AN4015 Application note Dual-BTL class-D audio amplifier demonstration board based on the TDA7498E Introduction The purpose of this application note is to describe: ■ how to connect the TDA7498 demonstration board ■ how to evaluate the performance of the demonstration board using the electrical curves ■ how to avoid critical issues in the PCB schematic and layout of the TDA7498E The TDA7498E represents a new generation of analog input class-D devices from STMicroelectronics and is housed in a PSSO36 package. It is able to deliver 160 W +160 W in stereo configuration with VCC = 36 V and a 4 Ω load(a). Figure 1. TDA7498E demonstration board a. All of the results and graphs included in this document are measured using Audio Precision equipment. January 2012 Doc ID 022507 Rev 1 1/22 www.st.com Contents AN4015 Contents 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Test conditions and connections of the demonstration board . . . . . . . 5 2.1 Power supply and interface connection . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 Schematic diagram and PCB layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5 Test curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 6 Design guidelines for PCB schematic and layout . . . . . . . . . . . . . . . . 14 6.1 6.2 7 2/22 Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 6.1.1 Main driver for the selection of components . . . . . . . . . . . . . . . . . . . . . 14 6.1.2 Decoupling capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 6.1.3 Output filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Doc ID 022507 Rev 1 AN4015 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. TDA7498E demonstration board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 TDA7498E demonstration board connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 TDA7498E schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 PCB layout - top side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 PCB layout - bottom side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 PCB layout - top and bottom sides plus components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 THD+N vs. power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 THD+N vs. frequency (ref = 1 W at 1 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 DNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 FFT (0 dBr at 1 W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Crosstalk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Pout vs. VCC and THD level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Snubber filter - solution 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Snubber filter - solution 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Dumping network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Frequency shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Decoupling capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Snubber network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 VCC decoupling electrolytic capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 ROSC - component placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Filter capacitors for SVR, VREF, SVCC, VSS and VDDPW. . . . . . . . . . . . . . . . . . . . . . . . 19 Input signal routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Signal ground and power ground routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Doc ID 022507 Rev 1 3/22 Overview 1 AN4015 Overview The following terms used in this application note are defined as follows: ● THD+N vs. Pout: Total Harmonic Distortion (THD) plus noise versus output power ● THD+N vs. Freq: Total Harmonic Distortion plus noise versus frequency curve ● S/N Ratio: Signal-to-noise ratio ● DNR: Dynamic range ● FFT: Fast Fourier Transform Algorithm (method) ● XTalk: Channel separation L to R, or R to L channel crosstalk The equipment used includes the following: ● Audio Precision 2722A + AES-17 filter + DCX+ AUX-0025 filter ● DC power supply ● Digital oscilloscope (Tektronix TDS5054B) ● Differential voltage probe (LeCroy AP031) ● Current probe (Tektronix TCP300) Reference documents include: 4/22 ● TDA7498E datasheet ● Schematic diagram ● PCB layout ● Test curves Doc ID 022507 Rev 1 AN4015 Test conditions and connections of the demonstration board 2 Test conditions and connections of the demonstration board 2.1 Power supply and interface connection 2.2 1. Connect PSU to the VCC terminal block 2. Connect the analog input cable to the RCA connectors on the demonstration board, the other side must be connected to a signal source such as the Audio Precision analog outputs or a DVD player Output configuration The TDA7498E demonstration board has been configured in 2-channel BTL output. 2.3 Connections The board terminals (top view of demonstration board) are visible in Figure 2. Figure 2. TDA7498E demonstration board connections Left Load Right Load Gain selection Single-ended input/differential input mode selection Analog input Doc ID 022507 Rev 1 Standby and mute controls 5/22 Schematic diagram and PCB layout AN4015 3 Schematic diagram and PCB layout Figure 3. TDA7498E schematic 6/22 Doc ID 022507 Rev 1 AN4015 Schematic diagram and PCB layout Figure 4. PCB layout - top side Figure 5. PCB layout - bottom side Doc ID 022507 Rev 1 7/22 Schematic diagram and PCB layout Figure 6. 8/22 AN4015 PCB layout - top and bottom sides plus components Doc ID 022507 Rev 1 AN4015 4 Electrical characteristics Electrical characteristics Referring to Figure 3: TDA7498E schematic, the Left (L) and Right (R) channels are the output for a stereo configuration. VCC = +36 V, Gain 23.6 dB; Tamb = 25.5 °C; InputFreq = 1 kHz; RefLevel = 1 W (0 dBr), Load = 4 Ω (resistive dummy load). Table 1. Electrical characteristics THD+N vs. power Pout = 1 W 0.0555% 12 A IOCP No filter -74.3 dB AW - filter -77.5 dB No filter -94 dB AW - filter -98 dB 1 kHz -85.9 dB SNR DNR Xtalk Doc ID 022507 Rev 1 9/22 Test curves 5 AN4015 Test curves Figure 7. THD+N vs. power 10 5 2 1 0.5 % 0.2 0.1 0.05 0.02 0.01 1m 2m 5m 10m 20m 50m 100m 500m 1 2 5 10 20 50 100 200 400 W Sweep Trace Color Line Style Thick Data Axis Comment 1 1 1 3 Red Blue Solid Solid 2 2 Anlr.THD+N Ratio Anlr.THD+N Ratio Left Left Vcc=36V; Load=4ohm; 1kHz; Ch L Vcc=36V; Load=4ohm; 1kHz; Ch R Figure 8. THD+N vs. frequency (ref = 1 W at 1 kHz) 1 0.5 0.2 % 0.1 0.05 0.02 0.01 20 50 100 200 500 1k 2k 5k 10k Hz 10/22 Sweep Trace Color Line Style Thick Data Axis 1 1 1 2 Red Blue Solid Solid 2 2 Anlr.THD+N Ratio Anlr.THD+N Ratio Left Left Doc ID 022507 Rev 1 Comment Vcc=36V; 1W@1kHz; Ch L Vcc=36V; 1W@1kHz; Ch R 20k AN4015 Test curves Figure 9. DNR -20 -25 -30 -35 -40 -45 d B -50 -55 -60 -65 -70 -75 -80 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 +0 dBr Sweep Trace Color Line Style Thick Data Axis Comment 1 1 2 2 1 2 1 2 Red Blue Green Black Solid Solid Solid Solid 2 2 2 2 Anlr.THD+N Ratio Anlr.THD+N Ratio Anlr.THD+N Ratio Anlr.THD+N Ratio Left Left Left Left Vcc=36V_1kHz_4 ohm; Vcc=36V_1kHz_4 ohm; Vcc=36V_1kHz_4 ohm; Vcc=36V_1kHz_4 ohm; Ch L Ch R Ch R - AW Filter Ch L - AW Filter Figure 10. FFT (0 dBr at 1 W) d B r A +0 +0 -10 -10 -20 -20 -30 -30 -40 -40 -50 -50 -60 -60 -70 -70 -80 -80 -90 -90 -100 -100 -110 -110 -120 -120 -130 -130 -140 -140 -150 20 50 100 200 500 1k 2k 5k 10k 20k d B r B -150 Hz Sweep Trace Color Line Style Thick Data Axis Comment 1 1 1 2 Red Blue Solid Solid 2 2 Fft.Ch.1 Ampl Fft.Ch.2 Ampl Left Right Vcc=36V; Ref: 1W@1kHz: Ch L Vcc=36V; Ref: 1W@1kHz: Ch R Doc ID 022507 Rev 1 11/22 Test curves AN4015 Figure 11. Crosstalk +0 -10 -20 -30 -40 -50 d B -60 -70 -80 -90 -100 -110 -120 20 50 100 200 500 1k 2k 5k 10k 20k Hz Sweep Trace Color Line Style Thick Data Axis Comment 1 1 1 2 Red Blue Solid Solid 2 2 S2C.Anlr.Crosstalk S2C.Anlr.Crosstalk Left Left Vcc=36V; 1W; 4ohm; (Ch L on) Vcc=36V; 1W; 4ohm; (Ch R on) Figure 12. Linearity Gain Linearity 24 23.5 23 Gain [dB] 22.5 22 21.5 21 20.5 Left Right 20 12/22 0 0.2 0.4 0.6 0.8 1 1.2 Input Level [V] Doc ID 022507 Rev 1 1.4 1.6 1.8 2 AN4015 Test curves Figure 13. Bandwidth +1 +1 +0.5 d B r A +0.5 +0 +0 -0.5 -0.5 -1 d B r -1 -1.5 -1.5 -2 B -2 -2.5 -2.5 -3 10 20 50 100 200 500 1k 2k 5k 10k 20k 50k -3 Hz Sweep Trace Color Line Style Thick Data Axis Comment 1 1 1 2 Red Blue Solid Solid 2 2 Anlr.Level A Anlr.Level B Left Right Vcc=36V; 1W; Ch L Vcc=36V; 1W; Ch R Figure 14. Pout vs. VCC and THD level 200 180 160 140 120 W 100 80 60 40 20 +10 +12.5 +15 +17.5 +20 +22.5 +25 +27.5 +30 +32.5 +35 +37.5 +40 Vdc Sweep Trace Color Line Style Thick Data 1 2 3 4 1 1 1 1 Cyan Green Blue Red Solid Solid Solid Solid 2 2 2 2 Anlr.Level Anlr.Level Anlr.Level Anlr.Level Doc ID 022507 Rev 1 A A A A Axis Comment Left Left Left Left Pout Pout Pout Pout vs. vs. vs. vs. Vcc; Vcc; Vcc; Vcc; Load=4ohm; Load=4ohm; Load=4ohm; Load=4ohm; THD=1% THD=10% THD=20% THD=30% 13/22 Design guidelines for PCB schematic and layout 6 Design guidelines for PCB schematic and layout 6.1 Schematic 6.1.1 Main driver for the selection of components 6.1.2 AN4015 ● Absolute maximum rate (input VCC supply): 40 V ● Bypass capacitor 100 nF in parallel to 1µF for each power VCC branch. Dielectric X7R is suggested. ● Coil saturation current must be compatible with the peak current of application Decoupling capacitors There are two different ways to use the decoupling capacitors: 6.1.3 14/22 ● The decoupling capacitor(s) can be shared among channels; the layout must be designed to implement a "star route" for the VCC paths. ● One decoupling capacitor can be used for each channel. It is mandatory that each decoupling capacitor be placed as close as possible to the IC pins. This solution is implemented on the TDA7498E demonstration board. Output filter ● Snubber network: the key function of a snubber network is to absorb energy from the inductive component in the power circuit (the output coils and the speaker). The purpose of the snubber RC network is to dissipate the unnecessary high pulse energy, such as a high voltage spike, in the power circuit which is dangerous to the system. ● Main filter (low-pass filter): The purpose of the main filter is to remove the carrier frequency (≈310 kHz) and to cut off the frequency higher than the audible range of 20 kHz. The LPF filter is implemented by a passive Butterworth topology. In order to have a clean and flat frequency response, it is mandatory to design the filter to fix the cutoff frequency a little bit above 20 kHz. ● Damping network: The purpose of the damping network is to avoid the high-frequency oscillation issue on the output circuit. When the load is disconnected from the amplifier, the frequency response of the main filter is not flat and there is the possibility of adding gain in a frequency band. The damping network also improves the THD performance. The damping network can also avoid the inductive effect of the PCB tracks when the system is working at high frequency with PWM. Doc ID 022507 Rev 1 AN4015 Design guidelines for PCB schematic and layout Snubber filter The snubber circuit must be optimized for the specific application. Starting values are 330 pF in series to 22 ohm. The power dissipation of this network (resistor) depends on the power supply, frequency and capacitor values using following formula: P = C ⋅ f ⋅ (2 ⋅ V) 2 This power is dissipated on the series resistance. Figure 15. Snubber filter - solution 1 INxA C126 330p R44 22 INxB To increase the efficiency, it is possible to use two equal snubber networks toward GND. In this case, the formula to evaluate power is: P = C⋅f⋅2⋅V 2 This power is dissipated on the resistance. Figure 16. Snubber filter - solution 2 INxA C127 330p R45 22 R46 22 INxB C130 330p Doc ID 022507 Rev 1 15/22 Design guidelines for PCB schematic and layout AN4015 Dumping network The C-R-C is a dumping network. It is mainly intended for high inductive loads and for common-mode noise attenuation. Figure 17. Dumping network PWM output frequency shifting for AM band radio sensitivity improvement Using a logic control signal (FS) from MCU or from a DSP (3.3 V) it is possible to modify the PWM output frequency.(b) Figure 18. Frequency shift b. For the PWM frequency calculation formula please refer to the datasheet. 16/22 Doc ID 022507 Rev 1 AN4015 6.2 Design guidelines for PCB schematic and layout Layout ● Solder 100 nF and 1µF bypass ceramic capacitors as close as possible to the related IC pin ● To avoid the effect due to the parasitic inductive coil generated by the copper wires, it is suggested to use the ceramic capacitor to balance the reactance. It's mandatory to place the ceramic capacitor as close as possible to the related pins. The distance between the capacitor to the related pins is recommended to be within 5 mm. Figure 19. Decoupling capacitors Ground pin and Vcc pin of 100 nF and 1μF capacitors should be connected to the related IC pin directly ● Solder the snubber networks as close as possible to the related IC pin. A high level spike may occur if the snubber network is placed too far from the pins. It's recommended that the distance from the snubber network be within 3 mm which takes into consideration the width of the copper wire. Figure 20. Snubber network Snubber network Doc ID 022507 Rev 1 17/22 Design guidelines for PCB schematic and layout ● Use electrolytic capacitors first to separate the VCC branches. A "star route" for the VCC supply is suggested to avoid interference between the channels such as when one channel is idle while the other channel is working with a full load. In applications with high output power, another approach is to filter the two channels separately. This solution is implemented in this demonstration board. Figure 21. VCC decoupling electrolytic capacitors ● ROSC network: Place the RC filter for the ROSC pin close to the IC Figure 22. ROSC - component placement R-C network for ROSC 18/22 AN4015 Doc ID 022507 Rev 1 AN4015 Design guidelines for PCB schematic and layout ● Place the filter capacitors for SVR, VREF, SVCC, VSS and VDDPW close to the IC. Figure 23. Filter capacitors for SVR, VREF, SVCC, VSS and VDDPW Filter capacitors for VREF, SVCC and VSS Filter capacitor for SVR Filter capacitors for VDDS and VDDPW ● Input signal routing Figure 24. Input signal routing Doc ID 022507 Rev 1 19/22 Design guidelines for PCB schematic and layout ● Signal ground and power ground routing: the signal ground should be connected to the bulk capacitor negative terminal via a dedicated copper track; no vias must be present in the connection path. Figure 25. Signal ground and power ground routing 20/22 AN4015 Doc ID 022507 Rev 1 AN4015 7 Revision history Revision history Table 2. Document revision history Date Revision 09-Jan-2012 1 Changes Initial release. Doc ID 022507 Rev 1 21/22 AN4015 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2012 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 22/22 Doc ID 022507 Rev 1