IFP006V1 demonstration board description IFP006V1 thermal management The IFP006V1 PCB has two heatsinks: approximately 1 sq. cm on the top layer and 3 sq. cm on the bottom layer, thermally interconnected through 9 vias, as shown in Figure 8. In a steady state condition low RDS(on) ensures a very low dissipation but in current limitation and in fast demagnetization, the power dissipation is much higher, requiring a low thermal resistance through the device exposed tab, soldering space, top layer, vias and bottom layer path. A 35 µm copper (10 oz/sq. ft) thickness and 0.3 mm diameter for the vias are used according to EIA/JESD51-5. Figure 8. IFP006V1 PCB copper heatsink Figure 9 and 11 show the IFP006V1 temperature map with all channels permanently switched ON, 48 Ω loads, 24 V supply voltage and ambient temperature of 25 °C. The IC temperature increase is only about a few degrees. Figure 10 and 12 show a similar map when the IC is cycling at 1 Hz, 50% duty cycle, 48 Ω 1.2 H loads, 24 V supply voltage and ambient temperature of 25 °C. Figure 9. Thermal map in steady state condition Figure 10. Thermal map in demagnetization condition (1 Hz repetitive cycling on 48 Ω 1.2 H load) AM01851v1 Doc ID 14266 Rev 1 AM01852v1 11/21 IFP006V1 demonstration board description Figure 11. Steady state thermal behavior 3D simulation AN2684 Figure 12. Repetitive demagnetization thermal behavior 3D simulation (1 Hz repetitive cycling on 48 Ω 1.2 H load) AM01853v1 AM01854v1 In particular Figure 11 and 12 show 3D thermal modelization of the device. 4.5 EMC immunity test 4.5.1 Description IFP006V1 has been tested according to EMC immunity standards IEC61000-4-4 (fast transient burst) and IEC61000-4-5 (high energy surge). A fast transient burst test has been performed all channels. Each channel under test is cycling ON and OFF at 1 Hz, duty cycle 50%, on four 48 Ω load resistors at 24 Vdc supply voltage. A burst signal was applied using an ultra-compact simulator with an internal capacitive coupling clamp tool. 4.5.2 12/21 Test conditions ● Ambient temperature: 25.6 °C ● Ambient humidity: 46% ● Main voltage power supply: 24 Vdc ● DC insulated voltage: 5 Vdc ● Loads: 4 x 48 Ω power resistor Doc ID 14266 Rev 1 AN2684 4.5.3 IFP006V1 demonstration board description Burst immunity test Table 3 gives the burst setup configuration adopted to perform this test. Table 3. Burst setup configuration Test level Condition Pulse time rt 5 ns ± 30% Pulse duration td 50 ns ± 30% Source impedance Zq = 50 Ω ± 20% Polarity Positive / negative Burst duration (td) 15 ms ± 20% Burst frequency (f) 5 kHz Burst period (tr) 300 ms ± 20% Duration time (T) 5 min Figure 13 below shows the standard timing waveform applied during the burst test. Figure 13. Burst timing waveform Table 4 shows the results of an inherent burst test. Normal performance has been observed when applying four different disturbance levels on the output ports and Vcc main voltage power supply. Doc ID 14266 Rev 1 13/21 IFP006V1 demonstration board description Table 4. AN2684 Burst test results Burst standard test routines Level Voltage (kV) Acceptance criteria (1) IEC 61000-4-4 Level 1 0.5 A IEC 61000-4-4 Level 2 1 A IEC 61000-4-4 Level 3 2 A IEC 61000-4-4 Level 4 4 A 1. Classification of the test (Criteria A): normal performance (Criteria B): temporary degradation or loss of function or performance with automatic return to normal operation (Criteria C): temporary degradation or loss of function with external intervention to recover normal operation (Criteria D): degradation or loss of function, need replacement of damaged components to recover normal operation. 4.5.4 Surge test A high energy surge test was performed in differential mode. A high surge signal was injected on the DUT (device under test) through a 42 Ω decoupling resistor. The test consisted of three positive and three negative discharges with a repetition rate of 1 discharge per minute. Figure 14 shows the standard timing waveform applied on the DUT. Figure 14. Surge standard timing waveform Table 5 below shows normal performance of the device. 14/21 Doc ID 14266 Rev 1 AN2684 IFP006V1 demonstration board description Table 5. Surge test results Surge standard test routines Level Voltage (V) Acceptance criteria (1) IEC 61000-4-5 Level 1 500 A IEC 61000-4-5 Level 2 1000 A IEC 61000-4-5 Level 3 2000 A 1. Classification of the test (Criteria A): normal performance (Criteria B): temporary degradation or loss of function or performance with automatic return to normal operation (Criteria C): temporary degradation or loss of function with external intervention to recover normal operation (Criteria D): degradation or loss of function, need replacement of damaged components to recover normal operation. Doc ID 14266 Rev 1 15/21 Bill of material AN2684 Appendix A Bill of material Table 6. 16/21 IFP006V1 demonstration board bill of material Designator Part type Description RR1 10 kΩ x 4 SMD resistor pack 1206 format RR2 10 kΩ x 4 SMD resistor pack 1206 format RR3 1 kΩ x 4 SMD resistor pack 1206 format RR4 10 kΩ x 4 SMD resistor pack 1206 format RR5 47 kΩ x 4 SMD resistor pack 1206 format C1 10 nF LV SMD capacitor 1206 format C2 10 nF LV SMD capacitor 1206 format C3 10 nF LV SMD capacitor 1206 format C4 10 nF LV SMD capacitor 1206 format C5 100 nF SMD capacitor 1206 format C6 47 µF 50 V SMD electrolytic capacitor C7 4.7 nF SMD capacitor 1206 format C8 4.7 nF SMD capacitor 1206 format D1 SM15T39AC Transil™ diode DL1 LED diode SMD LED diode 0805 format DL2 LED diode SMD LED diode 0805 format DL3 LED diode SMD LED diode 0805 format DL4 LED diode SMD LED diode 0805 format OPT1 PC3Q66Q 4-channel OPTO isolator OPT2 PC3Q66Q 4-channel OPTO isolator IC1 VNI4140K ST IC Industrial 4 CH HSD J1 HADER 34-pin Compatible EVALCOMMBOARD J2 Jumper Overvoltage test J3 Jumper Ground disconnection test J4 Jumper Vcc disconnection test J5 Hader 14-pin Compatible ST7CANIC DB M1 4 screw plugs HSD output connector M2 2 screw plugs Power supply connector T1 Test point HSD output channel 1 voltage T2 Test point HSD output channel 2 voltage T3 Test point HSD output channel 3 voltage T4 Test point HSD output channel 4 voltage Doc ID 14266 Rev 1 AN2684 Bill of material Table 6. IFP006V1 demonstration board bill of material (continued) Designator Part type Description T5 Test point HSD input channel 1 signal T6 Test point HSD input channel 2 signal T7 Test point HSD input channel 3 signal T8 Test point HSD input channel 4 signal T9 Test point HSD channel 1 status T10 Test point HSD channel 2 status T11 Test point HSD channel 3 status T12 Test point HSD channel 4 status Doc ID 14266 Rev 1 17/21 PCB layout AN2684 Appendix B PCB layout Figure 15. IFP006V1 component layer Figure 16. IFP006V1 copper top layer 18/21 Figure 17. IFP006V1 copper bottom layer Doc ID 14266 Rev 1 AN2684 References Appendix C 1. References AN1351 - VIPower and BCDmultipower: making life easier with ST's high side drivers Doc ID 14266 Rev 1 19/21 Revision history AN2684 Revision history Table 7. 20/21 Document revision history Date Revision 20-May-2009 1 Changes Initial release Doc ID 14266 Rev 1 AN2684 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2009 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com Doc ID 14266 Rev 1 21/21