L9678P L9678P-S Automotive user configurable airbag IC Datasheet - production data Features Squib deployment drivers – 4 channel HSD/LSD – 25 V maximum deployment voltage – 1.2 A @ 2 ms and 1.75 A @ 0.5/0.7 ms deployment profiles – Integrated safing FET linear regulator, 20 V/25 V nominal – Current monitoring – Rmeasure, STB, STG and leakage diagnostics – High and low side driver FET tests – Safing FET test AEC-Q100 qualified User customizable safing logic Energy reserve voltage power supply – High frequency boost regulator, 1.882 MHz – Output voltage user selectable, 23 V or 33 V ±5% Two channel PSI-5 remote sensor interface (asynchronous mode), [only for L9678P-S version] '!0'03 LQFP64 (10x10x1.4mm) User configurable linear power supplies – 5.0 V and 7.2 V ±4% output voltages – External pass transistor Fully integrated 3.3 V ±4% linear regulator Battery voltage monitor and shutdown control with wake-up control Four channel hall-effect, resistive or switch sensor interface ISO9141 transceiver Dual channel configurable high-side/low-side LED driver Watchdog timer Two integrated oscillators: 7.5/16 MHz System voltage diagnostics with integrated ADC Temperature sensor Crossover switch – Crossover performance, max 3 Ω, 600 mA max. Minimum operating voltage = 6 V 32 bit SPI communications Operating temperature, -40 °C to 95 °C Packaging - 64 pin Table 1. Device summary Order code Package Packing Remote sensor interface L9678P LQFP64 (10 x 10 x 1.4 mm) Tray No L9678P-S LQFP64 (10 x 10 x 1.4 mm) Tray Yes May 2016 This is information on a product in full production. DocID029274 Rev 1 1/202 www.st.com Contents L9678P, L9678P-S Contents 1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Absolute and operative maximum ratings . . . . . . . . . . . . . . . . . . . . . . 12 2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Operative maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Pin-out description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3 Overview and block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4 Start-up power control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1 Power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2 Power mode control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.3 4.4 5 4.2.1 Power_off mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2.2 Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2.3 Active mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2.4 Passive mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2.5 Power-up and power-down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.2.6 Operating states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Configurable system power control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.3.1 ERBOOST switching regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.3.2 Energy reserve capacitor charging circuit . . . . . . . . . . . . . . . . . . . . . . . 29 4.3.3 ER switch and COVRACT pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3.4 VDD5 linear regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.3.5 VDD3V3 linear regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.3.6 VSUP linear regulator (optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.3.7 VSF linear regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Reset functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 SPI interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.1 Global SPI register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Read/write register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2/202 5.1.1 Fault status register (FLTSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.1.2 System configuration register (SYS_CFG) . . . . . . . . . . . . . . . . . . . . . . 53 5.1.3 System control register (SYS_CTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 DocID029274 Rev 1 L9678P, L9678P-S Contents 5.1.4 SPI Sleep command register (SPI_SLEEP) . . . . . . . . . . . . . . . . . . . . . 56 5.1.5 System status register (SYS_STATE) . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.1.6 Power state register (POWER_STATE) . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.1.7 Deployment configuration registers (DCR_x) . . . . . . . . . . . . . . . . . . . . 61 5.1.8 Deployment command (DEPCOM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.1.9 Deployment configuration registers (DSR_x) . . . . . . . . . . . . . . . . . . . . 64 5.1.10 Deployment current monitor status registers (DCMTSxy) . . . . . . . . . . . 65 5.1.11 Deploy enable register (SPIDEPEN) . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.1.12 Squib ground loss register (LP_GNDLOSS) . . . . . . . . . . . . . . . . . . . . . 66 5.1.13 Device version register (VERSION_ID) . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.1.14 Watchdog retry configuration register (WD_RETRY_CONF) . . . . . . . . 67 5.1.15 Watchdog timer configuration register (WDTCR) . . . . . . . . . . . . . . . . . 68 5.1.16 WD1 timer control register (WD1T) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.1.17 WD1 state register (WDSTATE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.1.18 Clock configuration register (CLK_CONF) . . . . . . . . . . . . . . . . . . . . . . . 70 5.1.19 Scrap state entry command register (SCRAP_STATE) . . . . . . . . . . . . . 71 5.1.20 Safing state entry command register (SAFING_STATE) . . . . . . . . . . . . 71 5.1.21 WD1 test command register (WD1_TEST) . . . . . . . . . . . . . . . . . . . . . . 72 5.1.22 System diagnostic register (SYSDIAGREQ) . . . . . . . . . . . . . . . . . . . . . 72 5.1.23 Diagnostic result register for deployment loops (LPDIAGSTAT) . . . . . . 74 5.1.24 Loops diagnostic configuration command register for low level diagnostic (LPDIAGREQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.1.25 Loops diagnostic configuration command register for high level diagnostic (LPDIAGREQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.1.26 DC sensor diagnostic configuration command register (SWCTRL) . . . . 81 5.1.27 ADC request and data registers (DIAGCTRL_x) . . . . . . . . . . . . . . . . . . 82 5.1.28 GPO configuration register (GPOCR) . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.1.29 GPO configuration register (GPOCTRLx) . . . . . . . . . . . . . . . . . . . . . . . 86 5.1.30 GPO fault status register (GPOFLTSR) . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.1.31 ISO fault status register (ISOFLTSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.1.32 Remote sensor configuration register (RSCRx) . . . . . . . . . . . . . . . . . . 89 5.1.33 Remote sensor control register (RSCTRL) . . . . . . . . . . . . . . . . . . . . . . 90 5.1.34 Remote sensor data/fault registers w/o fault (RSDRx) . . . . . . . . . . . . . 91 5.1.35 Safing algorithm configuration register (SAF_ALGO_CONF) . . . . . . . . 95 5.1.36 Arming signals register (ARM_STATE) . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.1.37 ARMx assignment registers (LOOP_MATRIX_ARMx) . . . . . . . . . . . . . 97 5.1.38 ARMx pulse stretch registers (AEPSTS_ARMx) . . . . . . . . . . . . . . . . . . 98 5.1.39 Safing records enable register (SAF_ENABLE) . . . . . . . . . . . . . . . . . . 99 DocID029274 Rev 1 3/202 6 Contents 6 L9678P, L9678P-S 5.1.41 Safing records request target registers (SAF_REQ_TARGET_x) . . . . 101 5.1.42 Safing records response mask registers (SAF_RESP_MASK_x) . . . . 102 5.1.43 Safing records response target registers (SAF_RESP_TARGET_x) . . 103 5.1.44 Safing records data mask registers (SAF_DATA_MASK_x) . . . . . . . . 104 5.1.45 Safing records threshold registers (SAF_THRESHOLD_x) . . . . . . . . . 105 5.1.46 Safing control registers (SAF_CONTROL_x) . . . . . . . . . . . . . . . . . . . 106 5.1.47 Safing record compare complete register (SAF_CC) . . . . . . . . . . . . . 109 Control logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 6.1.1 Deployment current selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.1.2 Deploy command expiration timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.1.3 Deployment control flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.1.4 Deployment success . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.2 Energy reserve - deployment voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . .114 6.3 Deployment ground return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114 6.4 Deployment driver protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114 6.5 6.4.1 Delayed low-side deactivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.4.2 Low-side voltage clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.4.3 Short to battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.4.4 Short to ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.4.5 Intermittent open squib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115 6.5.1 Low level diagnostic approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.5.2 High level diagnostic approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Remote sensor interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 7.1 7.2 4/202 Safing records request mask registers (SAF_REQ_MASK_x) . . . . . . 100 Deployment drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 6.1 7 5.1.40 PSI-5 protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 7.1.1 Functional description - remote sensor modes . . . . . . . . . . . . . . . . . . 126 7.1.2 RSU data fields and CRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 7.1.3 Detailed description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Remote sensor interface fault protection . . . . . . . . . . . . . . . . . . . . . . . . 130 7.2.1 Short to ground, current limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 7.2.2 Short to battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 7.2.3 Cross link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 DocID029274 Rev 1 L9678P, L9678P-S 8 Contents 7.2.4 Leakage to battery, open condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7.2.5 Leakage to ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7.2.6 Thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 8.1 Temporal watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 8.1.1 Watchdog timer configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 8.1.2 Watchdog timer operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 8.2 Watchdog reset assertion timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 8.3 Watchdog timer disable input (WDT/TM) . . . . . . . . . . . . . . . . . . . . . . . . 135 9 DC sensor interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 10 Safing logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 10.1 Safing logic overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 10.2 SPI sensor data decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 10.3 In-frame and out-of-frame responses . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 10.4 Safing state machine operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 10.4.1 Simple threshold comparison operation . . . . . . . . . . . . . . . . . . . . . . . 148 10.5 Safing engine output logic (ARMxINT) . . . . . . . . . . . . . . . . . . . . . . . . . . 149 10.6 Arming pulse stretch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 10.7 Additional communication line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 11 General purpose output (GPO) drivers . . . . . . . . . . . . . . . . . . . . . . . . 154 12 ISO9141 transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 13 System voltage diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 13.1 Analog to digital algorithmic converter . . . . . . . . . . . . . . . . . . . . . . . . . . 162 14 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 15 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 15.1 Configuration and control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 15.2 Internal analog reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 15.3 Internal regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 DocID029274 Rev 1 5/202 6 Contents L9678P, L9678P-S 15.4 Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 15.5 Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 15.6 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 15.7 SPI interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 15.8 ER boost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 15.9 ER charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 15.10 ER switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 15.11 COVRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 15.12 VDD5 regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 15.13 VDD3V3 regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 15.14 VSUP regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 15.15 VSF regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 15.16 Deployment drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 15.17 Squib diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 15.17.1 Squib resistance measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 15.17.2 Squib leakage test (VRCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 15.17.3 High/low side FET test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 15.17.4 Deployment timer test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 15.18 Remote sensor interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 15.19 DC sensor interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 15.20 Safing engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 15.21 General purpose output drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 15.22 ISO9141 interface (K-LINE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 15.22.1 Analog to digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 15.23 Voltage diagnostics (analog Mux) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 15.24 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 16 Quality information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 16.1 17 18 6/202 OTP trim bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 17.1 LQFP64 (10x10x1.4 mm) package information . . . . . . . . . . . . . . . . . . . 198 17.2 LQFP64 (10x10x1.4) marking information . . . . . . . . . . . . . . . . . . . . . . . 200 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 DocID029274 Rev 1 L9678P, L9678P-S List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Operative maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Functions disabling by state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 SPI register R/W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Global SPI register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Global status word (GSW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Short between loops diagnostics decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Watchdog timer status description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Records results comparison against two threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Diagnostics control register (DIAGCTRLx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 Diagnostics divider ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Configuration and control DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Configuration and control AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Open ground detection DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Open ground detection AC specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Internal analog reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Internal regulators DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Internal regulators AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Oscillators AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Temporal watchdog timer AC specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Reset DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Reset AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 SPI DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 SPI AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 ER Boost converter DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 ER boost converter AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 ER boost converter external components (Design Info) . . . . . . . . . . . . . . . . . . . . . . . . . . 173 ER current generator DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 ER current generator AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 ER switch DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 ER switch AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 COVRACT DC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 COVRACT AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 VDD5 regulator DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 VDD5 regulator AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 VDD5 regulator external components (Design Info) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 VDD3V3 regulator DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 VDD3V3 regulator AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 VDD3V3 regulator external components (design info) . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 VSUP regulator DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 VSUP AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 VSUP regulator external components (Design Info) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 VSF regulator DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 VSF regulator AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 Deployment drivers - DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 Deployment drivers - AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 Deployment drivers diagnostics (Squib resistance) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 DocID029274 Rev 1 7/202 8 List of tables Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. 8/202 L9678P, L9678P-S Squib leakage test (VRCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 High/low side FET test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Deployment timer test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Remote sensor I/F DC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 PSI-5 remote sensor transceiver - AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 DC sensor interface specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 Arming interface - DC specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 Arming interface - AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 GPO interface DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 GPO Driver Interface - AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 ISO9141 interface DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 ISO9141 interface transceiver AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 Analog to digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 Voltage diagnostics (Analog MUX) DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 Temperature sensor specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 LQFP64 (10x10x1.4 mm) package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 DocID029274 Rev 1 L9678P, L9678P-S List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. Pin-out description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Power control state flow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Wake-up input signal behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Normal power-up sequence - WAKEUP controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Normal power-up sequence - VIN controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Normal power down sequence - WAKEUP and SPI controlled . . . . . . . . . . . . . . . . . . . . . 25 Normal power down sequence - VIN controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 System operating state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ERBOOST block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ERBOOST control behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ER cap charging circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ER switch control behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 VDD5 control behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 VDD3V3 control behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 VSUP control behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 VSF control logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Internal voltage errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Reset control diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Deployment driver control blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Deployment driver control logic - Enable signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Deployment driver control logic - Turn-on signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Deployment driver block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Global SPI deployment enable state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Deployment loop diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 SRx pull-down enable logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Deployment timer diagnostic sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 High level loop diagnostic flow1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 High level loop diagnostic flow2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Remote sensor interface logic blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Remote sensor interface block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 PSI-5 remote sensor protocol (10-bit, 1-bit parity) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Manchester bit encoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Manchester decoder state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Remote sensor current sensing auto adjust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Watchdog state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Watchdog timer refresh diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Switch sensor interface block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 Top level safing engine flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Safing engine - 16-bit message decoding flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 Safing engine - 32-bit message decoding flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Safing engine - validate data flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 Safing engine - combine function flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Safing engine threshold comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Safing engine - compare complete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 In-frame example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Out of frame example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Safing Engine Arming flow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 DocID029274 Rev 1 9/202 10 List of figures Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. Figure 59. Figure 60. Figure 61. 10/202 L9678P, L9678P-S Safing engine diagnostic logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 ARM output control logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Pulse stretch timer example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Scrap ACL state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Disposal PWM signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 GPO driver block diagram - LS configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 GPO driver block diagram - HS configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 ISO9141 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 ADC conversion time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 SPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Deployment drivers diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 LQFP64 (10x10x1.4 mm) package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 LQFP64 (10x10x1.4) marking information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 DocID029274 Rev 1 L9678P, L9678P-S 1 Description Description The L9678P IC is a system chip solution targeted for emerging market applications. Base system designs can be completed with the L9678P, SPC560Px microcontroller and an onboard acceleration sensor or PSI5 sensor. Energy reserve voltage is derived through a cost effective high frequency boost regulator. High frequency operation allows the user to pick up low value and cheap inductance. The voltage is programmable to 23 V or 33 V nominal. Battery voltage is sensed through the VBATMON pin providing start-up and shutdown control for the system. Once battery voltage drops below the minimum operating voltage, the device enables the integrated crossover switch to permit orderly shutdown. L9678P offers two linear regulators (5 V with external pass transistor and fully integrated 3.3 V). User can use one of these regulators to supply µC. Input/output pins are compatible with both ranges by dedicated supply pin VDDQ. External pass transistor gives the flexibility to easily address different current loads in case of different micro-controllers. One optional 7.2 V linear regulator with external pass transistor can be used to supply remote sensor interface. External acceleration data is received through the PSI-5 remote sensor interface. Both channels have independent decoders. Sensor data and diagnostics are available via SPI. The safing logic monitors inertial sensors (remote sensors via PSI-5 or on-board sensors via SPI) to determine if a crash event is in progress, thereby enabling deployment to occur. Parameters for sensor configuration and thresholds are user programmable. Squib deployment uses four independent high and low side drivers, capable of deploying at 25 V max. Diagnostic data control is provided through the SPI interface. The Hall-effect, resistive or switch sensor interface can be used to determine the state of external switch devices, such as buckle switches, seat track position sensors, weight sensors, deactivation switches. The integrated clock module provides a fixed clock signal for the microcontroller. The clock module provides the user the option of deleting the commonly used resonator or crystal. DocID029274 Rev 1 11/202 201 Absolute and operative maximum ratings L9678P, L9678P-S 2 Absolute and operative maximum ratings 2.1 Absolute maximum ratings Warning: This part may be irreparably damaged if taken outside the specified absolute maximum ratings. Operation above the absolute maximum ratings may also cause a decrease in reliability. Table 2. Absolute maximum ratings Pin # Pin name 1 RESET 2 Pin function Min. Max. Unit Reset output -0.3 VDDQ+0.3 6.5 V SPI_MISO SPI interface data out / Safing sensor data in -0.3 VDDQ+0.3 6.5 V 3 SPI_MOSI SPI interface data in -0.3 VDDQ+0.3 6.5 V 4 SPI_SCK SPI interface clock -0.3 VDDQ+0.3 6.5 V 5 SPI_CS SPI interface chip select -0.3 VDDQ+0.3 6.5 V 6 WDT/TM Watchdog disable (Not for application) -0.3 20 V 7 VDD3V3 3.3 V regulator output -0.3 4.6 V - - - 8 NC 9 CVDD Internal 3.3 V regulator output -0.3 4.6 V 10 GNDD Digital ground -0.3 0.3 V 11 SR0 Squib 0 low-side pin -0.3 40 V 12 SF0 Squib 0 high-side pin -1.0 40 V 13 SG01 Squib 0 & 1 deployment ground pin -0.3 0.3 V 14 SS01 Squib 0 & 1 deployment supply pin -0.3 40 V 15 SF1 Squib 1 high-side pin -1.0 40 V 16 SR1 Squib 1 low-side pin -0.3 40 V 17 DCS3 Sensor switch interface channel 3 -1.0 40 V 18 DCS2 Sensor switch interface channel 2 -1.0 40 V 19 DCS1 Sensor switch interface channel 1 -1.0 40 V 20 DCS0 Sensor switch interface channel 0 -1.0 40 V 21 VRESDIAG Reserve voltage diagnostic input -0.3 40 V 22 RSU0/NC PSI-5 Ch. 0 remote sensor output (only L9678P-S), NC on L9678P -1.0 40 V 23 RSU1/NC PSI-5 Ch. 1 remote sensor output (only L9678P-S), NC on L9678P -1.0 40 V 24 VSUP/NC Remote sensor power supply (only L9678PS), NC(1) on L9678P -0.3 40 V 12/202 Not connected (1) DocID029274 Rev 1 L9678P, L9678P-S Absolute and operative maximum ratings Table 2. Absolute maximum ratings (continued) Pin # Pin name 25 BVSUP/NC 26 Pin function Min. Max. Unit VSUP external transistor control (only L9678P-S), NC(1) on L9678P -0.3 40 V GPOD0 GPO driver 1 drain output pin -1.0 40 V 27 GPOS0 GPO driver 1 source output pin -1.0 40 V 28 GPOS1 GPO driver 0 source output pin -1.0 40 V 29 GPOD1 GPO driver 0 drain output pin -1.0 40 V - - - ISO9141 bus pin (K-LINE) -18.0 40 V Substrate ground -0.3 0.3 V Not connected (1) 30 NC 31 ISOK 32 GNDSUB1 33 SR3 Squib 3 low-side pin -0.3 40 V 34 SF3 Squib 3 high-side pin -1.0 40 V 35 SS23 Squib 2 & 3 deployment supply pin -0.3 40 V 36 SG23 Squib 2 & 3 deployment ground pin -0.3 0.3 V 37 SF2 Squib 2 high-side pin -1.0 40 V 38 SR2 Squib 2 low-side pin -0.3 40 V 39 GNDA Analog ground -0.3 0.3 V 40 ISORX ISO9141 receiver pin -0.3 VDDQ+0.3 6.5 V 41 ISOTX ISO9141 transmit pin -0.3 VDDQ+0.3 6.5 V 42 FENL LS driver FET control input -0.3 VDDQ+0.3 6.5 V 43 FENH HS driver FET control input -0.3 VDDQ+0.3 6.5 V 44 SAF_CS0 SPI interface safing sensor chip select -0.3 VDDQ+0.3 6.5 V 45 SAF_CS1 SPI interface safing sensor chip select -0.3 VDDQ+0.3 6.5 V - - - 46 NC 47 WAKEUP Wake-up control input -0.3 40 V 48 VBATMON Battery line voltage monitor -18 40 V 49 VSF Safing regulator supply output -0.3 ERBOOST+0.3 40 V 50 VIN Battery connection -0.3 40 V 51 VER Reserve voltage -0.3 40 V 52 ERBOOST Energy reserve regulator output -0.3 40 V 53 ERBSTSW Boost switching output -0.3 40 V - - - Boost regulator ground -0.3 0.3 V EOL disposal control input -0.3 40 V VDD5 external transistor control -0.3 40 V - - - -0.3 6.5 V - - - 54 NC 55 BSTGND 56 ACL 57 BVDD5 58 NC 59 VDD5 60 NC Not connected (1) Not connected (1) Not connected 5V regulator output Not connected (1) DocID029274 Rev 1 13/202 201 Absolute and operative maximum ratings L9678P, L9678P-S Table 2. Absolute maximum ratings (continued) Pin # Pin name 61 COVRACT 62 VDDQ 63 ARM 64 GNDSUB2 1. Pin function Min. Max. Unit External crossover switch control -0.3 VDDQ+0.3 6.5 V I/O supply -0.3 6.5 V Arming Output -0.3 VDDQ+0.3 6.5 V Substrate ground -0.3 0.3 V Not connected internally, should be connected to GND externally. 2.2 Operative maximum ratings Within the operative ratings the part operates as specified and without parameter deviations. Once taken beyond the operative ratings and returned back within, the part will recover with no damage or degradation. Additional supply-voltage and temperature conditions are given separately at the beginning of each specification table. Table 3. Operative maximum ratings Pin # Pin name 1 RESET 2 Min. Max. Unit Reset output -0.1 VDDQ+0.1 5.5 V SPI_MISO SPI interface data out / Safing sensor data in -0.1 VDDQ+0.1 5.5 V 3 SPI_MOSI SPI interface data in -0.1 VDDQ+0.1 5.5 V 4 SPI_SCK SPI interface clock -0.1 VDDQ+0.1 5.5 V 5 SPI_CS SPI interface chip select -0.1 VDDQ+0.1 5.5 V 6 WDT/TM Watchdog disable -0.1 20 V 7 VDD3V3 3.3V regulator output -0.1 3.6 V 8 NC - - - 9 CVDD Internal 3.3V regulator output -0.1 3.6 V 10 GNDD Digital ground -0.1 0.1 V 11 SR0 Squib 0 low-side pin -0.1 VER V 12 SF0 Squib 0 high-side pin -1.0 VER V 13 SG01 Squib 0 & 1 deployment ground pin -0.1 0.1 V 14 SS01 Squib 0 & 1 deployment supply pin -0.1 40 V 15 SF1 Squib 1 high-side pin -1.0 VER V 16 SR1 Squib 1 low-side pin -0.1 VER V 17 DCS3 Sensor switch interface channel 3 -1.0 VDCS_L V 18 DCS2 Sensor switch interface channel 2 -1.0 VDCS_L V 19 DCS1 Sensor switch interface channel 1 -1.0 VDCS_L V 20 DCS0 Sensor switch interface channel 0 -1.0 VDCS_L V 21 VRESDIAG Reserve voltage diagnostic input -0.1 35 V 22 RSU0/NC PSI-5 Ch. 0 remote sensor output (only L9678P-S), NC on L9678P -1.0 VSUP V 14/202 Pin function Not connected(1) DocID029274 Rev 1 L9678P, L9678P-S Absolute and operative maximum ratings Table 3. Operative maximum ratings (continued) Pin # Pin name 23 RSU1/NC 24 VSUP/NC 25 BVSUP/NC 26 Pin function Min. Max. Unit PSI-5 Ch. 1 remote sensor output (only L9678P-S), NC on L9678P -1.0 VSUP V Remote sensor power supply (only L9678PS, NC(1) on L9678P) -0.1 VIN V VSUP external transistor control (only L9678P-S, NC(1) on L9678P) -0.1 VIN V GPOD0 GPO driver 1 drain output pin -0.1 40 V 27 GPOS0 GPO driver 1 source output pin -1.0 VIN V 28 GPOS1 GPO driver 0 source output pin -1.0 VIN V 29 GPOD1 GPO driver 0 drain output pin -0.1 40 V - - - Not connected (1) 30 NC 31 ISOK ISO9141 bus pin -1.0 40 V 32 GNDSUB1 Substrate ground -0.1 0.1 V 33 SR3 Squib 3 low-side pin -0.1 VER V 34 SF3 Squib 3 high-side pin -1.0 VER V 35 SS23 Squib 2 & 3 deployment supply pin -0.1 40 V 36 SG23 Squib 2 & 3 deployment ground pin -0.1 0.1 V 37 SF2 Squib 2 high-side pin -1.0 VER V 38 SR2 Squib 2 low-side pin -0.1 VER V 39 GNDA Analog ground -0.1 0.1 V 40 ISORX ISO9141 receiver pin -0.1 VDDQ+0.1 5.5 V 41 ISOTX ISO9141 transmit pin -0.1 VDDQ+0.1 5.5 V 42 FENL LS driver FET control input -0.1 VDDQ+0.1 5.5 V 43 FENH HS driver FET control input -0.1 VDDQ+0.1 5.5 V 44 SAF_CS0 SPI interface safing sensor chip select -0.1 VDDQ+0.1 5.5 V 45 SAF_CS1 SPI interface safing sensor chip select -0.1 VDDQ+0.1 5.5 V - - - 46 NC 47 WAKEUP Wake-up control input -0.1 VIN V 48 VBATMON Battery line voltage monitor -0.1 18 V 49 VSF Safing regulator supply output -0.1 27 V 50 VIN Battery connection -0.1 35 V 51 VER Reserve voltage -0.1 35 V 52 ERBOOST Energy reserve regulator output -0.1 35 V 53 ERBSTSW Boost switching output -0.1 ERBOOST+1 V - - - Boost regulator ground -0.1 0.1 V EOL disposal control input --0.1 40 V VDD5 external transistor control -0.1 VIN V 54 NC 55 BSTGND 56 ACL 57 BVDD5 Not connected (1) Not connected (1) DocID029274 Rev 1 15/202 201 Absolute and operative maximum ratings L9678P, L9678P-S Table 3. Operative maximum ratings (continued) Pin # Pin name 58 NC 59 VDD5 1. 60 NC 61 COVRACT 62 VDDQ 63 ARM 64 GNDSUB2 Pin function Min. Max. Unit - - - Not connected (1) 5V regulator output -0.1 5.5 V (1) - - - External crossover switch control -0.1 VDDQ+0.1 5.5 V I/O supply -0.1 5.5 V Arming Output -0.1 VDDQ+0.1 5.5 V Substrate ground -0.1 0.1 V Not connected Not connected internally, should be connected to GND externally. 2.3 Pin-out description The L9678P-S/L9678P pin-out is shown below. The package is a LQFP 64-pin full plastic package. 96) 9,1 9(5 (5%2267 (5%676: 1& %67*1' $&/ %9'' 1& 9'' 1& &295$&7 9''4 $50 *1'68% Figure 1. Pin-out description 5(6(7 9%$7021 63,B0,62 :$.(83 63,B026, 1& 63,B6&., 6$)B&6 63,B&6 6$)B&6 :'770 )(1+ 9''9 )(1/ 1& ,627; &9'' ,625; *1'' *1'$ 65 65 6) 6) 6* 6* 66 66 6) 6) 65 65 16/202 DocID029274 Rev 1 *1'68% ,62. 1& *326 *32' *326 *32' 96831& %96831& 5681& 5681& 7KRVHSLQVDUH1&LQWKH/YHUVLRQ 1RWFRQQHFWHGLQWHUQDOO\VKRXOGEHFRQQHFWHGWR*1'H[WHUQDOO\ 95(6',$* '&6 '&6 '&6 '&6 *$3*36 L9678P, L9678P-S 3 Overview and block diagram Overview and block diagram The L9678P is a unique solution specifically targeted for entry level airbag systems while permitting the system designer significant flexibility in configuring the system power and management block. The configurable methodology allows cost versus performance tradeoff without changing devices or circuit board designs. The L9678P contains the base functionality required for entry level systems and can complete a system design with a microcontroller and acceleration sensor. The high level block diagram is shown below Figure 2. Basic features include a configurable power supply & management block, 4 channel squib drivers, 2 channel HS/LS GPO drivers, 4 channel sensor interface, safing logic, watchdog timer, ISO9141 communications and temperature sensor. The L9678P-S device is pin compatible to the L9678P and includes two PSI-5 remote sensor interface channels and a dedicated regulator for remote sensor. DocID029274 Rev 1 17/202 201 Overview and block diagram L9678P, L9678P-S Figure 2. Functional block diagram 9EDW + Q) X) 66 $ X) ) Q) Q) P)WRP) (5%676: (5%2267 9(5 9%DW0RQ X&B)/(1 (5&KDUJH (5 %RRVW %67*1' 9,1 Q) N %9'' %&3 9'' 6DILQJ UHJXODWRU (56ZLWFK 9'' OLQHDU UHJXODWRU 96) *1'68%[ Q) *32' ) 9''9 ) :$.(83 9,JQ 9''4 &9'' 9''9 OLQHDUUHJ *326 *32' *32 GULYHUV VXSSO\ 9,179 UHJ IRU DQDORJ EORFN V *326 'LJLWDO 2XWSXWV 95(6',$* Q) &9''UHJ IRU GLJLWDOEORFN V *1'' 66 *1'$ N %9683 %&3 66 9683 OLQHDU UHJXODWRU 'LJLWDO EORFN 9683 6) 6) ) 6DWHOOLWH'ULYHU 'HFRGHU 2SWLRQDO /6 6) Q) 6) (QDEOH &RQWURO )(1+ +9DQDORJ08; DQG $WR'FRQYHUWHU ELWV )(1/ 65 65 'HFRGHU 568 65 /6 568 Q) 65 '&+DOOVHQVRULQWHUIDFH Q) 6* (QDEOH &RQWURO 6TXLEGULYHUV DQG 'LDJQRVWLF '&6 6DILQJ /RJLF '&6 6* $&/ $50 '&6 Q) '&6 6\VWHPFRQWURO FRQILJXUDWLRQ ,62 WUDQVFHLYHU *1'68% &295$&7 :'7',670 63,B026, 5(6(7 63,B6&. 63,B0,62 6$)B&6 6$)B&6 63,B&6 ,627; ,625; *1',62 ,62. 9EDW '!0'03 18/202 DocID029274 Rev 1 L9678P, L9678P-S Start-up power control 4 Start-up power control 4.1 Power supply overview The L9678P IC contains a complete power management system able to provide all necessary voltages for an entry level airbag application. Moreover L9678P power supply is user configurable allowing the design engineer to balance cost and performance as per their particular application. The power supply block contains the following features: Two 3.3 V internal regulators for operating internal logic (CVDD) and analog circuits (VINT3V3). An external CVDD pin is used to provide filtering capacitance to digital section supply rail. Energy reserve supply (ERBOOST) achieved through an integrated switching boost regulator. The design of this boost regulator is intended to be a cost effective solution with respect to traditional boost regulators because it makes use of a low value inductor with an operative frequency of 1.882 MHz. Switching output is ERBSTSW pin, while voltage feedback input pin is ERBOOST. The output voltage could be set to either 23 V±5% or 33 V±5%. Energy reserve capacitor connected to VER pin. To control in-rush current, a dedicated current generator is implemented between ERBOOST pin and VER pin. Capability to drive an external safing FET (n-ch type) by means of an internal voltage regulator on VSF pin, where a 20 V level is given (configurable to 25V via SPI command). The integrated current limited ER switch requires no external components. This switch is controlled through the integrated power control state machine and is enabled either once a loss of battery is detected or a shutdown command is received. Under the same conditions also the discrete digital pin COVRACT is activated allowing the control of an external optional cross-over switch. One linear regulator VDD5 (5 V nominal, ±4% tolerance) requiring external power transistor and capacitors. VDD5 is used as micro-controller supply (in case of 5 V family controllers) and, in any case, as supply for VDD3V3 rail. One integrated linear regulator VDD3V3 (3.3 V nominal, ±4% tolerance) requiring external capacitors. VDD3V3 is used as micro-controller supply (in case of 3.3 V family controllers). VDDQ pin to provide output voltage rail reference. VDDQ could be connected to either VDD5 or VDD3V3 to enable 5 V or 3.3 V digital communication between device and micro-controller. Capability to drive an external power transistor connected to VIN to provide a 7.2 V rail on VSUP pin. This voltage rail could be used to supply PSI-5 remote sensor. Battery voltage sense input comparator with hysteresis connected to VBATMON pin. Power-up and operation states are carefully handled with respect to the battery level to provide the most effective power supply configuration. All voltage rails (VIN, ERBOOST, VER, VRESDIAG, VDD5, VDD3V3, VSUP and VSF) can be monitored through internal ADC diagnostics. DocID029274 Rev 1 19/202 201 Start-up power control 4.2 L9678P, L9678P-S Power mode control Start-up and power down of the L9678P are controlled by the WAKEUP pin, VBATMON pin, VIN pin device status and the SPI interface. There are four main power modes: power-off, sleep, active and passive mode. Each power mode is described below and represented in the state flow diagram shown in Figure 3. The descriptions include references to conditions and sometimes nominal values. The absolute values for each condition are listed in the electrical specifications section. Figure 3. Power control state flow diagram )URP DQ\VWDWH 325 32:(5 2)) VWDWH 32:(52)) 02'( $OOVXSSOLHVGLVDEOHG :$.(83 :8BPRQ :$.(83! :8BPRQ :$.(83 021,725 VWDWH :$.(83! :8BRQ >:$.(83 :8BRII$1' :DNH8S)LOW @ $:$.( 6WDWH :DNH8S)LOW $1' 9,19,1*22' :DNH8S)LOW 25 9,19,1%$' :DNH8S)LOW $1' 9,1!9,1*22' 6/((302'( 67$5783 VWDWH :DNH8S)LOW $1' 9,1!9,1*22' 7ZDNHXS!PV :DNH8S)LOW $1' 63,B6/((3 581 VWDWH 9%$7 PRQ!9%*22' EODQNLQJWLPHPV $&7,9(02'( 9,19,1*22' 32:(502'( 6+87'2:1 VWDWH (5 VWDWH :DNH8S)LOW $1' 63,B6/((3 7ZDNHXS7LPHU&OHDUHGLI6WDWH :$.(83021,725RU$:$.(DQG:DNH8S)LOW 20/202 DocID029274 Rev 1 3$66,9(02'( '!0'03 L9678P, L9678P-S 4.2.1 Start-up power control Power_off mode During the Power-off mode all supplies are disabled keeping the system in a quiescent state with very low current draw from battery. As soon as WAKEUP > WU_mon the IC will move to Sleep mode. 4.2.2 Sleep mode During the Sleep mode the VINT3V3 and CVDD internal regulators are turned on and the IC is ready for full activation of all the other supplies. As soon as battery voltage is over a minimum threshold, all the other supplies are turned on and the IC enters the Active mode. 4.2.3 Active mode This is the normal operating mode for the system. All power supplies are enabled and the energy reserve boost converter starts to increase the voltage at ERBOOST. Likewise, the VDD5 regulator is turned on. Once the VDD5 has reached a good value, the VDD3V3 regulator starts up. Once the VDD3V3 regulator is in regulation, RESET is released allowing the system microcontroller and other components to begin their power-on sequence. Among these, also the ER charge current generator can be enabled by the microcontroller via a dedicated SPI command. The active mode can be left when either WAKEUP pin or VIN voltage drop down. For the very first 9 ms after having entered the active mode, the WAKEUP pin low would immediately cause the IC to switch back to sleep mode. After that time, WAKEUP pin low must be first confirmed by a MCUSPI_SLEEP command prior to cause the system to switch to passive mode. Passive mode is also entered in case of VIN voltage low. 4.2.4 Passive mode In this state, the energy reserve charge current is disabled and the ERBOOST boost converter is disabled only if the SYS_CFG(KEEP_ERBST_ON)=0. When in passive mode the device automatically activates both the COVRACT output pin and the integrated ER switch to allow VIN to be connected to the ER capacitor. In this time, VIN is supposed to be increased up to almost VER level and the system operation relies on energy from the ER capacitor. Two scenarios are possible: high or low battery. If VIN < VINGOOD, the device moved from RUN state in ACTIVE mode to the ER state. Here, the ER capacitor is depleted while supplying all the regulators until the POR on internal regulator occurs. The threshold to decide the ER switch activation is based on VIN, because VIN is the supply voltage rail for all regulators. If the device has still a good battery level, it entered the POWERMODE SHUTDOWN thanks to WAKEUP pin and MCU command to switch off. In this case, the VER node will be discharged down to approximately VIN level, which then will be supplied out of the battery line. System will continue to run up to a dedicated SPI command which will lead the device to enter the POWEROFF state. The wake-up pin is filtered to suppress undesired state changes resulting from transients or glitches. Typical conditions are shown in the chart below and summarized by state. DocID029274 Rev 1 21/202 201 Start-up power control L9678P, L9678P-S Figure 4. Wake-up input signal behaviour $&7,9(02'( 6/((302'( 3$66,9(02'( :8BRQ :8BRII :$.(83 W PV PV PV PV PV :DNH8S)LOW W '!0'03 Condition summary: 1. No change of sleep mode state but current consumption may exceed specification for sleep mode. 2. The sleep mode current returns within the specified limits. 3. Power supply exits sleep mode. Switchers start operating if applicable voltages exceed under voltage lockouts. As Twakeup time-out is not elapsed, a low level at WAKEUP instantaneously sends the system back to sleep. 4. Sleep Reset is released and the entire system starts operating. A SPI command to enter sleep state would be ignored. 5. No change in system status, a SPI command to enter sleep state would be ignored. 6. No change in system status, but a SPI command to turn off switchers would be accepted and turn the system off. With the below table, all the functionalities of the device are shown with respect to the power states. When one function is flagged, the related circuitry cannot be activated on that state. Table 4. Functions disabling by state Power Off Wake-up monitor Awake Start-up Run Power mode shutdown ER Wakeup detector X - - - - - - Internal regulator X X - - - - - ERBOOST regulator X X X - - X X VSUP regulator (L9678P-S only) X X X - - - - ER CAP charge current source X X X - - X X ER switch X X X X X - - COVRACT Output X X X X X - - Function VDD5 regulator X X X - - - - VDD3V3 regulator X X X - - - - Deployment drivers X X X - - - - VSF safing FET regulator X X X - - - - Remote sensor interfaces (L9678P-S only) X X X - - - - 22/202 DocID029274 Rev 1 L9678P, L9678P-S Start-up power control Table 4. Functions disabling by state (continued) Power Off Wake-up monitor Awake Start-up Run Power mode shutdown ER Watchdog X X X - - - - Diagnostics X X X - - - - DC sensor interface X X X - - - - GPO drivers X X X - - - - Safing logic X X X - - - - ISO9141 X X X - - - - Function Power-up and power-down sequence The behavior of the IC during normal power-up and power-down is shown from Figure 5 to Figure 8. The following sequences represent just a subset of all possible power-up and power-down scenarios. In Figure 5 a normal IC power-up controlled by the state of the WAKEUP pin is shown. Figure 5. Normal power-up sequence - WAKEUP controlled 9,1FXUUHQW 9%$7 9%*22' 9%$7PRQ :8BRQ :$.(83 :8BPRQ 9,17&9'' 325 (5%2267 9'' 9''9 9''9B8 9 5(6(7 5(6(7 +ROG7LPH 63,(5 FKDUJHRQ 4.2.5 9(5 DocID029274 Rev 1 *$3*36 23/202 201 Start-up power control L9678P, L9678P-S Figure 6. Normal power-up sequence - VIN controlled 9,1FXUUHQW 9,1*22' 9%$7 9,1 :8BRQ :8BPRQ :$.(83 9,17&9'' 325 (5%2267 9'' 9''9 9''9B8 9 5(6(7 5(6(7 +ROG7LPH 63,(5 FKDUJHRQ 9(5 *$3*36 Two different scenarios for power-down of the IC are shown here below. Figure 7 describes the powering down for the case when WAKEUP pin is released. As soon as a SPI_SLEEP command is received by the MCU the System will immediately move to the energy reserve (PASSIVE mode). In Figure 8, VIN release begins the shutdown process. 24/202 DocID029274 Rev 1 L9678P, L9678P-S Start-up power control Figure 7. Normal power down sequence - WAKEUP and SPI controlled 9%$7 9%$7021 9%*22' 9%%$' 63, :8BRQ :8BRII 63,B6/((3 FRPPDQG :$.(83 63,B2)) FRPPDQG (56ZLWFKHQDEOH &295$&7 9(5 9'' 9''989 9''9 5(6(7 9,17&9'' 325 9,17&9''89 7KLVSHULRGRIWLPHFDQEHKROGIRUORQJ WLPHEHFDXVHEDWWHU\LVJRRG7KHV\VWHP ZDLWVXQWLODGHGLFDWHGIUDPHWRVZLWFKRII DocID029274 Rev 1 *$3*36 25/202 201 Start-up power control L9678P, L9678P-S Figure 8. Normal power down sequence - VIN controlled 9,1*22' 9,1 9%$7 :$.(83 9,17&9''89 9,17&9'' (56ZLWFKHQDEOH &295$&7 9(5 9'' 9''9 9''989 5(6(7 325 *$3*36 4.2.6 Operating states Different states can be identified while operating the device. These states allow safe and predictable initialization, test, operation and end of line disposal of the part (scrapping). As soon as the RESET signal is de-asserted at the beginning of the ACTIVE mode, the microcontroller powers up. At this stage, L9678P is in the Init state: during this state the device must be initialized by the controller. In particular, the watchdog timer window can be programmed during this state. When the watchdog service begins (upon the first successful watchdog feed), the device switches to Diag state for diagnostics purposes. The remaining configuration of the device is allowed in this state, in particular for safing records and deployment masks. Several tests are also enabled while in this state and all these tests are mutually exclusive to one another. HS and LS switch tests of the squib drivers can only be processed during this diag state. Also high side safing FET can only be run during this state. When not in diag state, any 26/202 DocID029274 Rev 1 L9678P, L9678P-S Start-up power control commands for squib driver switch tests will be ignored. Other checks are also performed: on the arming output to check for non stuck-at conditions on the pin and for the configured firing time. The SSM remains in this state until commanded to transition into the Safing state or Scrap state via the dedicated SPI commands. Upon reception of the SAFING_STATE command while in Diag state, the device enters Safing state. This is the primary run-time state for normal operation, and the logic performs the safing function, including monitoring of sensor data and setting of the ARM signal. The only means of exiting Safing state is by the assertion of the SSM_Reset signal. The Scrap state is entered upon reception of the SCRAP_STATE command while in Diag state. While in Scrap state, the part allows the main microcontroller to initiate a transition to Arming state, and monitoring of the Remote Sensor SPI interface (in L9678P-S) and the safing logic is disabled. From Scrap state, the device can transition to Arming state only, and the only means of moving back to Init state is through an SSM_Reset. In order to protect from inadvertent entry into Arming state, and to prevent undesired activation of the safing signals, a dedicated mechanism is used to control entry into, and exit from Arming state. This mechanism is described further in Section 10.7: Additional communication line. While in Arming state, the arming output is asserted. Exit from Arming state occurs when the time-out is reached without a correct ACL signal or when SSM_Reset is asserted. Upon exit, the device re-enters Scrap state, except for the case of SSM_Reset, which results in entry into Init state. System Operating states are shown in Figure 9. Figure 9. System operating state diagram 33-2ESET #ONFIGURATIONENABLEDFOR 7ATCHDOGTIMINGTHRESHOLDS !2-INOUTSELECT 235OUTPUTTYPE'M37 $IAGSAMPLESELECT 63&VOLTAGESELECT )NIT 3TATE 7$25. 7$/6%22)$% #ONFIGURATIONENABLEDFOR 3AFINGRECORDSANDCONTROL $EPLOYMASK (3,3'0/ $IAG 3TATE 30)3!&).'?34!4% 4ESTINGENABLEDFOR !2-X63& $EPLOYTIME (3,3(33&%4 30)3#2!0?34!4% !2-63&DETERMINED BYSAFINGENGINE 3AFING 3TATE 3CRAP 3TATE !2-X 63& !#,'//$ !#,"!$ !RMING 3TATE !2-X 63& '!0'03 DocID029274 Rev 1 27/202 201 Start-up power control 4.3 L9678P, L9678P-S Configurable system power control The overall operating voltage requirements of the device are different considering the L9678P device (without VSUP regulator and remote sensor interface) or the L9678P-S device (with VSUP regulator and remote sensor interface). Performance for the L9678P-S device is influenced by the PSI-5 remote sensor interfaces. This function requires a minimum voltage at the channel's input (VSUP) to ensure a proper functionality for the sensor. An integrated current generator (30 mA nominal) is used to charge the external energy reserve capacitor connected to VER pin. Any system load (regulators, interfaces, squib driver diagnostics) operates directly from battery until battery is lost. Upon detecting low or loss of battery, the crossover switch enables operation from energy reserve. 4.3.1 ERBOOST switching regulator The L9678P IC uses an advanced energy reserve switching regulator operating at 1.882 MHz nominal. The higher switching frequency enables the user to select smaller less expensive inductors and moves the operating frequency to permit easier compliance with system emissions. The energy reserve boost regulator charges the external system tank capacitor through an integrated fixed current source significantly reducing in-rush currents typical of large energy reserve capacitors. The boost circuit provides energy for the reserve capacitor with assumed run time load of less than 20 mA and to the VSF regulator. Once system shutdown is initiated or a loss of battery condition is diagnosed, the boost regulator is disabled so that system power can be taken from the energy reserve capacitor. The energy reserve boost regulator defaults to 23 V at power-on and can be set to 33 V nominal by the user through an SPI command. The boost converter can also be disabled by the user through an SPI command. Enabling, disabling and setting the boost output voltage are done through the System Control (SYS_CTL) register. Boost converter diagnostics include over voltage and under voltage. The under voltage condition is reported by the ER_BST_NOK bit in the POWER_STATE register. The integrated FET featuring the boost switch is protected against short to battery by means of a thermal shutdown circuit. When thermal fault is detected the FET is switched off and latched in this state until the related fault flag ERBST_OT in the FLTSR register is read. In case of loss of ground the FET is switched off and automatically reactivated as soon as ground connection is restored. Overvoltage protection from load dump and inductive flyback is provided via an active clamp and an ER_Boost disable circuitry, see Figure 10. Figure 10. ERBOOST block diagram 9,1 &/$03B(17+ (5%67 'ULYHU &RQWURO (5%67B',6$%/( 7+ HQDEOH (5%2267 (5%676: &RPS &/$03 %67*1' *$3*36 28/202 DocID029274 Rev 1 L9678P, L9678P-S Start-up power control Normal run time power for the system is provided directly from the battery input, not from the boost. Boost energy is available to the system through the energy reserve crossover switch once battery is lost or a commanded system shutdown is initiated. By default, the ERBoost regulator is switched off once enetered in passive mode. To keep active the ERBoost also in passive mode the SPI bit SYS_CFG(KEEP_ERBST_ON) must be set to 1. Figure 11. ERBOOST control behaviour 32:(52))B02'( 256/((3B02'( (5%2267 SRZHUPRGHFRQWURO (5%672)) 'HIDXOW6<6B&7/(5B%67B(1 DW325 $FWLYHBPRGH $1' 9%$7021!9%*22' $1' 9,1!9,1*22' $1' 6<6B&7/(5 B%67 B(1 $1' *1'%2267BORVV $1' (5%67 B27 $1' (5%67B',6$%/( 63,B6<6B&7/(5B%67B(1 $1' (5%67 B27 >$FWLYHBPRGH 25 (5%6767%< 9%$70219%%$' $1' (5BVWDWH 25 6<6B&)*.((3B(5%67B21 @ 25 9,19,1%$' 63,B)/7655($' 25 $1' 6<6&7/(5B%67B(1 (5%67 B27 25 *1'%2267BORVV 25 (5%67B',6$%/( (5%6721 (5%6727 (5%67 B27 '!0'03 4.3.2 Energy reserve capacitor charging circuit The energy reserve capacitor connected to VER pin can be charged in an efficient way by means of a current generator. Its capability is 30 mA nominal, so that for example a 2.2 mF capacitor can be charged in approximately 2 s to 24 V. The current generator is activated or deactivated by SPI command only while in ACTIVE mode. When not in ACTIVE mode, the generator is always switched off in order to decouple ERBOOST node voltage from VER reserve voltage. Figure 12. ER cap charging circuit 660B5HVHW (5&$3FKDUJHFRQWURO 'HIDXOW6<6B&7/(5B&85B(1 DW 660B5(6(7 (5BFKDUJHB21 $FWLYHBPRGH $1' 6<6B&7/(5B&85B(1 $FWLYHBPRGH 25 6<6B&7/(5B&85B(1 (5BFKDUJHB21 '!0'03 DocID029274 Rev 1 29/202 201 Start-up power control 4.3.3 L9678P, L9678P-S ER switch and COVRACT pin L9678P has an integrated circuit that can operate as a crossover switch with Rds(on) = 1.5 Ω nominal. The ER switch is automatically activated upon entering the PASSIVE mode. Voltage difference between VIN and VER is monitored in order to prevent VER back-feeding when VIN exceeds VER by 0.1V max. The ER switch is automatically deactivated upon the above mentioned overvoltage detection. The ER control implements a thermal protection and a current limitation guard to avoid in-rush charge current at ER switch enabling or at fault condition for short to ground. During PASSIVE mode the discrete digital output pin COVRACT is activated to allow for external optional cross-over switch control. Figure 13. ER switch control behaviour 77LPHRXW 325 ³'HSOR\PHQWLQSURJUHVV´ (5BVZLWFKB67%< 6WDUW7PV (5BVZLWFKB2)) 3DVVLYHBPRGH $1' (5B6:B29 3DVVLYHBPRGH 25 (5B6:B29 (5B6:,7&+B76' $1' ³GHSOR\PHQWQRWLQ SURJUHVV´ (5B6:,7&+B76' (5BVZLWFKB2))B27 (5BVZLWFKB21 (5B6:B29 LI9,19(59 30/202 (5B6:,7&+B76' $1' ³GHSOR\PHQWQRWLQSURJUHVV´ '!0'03 DocID029274 Rev 1 L9678P, L9678P-S 4.3.4 Start-up power control VDD5 linear regulator The VDD5 linear regulator provides 5 V system voltage derived directly from battery line with an external power transistor to reduce integrated circuit power dissipation. This voltage rail is used in case a 5 V micro-controller is adopted. The stability of the regulation loop is guaranteed by use of a small external capacitor. Current limitation is provided by means of controlling output current on BVDD5 pin. The external pass transistor gives the flexibility to easily address different current loads in case of different micro-controllers. The VDD5 regulator is enabled in the ACTIVE mode and continues operation in the PASSIVE mode using power from energy reserve. VDD5 supply is monitored for system reset (see Power On Reset and Reset); voltage monitoring is based on a second redundant bandgap voltage reference. Figure 14. VDD5 control behavior 9'' SRZHUPRGHFRQWURO 32:(52))B02'( 256/((3B02'( 9''B2)) &OHDU9''B29 7WLPHRXW $&7,9(B02'(25 3$66,9(B02'( 9''BUDPSXS 9''B896' $1'7WLPHRXW 25 9''B29 6WDUW7PV 9''B896'PDVNLQJ 9'' 6+87'2:1 6WDUW7PV /DWFK9''B29 9''B89/ $1' 7WLPHRXW 9''B21 9''B89/ 25 9''B29 25 9''9B29 '!0'03 DocID029274 Rev 1 31/202 201 Start-up power control 4.3.5 L9678P, L9678P-S VDD3V3 linear regulator The fully integrated VDD3V3 linear regulator provides 3.3 V system voltage derived directly from VDD5. This voltage rail is used in case a 3.3 V micro-controller is adopted. The stability of the regulation loop is guaranteed by use of a small external capacitor. Current limitation is implemented and its maximum current capability on VDD3V3 is 125 mA. The VDD3V3 regulator is enabled in the ACTIVE mode and continues operation in the PASSIVE mode using power from energy reserve. VDD3V3 supply is monitored for system reset (see Power On Reset and Reset); voltage monitoring is based on a second redundant bandgap voltage reference. Note that if the VDDQ pin (digital outputs supply) is connected to the VDD3V3, and any of the digital output pins are connected to 5 V logic, there is no internal blocking diode to prevent back-feeding this 3.3 V supply. Figure 15. VDD3V3 control behaviour 6/((3B02'( 25 32:(52))B02'( 9''9 2)) 9''9 SRZHUPRGHFRQWURO 7WLPHRXW ,Q9''B21VWDWH 9''9 6+87'2:1 6WDUW7PV 1RWLQ9''B21VWDWH 9''9B21 '!0'03 32/202 DocID029274 Rev 1 L9678P, L9678P-S 4.3.6 Start-up power control VSUP linear regulator (optional) The VSUP linear regulator can be used to provide 7 V derived directly from battery line with an external power transistor. This voltage rail can be used mainly to supply PSI-5 remote sensor interface. The stability of the regulation loop is guaranteed by use of a small external capacitor. Current limitation is provided by means of controlling output current on BVSUP pin. The external pass transistor gives the flexibility to easily address different current loads. The VSUP regulator is enabled in the ACTIVE mode and continues operation in the PASSIVE mode using power from energy reserve. In the case of L9678P (no remote sensor interfaces), VSUP can be externally connected to ground. Figure 16. VSUP control behavior 9683 SRZHUPRGHFRQWURO 32:(52))B02'( 256/((3B02'( 'HIDXOW6<6B&7/9683B(1 DW325 9683 2)) $&7,9(B02'(25 3$66,9(B02'( $1' 6<6B&7/9683B(1 9683 UDPSXS 6WDUW7PV 9683B89PDVNLQJ 7WLPHRXW 6<6B&7/9683B(1 9683B89 $1'7WLPHRXW 9683 6+87'2:1 6WDUW7 PV 9683B89 $1' 7WLPHRXW 9683B89 9683B21 '!0'03 4.3.7 VSF linear regulator The fully integrated VSF linear regulator provides a 20V voltage nominal (configurable to 25V via SPI command) derived directly from ERBOOST. This voltage rail is used in case an external n-ch safing FET has to be used. The stability of the regulation loop is guaranteed by use of a small external capacitor. Current limitation is implemented. A minimum drop-out of 2V between ERBOOST and VSF is needed. VSF is enabled by the assertion of any ARMxINT signal, or by the assertion of (FENH and not (FENL)), as shown in Figure 17 DocID029274 Rev 1 33/202 201 Start-up power control L9678P, L9678P-S Figure 17. VSF control logic !2-?%. 3!&%3%, !2-).4 !2-).4 &%.( &%., 3!&).'34!4% $)!'34!4% 63&?%. $34%3463& !2-).'34!4% 4.4 '!0'03 Reset functions The device provides reset logic to safely control system operation in the event of internal ECU failures. Several internal reset signals are generated depending on the type of failure detected. In the following figure, the voltage monitoring diagram is shown. BG_ERR reports error on the bandgap reference voltage, VREG_ERR reports errors on any of the internal regulators (VINT3V3 for 3.3 V analog circuitry, CVDD for 3.3 V digital circuitry), VDD3V3_ERR and VDD5_ERR report errors on VDD3V3 and VDD5 regulators, respectively. Figure 18. Internal voltage errors 9%*5 5HIHUHQFH 9,179 5HIHUHQFHIRU &RQWUROOLQJDOOVXSSOLHV 9%*0 0RQLWRU 9%*B5($'< 9,179 0RQLWRU 9'' 9''9 9'' *1'68%[ 9'' 0RQLWRU 9''9 0RQLWRU 9'' 0RQLWRU *1'$ *1'$ 0RQLWRU *1'' *1'' 0RQLWRU 9,17B29 9,17B89 9''B29 9''B89 9''9B29 9''9B89 9''B29 9''B89 95(*B(55 9''9B(55 9''B(55 *1'$B(55 *1'B(55 34/202 *1''B(55 '!0'03 DocID029274 Rev 1 L9678P, L9678P-S Start-up power control An active low pin output (RESET pin) is driven from the L9678P to allow resetting of external devices such as the microcontroller, sensors, and other ICs within the ECU. Three internal reset signals are generated by the device: POR Power On Reset - This reset is asserted when a failure is detected in the internal supplies or bandgap circuits. When active, all other resets are asserted. WSM_RESET Watchdog State Machine Reset - This reset is generated when the POR is active. SSM_RESET System State Machine Reset - This reset is asserted when the POR or the WSM_RESET are active, or when a failure is detected in either Watchdog state machine. The RESET pin is the active-low signal driven on the output pin, and is an inverted form of SSM_RESET. The cause of a RESET activation is latched and reported into the Fault Status Register FLTSR and cleared on SPI reading. The reset logic shall be controlled as shown in the diagram below: Figure 19. Reset control diagram *1'B(55 &/.)5(55 325 9%*B5($'< 95(*B(55 9''B(55 :60B5HVHW 6<6B&)*',6B9''B(55 9''9B(55 PV VWUHWFK 660B5HVHW :'5(6(7VWDWH 5(6(7SLQ '!0'03 GND_ERR is a general fault signal with the purpose of driving the device into POR when either GNDA or GNDD is shifted more than 300 mV nominal with respect to the reference ground pins GNDSUB. DocID029274 Rev 1 35/202 201 SPI interface 5 L9678P, L9678P-S SPI interface The L9678P system solution device has many user selectable features controlled through serial communications by the integrated microcontroller. The SPI interface provides configuration, control and status functions for the device. The global SPI interface consists of an input shift register, output shift register and four control signals. SPI_MOSI is the data input to the input shift register. SPI_MISO is the data output from the output shift register. SPI_SCK is the clock source input while SPI_CS is the active-low chip select input. All SPI communications are executed in exact 32 bit increments. The general format of the 32 bit transmission is shown in Table 5. Data to the IC (i.e. SPI_MOSI) consists of a target read register ID (RID), a target write register ID (WID), write data parity (WPAR) and 16 bits of data (WRITE). WRITE data is the data to be written to the target write register indicated by WID. Data returned from the IC (i.e. SPI_MISO) consists of a global status word (GSW), read data parity (RPAR) and 20 bits of data (READ). READ data will be the contents of the target read register as indicated by the RID bits. The parity bits WPAR and RPAR cover all the 32 bits of the MOSI and MISO frames, respectively. Odd parity type is used. Table 5. SPI register R/W SPI register R/W SPI_MOSI SPI_MISO SPI_MOSI SPI_MISO 31 GID 30 29 15 14 13 28 27 26 25 RID[6:0] GSW[10:0] 12 11 10 9 24 23 22 8 7 6 WRITE[15:0] READ[15:0] 21 20 19 WID[6:0] RPAR 5 4 3 18 17 16 WPAR READ[19:16] 2 1 0 The communications is controlled through SPI_CS, enabling and disabling communication. When SPI_CS is at logic high, all SPI communication I/O is tri-stated and no data is accepted. When SPI_CS is low, data is latched on the rising edge of SPI_SCK and data is shifted on the falling edge. The SPI_MOSI pin receives serial data from the master with MSB first. Likewise for SPI_MISO, data is read MSB first, LSB last. The L9678P IC contains a data validation method through the SPI_SCK input to keep transmissions with not exactly 32 bits from being written to the device. The SPI_SCK input counts the number of received clocks and should the clock counter exceed or count fewer than 32 clocks, the received message is discarded and a SPI_FLT bit is flagged in the Global Status Word (GSW). The SPI_FLT bit is also set in case of parity error detected on the MOSI frame. Any attempt access to a register with a forbidden access mode (read or write) is not leading to changes to the internal registers but the SPI_FLT bit is not set in this case. The SPI interface consists of several 32-bit registers to allow for configuration, control and status of the IC as well as special manufacturing test modes. The register definition is defined by the read register ID (RID) and the write register ID (WID) as shown in Table 6 Global SPI Register Table. Global ID bit (GID) is used to extend available register addresses, but it is shared between RID and WID; only RID and WID with the same GID value can be addressed within the same SPI word. The operating states here show in which states the SPI write command is processed. 36/202 DocID029274 Rev 1 L9678P, L9678P-S SPI interface The L9678P checks the validity of the received WID and RID fields in the SPI_MOSI frame. Should a SPI write command with WID matching a writeable register be received in an illegal operating state, the command will be discarded and the ERR_WID bit will be flagged in the next Global Status Word GSW. The ERR_WID flag is not set in case WID is addressing a read/only register. Should a SPI read command be received containing an unused RID address, the command will be discarded and the ERR_RID bit will be flagged in the current GSW. DocID029274 Rev 1 37/202 201 Operating State(1) GID RID / WID Hex R/W Name Description Init Diag Ssafing Scrap Arming DocID029274 Rev 1 0 0 0 0 0 0 0 0 $00 R FLTSR 0 0 0 0 0 0 0 1 $01 R/W SYS_CFG Power supply configuration (regulators' output voltage selection, enable internal safing engine) X 0 0 0 0 0 0 1 0 $02 R/W SYS_CTL Register to control the power management (enable for tests in diag state, enable for power mode control bits) X X X X X 0 0 0 0 0 0 1 1 $03 W SPI_SLEEP Sleep Mode command X X X X X 0 0 0 0 0 1 0 0 $04 R SYS_STATE Read register to report in which state the power control state machine is and also in which Operating state we are. 0 0 0 0 0 1 0 1 $05 R POWER_STATE 0 0 0 0 0 1 1 0 $06 R/W DCR_0 X X X X 0 0 0 0 0 1 1 1 $07 R/W DCR_1 X X X X 0 0 0 0 1 0 0 0 $08 R/W DCR_2 X X X X 0 0 0 0 1 0 0 1 $09 R/W DCR_3 X X X X 0 0 0 0 1 0 1 0 $0A 0 0 0 0 1 0 1 1 $0B 0 0 0 0 1 1 0 0 $0C 0 0 0 0 1 1 0 1 $0D 0 0 0 0 1 1 1 0 $0E 0 0 0 0 1 1 1 1 $0F 0 0 0 1 0 0 0 0 $10 0 0 0 1 0 0 0 1 $11 0 0 0 1 0 0 1 0 $12 R/W DEPCOM SPI interface 38/202 Table 6. Global SPI register map Global fault status register Power state register (feedback on regulators' status and voltage thresholds) Deployment configuration register X X L9678P, L9678P-S Deployment command register Operating State(1) GID RID / WID Hex R/W Name Description Init DocID029274 Rev 1 0 0 1 0 0 1 1 $13 R DSR_0 0 0 0 1 0 1 0 0 $14 R DSR_1 0 0 0 1 0 1 0 1 $15 R DSR_2 0 0 0 1 0 1 1 0 $16 R DSR_3 0 0 0 1 0 1 1 1 $17 0 0 0 1 1 0 0 0 $18 0 0 0 1 1 0 0 1 $19 0 0 0 1 1 0 1 0 $1A 0 0 0 1 1 0 1 1 $1B 0 0 0 1 1 1 0 0 $1C 0 0 0 1 1 1 0 1 $1D 0 0 0 1 1 1 1 0 $1E 0 0 0 1 1 1 1 1 $1F R DCMTS01 0 0 1 0 0 0 0 0 $20 R DCMTS23 0 0 1 0 0 0 0 1 $21 0 0 1 0 0 0 1 0 $22 0 0 1 0 0 0 1 1 $23 0 0 1 0 0 1 0 0 $24 0 0 1 0 0 1 0 1 $25 R/W SPIDEPEN 0 0 1 0 0 1 1 0 $26 R LP_GNDLOSS 0 0 1 0 0 1 1 1 $27 R VERSION_ID 0 0 1 0 1 0 0 0 $28 R/W WD_RETRY_CONF Watchdog Retry Configuration X 0 0 1 0 1 0 0 1 $29 0 0 1 0 1 0 1 0 $2A R/W WDTCR Watchdog timer configuration X 0 0 1 0 1 0 1 1 $2B R/W WD1T Watchdog key transmission & Test mode X Arming Deployment status register Deployment current monitor register Lock/Unlock command X X Loss of ground fault for squib loops Device version X X X X SPI interface 39/202 0 Diag Ssafing Scrap L9678P, L9678P-S Table 6. Global SPI register map (continued) Operating State(1) GID RID / WID Hex R/W Name Description Init R WD_STATE Watchdog state CLK_CONF Clock Configuration Diag Ssafing Scrap DocID029274 Rev 1 0 0 1 0 1 1 0 0 $2C 0 0 1 0 1 1 0 1 $2D R/W 0 0 1 0 1 1 1 0 $2E 0 0 1 0 1 1 1 1 $2F 0 0 1 1 0 0 0 0 $30 W SCRAP_STATE Scrap State command X 0 0 1 1 0 0 0 1 $31 W SAFING_STATE Safing State command X 0 0 1 1 0 0 1 0 $32 0 0 1 1 0 0 1 1 $33 0 0 1 1 0 1 0 0 $34 0 0 1 1 0 1 0 1 $35 W WD_TEST 0 0 1 1 0 1 1 0 $36 R/W SYSDIAGREQ Diagnostic command for system safing 0 0 1 1 0 1 1 1 $37 R LPDIAGSTAT Diagnostic results register for deployment loops 0 0 1 1 1 0 0 0 $38 R/W LPDIAGREQ Diagnostic configuration command for deployment loops 0 0 1 1 1 0 0 1 $39 R/W SWCTRL 0 0 1 1 1 0 1 0 $3A R/W 0 0 1 1 1 0 1 1 0 Watchdog first and second level test Arming SPI interface 40/202 Table 6. Global SPI register map (continued) X X X X X X X X X X DC sensor diagnostic configuration X X X X DIAGCTRL_A In WID is AtoD converter control register A. In RID is AtoD result A request. X X X X $3B R/W DIAGCTRL_B In WID is AtoD converter control register B. In RID is AtoD result B request. X X X X 0 1 1 1 1 0 0 $3C R/W DIAGCTRL_C In WID is AtoD converter control register C. In RID is AtoD result C request. X X X X 0 0 1 1 1 1 0 1 $3D R/W DIAGCTRL_D In WID is AtoD converter control register D. In RID is AtoD result D request. X X X X 0 0 1 1 1 1 1 0 $3E 0 0 1 1 1 1 1 1 $3F 0 1 0 0 0 0 0 0 $40 X L9678P, L9678P-S Operating State(1) GID RID / WID Hex R/W Name Description Init 0 1 0 0 0 0 0 1 $41 0 1 0 0 0 0 1 0 $42 R/W GPOCR 0 1 0 0 0 0 1 1 $43 R/W 0 1 0 0 0 1 0 0 $44 0 1 0 0 0 1 0 1 $45 0 1 0 0 0 1 1 0 0 Diag Ssafing Scrap Arming DocID029274 Rev 1 X X GPOCTRL0 General Purpose Output control register X X X X X R/W GPOCTRL1 General Purpose Output control register X X X X X $46 R GPOFLTSR General Purpose Output fault status register 1 0 0 0 1 1 1 $47 R ISOFLTSR ISO9141 fault status register 0 1 0 0 1 0 0 0 $48 0 1 0 0 1 0 0 1 $49 0 1 0 0 1 0 1 0 $4A R/W RSCR1 0 1 0 0 1 0 1 1 $4B R/W RSCR2 0 1 0 0 1 1 0 0 $4C 0 1 0 0 1 1 0 1 $4D 0 1 0 0 1 1 1 0 $4E R/W X X X 0 1 0 0 1 1 1 1 $4F 0 1 0 1 0 0 0 0 $50 R RSDR1 0 1 0 1 0 0 0 1 $51 R RSDR2 0 1 0 1 0 0 1 0 $52 0 1 0 1 0 0 1 1 $53 0 1 0 1 0 1 0 0 $54 0 1 0 1 0 1 0 1 $55 0 1 0 1 0 1 1 0 $56 0 1 0 1 0 1 1 1 $57 0 1 0 1 1 0 0 0 $58 0 1 0 1 1 0 0 1 $59 RSCTRL PSI5 configuration register X X Remote sensor control register X Remote sensor data and fault flag registers SPI interface 41/202 General Purpose Output configuration L9678P, L9678P-S Table 6. Global SPI register map (continued) Operating State(1) GID RID / WID Hex R/W Name Description Init Diag Ssafing Scrap DocID029274 Rev 1 0 1 0 1 1 0 1 0 $5A 0 1 0 1 1 0 1 1 $5B 0 1 0 1 1 1 0 0 $5C 0 1 0 1 1 1 0 1 $5D 0 1 0 1 1 1 1 0 $5E 0 1 0 1 1 1 1 1 $5F 0 1 1 0 0 0 0 0 $60 0 1 1 0 0 0 0 1 $61 0 1 1 0 0 0 1 0 $62 0 1 1 0 0 0 1 1 $63 0 1 1 0 0 1 0 0 $64 0 1 1 0 0 1 0 1 $65 0 1 1 0 0 1 1 0 $66 0 1 1 0 0 1 1 1 $67 0 1 1 0 1 0 0 0 $68 0 1 1 0 1 0 0 1 $69 0 1 1 0 1 0 1 0 $6A 0 1 1 0 1 0 1 1 $6B 0 1 1 0 1 1 0 0 $6C 0 1 1 0 1 1 0 1 $6D 0 1 1 0 1 1 1 0 $6E R/W LOOP_MATRIX_ARM1 Assignment of ARM 1 pin to which LOOPS X 0 1 1 0 1 1 1 1 $6F LOOP_MATRIX_ARM2 Assignment of ARM 2 pin to which LOOPS X 0 1 1 1 0 0 0 0 $70 0 1 1 1 0 0 0 1 $71 R/W SAF_ALGO_CONF Safing Algorithm configuration register R ARM_STATE Status of internal arming signals FENH, FENL, ARMx X L9678P, L9678P-S R/W Arming SPI interface 42/202 Table 6. Global SPI register map (continued) Operating State(1) GID RID / WID Hex R/W Name Description Init Diag Ssafing Scrap DocID029274 Rev 1 1 1 1 0 0 1 0 $72 0 1 1 1 0 0 1 1 $73 R AEPSTS_ARM1 0 1 1 1 0 1 0 0 $74 R AEPSTS_ARM2 0 1 1 1 0 1 0 1 $75 0 1 1 1 0 1 1 0 $76 0 1 1 1 0 1 1 1 $77 0 1 1 1 1 0 0 0 $78 0 1 1 1 1 0 0 1 $79 0 1 1 1 1 0 1 0 $7A 0 1 1 1 1 0 1 1 $7B 0 1 1 1 1 1 0 0 $7C 0 1 1 1 1 1 0 1 $7D 0 1 1 1 1 1 1 0 $7E 0 1 1 1 1 1 1 1 $7F R/W SAF_ENABLE 1 0 0 0 0 0 0 0 $80 R/W SAF_REQ_MASK_1 X 1 0 0 0 0 0 0 1 $81 R/W SAF_REQ_MASK_2 X 1 0 0 0 0 0 1 0 $82 R/W SAF_REQ_MASK_3 X 1 0 0 0 0 0 1 1 $83 R/W SAF_REQ_MASK_4 X 1 0 0 0 0 1 0 0 $84 1 0 0 0 0 1 0 1 $85 1 0 0 0 0 1 1 0 $86 1 0 0 0 0 1 1 1 $87 1 0 0 0 1 0 0 0 $88 1 0 0 0 1 0 0 1 $89 1 0 0 0 1 0 1 0 $8A Arming pulse stretch timer value Safing record enable X X X X Safing record request mask SPI interface 43/202 0 Arming L9678P, L9678P-S Table 6. Global SPI register map (continued) Operating State(1) GID RID / WID Hex R/W Name Description Init Diag Ssafing Scrap DocID029274 Rev 1 1 0 0 0 1 0 1 1 $8B 1 0 0 0 1 1 0 0 $8C 1 0 0 0 1 1 0 1 $8D 1 0 0 0 1 1 1 0 $8E 1 0 0 0 1 1 1 1 $8F 1 0 0 1 0 0 0 0 $90 1 0 0 1 0 0 0 1 $91 1 0 0 1 0 0 1 0 $92 1 0 0 1 0 0 1 1 $93 R/W SAF_REQ_TARGET_1 X 1 0 0 1 0 1 0 0 $94 R/W SAF_REQ_TARGET_2 X 1 0 0 1 0 1 0 1 $95 R/W SAF_REQ_TARGET_3 X 1 0 0 1 0 1 1 0 $96 R/W SAF_REQ_TARGET_4 X 1 0 0 1 0 1 1 1 $97 1 0 0 1 1 0 0 0 $98 1 0 0 1 1 0 0 1 $99 1 0 0 1 1 0 1 0 $9A 1 0 0 1 1 0 1 1 $9B 1 0 0 1 1 1 0 0 $9C 1 0 0 1 1 1 0 1 $9D 1 0 0 1 1 1 1 0 $9E 1 0 0 1 1 1 1 1 $9F 1 0 1 0 0 0 0 0 $A0 1 0 1 0 0 0 0 1 $A1 1 0 1 0 0 0 1 0 $A2 1 0 1 0 0 0 1 1 $A3 Arming SPI interface 44/202 Table 6. Global SPI register map (continued) Safing record request mask Safing record request target L9678P, L9678P-S Operating State(1) GID RID / WID Hex R/W Name Description Init Diag Ssafing Scrap DocID029274 Rev 1 0 1 0 0 1 0 0 $A4 1 0 1 0 0 1 0 1 $A5 1 0 1 0 0 1 1 0 $A6 R/W SAF_RESP_MASK_1 X 1 0 1 0 0 1 1 1 $A7 R/W SAF_RESP_MASK_2 X 1 0 1 0 1 0 0 0 $A8 R/W SAF_RESP_MASK_3 X 1 0 1 0 1 0 0 1 $A9 R/W SAF_RESP_MASK_4 X 1 0 1 0 1 0 1 0 $AA 1 0 1 0 1 0 1 1 $AB 1 0 1 0 1 1 0 0 $AC 1 0 1 0 1 1 0 1 $AD 1 0 1 0 1 1 1 0 $AE 1 0 1 0 1 1 1 1 $AF 1 0 1 1 0 0 0 0 $B0 1 0 1 1 0 0 0 1 $B1 1 0 1 1 0 0 1 0 $B2 1 0 1 1 0 0 1 1 $B3 1 0 1 1 0 1 0 0 $B4 1 0 1 1 0 1 0 1 $B5 1 0 1 1 0 1 1 0 $B6 1 0 1 1 0 1 1 1 $B7 1 0 1 1 1 0 0 0 $B8 1 0 1 1 1 0 0 1 $B9 R/W SAF_RESP_TARGET_1 1 0 1 1 1 0 1 0 $BA R/W SAF_RESP_TARGET_2 1 0 1 1 1 0 1 1 $BB R/W SAF_RESP_TARGET_3 1 0 1 1 1 1 0 0 $BC R/W SAF_RESP_TARGET_4 Safing record request target Safing record response mask X Safing record response target X X X SPI interface 45/202 1 Arming L9678P, L9678P-S Table 6. Global SPI register map (continued) Operating State(1) GID RID / WID Hex R/W Name Description Init Diag Ssafing Scrap DocID029274 Rev 1 1 0 1 1 1 1 0 1 $BD 1 0 1 1 1 1 1 0 $BE 1 0 1 1 1 1 1 1 $BF 1 1 0 0 0 0 0 0 $C0 1 1 0 0 0 0 0 1 $C1 1 1 0 0 0 0 1 0 $C2 1 1 0 0 0 0 1 1 $C3 1 1 0 0 0 1 0 0 $C4 1 1 0 0 0 1 0 1 $C5 1 1 0 0 0 1 1 0 $C6 1 1 0 0 0 1 1 1 $C7 1 1 0 0 1 0 0 0 $C8 1 1 0 0 1 0 0 1 $C9 1 1 0 0 1 0 1 0 $CA 1 1 0 0 1 0 1 1 $CB 1 1 0 0 1 1 0 0 $CC R/W SAF_DATA_MASK_1 X 1 1 0 0 1 1 0 1 $CD R/W SAF_DATA_MASK_2 X 1 1 0 0 1 1 1 0 $CE R/W SAF_DATA_MASK_3 X 1 1 0 0 1 1 1 1 $CF R/W SAF_DATA_MASK_4 X 1 1 0 1 0 0 0 0 $D0 1 1 0 1 0 0 0 1 $D1 1 1 0 1 0 0 1 0 $D2 1 1 0 1 0 0 1 1 $D3 1 1 0 1 0 1 0 0 $D4 1 1 0 1 0 1 0 1 $D5 Arming SPI interface 46/202 Table 6. Global SPI register map (continued) Safing record response target L9678P, L9678P-S Safing record data mask Operating State(1) GID RID / WID Hex R/W Name Description Init Diag Ssafing Scrap DocID029274 Rev 1 1 0 1 0 1 1 0 $D6 1 1 0 1 0 1 1 1 $D7 1 1 0 1 1 0 0 0 $D8 1 1 0 1 1 0 0 1 $D9 1 1 0 1 1 0 1 0 $DA 1 1 0 1 1 0 1 1 $DB 1 1 0 1 1 1 0 0 $DC 1 1 0 1 1 1 0 1 $DD 1 1 0 1 1 1 1 0 $DE 1 1 0 1 1 1 1 1 $DF R/W SAF_THRESHOLD_1 X 1 1 1 0 0 0 0 0 $E0 R/W SAF_THRESHOLD_2 X 1 1 1 0 0 0 0 1 $E1 R/W SAF_THRESHOLD_3 X 1 1 1 0 0 0 1 0 $E2 R/W SAF_THRESHOLD_4 X 1 1 1 0 0 0 1 1 $E3 1 1 1 0 0 1 0 0 $E4 1 1 1 0 0 1 0 1 $E5 1 1 1 0 0 1 1 0 $E6 1 1 1 0 0 1 1 1 $E7 1 1 1 0 1 0 0 0 $E8 1 1 1 0 1 0 0 1 $E9 1 1 1 0 1 0 1 0 $EA 1 1 1 0 1 0 1 1 $EB 1 1 1 0 1 1 0 0 $EC 1 1 1 0 1 1 0 1 $ED 1 1 1 0 1 1 1 0 $EE Safing record data mask Safing record threshold SPI interface 47/202 1 Arming L9678P, L9678P-S Table 6. Global SPI register map (continued) Operating State(1) GID RID / WID Hex R/W Name Description Init Diag Ssafing Scrap DocID029274 Rev 1 1 1 1 0 1 1 1 1 $EF R/W SAF_CONTROL_1 X 1 1 1 1 0 0 0 0 $F0 R/W SAF_CONTROL_2 X 1 1 1 1 0 0 0 1 $F1 R/W SAF_CONTROL_3 X 1 1 1 1 0 0 1 0 $F2 R/W SAF_CONTROL_4 X 1 1 1 1 0 0 1 1 $F3 1 1 1 1 0 1 0 0 $F4 1 1 1 1 0 1 0 1 $F5 1 1 1 1 0 1 1 0 $F6 1 1 1 1 0 1 1 1 $F7 1 1 1 1 1 0 0 0 $F8 1 1 1 1 1 0 0 1 $F9 1 1 1 1 1 0 1 0 $FA 1 1 1 1 1 0 1 1 $FB 1 1 1 1 1 1 0 0 $FC 1 1 1 1 1 1 0 1 $FD 1 1 1 1 1 1 1 0 $FE 1 1 1 1 1 1 1 1 $FF Arming SPI interface 48/202 Table 6. Global SPI register map (continued) Safing record control R SAF_CC Safing record compare complete 1. A check mark indicates in which operating state a WRITE-command is valid. L9678P, L9678P-S L9678P, L9678P-S 5.1 SPI interface Global SPI register A summary of all the read/write registers contained within the SPI map are shown below and are further referenced throughout the specification as they apply. The SPI register tables also specify the effect of the internal reset signals assertion on each bit field (the symbol '-' is used to indicate that the register is not affected by the relevant reset signal). Global status word L9678P contains an 11-bit word that returns global status information. The GSW is the most significant 11 bits of SPI_MISO data. MISO BIT 31 30 29 28 27 26 25 24 23 22 21 MISO CONVRDY2 CONVRDY1 ERR_WID ERR_RID Global Status Word FLT GSW POWERFLT Description ERSTATE Register name WDTDIS_S R RSFLT - DEPOK R/W/RW SPIFLT ID GSW BIT 10 9 8 7 6 5 4 3 2 1 0 Table 7. Global status word (GSW) Bit 10 9 Name SPIFLT DEPOK POR WSM SSM 0 0 0 0 Description 0 SPI Fault, set if previous SPI frame had wrong parity check or wrong number of bits, cleared upon read 0 No fault 1 Fault 0 General Deployment Successful Flag, logical OR of the corresponding CHxDS bits (bit 15) in DSRx Registers 0 All the DSRx-CHDS bits are 0 1 At least one of the DSRx-CHDS bits is 1 8 RSFLT 0 0 0 Remote Sensor Interface Fault Present, logical OR of the corresponding FLTBIT bits (bit 15) in RSDRx Registers 0 All the RSDRx-FLTBIT bits are 0 1 At least one of the RSDRx-FLTBIT bits is 1 7 WDTDIS_S 0 0 0 State of WDTDIS pin 0 WDTDIS = 0 1 WDTDIS = 1 DocID029274 Rev 1 49/202 201 SPI interface L9678P, L9678P-S Table 7. Global status word (GSW) (continued) Bit Name 6 5 ERSTATE POWERFLT 4 3 2 FLT CONVRDY2 CONVRDY1 1 0 50/202 ERR_WID ERR_RID POR WSM SSM 0 0 1 0 0 0 0 0 0 1 0 0 0 0 Description 0 Set when Power mode state machine is in ER state 0 Power mode state machine is not in ER state 1 Power mode state machine is in ER state 0 Fault present in Power State Register, logical OR between bits from 18 to 9 of POWER_STATE Register 0 All the bits from 18 to 9 in the POWER_STATE Registers are 0s 1 At least one of the bits from 18 to 9 in the POWER_STATE Registers is 1 1 Fault present in Fault Status Register (FLTSR), logical OR between all bits of FLTSR 0 All the bits in the Fault Status Register (FLTSR) are 0s 1 At least one of the bits in the Fault Status Register (FLTSR) is 1 0 ADC Conversion of request 3 or 4 has been completed so new results are available 0 No new data available 1 New data available 0 ADC Conversion of request 1 or 2 has been completed so new results are available 0 No new data available 1 New data available 0 Write address of previous SPI frame is not permitted in current operating phase (INIT, DIAG, SAFING, SCRAP, ARMING) 0 No Error 1 Error 0 Read address received in the actual SPI frame is unused so data in the response is don't care 0 No Error 1 Error DocID029274 Rev 1 L9678P, L9678P-S SPI interface Read/write register 10 9 8 7 6 5 4 3 2 1 0 X X X X X X X X X X X X X X X X 0 0 0 0 0 0 0 SSMRST 0 0 - - 00 Type: R Buffer: $0000 Reset: - POR 11 - Address: EBST_OT 12 SSM 0 13 CLKFRERR 0 ERBST_OT MISO 14 WSM - 15 WSMRST 16 POR MOSI 17 WD1_WDR 18 WD1_TM 19 WD1_LO Fault status register (FLTSR) OTPCRC_ERR 5.1.1 ER Boost over-temperature bit Set when over-temp condition detected, cleared on SPI read or POR=1 0 No Fault 1 Fault CLKFRERR 0 - - Internal oscillator cross-check error bit Set when osc error detected, cleared on SPI read or POR=1 0 No Fault 1 Fault OTPCRC_ERR 0 - - OTP CRC error bit Set when OTP error detected (tested at release of POR), cleared by POR=1 0 No Fault 1 Fault WD1_LO 0 0 - WD1 lockout - reflects WD1 lockout state Set and cleared per Watchdog Timer Flow Diagram 0 WD1 Lockout inactive 1 WD1 Lockout active WD1_TM 0 0 0 WD1 test mode - reflects WD1TM signal state Set and cleared per Watchdog Timer Flow Diagram 0 WD1TM=0 1 WD1TM=1 DocID029274 Rev 1 51/202 201 SPI interface WD1_WDR L9678P, L9678P-S 0 0 - WD1 reset latch Set and cleared per Watchdog Timer Flow Diagram 0 WD1_WDR signal = 0 1 WD1_WDR signal = 1 WSMRST 1 1 - Watchdog state machine reset Set when WSM reset goes to '1', cleared upon SPI read 0 WSM reset has not occurred 1 WSM Reset has occurred SSMRST 1 1 1 Safing state machine reset Set when SSM reset goes to '1', cleared upon SPI read 0 SSM reset has not occurred 1 SSM Reset has occurred POR 1 - - Power on Reset Set when POR goes to '1', cleared upon SPI read 0 POR reset has not occurred 1 POR Reset has occurred 52/202 DocID029274 Rev 1 L9678P, L9678P-S RW Buffer: $0100 Reset: $0002 EN_AUTO_SWITC H_OFF SSM Type: WSM 01 POR Address: 0 0 0 - 0 0 - 5 3 2 1 X X 0 0 0 WD1_TOVR X 6 WD1_TOVR X 4 VSF_V 7 VSF_V 8 SAFESEL 9 SAFESEL 0 10 VMEAS 0 11 VMEAS 0 12 SQMEAS 0 13 SQMEAS MISO 14 V_DIAG - 15 V_DIAG 16 KEEP_ERBST_ON MOSI 17 KEEP_ERBST_ON 18 DIS_VDD5_ERR 19 DIS_VDD5_ERR System configuration register (SYS_CFG) EN_AUTO_SWITCH_OFF EN_AUTO_SWITCH_OFF 5.1.2 SPI interface Enable auto switch off ISRC current source and DCS regulator after measurement completion 0 Auto switch off disabled 1 Auto switch off enabled DIS_VDD5_ERR 0 0 - Disable VDD5 OV/UV to generate reset 0 OV/UV generate reset 1 OV/UV don’t generate reset KEEP_ERBST_ON 0 0 0 ER Boost behaviour during ER state 0 ER Boost is disabled 1 ER Boost stay enabled HI_LEV_DIAG_TIM E 0 0 0 Selection of duration of high level squib diagnostics 0 Short time (see high level diag diagram) 1 Long time (see high level diag diagram) SQMEAS 00 00 00 Sample number in DC sensor, squib measurement and temperature conversions Updated by SSM_RESET or SPI write DocID029274 Rev 1 53/202 201 SPI interface L9678P, L9678P-S 0 1 10 11 VMEAS 00 00 8 samples 16 samples 4 samples 1 sample 00 Sample number in any other voltage measurement conversions Updated by SSM_RESET or SPI write Updated by SSM_RESET or SPI write 0 1 10 11 SAFESEL 1 1 1 4 samples 16 samples 8 samples 1 sample Safing engine mode select Updated by SSM_RESET or SPI write 0 Internal safing engine 1 external safing engine VSF_V 0 0 0 VSF voltage select Updated by SSM_RESET or SPI write 0 20V 1 25V WD1_TOVR 0 0 - Override of initial 500ms time-out of WD1 state machine Set and cleared per Watchdog Timer Flow Diagram 0 time-out is active 1 time-out is disabled 54/202 DocID029274 Rev 1 L9678P, L9678P-S RW Buffer: $0200 Reset: $0004 VIN_TH_SEL 0 0 0 8 7 6 5 4 3 2 1 0 X SPI_OFF 0 9 X X X X 0 SPI_OFF 0 SSM Type: - WSM 02 X POR Address: 0 X 10 VSUP_EN 0 X 11 VSUP_EN 0 12 ER_BST_EN 0 13 ER_BST_EN MISO 14 ER_CUR_EN - 15 ER_CUR_EN 16 ER_BST_V MOSI 17 ER_BST_V 18 VBATMON_TH_SEL VBATMON_TH_SEL 19 VIN_TH_SEL System control register (SYS_CTL) VIN_TH_SEL 5.1.3 SPI interface 0 0 0 0 VIN comparators threshold selector 0 5.5V 1 7.5V VBATMON_TH_SEL 00 00 00 VBATMON comparators threshold selector 00 01 10 11 ER_BST_V 0 0 0 6V 6.8V 8V 8.8V ER Boost voltage select Updated by SSM_RESET or SPI write 0 set 23V boost 1 set 33V boost ER_CUR_EN 0 0 0 ER charge / discharge control Updated by SSM_RESET or SPI write 0 ER current source OFF request 1 ER current source ON request ER_BST_EN 1 1 1 Boost enable Updated by SSM_RESET or SPI write DocID029274 Rev 1 55/202 201 SPI interface L9678P, L9678P-S 0 ER_BOOST OFF request 1 ER_BOOST ON request VSUP_EN 0 0 0 Supplemental supply for satellites Updated by SSM_RESET or SPI write 0 VSUP commanded off 1 VSUP SPI_OFF 0 0 0 Go to POWER OFF state from POWERMODE SHUTDOWN state Updated by SSM_RESET or SPI write while in POWERMODE SHUTDOWN state 0 no effect 1 transition to POWER OFF state 5.1.4 SPI Sleep command register (SPI_SLEEP) 19 18 15 14 13 12 11 10 9 0 0 0 Type: W Buffer: - Reset: $0006 POR 03 SLEEP_MODE 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 $3C95 Address: 56/202 16 0 - SSM MISO 17 - WSM MOSI 0 0 0 0 0 0 0 0 N/A N/A N/A Non-latched command that allows transition into POWERMODE_SHUTDOWN state according to the Power Control State Flow Diagram DocID029274 Rev 1 L9678P, L9678P-S System status register (SYS_STATE) MISO 16 - 0 0 0 04 Type: R Buffer: $0400 Reset: POR Address: OPER_CTL_STAT E[2:0] 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 X X X X X X X X X X X X X X X X 0 0 0 0 0 0 0 0 0 0 POWER_CTL_STATE MOSI 17 OPER_CTL_STATE 18 SSM 19 WSM 5.1.5 SPI interface 000 000 000 Reports Operating Control State Updated per Power Up Phases diagram 000 = INIT 001 = DIAG 010 = SAFING 011 = SCRAP 100 = ARMING 101 unused 110 unused 111 unused POWER_CTL_STA TE[2:0] 000 - - Reports Power Control State Updated per Power Control State Flow Diagram 000 = AWAKE 001 = STARTUP 010 = RUN 011 = ER 100 = POWER MODE SHUTDOWN 101 unused 110 unused 111 unused DocID029274 Rev 1 57/202 201 SPI interface R Buffer: $0500 Reset: - WAKEUP 11 10 9 8 7 6 5 4 3 2 1 0 X X X X X X X X X X X X X X X X VSUP_NOK ER_BST_ON ER_CHRG_ON 0 0 ER_SW_ON VDD5_ACT VSUP_ACT VDD3V3_ACT VSF_ACT SSM Type: 12 WSM 05 13 POR Address: 14 VDD5_OV VINBAD NOT_VBGOOD VBBAD MISO 15 VDD5_UV 16 WAKEUP MOSI 17 ER_BST_NOK 18 VDD3V3_OV 19 VDD3V3_UV Power state register (POWER_STATE) NOT_VINGOOD 5.1.6 L9678P, L9678P-S - - - WAKEUP pin status Set and cleared based on voltage 0 WAKEUP pin < WU_off 1 WAKEUP pin > WU_on VBBAD - - - VBATMON bad pin status Set and cleared based on voltage 1 VBATMON < VBBAD 0 VBATMON > VBBAD NOT_VBGOOD - - - VBATMON good pin status Set and cleared based on voltage 1 VBATMON < VBGOOD 0 VBATMON > VBGOOD VINBAD - - - VIN bad pin status Set and cleared based on voltage 0 VIN > VINBAD 1 VIN < VINBAD NOT_VINGOOD - - - VIN good pin status Set and cleared based on voltage 0 VIN > VINGOOD 1 VIN < VINGOOD VDD3V3_UV 58/202 - - - VDD3V3 bad pin status DocID029274 Rev 1 L9678P, L9678P-S SPI interface Set based on voltage, cleared on SPI read 0 VDD3V3 > VDD3V3_UV 1 VDD3V3 < VDD3V3_UV VDD3V3_OV - - - VDD3V3 bad pin status Set based on voltage, cleared on SPI read 0 VDD3V3 < VDD3V3_OV 1 VDD3V3 > VDD3V3_OV ER_BST_NOK - - - ERBOOST pin status Set and cleared based on voltage 1 V_ERBOOST < ERBOOST_OK 0 V_ERBOOST > ERBOOST_OK VDD5_UV - - - VDD5_UV status Set based on voltage, cleared on SPI read 0 VDD5 > VDD5_UV 1 VDD5 < VDD5_UV VDD5_OV - - - VDD5_OV status Set based on voltage, cleared on SPI read 0 VDD5 < VDD5_OV 1 VDD5 > VDD5_OV VSUP_NOK - - - VSUP status Set and cleared based on voltage 0 VSUP > VSUP_OK 1 VSUP < VSUP_OK ER_BST_ON 0 - - ERBOOST_ON state Updated according to ER_BOOST Control Behavior diagram 0 RBOOST_OFF or ERBOOST_OT state or ER_BST_STBY state (boost not running) 1 ERBOOST_ON state (boost running) ER_CHRG_ON 0 0 0 ERCHARGE_ON state Updated according to ER_CHARGE Power Mode Control diagram 0 ERCHARGE_ON = 0 1 ERCHARGE_ON = 1 DocID029274 Rev 1 59/202 201 SPI interface ER_SW_ON L9678P, L9678P-S 0 - - ER_SWITCH State Updated according to ER Switch state diagram 0 ER_SWITCH_OFF 1 ER_SWITCH_ON VDD5_ACT 0 - - VDD5 Active state Updated according to VDD5 Power Mode Control state diagram 0 VDD5 supply in VDD5_OFF or VDD5_SHUTDOWN states 1 VDD5 supply in VDD5_RAMPUP or VDD5_ON states VSUP_ACT 0 0 0 VSUP Active state Updated according to VSUP Power Mode Control state diagram 0 VSUP supply in VSUP_OFF or VSUP_SHUTDOWN states 1 VSUP supply in VSUP_RAMPUP or VSUP_ON states VDD3V3_ACT 0 - - VDD3V3 Active state Updated according to VDD3V3 Power Mode Control state diagram 0 VDD3V3 supply in VDD3V3_OFF or VDD3V3_SHUTDOWN states 1 VDD3V3 supply in VSUP_ON state VSF_ACT 0 0 0 VSF Active state Updated according to VSF Control Logic diagram 0 VSF_EN = 0 1 VSF_EN = 1 60/202 DocID029274 Rev 1 L9678P, L9678P-S 5.1.7 SPI interface Deployment configuration registers (DCR_x) Channel 0 (DCR_0) Channel 1 (DCR_1) Channel 2 (DCR_2) - 0 0 0 0 15 14 13 12 11 10 9 8 X X X X X X X X 0 0 0 0 0 0 0 0 RW Buffer: $0600 (DCR_0) $0700 (DCR_1) $0800 (DCR_2) $0900 (DCR_3) Reset: $000C (DCR_0) $000E (DCR_1) $0010 (DCR_2) $0012 (DCR_3) Deploy_Time[1:0] SSM Type: WSM 06 (DCR_0) 07 (DCR_1) 08 (DCR_2) 09 (DCR_3) POR Address: 00 00 00 Default deployment time select 7 6 5 4 3 2 Dep_expire_time Dep_expire_time MISO 16 Dep_Current MOSI 17 Dep_Current 18 Deploy_Time 19 Deploy_Time Channel 3 (DCR_3) 1 0 X X 0 0 Updated by SSM_RESET or SPI write while in DIAG state 00 Unused (no deploy, 8 us pulse output on ARM1 pin during PULSE TEST) 01 0.5 ms 10 0.7 ms 11 2.0 ms Dep_Current[1:0] 00 00 00 Deployment Current limit select Updated by SSM_RESET or SPI write while in DIAG state 00 Unused (no deploy) DocID029274 Rev 1 61/202 201 SPI interface L9678P, L9678P-S 01 1.75A min 10 1.2A min 11 Unused (no deploy) Dep_expire_time[1: 0] 00 00 00 Deploy command expiration timer select Updated by SSM_RESET or SPI write while in DIAG state 00 500ms 01 250ms 10 125ms 11 0ms 62/202 DocID029274 Rev 1 L9678P, L9678P-S - MISO 0 0 0 12 Type: RW Buffer: $1200 Reset: $0024 POR Address: CHxDEPREQ 0 15 14 13 12 11 10 9 8 7 6 5 4 X X X X X X X X X X X X 0 0 0 0 0 0 0 0 0 0 0 0 3 2 1 0 CH0DEP CH0DEPREQ 16 WSM MOSI 17 CH1DEP CH1DEPREQ 18 CH2DEP CH2DEPREQ 19 CH3DEP CH3DEPREQ Deployment command (DEPCOM) SSM 5.1.8 SPI interface N/A N/A N/A Channel x Deploy Request - non-latched channel-specific deploy request 0 No change to deployment control for channel x 1 Clear and start Expiration timer if in ARMING or SAFING state and in DEPLOY_ENABLED state CHxDEP 0 0 0 Channel x deployment expiration timer enable Set when SPI_DEPCOM(CHxDEPREQ=1) AND in ARMING or SAFING state AND in DEP_ENABLED state Cleared on SSM_RESET OR when in DEP_DISABLED state OR when Deploy Expiration Timer x reaches time-out threshold 0 Expiration timer enabled - Deploy command still valid 1 Expiration Timer disabled - Deploy command no more valid DocID029274 Rev 1 63/202 201 SPI interface 5.1.9 L9678P, L9678P-S Deployment configuration registers (DSR_x) Channel 0 (DSR_0) Channel 1 (DSR_1) Channel 2 (DSR_2) - MISO 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 x x x x x x x x x x x x x x x x 0 0 0 0 0 0 R Buffer: $1300 (DSR_0) $1400 (DSR_1) $1500 (DSR_2) $1600 (DSR_3) Reset: - CHxDS SSM Type: WSM 13 (DSR_0) 14 (DSR_1) 15 (DSR_2) 16 (DSR_3) POR Address: 0 0 0 DEP_CHx_ExpTimer 16 DCRxERR MOSI 17 CHxDD 18 CHxSTAT 19 CHxDS Channel 3 (DSR_3) Channel x deployment successful Updated according to Deployment Driver Control Logic (set when deployment terminates on ch x due to deploy timer time-out, cleared on SSM_RESET OR when deployment starts on ch x) 0 Deployment not successful 1 Deployment successful CHxSTAT 0 0 0 (set when deployment starts on ch x, cleared on SSM_RESET OR when deployment terminates due to deploy timer time-out, LS Over current OR GND Loss) 0 Deployment not in progress 1 Deployment in progress CHxDD 0 0 0 Default Deploy Flag on Channel x Updated by SSM_RESET, or when the Deployment Configuration Register is written with an incorrect configuration 64/202 DocID029274 Rev 1 L9678P, L9678P-S SPI interface 0 Correct Time/Current combination selected 1 Incorrect Time/Current combination selected (default time/current is set) DCRxERR 0 0 0 Deployment configuration register err 0 Deploy configuration change accepted and stored in memory 1 Deploy configuration change rejected because deploy is in progress (or DEP_EXPIRE_TIME changed when in DEP_ENABLED state) DEP_CHx_ExpTimer 0000 0000 0000 Channel x Deployment Expiration Timer value 8ms/count [5:0] 00 00 00 Updated according to Deployment Driver Control Logic (Cleared on SSM_RESET OR when Exp Timer times out OR when SPI_DEPREQx is received while in DEP_ENABLED state AND in ARMING or SAFING states) 5.1.10 Deployment current monitor status registers (DCMTSxy) Channels 0, 1 (DCMTS01) Channels 2, 3 (DCMTS23) 19 18 0 0 MOSI MISO 17 16 0 0 - 15 14 X X 11 10 9 8 7 6 X X X X X X X X R Buffer: $1F00 (DCMTS01) $2000 (DCMTS23) Reset: - 5 4 3 2 1 0 X X X X X X Current_Mon_Timer_x[7:0] SSM Type: WSM 1F (DCMTS01)) 20 (DCMTS23) POR 12 Current_Mon_Timer_y[7:0] Address: Current_Mon_Time r_y[7:0] 13 $00 $00 $00 Channel y current monitor timer value corresponding to SPI command DCMTSxy. Set to default (cleared) on SSM_RESET or when a new deployment starts on channel y. Increments each 16µs while deployment current exceeds monitor threshold on channel y Current_Mon_Time r_x[7:0] $00 $00 $00 Channel x current monitor timer value corresponding to SPI command DCMTSxy. Set to default (cleared) on SSM_RESET or when a new deployment starts on channel x. Increments each 16µs while deployment current on channel x exceeds monitor threshold DocID029274 Rev 1 65/202 201 SPI interface Deploy enable register (SPIDEPEN) 19 18 0 0 MOSI MISO 17 16 0 0 15 14 13 12 11 10 - 8 7 6 5 4 3 2 1 0 DEPEN_WR[15:0 25 Type: RW Buffer: $2500 Reset: $004A DEPEN_STATE[15:0] POR WSM Address: DEPEN_WR[15:0] 9 SSM 5.1.11 L9678P, L9678P-S N/A N/A N/A Non-latched encoded value for LOCK / UNLOCK command $0FF0 LOCK - enter DEP_DISABLED state $F00F UNLOCK - enter DEP_ENABLED state DEPEN_STATE[15: $0FF0$0FF0$0FF0Deploy Enabled State 0] Updated according to Global SPI Deployment Enable State Diagram $0FF0 In DEP_DISABLED state $F00F In DEP_ENABLED state MISO 17 16 - 0 0 0 R Buffer: $2600 Reset: - GNDLOSSx 66/202 12 11 10 9 8 7 6 5 4 3 2 1 0 X X X X X X X X X X X X X X 0 0 0 0 0 0 0 0 0 0 0 0 SSM Type: 13 X WSM 26 14 X POR Address: 0 15 GNDLOSS0 18 GNDLOSS1 19 MOSI GNDLOSS2 Squib ground loss register (LP_GNDLOSS) GNDLOSS3 5.1.12 0 0 0 Loop x Squib Ground loss DocID029274 Rev 1 L9678P, L9678P-S SPI interface Cleared upon SSM_RESET or SPI read. Set when GND loss is detected during deployment or loop diag's (HS sw test, LS sw test, squib resistance) 0 Loss of ground not detected 1 Loss of ground detected 5.1.13 Device version register (VERSION_ID) 19 18 MOSI 17 16 - MISO 0 0 0 0 R Buffer: $2700 Reset: - DEVICE ID 12 11 10 9 8 7 6 5 4 3 2 1 0 X X X X X X X X X X X X X X X X 0 0 0 0 0 0 0 1 0 SSM Type: 13 WSM 27 14 POR Address: 15 - - - DEVICE ID VERSN Identification of the device Static value - never updated 001 Low end 010 Medium end 011 High end VERSN - - - Identification of the silicon version CB version previous versions 000011 other codes 5.1.14 Watchdog retry configuration register (WD_RETRY_CONF) 19 18 17 16 15 14 13 12 MOSI MISO 11 10 9 8 7 6 5 4 3 0 0 0 RW Buffer: $2800 Reset: $0050 WD1_RETRY_TH SSM Type: 0 WSM 28 0 POR Address: 0 7 7 - 0 0 0 2 WD1_RETRY_TH 0 0 0 0 0 0 0 0 WD1_RETRY_TH WD1 retry counter threshold (number of WD errors permitted before latching WD1_LOCKOUT=1) DocID029274 Rev 1 67/202 201 SPI interface Watchdog timer configuration register (WDTCR) 19 18 MOSI MISO 17 16 - 0 0 14 X 0 0 RW Buffer: $2A00 Reset: $0054 SSM Type: WSM 2A 0 POR Address: WD1_MODE 15 13 12 WD1_MODE WD1_MODE 5.1.15 L9678P, L9678P-S 0 0 - 11 10 9 8 7 6 5 4 3 2 WDTMIN[6:0] WDTDELTA[6:0] WDTMIN[6:0] WDTDELTA[6:0] 1 0 WD1 Mode Updated by WSM_RESET or SPI write while in WD1_INIT state 0 Fast WD1 mode - nominal 8µs timer resolution (2ms max value) 1 Slow WD1 mode - nominal 64µs timer resolution (16.3ms max value) WDTMIN[6:0] $32 $32 - WD1 window minimum value - resolution according to WD1_MODE bit ($32 = 400µs in WD1 fast mode) Updated by WSM_RESET or SPI write while in WD1_INIT state WDTDELTA[6:0] $19 $19 - WD1 window delta value - WDTMAX=WDTMIN+WDTDELTA - resolution according to WD1_MODE bit ($19 = 200µs in WD1 fast mode) Updated by WSM_RESET or SPI write while in WD1_INIT state 68/202 DocID029274 Rev 1 L9678P, L9678P-S 5.1.16 WD1 timer control register (WD1T) 19 18 0 0 MOSI MISO SPI interface 17 16 0 0 - W Buffer: $2B00 Reset: $0056 WD1CTL[1:0] X X X 12 11 10 9 8 7 6 5 4 3 2 X X X X X X X X X X X WD1CTL[1:0] 0 0 0 0 0 0 WD1CTL[1:0] WD1_TIMER SSM Type: 13 WSM 2B 14 POR Address: 15 00 00 00 WD1 Control command 1 0 Updated by SSM_RESET or SPI write 00 NOP 01 Code 'A' 10 Code 'B' 11 NOP WD1_TIMER $00 $00 $00 WD1 Window timer value Cleared by SSM_RESET or by WD1 refresh, incremented every 8µs or 64µs while in WD1_RUN or WD1_TEST states WD1 state register (WDSTATE) 18 MOSI MISO 17 16 0 0 0 0 2C Type: R Buffer: $2C00 Reset: POR Address: WD1_ERR_CNT[3:0] 000 000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 X X X X X X X X X X X X X X X X 0 0 0 0 0 0 0 0 0 WD1_ERR_CNT[3:0] WD_STATE[2:0] SSM 19 WSM 5.1.17 - Watchdog error counter Updated according to Watchdog State Diagram WD1_STATE[2:0] 000 000 - Watchdog state Updated according to Watchdog State Diagram 000 INITIAL DocID029274 Rev 1 69/202 201 SPI interface L9678P, L9678P-S 001 RUN 010 TEST 011 RESET 100 OVERRIDE MISO 16 - 0 0 0 0 RW Buffer: $2D00 Reset: $005A AUX_SS_DIS 12 11 10 9 8 7 6 5 4 X X X X X X X X X X X X 0 0 0 0 0 0 0 0 0 0 0 0 SSM Type: 13 WSM 2D 14 POR Address: 15 1 - - Auxiliary 3.75MHz oscillator Spread Spectrum disable Updated by POR or SPI write while in INIT state 0 Spread Spectrum enabled 1 Spread Spectrum disabled MAIN_SS_DIS 0 - - Main 16MHz oscillator Spread Spectrum disable Updated by POR or SPI write while in INIT state 0 Spread Spectrum enabled 1 Spread Spectrum disabled ERBST_F_SEL[1:0] 00 - - ER Boost switching frequency select Updated by POR or SPI write while in INIT state 00 1.88 MHz 01 2.13 MHz 10 2.00 MHz 11 2.00 MHz 70/202 DocID029274 Rev 1 3 2 1 0 ERBST_F_SEL ERBST_F_SEL[1:0] MOSI 17 MAIN_SS_DIS 18 MAIN_SS_DIS 19 AUX_SS_DIS Clock configuration register (CLK_CONF) AUX_SS_DIS 5.1.18 L9678P, L9678P-S Scrap state entry command register (SCRAP_STATE) 19 18 0 0 MOSI MISO 17 16 15 14 13 12 11 10 9 8 0 0 0 0 0 0 0 0 0 0 - 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 $3535 30 Type: W Buffer: - Reset: $0060 POR WSM Address: SSM 5.1.19 SPI interface N/A N/A N/A Non-latched Scrap State entry command Enter Scrap state from DIAG state Safing state entry command register (SAFING_STATE) 19 18 MISO 16 15 14 13 12 11 10 9 0 0 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 $ACAC 0 31 Type: W Buffer: - Reset: $0062 POR Address: 0 0 0 0 0 0 0 0 0 0 SSM MOSI 17 WSM 5.1.20 N/A N/A N/A Non-latched Safing State entry command Enter safing state from DIAG state and clear arming pulse stretch counter (if received in DIAG or SAFING state) DocID029274 Rev 1 71/202 201 SPI interface 5.1.21 L9678P, L9678P-S WD1 test command register (WD1_TEST) 19 18 0 0 16 15 14 13 12 0 0 0 0 0 0 - MISO 11 10 9 8 0 0 0 0 $3C 35 Type: W Buffer: - Reset: $006A POR WSM Address: 7 6 5 4 3 2 1 0 X X X X X X X X 0 0 0 0 0 0 0 0 SSM MOSI 17 N/A N/A N/A Non-latched WD1 Test Command WD1_TEST SPI command as described in Figure 36: Watchdog state diagram. System diagnostic register (SYSDIAGREQ) 19 18 16 - MISO 0 0 0 0 36 Type: RW Buffer: $3601 Reset: $006C POR Address: WSM MOSI 17 15 14 13 12 11 10 9 8 7 6 5 4 3 X X X X X X X X X X X X DSTEST[3:0] 0 0 0 0 0 0 0 0 0 0 0 0 DSTEST[3:0] SSM 5.1.22 DSTEST[3:0] 0000 0000 0000 Diagnostic State Test selection Updated by SSM_RESET or SPI write while in DIAG state 0000 = all outputs inactive 0001 = ARM pin active 0010 = all outputs inactive 0011 = all outputs inactive 0100 = all outputs inactive 0101 = all outputs inactive 0110 = VSF regulator active 72/202 DocID029274 Rev 1 2 1 0 L9678P, L9678P-S SPI interface 0111 = HS squib driver FET active 1000 = LS squib driver FET active 1001 = Output deployment timing pulses on ARM1 (separated by 8 ms) 1010 = ST reserved 1011 - 1111 = all outputs inactive DocID029274 Rev 1 73/202 201 SPI interface R Buffer: $3700 Reset: - DIAG_LEVEL 9 8 7 6 5 4 3 2 1 0 X X X X X X X X X X X X X X X X STB SQP 0 0 0 Diagnostic mode selector Not present for low level diagnostic Updated by SSM_RESET or SPI write to LPDIAGREQ 0 low level mode 1 high level mode TIP 0 0 0 High level diagnostic test is running Updated by SSM_RESET or Loops diagnostic state machine 0 High level diagnostic test is not running 1 High level diagnostic test is running FP 0 0 0 Fault present before requested diagnostic Updated by SSM_RESET or Loops diagnostic state machine 0 Fault not present before requested diagnostic 1 Fault present before requested diagnostic FETON 74/202 0 0 0 FET activation during diagnostic DocID029274 Rev 1 LEAK_CHSEL 10 SSM Type: 11 WSM 37 12 POR Address: 13 STG FP 14 SBL 0 15 RES_MEAS_CHSEL/ HIGH_LEV_DIAG_SELECTED TIP MISO 16 - DIAG_LEVEL MOSI 17 HSR_LO 18 HSR_HI 19 ST_reserved Diagnostic result register for deployment loops (LPDIAGSTAT) FETON 5.1.23 L9678P, L9678P-S L9678P, L9678P-S SPI interface Updated by SSM_RESET or Loops diagnostic state machine or when HS or LS FET is activated during DIAG state 0 FET is off during diagnostic 1 FET is on during diagnostic ST_reserved 0 0 0 ST_reserved HSR_HI 0 0 0 HSR Diagnostic - HIGH Range Updated by SSM_RESET or Loops diagnostic state machine or when squib resistance test is run 0 HSR measurement < HSR HIGH value 1 HSR measurement > HSR HIGH value HSR_LO 0 0 0 HSR Diagnostic - Low Range Updated by SSM_RESET or Loops diagnostic state machine or when squib resistance test is run 1 HSR measurement< HSR LOW value 0 HSR measurement > HSR LOW value RES_MEAS_CHSEL 0000 0000 0000 Channel selected for resistance measurement [3:0] Updated by SSM_RESET or Loops diagnostic state machine or as determined by squib resistance channel selected 0000 = Ch 0 0001 = Ch 1 0010 = Ch 2 0011 = Ch 3 0100 - 1111 None Selected HIGH_LEV_DIAG_ 0000 0000 0000 SELECTED[3:0] 0000 No diagnostic selected 0001 VRCM CHECK 0010 Leakage CHECK 0011 Short Between Loops CHECK 0100 Unused 0101Squib resistance range CHECK 0110 Squib resistance measurement 0111 FET test 1000 - 1111 Unused DocID029274 Rev 1 75/202 201 SPI interface L9678P, L9678P-S SBL 0 0 0 Short between loop state Updated by SSM_RESET or Loops diagnostic state machine 0 Short between squib loops is not present 1 Short between squib loops is present STG 0 0 0 Short to Ground Test Status Updated by SSM_RESET or Loops diagnostic state machine or as determined by squib leakage diagnostic 0 STG not detected 1 1 STG detected STB 0 0 0 Short to Battery Test Status Updated by SSM_RESET or Loops diagnostic state machine or as determined by squib leakage diagnostic 0 STB not detected 1 STB detected SQP 0 0 0 Squib PIN where leakage test has been performed Updated by SSM_RESET or Loops diagnostic state machine or as determined by squib leakage diagnostic 0 SRx 1 SFx LEAK_CHSEL[3:0] 0000 0000 0000 Channel selected for leakage measurement Updated by SSM_RESET or Loops diagnostic state machine or as determined by squib leakage diagnostic 0000 = Ch 0 0001 = Ch 1 0010 = Ch 2 0011 = Ch 3 0100 - 1111 None Selected 76/202 DocID029274 Rev 1 L9678P, L9678P-S Loops diagnostic configuration command register for low level diagnostic (LPDIAGREQ) RW Buffer: $3800 Reset: $0070 DIAG_LEVEL SSM Type: WSM 38 POR Address: 0 0 0 5 4 3 2 1 0 LEAK_CHSEL[3:0] 6 LEAK_CHSEL[3:0] 7 RES_MEAS_CHSEL[3:0]RES_MEAS_CHSEL[3:0] 8 VRCM[1:0] 9 VRCM[1:0] 10 ISINK 0 11 ISINK 0 12 ISRC [1:0] 0 13 ISRC [1:0] 0 - MISO 14 PD_CURR 15 PD_CURR 16 ISRC_CURR_SEL MOSI 17 ISRC_CURR_SEL 18 DIAG_LEVEL 19 DIAG_LEVEL 5.1.24 SPI interface Diagnostic mode selector Updated by SSM_RESET or SPI write 0 low level mode 1 N/A - see description below ISRC_CURR_SEL 0 0 0 Selection of ISRC current value 0 40mA 1 8mA PD_CURR 0 0 0 Pull down current control Updated by SSM_RESET or SPI write 0 Request OFF only for channels connected to VRCM or ISINK or ISRC, ON for all other channels 1 Request OFF for all channels ISRC [1:0] 00 00 00 High side current source for channel selected in RES_MEAS_CHSEL[3:0] Updated by SSM_RESET or SPI write 00 = OFF 01 = ON 40 mA current for channel selected in RES_MEAS_CHSEL, OFF on all other channels DocID029274 Rev 1 77/202 201 SPI interface L9678P, L9678P-S 10 = ON bypass current for channel selected in RES_MEAS_CHSEL, OFF ON all other channels 11 = OFF ISINK 0 0 0 Low Side current sink control (max 50mA) Updated by SSM_RESET or SPI write 0 All channels OFF 1 ON for channel selected by RES_MEAS_CHSEL[3:0], OFF on all other channels VRCM[1:0] 00 00 00 Voltage Regulator Current Monitor control Updated by SSM_RESET or SPI write 00 VRCM not connected 01 VRCM connected to SFx of channel selected by LEAK_CHSEL[3:0] 01 VRCM connected to SFx of channel selected by LEAK_CHSEL[3:0] and pull down current of the same channel disabled 10 VRCM connected to SRx of channel selected by LEAK_CHSEL[3:0] and pull down current of the same channel enabled (ISINK and ISRC must be switched RES_MEAS_CHS 0000 0000 0000 Squib Resistance Measurement Channel select - selects the channel and EL[3:0] muxes for the resistance test, and the channel for HS driver test (full path fet test) activation Updated by SSM_RESET or SPI write 0000 Channel 0 0001 Channel 1 0010 Channel 2 0011 Channel 3 0100 - 1111 None Selected LEAK_CHSEL[3:0] 0000 0000 0000 Squib Leakage Measurement Channel select - selects the channel and muxes for the leakage test, and the channel for HS/LS FET test activation. Updated by SSM_RESET or SPI write 0000 Channel 0 0001 Channel 1 0010 Channel 2 0011 Channel 3 0100 - 1111 None Selected 78/202 DocID029274 Rev 1 L9678P, L9678P-S - 0 0 0 RW Buffer: $3800 Reset: $0070 DIAG_LEVEL 12 11 10 9 8 X X X X X X X 0 0 0 0 0 0 0 SSM Type: 13 WSM 38 14 POR Address: 0 15 0 0 0 7 6 5 4 3 2 1 0 LOOP_DIAG_CHSEL[3:0] LOOP_DIAG_CHSEL[3:0] MISO 16 SQP MOSI 17 SQP 18 HIGH_LEVEL_DIAG_SEL HIGH_LEVEL_DIAG_SEL 19 DIAG_LEVEL Loops diagnostic configuration command register for high level diagnostic (LPDIAGREQ) DIAG_LEVEL 5.1.25 SPI interface Diagnostic mode selector 0 0 N/A - see description above 1 1 high level mode HIGH_LEVEL_DIAG 000 000 000 Selection of high level squib diagnostic _SEL Updated by SSM_RESET or SPI write 000 No diagnostic selected 001 VRCM CHECK 010 Leakage CHECK 011 Short Between Loops CHECK 100 Unused 101 Squib resistance range CHECK 110 Squib resistance measurement 111 FET test SQP 0 0 0 Squib pin select for all leakage diagnostic Updated by SSM_RESET or SPI write DocID029274 Rev 1 79/202 201 SPI interface L9678P, L9678P-S 0 SRx 1 SFx LOOP_DIAG_CHSE 0000 0000 0000 Channel select - selects the channel and muxes for all squib diagnostic. L[3:0] Updated by SSM_RESET or SPI write 0000 Channel 0 0001 Channel 1 0010 Channel 2 0011 Channel 3 0100 - 1111 None Selected 80/202 DocID029274 Rev 1 L9678P, L9678P-S 16 - MISO 0 0 0 RW Buffer: $3900 Reset: $0072 DCS_PDCURR 12 11 10 9 8 X X X X X X X X 0 0 0 0 0 0 0 0 SSM Type: 13 WSM 39 14 POR Address: 0 15 0 0 0 7 6 5 4 X X CHID[3:0] MOSI 17 0 0 CHID[3:0] 18 SWOEN 19 SWOEN DC sensor diagnostic configuration command register (SWCTRL) DCS_PDCURR DCS_PDCURR 5.1.26 SPI interface 3 2 1 0 Disable of all pull down current for DC sensor Updated by SSM_RESET or SPI write 0 OFF for channel under voltage or current measurement, ON for all other channels 1 OFF for all channels SWOEN 0 0 0 Switch Output Enable Updated by SSM_RESET or SPI write 0 OFF 1 ON (40mA) CHID[3:0] 0000 0000 0000 Channel ID - selects DC sensor channel for output activation Updated by SSM_RESET or SPI write 0000 Channel 0 0001 Channel 1 0010 Channel 2 0011 Channel 3 0100 - 1111 None Selected DocID029274 Rev 1 81/202 201 SPI interface 5.1.27 L9678P, L9678P-S ADC request and data registers (DIAGCTRL_x) ADC A control command (DIAGCTRL_A) 19 18 MISO 17 16 NEWDATA_A MOSI 0 15 14 13 12 11 10 9 8 7 X X X X X X X X X 0 6 3A Type: RW Buffer: $3A00 Reset: $0074 4 3 2 1 0 1 0 1 0 ADCREQ_A[6:0] ADCREQ_A[6:0] Address: 5 ADCRES_A[9:0] ADC B control command (DIAGCTRL_B) 19 18 MISO 16 NEWDATA_B MOSI 17 0 15 14 13 12 11 10 9 8 7 X X X X X X X X X 0 6 3B Type: RW Buffer: $3B00 Reset: $0076 4 3 2 ADCREQ_B[6:0] ADCREQ_B[6:0] Address: 5 ADCRES_B[9:0] ADC C control command (DIAGCTRL_C) 19 18 MISO 17 16 NEWDATA_C MOSI 0 0 Address: 3C Type: RW Buffer: $3C00 Reset: $0078 82/202 15 14 13 12 11 10 9 8 7 X X X X X X X X X ADCREQ_C[6:0] DocID029274 Rev 1 6 5 4 3 2 ADCREQ_C[6:0] ADCRES_C[9:0] L9678P, L9678P-S SPI interface ADC D control command (DIAGCTRL_D) 19 18 MISO 17 16 NEWDATA_D MOSI 0 14 13 12 11 10 9 8 7 X X X X X X X X X 0 RW Buffer: $3D00 Reset: $007A SSM Type: WSM 3D 6 ADCREQ_D[6:0] POR Address: NEWDATA_x 15 0 0 0 5 4 3 2 1 0 ADCREQ_D[6:0] ADCRES_D[9:0] New data available from convertion Updated by SSM_RESET or ADC state machine 0 cleared on read 1 convertion finished ADCREQ_x[6:0] $00 $00 $00 ADC Request select command Updated by SSM_RESET or SPI write to DIAGCTRL_x Measurement $00 Unused $01 Ground Ref $02 Full scale Ref $030 DCSx voltage $04 DCSx current $05 DCSx resistance $06 Squib x resistance $07 Internal BG reference voltage (BGR) $080 Internal BG monitor voltage (BGM) $09 Unused $0A Temperature $0B DCS 0 voltage $0C DCS 1 voltage $0D DCS 2 voltage $0E DCS 3 voltage $20 VBATMON pin voltage $21 VIN pin voltage $22 Internal analog supply voltage (VINT) $23 Internal digital supply voltage (VDD) DocID029274 Rev 1 83/202 201 SPI interface L9678P, L9678P-S $24 ERBOOST pin voltage $25 Unused $26 VER pin voltage $27 VSUP voltage $28 VDDQ voltage $29 WAKEUP pin voltage $2A VSF pin voltage $2B WDTDIS pin voltage $2C GPOD0 pin voltage $2D GPOS0 pin voltage $2E GPOD1 pin voltage $2F GPOS1 pin voltage $30 Unused $31 Unused $32 RSU0 pin Voltage $33 RSU1 pin Voltage $34 Unused $35 Unused $36 SS0 pin voltage $37 SS1 pin voltage $38 SS2 pin voltage $39 SS3 pin voltage $3A Unused $3B Unused $3C Unused $3D Unused $3E Unused $3F Unused $40 Unused $41 Unused $42 VRESDIAG voltage $43 VDD5 voltage $44 VDD3V3 voltage $45 ISOK voltage $46 SF0 $47 SF1 $48 SF2 $49 SF3 $4A - $7F Unused ADCRES_x[9:0] $000 $000 $000 10-bit ADC result value corresponding to ADCREQ_x request Updated by SSM_RESET or ADC state machine 84/202 DocID029274 Rev 1 L9678P, L9678P-S GPO configuration register (GPOCR) 18 MOSI MISO 17 16 - 0 0 0 RW Buffer: $4200 Reset: $0084 GPOxLS 12 11 10 9 8 7 6 5 4 3 2 X X X X X X X X X X X X X X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SSM Type: 13 WSM 42 14 POR Address: 0 15 0 0 0 1 0 GPO0LSGPO0LS 19 GPO1LSGPO1LS 5.1.28 SPI interface GPO driver configuration bit Updated by SSM_RESET or SPI write 0 High-side Driver configuration for GPOx (ER_BOOST_OK is required to enable GPO as HS) 1 Low-side Driver configuration for GPOx (ER_BOOST_OK is not required to enable GPO as LS) DocID029274 Rev 1 85/202 201 SPI interface 5.1.29 L9678P, L9678P-S GPO configuration register (GPOCTRLx) Channel 0 (GPOCTRL0) Channel 1 (GPOCTRL1) 19 18 MOSI 17 16 - MISO 0 0 0 0 15 14 13 12 11 10 9 8 7 6 X X X X X X X X X X GPOxPWM[5:0] 0 0 0 0 0 0 0 0 0 0 GPOxPWM[5:0] Address: 43 (GPOCTRL0) 44 (GPOCTRL1) Type: RW Buffer: $4300 (GPOCTRL0) $4400 (GPOCTRL1) Reset: $0086 (GPOCTRL0) $0088 (GPOCTRL1) POR GPOxPWM WSM 5 3 2 SSM 000000 000000 000000 6 bit value for PWM% with scaling of 1.6% per count Updated by SSM_RESET or SPI write 86/202 4 DocID029274 Rev 1 1 0 L9678P, L9678P-S R Buffer: $4600 Reset: - GPO1DISABLE 11 10 9 8 7 6 5 4 3 2 1 0 X X X X X X X X X X X X X X X X 0 0 0 0 0 0 0 GPO0OPN 0 0 SSM Type: 12 WSM 46 13 POR Address: 0 14 GPO0LIM 0 GPO0DISABLE MISO 15 GPO0TEMP 16 GPO1DISABLE MOSI 17 GPO1OPN 18 GPO1LIM 19 GPO1TEMP GPO fault status register (GPOFLTSR) GPO_NOT_CONF 5.1.30 SPI interface 1 1 1 GPO 1 disable state 0 GPO enable to work 1 GPO disabled due to thermal fault or configuration not received or ERBOOST not OK (only HS mode) GPO0DISABLE 1 1 1 GPO 0 disable state 0 GPO enable to work 1 GPO disabled due to thermal fault or configuration not received or ERBOOST not OK (only HS mode) GPO_NOT_CONF 1 1 1 GPO configuration status 0 GPO HS/LS configured (activation is permitted) 1 GPO not yet configured (activation is denied) GPO1TEMP 0 0 0 GPO 1 Thermal Fault Cleared by SSM_RESET or SPI read, set by detection circuit 0 Fault not detected 1 Fault detected GPO1LIM 0 0 0 GPO 1 Current Limit Flag Cleared by SSM_RESET or SPI read, set by detection circuit while ON 0 Fault not detected 1 Fault detected GPO1OPN 0 0 0 GPO 1 Open Detection Cleared by SSM_RESET or SPI read, set by detection circuit while ON 0 Fault not detected DocID029274 Rev 1 87/202 201 SPI interface L9678P, L9678P-S 1 Fault detected GPO0TEMP 0 0 0 GPO 0 Thermal Fault Cleared by SSM_RESET or SPI read, set by detection circuit 0 Fault not detected 1 Fault detected GPO0LIM 0 0 0 GPO 0 Current Limit Flag OK Cleared by SSM_RESET or SPI read, set by detection circuit while ON 0 Fault not detected 1 Fault detected GPO0OPN 0 0 0 GPO 0 Open Detection OK Cleared by SSM_RESET or SPI read, set by detection circuit while ON 0 Fault not detected 1 Fault detected 19 18 MOSI 17 16 - MISO 0 0 0 R Buffer: $4700 Reset: - ISOTEMP 12 11 10 9 8 7 6 5 4 3 2 1 0 X X X X X X X X X X X X X X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SSM Type: 13 X WSM 47 14 X POR Address: 0 15 ISOLIM ISO fault status register (ISOFLTSR) ISOTEMP 5.1.31 0 0 0 ISO Thermal Fault Cleared by SSM_RESET or SPI read, set by detection circuit 0 Fault not detected 1 Fault detected ISOLIM 0 0 0 ISO Current Limit Flag Cleared by SSM_RESET or SPI read, set by detection circuit while ON (ISOK=0) 0 Fault not detected 1 Fault detected 88/202 DocID029274 Rev 1 L9678P, L9678P-S 5.1.32 SPI interface Remote sensor configuration register (RSCRx) Remote sensor configuration register 1 (RSCR1) 0 0 0 0 X 0 RW Buffer: $4A00 (RSCR1) $4B00 (RSCR2) Reset: $0094 (RSCR1) $0096 (RSCR2) SLOWTRACK SSM Type: WSM 4A (RSCR1) 4B (RSCR2) POR Address: 0 0 0 13 12 11 10 9 8 7 6 5 4 X X X X X X X X STSx[3:0] MISO 14 0 0 0 0 0 0 0 0 STSx[3:0] - 15 BLKTxSEL 16 BLKTxSEL MOSI 17 STARTbitsMEAS_DISABLE STARTbitsMEAS_DISABLE 18 SLOWTRACK 19 SLOWTRACK Remote sensor configuration register 2 (RSCR2) 3 2 1 0 Reduce frequency of base current tracking 0 8µs/1µs 1 16µs/2µs STARTbitsMEAS_ DISABLE 0 0 0 Disable of start bits period measure to decode data bits 0 Period of start bits used to decode following data bits 1 Period of start bits not used to decode following data bits BLKTxSEL 0 0 0 Current limiting blanking time select for channel x Updated by SSM_RESET or SPI write 0 Blanking time = 5ms 1 Blanking time = 10ms DocID029274 Rev 1 89/202 201 L9678P, L9678P-S SSM POR WSM SPI interface STSx[3:0] 0000 0000 0000 Remote sensor type select Updated by SSM_RESET or SPI write 0000 Async PSI5, parity, 8-bit, 125k (A8P-228/1L) 0001 Async PSI5, parity, 8-bit, 189k (A8P-228/1H) 0010 Async PSI5, parity, 10-bit, 125k (A10P-228/1L) 0011 Async PSI5, parity, 10-bit, 189k (A10P-228/1H) 0100-1111 Async PSI5, parity, 10-bit, 189k (A10P-228/1H) Remote sensor control register (RSCTRL) 18 MOSI MISO 17 16 0 0 0 0 R/W Buffer: $4E00 Reset: $009C CHxEN 12 11 10 9 8 7 6 5 4 X X X X X X X X X X X X 0 0 0 0 0 0 0 0 0 0 0 0 SSM Type: 13 WSM 4E 14 POR Address: 15 0 0 0 Channel x Output enable Updated by SSM_RESET or SPI write 0 Off 1 On 90/202 DocID029274 Rev 1 3 2 X 0 1 CH0EN CH0EN 19 CH1EN CH1EN 5.1.33 0 X 0 L9678P, L9678P-S 5.1.34 SPI interface Remote sensor data/fault registers w/o fault (RSDRx) Remote sensor 0 data and fault flag register (RSDR0) Remote sensor 1 data and fault flag register (RSDR1) Note: The value in Bit15 (FLT) will re-define the use of the other bits, hence the information below is divided into two groups. Bit 15 = 0 NO FAULT condition 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 X X X X X X X X X X X X X X X X R Buffer: $5000 (RSDR0) $5100 (RSDR1) Reset: SSM Type: WSM 50 (RSDR0) 51 (RSDR1) POR Address: DATA [9:0] 0 15 LCID [3:0] MISO 16 CRC MOSI 17 On/Off 18 FLT=0 19 CRC[2:0] 000 000 000 CRC based on bits [16:0] Updated based on bits [16:0] FLT 1 1 1 Fault Status - Depending on Fault Status, the DATA bits are defined differently Cleared when all of the following bits are '0': STG, STB, CURRENT_HI, OPENDET, RSTEMP, NODATA Set when any of the following bits are '1': STG, STB, CURRENT_HI, OPENDET, RSTEMP, NODATA 0 No fault 1 Fault On/Off 0 0 0 Channel On/Off Status Cleared by SSM_RESET or when channel is commanded OFF via SPI RSCTRL or when the STG bit is set or the RSTEMP bit is set Set when channel is commanded ON by SPI RSCTRL 0 Off 1 On LCID[0:3] 0000 0000 0000 Logical Channel ID DocID029274 Rev 1 91/202 201 SPI interface L9678P, L9678P-S Updated based on SPI read request 0000 RSU0 0100 RSU1 DATA[9:0] $000 $000 $000 10-bit data from Manchester decoder Cleared by SSM_RESET or SPI read or when channel is commanded OFF via SPI RSCTRL updated when a valid PSI5 frame is received 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 X X X X X X X X X X X X X X X X STB CURRENT_HI OPENDET RSTEMP INVALID NODATA X 15 STG MISO 16 - CRC MOSI 17 0 X X R Buffer: $5000 (RSDR0) $5100 (RSDR1) Reset: SSM Type: WSM 50 (RSDR0) 51 (RSDR1) POR Address: LCID [3:0] 18 On/Off 19 FLT=1 Bit 15 = 1 FAULTED condition CRC[2:0] 000 000 000 CRC based on bits [16:0] Updated based on bits [16:0] FLT 1 1 1 Fault Status - Depending on Fault Status, the DATA bits are defined differently Cleared when all of the following bits are '0': STG, STB, CURRENT_HI, OPENDET, RSTEMP, NODATA Set when any of the following bits are '1': STG, STB, CURRENT_HI, OPENDET, RSTEMP, NODATA 0 No fault 1 Fault On/Off 0 0 0 Channel On/Off Status Cleared by SSM_RESET or when channel is commanded OFF via SPI RSCTRL or when the STG bit is set or the RSTEMP bit is set Set when channel is commanded ON by SPI RSCTRL 0 Off 92/202 DocID029274 Rev 1 L9678P, L9678P-S SPI interface 1 On LCID[0:3] 0000 0000 0000 Logical Channel ID Updated based on SPI read request 0000 RSU0 0100 RSU1 STG 0 0 0 Short to Ground (in current limit condition) Cleared by SSM_RESET or when channel is commanded OFF via SPI RSCTRL 0 No fault 1 Fault STB 0 0 0 Short to Battery Cleared by SSM_RESET or SPI read or when channel is commanded OFF via SPI RSCTRL - not cleared by channel OFF caused by STG or RSTEMP Set when channel voltage exceeds VSUP for a time greater than TSTBTH 0 No fault 1 Fault CURRENT_HI 0 0 0 Current High Cleared by SSM_RESET or SPI read or when channel is commanded OFF via SPI RSCTRL Set when channel current exceeds ILKGG for a time determined by an up/down counter 0 No fault 1 Fault OPENDET 0 0 0 Open Sensor Detected Cleared by SSM_RESET or SPI read or when channel is commanded OFF via SPI RSCTRL Set when channel current exceeds ILKGB for a time determined by an up/down counter 0 No fault 1 Fault RSTEMP 0 0 0 Over temperature detected Cleared by SSM_RESET or when channel is commanded OFF via SPI RSCTRL Set when over-temp condition is detected 0 No fault 1 Fault DocID029274 Rev 1 93/202 201 SPI interface INVALID L9678P, L9678P-S 0 0 0 Invalid Data Cleared by SSM_RESET or SPI read or when channel is commanded OFF via SPI RSCTRL or if one of the following is set: STG, STB, CURRENT_HI, OPEN_DET, RSTEMP Set when two valid start bits are received and a Manchester error (# of bits, bit timing) or parity error is detected 0 No fault 1 Fault NODATA 1 1 1 No Data in buffer Cleared when a valid PSI frame is received or if one of the following is set: STG, STB, CURRENT_HI, OPEN_DET, RSTEMP Set upon SPI read of RSDRx if FIFO empty and none of the following bits are set: STG, STB, CURRENT_HI, OPEN_DET, RSTEMP 0 No fault 1 Fault 94/202 DocID029274 Rev 1 L9678P, L9678P-S Safing algorithm configuration register (SAF_ALGO_CONF) - MISO 0 0 0 0 R/W Buffer: $6600 Reset: $00CC NO_DATA SSM Type: WSM 66 14 POR Address: 15 0 0 0 X 0 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ADD_VAL ADD_VAL 16 SUB_VAL SUB_VAL MOSI 17 ARMP_TH ARMP_TH 18 ARMN_TH ARMN_TH 19 NO_DATA NO_DATA 5.1.35 SPI interface Event counter no data select Updated by SSM_RESET or SPI write while in DIAG state 0 Event counter reset to 0 if CC=0 when SPI read of SAF_CC bit is performed (end of sample cycle) 1 Event counter decremented by SUB_VAL if CC=0 when SPI read of SAF_CC bit is performed (end of sample cycle) ARMN_TH 0011 0011 0011 Negative event counter threshold to assert arming Updated by SSM_RESET or SPI write while in DIAG state 0000 Negative event counter disabled ARMP_TH 0011 0011 0011 Positive event counter threshold to assert arming Updated by SSM_RESET or SPI write while in DIAG state 0000 Positive event counter disabled SUB_VAL 011 011 011 Decremental step size of the event counter Updated by SSM_RESET or SPI write while in DIAG state ADD_VAL 001 001 001 Incremental step size of the event counter Updated by SSM_RESET or SPI write while in DIAG state DocID029274 Rev 1 95/202 201 SPI interface - MISO 0 0 0 0 R Buffer: $6A00 Reset: - ACL_VALID 12 11 10 9 8 7 6 5 4 3 2 1 0 X X X X X X X X X X X X X X X X 0 0 0 0 0 0 0 0 0 0 SSM Type: 13 WSM 6A 14 POR Address: 15 FENH 16 FENL MOSI 17 ARMINT_1 18 ARMINT_2 19 ACL_VALID Arming signals register (ARM_STATE) ACL_PIN_STATE 5.1.36 L9678P, L9678P-S 0 0 0 Valid ACL detection 0 Cleared when ACL_BAD=2 1 Set when ACL_GOOD=3 ACL_PIN_STATE - - - Echo of ACL pin ARMINT_x 0 0 0 State of armint signals Updated per Safing Engine output logic diagram FENH/FENL - - - State of external arming control signals Updated based on pin state 96/202 DocID029274 Rev 1 L9678P, L9678P-S 5.1.37 SPI interface ARMx assignment registers (LOOP_MATRIX_ARMx) Assignment of ARM1 to specific loops (LOOP_MATRIX_ARM1) 16 - MISO 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 X X X X X X X X X X X X 0 0 0 0 0 0 0 0 0 0 0 0 RW Buffer: $6E00 (LOOP_MATRIX_ARM1) $6F00 (LOOP_MATRIX_ARM2) Reset: $00DC (LOOP_MATRIX_ARM1) $00DE (LOOP_MATRIX_ARM2) ARMx_Ly SSM Type: WSM 6E (LOOP_MATRIX_ARM1) 6F (LOOP_MATRIX_ARM2) POR Address: 0 0 0 3 2 1 0 ARMx_L0 ARMx_L0 MOSI 17 ARMx_L1 ARMx_L1 18 ARMx_L2 ARMx_L2 19 ARMx_L3 ARMx_L3 Assignment of ARM2 to specific loops (LOOP_MATRIX_ARM2) Configures ARMx for Loop_y Updated by SSM_RESET or SPI write while in DIAG state 0 ARMx signal is not associated with Loopy 1 ARMx signal is associated with Loopy DocID029274 Rev 1 97/202 201 SPI interface 5.1.38 L9678P, L9678P-S ARMx pulse stretch registers (AEPSTS_ARMx) ARM1 enable pulse stretch timer status (AEPSTS_ARM1) ARM2 enable pulse stretch timer status (AEPSTS_ARM2) 19 18 MOSI MISO 17 16 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 X X X X X X X X X X X X X X X X 0 0 0 0 0 0 RW Buffer: $7300 (AEPSTS_ARM1) $7400 (AEPSTS_ARM2) Reset: - (AEPSTS_ARM1) - (AEPSTS_ARM2) SSM Type: WSM 73 (AEPSTS_ARM1) 74 (AEPSTS_ARM2) POR Address: Timer Count[9:0] Timer Count 0000 0000 0000 10-bit ARMing Enable Pulse Stretcher timer value Cleared by SSM_RESET Loaded with initial value based on ARMx bit and DWELL[1:0] of SAF_CONTROL_y while safing is met for record y provided current value is < DWELL[1:0] value Decremented every 2ms while > 0 Contains remaining pulse stretcher timer value 98/202 DocID029274 Rev 1 L9678P, L9678P-S MOSI 17 16 - MISO 0 0 0 0 RW Buffer: $7F00 Reset: $00FE EN_SAFx 12 11 10 9 8 7 6 5 4 X X X X X X X X X X X X 0 0 0 0 0 0 0 0 SSM Type: 13 WSM 7F 14 POR Address: 15 0 0 0 3 2 1 0 EN_SAF1 EN_SAF1 18 EN_SAF2 EN_SAF2 19 EN_SAF3 EN_SAF3 Safing records enable register (SAF_ENABLE) EN_SAF4 EN_SAF4 5.1.39 SPI interface Safing Record enable Updated by SSM_RESET or SPI write 0 Disable 1 Enable DocID029274 Rev 1 99/202 201 SPI interface 5.1.40 L9678P, L9678P-S Safing records request mask registers (SAF_REQ_MASK_x) Safing record request mask for record 1 (SAF_REQ_MASK_1) Safing record request mask for record 2 (SAF_REQ_MASK_2) Safing record request mask for record 3 (SAF_REQ_MASK_3) Safing record request mask for record 4 (SAF_REQ_MASK_4) 19 18 MOSI MISO 17 16 15 14 13 12 0 0 11 10 9 8 7 6 5 4 3 2 1 0 SAF_REQ_MASKx[15:0] 0 0 SAF_REQ_MASKx[15:0] RW Buffer: $8000 (SAF_REQ_MASK_1) $8100 (SAF_REQ_MASK_2) $8200 (SAF_REQ_MASK_3) $8300 (SAF_REQ_MASK_4) Reset: $8000 (SAF_REQ_MASK_1) $8002 (SAF_REQ_MASK_2) $8004 (SAF_REQ_MASK_3) $8006 (SAF_REQ_MASK_4) SSM Type: WSM 80 (SAF_REQ_MASK_1) 81 (SAF_REQ_MASK_2) 82 (SAF_REQ_MASK_3) 83 (SAF_REQ_MASK_4) POR Address: SAF_REQ_MASKx 0000 0000 0000 Safing Request Mask for safing record x - 16-bit request mask that is bit-wise [15:0] ANDed with MOSI data from SPI monitor Updated by SSM_RESET or SPI write while in DIAG state 100/202 DocID029274 Rev 1 L9678P, L9678P-S 5.1.41 SPI interface Safing records request target registers (SAF_REQ_TARGET_x) Safing record request mask for record 1 (SAF_REQ_TARGET_1) Safing record request mask for record 2 (SAF_REQ_TARGET_2) Safing record request mask for record 3 (SAF_REQ_TARGET_3) Safing record request mask for record 4 (SAF_REQ_TARGET_4) 19 18 MOSI MISO 17 16 15 14 13 12 11 0 0 10 9 8 7 6 5 4 3 2 1 0 SAF_REQ_TARGETx[15:0] 0 0 SAF_REQ_TARGETx[15:0] RW Buffer: $9300 (SAF_REQ_TARGET_1) $9400 (SAF_REQ_TARGET_2) $9500 (SAF_REQ_TARGET_3) $9600(SAF_REQ_TARGET_4) Reset: $8026 (SAF_REQ_TARGET_1) $8028 (SAF_REQ_TARGET_2) $802A (SAF_REQ_TARGET_3) $802C (SAF_REQ_TARGET_4) SSM Type: WSM 93 (SAF_REQ_TARGET_1) 94 (SAF_REQ_TARGET_2) 95 (SAF_REQ_TARGET_3) 96 (SAF_REQ_TARGET_4) POR Address: SAF_REQ_TARGETx 0000 0000 0000 Safing Request target for safing record x - 16-bit request target that is [15:0] compared to the bit-wise AND result of the SAF_REQ_MASKx and MOSI data from SPI monitor Updated by SSM_RESET or SPI write while in DIAG state DocID029274 Rev 1 101/202 201 SPI interface 5.1.42 L9678P, L9678P-S Safing records response mask registers (SAF_RESP_MASK_x) Safing record response mask for record 1 (SAF_RESP_MASK_1) Safing record response mask for record 2 (SAF_RESP_MASK_2) Safing record response mask for record 3 (SAF_RESP_MASK_3) Safing record response mask for record 4 (SAF_RESP_MASK_4) 19 18 MOSI MISO 17 16 15 14 13 12 11 0 0 10 9 8 7 6 5 4 3 2 1 0 SAF_RESP_MASKx[15:0] 0 0 SAF_RESP_MASKx[15:0] RW Buffer: $A600 (SAF_RESP_MASK_1) $A700 (SAF_RESP_MASK_2) $A800 (SAF_RESP_MASK_3) $A900 (SAF_RESP_MASK_4) Reset: $804C (SAF_RESP_MASK_1) $804E (SAF_RESP_MASK_2) $8050 (SAF_RESP_MASK_3) $8052 (SAF_RESP_MASK_4) SSM Type: WSM A6 (SAF_RESP_MASK_1) A7 (SAF_RESP_MASK_2) A8 (SAF_RESP_MASK_3) A9 (SAF_RESP_MASK_4) POR Address: SAF_RESP_MASKx 0000 0000 0000 Safing Response Mask for safing record x - 16-bit response mask that is bit[15:0] wise ANDed with MISO data from SPI monitor Updated by SSM_RESET or SPI write while in DIAG state 102/202 DocID029274 Rev 1 L9678P, L9678P-S 5.1.43 SPI interface Safing records response target registers (SAF_RESP_TARGET_x) Safing record response target for record 1 (SAF_RESP_TARGET_1) Safing record response mask for record 2 (SAF_RESP_TARGET_2) Safing record response mask for record 3 (SAF_RESP_TARGET_3) Safing record response mask for record 4 (SAF_RESP_TARGET_4) 19 18 0 0 MOSI MISO 17 16 0 0 15 14 13 12 11 - 10 9 8 7 6 5 4 3 2 1 0 SAF_RESP_TARGETx[15:0] SAF_RESP_TARGETx[15:0] RW Buffer: $B900 (SAF_RESP_TARGET_1) $BA00 (SAF_RESP_TARGET_2) $BB00 (SAF_RESP_TARGET_3) $BC00 (SAF_RESP_TARGET_4) Reset: $8072 (SAF_RESP_TARGET_1) $8074 (SAF_RESP_TARGET_2) $8076 (SAF_RESP_TARGET_3) $8078 (SAF_RESP_TARGET_4) SSM Type: WSM B9 (SAF_RESP_TARGET_1) BA (SAF_RESP_TARGET_2) BB (SAF_RESP_TARGET_3) BC (SAF_RESP_TARGET_4) POR Address: SAF_RESP_TARGETx 0000 0000 0000 Safing Response target for safing record x - 16-bit response target that is [15:0] compared to the bit-wise AND result of the SAF_RESP_MASKx and MISO data from SPI monitor Updated by SSM_RESET or SPI write while in DIAG state DocID029274 Rev 1 103/202 201 SPI interface 5.1.44 L9678P, L9678P-S Safing records data mask registers (SAF_DATA_MASK_x) Safing record data mask for record 1 (SAF_DATA_MASK_1) Safing record data mask for record 2 (SAF_DATA_MASK_2) Safing record data mask for record 3 (SAF_DATA_MASK_3) Safing record data mask for record 4 (SAF_DATA_MASK_4) 19 18 0 0 MOSI MISO 17 16 0 0 15 14 13 12 11 - 10 9 8 7 6 5 4 3 2 1 SAF_DATA_MASKx[15:0] SAF_DATA_MASKx[15:0] RW Buffer: $CC00 (SAF_DATA_MASK_1) $CD00 (SAF_DATA_MASK_2) $CE00 (SAF_DATA_MASK_3) $CF00 (SAF_DATA_MASK_4) Reset: $8098 (SAF_DATA_MASK_1) $809A (SAF_DATA_MASK_2) $809C (SAF_DATA_MASK_3) $809E (SAF_DATA_MASK_4) SSM Type: WSM CC (SAF_DATA_MASK_1) CD (SAF_DATA_MASK_2) CE (SAF_DATA_MASK_3) CF (SAF_DATA_MASK_4) POR Address: SAF_DATA_MASKx[ 0000 0000 0000 Safing Data Mask for safing record x - 16-bit data mask that is bit-wise 15:0] ANDed with MISO data from SPI monitor Updated by SSM_RESET or SPI write while in DIAG state 104/202 DocID029274 Rev 1 0 L9678P, L9678P-S 5.1.45 SPI interface Safing records threshold registers (SAF_THRESHOLD_x) Safing record threshold for record 1 (SAF_THRESHOLD_1) Safing record threshold for record 2 (SAF_THRESHOLD_2) Safing record threshold for record 3 (SAF_THRESHOLD_3) Safing record threshold for record 4 (SAF_THRESHOLD_4) 19 18 0 0 MOSI MISO 17 16 0 0 15 14 13 12 11 - 10 9 8 7 6 5 4 3 2 1 0 SAF_THRESHOLDx[15:0] SAF_THRESHOLDx[15:0] RW Buffer: $DF00 (SAF_THRESHOLD_1) $E000 (SAF_THRESHOLD_2) $E100 (SAF_THRESHOLD_3) $E200 (SAF_THRESHOLD_4) Reset: $80BE (SAF_THRESHOLD_1) $80C0 (SAF_THRESHOLD_2) $80C2 (SAF_THRESHOLD_3) $80C4 (SAF_THRESHOLD_4) SSM Type: WSM DF (SAF_THRESHOLD_1) E0 (SAF_THRESHOLD_2) E1 (SAF_THRESHOLD_3) E2 (SAF_THRESHOLD_4) POR Address: SAF_THRESHOLDx $FFFF$FFFF $FFFF Safing threshold for safing record x - 16-bit threshold used for safing data [15:0] comparison Updated by SSM_RESET or SPI write while in DIAG state DocID029274 Rev 1 105/202 201 SPI interface 5.1.46 L9678P, L9678P-S Safing control registers (SAF_CONTROL_x) Safing control register for record 1 (SAF_CONTROL_1) Safing control register for record 2 (SAF_CONTROL_2) Safing control register for record 3 (SAF_CONTROL_3) RW Buffer: $EF00 (SAF_CONTROL_1) $F000 (SAF_CONTROL_2) $F100 (SAF_CONTROL_3) $F200 (SAF_CONTROL_4) Reset: $80DE (SAF_CONTROL_1) $80E0 (SAF_CONTROL_2) $80E2 (SAF_CONTROL_3) $80E4 (SAF_CONTROL_4) ARMSELx 6 X X ARM2x ARM1x CSx[2:0] IFx 0 0 ARM1x CSx[2:0] IFx 5 4 3 2 1 0 SSM Type: 7 WSM $EF (SAF_CONTROL_1) $F0 (SAF_CONTROL_2) $F1 (SAF_CONTROL_3) $F2 (SAF_CONTROL_4) 8 POR Address: 9 ARM2x 10 DWELLx[1:0] DWELLx[1:0] 0 11 COMBx 0 12 COMBx 0 13 LIM Enx 0 14 LIM Enx - MISO 15 LIM SELx 16 SPIFLDSELx SPIFLDSELx MOSI 17 ARMSELx 18 ARMSELx 19 LIM SELx Safing control register for record 4 (SAF_CONTROL_4) 00 00 00 ARMINT select for safing record x - correlates ARMINT 1 and ARMINT2 (as determined by ARM1x and ARM2x bits) to ARMP and ARMN Updated by SSM_RESET or SPI write while in DIAG state 00 ARMP OR ARMN 01 ARMP 10 ARMN 11 ARMP OR ARMN SPIFLDSELx 106/202 0 0 0 SPI field select for safing record x - determines which 16-bit field in long SPI messages (>31 bit) to use for response on MISO of SPI monitor. In case of messages less than 32 bits this bit is don't care. DocID029274 Rev 1 L9678P, L9678P-S SPI interface Updated by SSM_RESET or SPI write while in DIAG state 0 First 16 bits of SPI MISO frame used for Response Mask and Data Mask bit-wise AND 1 Last 16 bits of SPI MISO frame used for Response Mask and Data Mask bit-wise AND LIM SELx 0 0 0 Data range limit select for safing record x - When enabled, determines the range limit used for incoming sensor data Updated by SSM_RESET or SPI write while in DIAG state 0 8-bit data range limit - incoming |data| >120d is not recognized as valid data 1 10-bit data range limit - incoming |data| > 480d is not recognized as valid data LIM Enx 0 0 0 Data range limit enable for safing record x Updated by SSM_RESET or SPI write while in DIAG state 0 Data range limit disabled 1 Data range limit enabled COMBx 0 0 0 Combine function enable for safing record x Updated by SSM_RESET or SPI write while in DIAG state 0 Combine function disabled 1 Combine function enabled For record pairs = x,x+1, the comparison for record x uses |data(x) + data(x+1)| and the comparison for record x+1 uses |data(x) - data(x+1)| Record pairs are 1,2 and 6,7 DWELLx[1:0] 00 00 00 Safing dwell extension time select for safing record x Updated by SSM_RESET or SPI write while in DIAG state 00 2048 ms 01 256 ms 10 32 ms 11 0 ms ARM2x 0 0 0 ARM2INT select for safing record x - correlates safing result to ARM2INT Updated by SSM_RESET or SPI write while in DIAG state 0 Safing record x not assigned to ARM2INT 1 Safing record x assigned to ARM2INT ARM1x 0 0 0 ARM1INT select for safing record x - correlates safing result to ARM1INT Updated by SSM_RESET or SPI write while in DIAG state DocID029274 Rev 1 107/202 201 SPI interface L9678P, L9678P-S 0 Safing record x not assigned to ARM1INT 1 Safing record x assigned to ARM1INT CSx[2:0] 000 000 000 SPI Monitor CS select for safing record x Updated by SSM_RESET or SPI write while in DIAG state 000 None selected for record x 001 SAF_CS0 selected for record x 010 SAF_CS1 selected for record x 011 None selected for record x 100 None selected for record x 101 SPI_CS selected for record x 110 None selected for record x 111 None selected for record x IFx 0 0 0 SPI format select for safing record x - selects response protocol for SPI monitor Updated by SSM_RESET or SPI write while in DIAG state 0 Out of frame response for record x 1 In Frame response for record x 108/202 DocID029274 Rev 1 L9678P, L9678P-S 5.1.47 Safing record compare complete register (SAF_CC) 19 18 0 0 MOSI MISO SPI interface 17 16 0 0 - R Buffer: $FF00 Reset: - CC_xx 12 11 10 9 8 7 6 5 4 X X X X X X X X X X X X 0 0 0 0 0 0 0 0 0 0 0 0 SSM Type: 13 WSM FF 14 POR Address: 15 0 0 0 3 2 1 0 X X X X CC_4 CC_3 CC_2 CC_1 Indicates compare complete status of each of the 4 safing records, and defines the end of the sample cycle for safing Cleared by SSM_RESET or SPI read, set by safing engine when request, response mask and target registers match the incoming SPI frame 0 Compare not completed for record x 1 Compare completed for record x DocID029274 Rev 1 109/202 201 Deployment drivers 6 L9678P, L9678P-S Deployment drivers The squib deployment block consists of 4 independent high side drivers and 4 independent low side drivers. Squib deployment logic requires a deploy command received through SPI communications and either an arming condition processed by safing logic or a proper FENH and FENL input pin assessment, depending on whether the internal safing engine is used or not. FENH signal is used to enable high side squib drivers and is active high, while FENL enables low side drivers and is active low. Both conditions must exist in order for the deployment to occur. Once a deployment is initiated, it can only be terminated by a RESET event. L9678P allows all 4 squib loops to be deployed at the very same time or in other possible timing sequence. Deployment drivers are capable of granting a successful deployment also in case of short to ground on low-side circuit (SRx pins). Firing voltage capability across high side circuit is maximum 25 V. High side and low side drivers account for a maximum series total resistance of 2 Ω. Each loop is granted for a minimum number of deployments of 50, under all normal operating conditions and with a deployment repetition time higher than 10s. 6.1 Control logic A block diagram representing the deployment driver logic is shown below. Deployment driver logic features include: Deploy command logic Deployment current selection Deployment current monitoring and deploy success feedback Diagnostic control and feedback Figure 20. Deployment driver control blocks '&5 'HSOR\PHQW&RQILJXUDWLRQ 5HJLVWHU '(3&20 'HSOR\PHQW &RPPDQG5HJLVWHU 'HSOR\ 5HTXHVW 9DOLGDWLRQ )(1+ ; +LJK 6LGH )(7 ; 6)[ '&076[ 'HSOR\&XUUHQW 0RQLWRU6WDWXV 'HSOR\PHQW &RQWURO 7LPLQJ '&5 'HSOR\PHQW &RQILJXUDWLRQ 5HJLVWHU ,QW([WVDILQJHQJLQH LQWFON ,7+'(3/ &XUUHQW 0RQLWRU '&5 'HSOR\PHQW &RQILJXUDWLRQ 5HJLVWHU 'HSOR\PHQW6WDWXV 5HJLVWHU '65[ /RZ 6LGH )(7 )(1/ ; ; 65[ $50 ; 6DILQJ(QJLQH 3URJUDPPDEOH /RRS $VVLJQPHQWV ,QW([WVDILQJHQJLQH '!0'03 110/202 DocID029274 Rev 1 L9678P, L9678P-S Deployment drivers Figure 21. Deployment driver control logic - Enable signal $50,1*67$7( $QDORJ ',$*67$7( 'HSOR\PHQW /3',$*5(4/($.B&+6(/[ '67(67+6)(7B7(67 %ORFN 6$)(6(/ )(1+ (1$%/(B+6[ $50,17 $50B/[ $50,17 $50B/[ )(1/ 6$),1*67$7( $50B(1 (1$%/(B/6[ ',$*67$7( /3',$*5(4/($.B&+6(/[ '67(67/6)(7B7(67 '!0'03 Figure 22. Deployment driver control logic - Turn-on signals $50,1*67$7( ([SLUDWLRQ 7LPHU 6$),1*67$7( '(3B(1$%/('67$7( 6 63,B'(35(4[ 5 6605(6(7 '(3B',6$%/('67$7( 8S&WU (;3B7KUHVK (1 &/5 &+['(3 &+[67$7 6 5 '(3B7KUHVK 8S&WU (1$%/(B+6[ (1$%/(B/6[ 6 ',$*67$7 ( '67(6738/6( 5 (1 &/5 /6B29(5B&85[ *1'B/266[ 'HSOR\ 7LPHU 6605(6(7 6 6 5 5 &+['6 +6B21[ '67(67+6)(7B7(67 /3',$*5(4/($.B&+6(/[ /6B21[ '67(67/6)(7B7(67 $1$/2* 'HSOR\PHQW%/2&. '!0'03 The high level block diagram for the deployment drivers is shown below: DocID029274 Rev 1 111/202 201 Deployment drivers L9678P, L9678P-S Figure 23. Deployment driver block 66[\ 5 P: 5 23ZLWKVZLWFKLQJ 2IIVHWFRPSHQVDWLRQ (QDEOHB+6[ 5 23SKDVH 23SKDVH 5 6)[ [,5() 2SHQWRVKRUWFRPS Q) 7RGHSOR\ FXUUHQW ! FRXQWHU 5VTXLE 65[ 9FODPS !9 ,SXOOGRZQ 9 +6B2)) Q) 6DPHSRZHU WUDQVLVWRU /6B21 ,5() P$ (1B,6,1. ,OLPLW !$W\S (QDEOHB/6[ /6B2&B&RPS ,OLPLW P$ W\S 6*[\ /RVVJURXQG GLRGH /6B/RVV B*QG *1'68% *$3*36 6.1.1 Deployment current selection Deployment current is programmed for all channels using the Deploy Configuration Register (DCRx) shown in “Deployment Configuration register (DCRx). If 1.75 A deployment current is selected, the 2 ms deployment time cannot be chosen. If a SPI command with 2 ms and 1.75 A selection is received, L9678P will discard it and switch to a 500 µs and 1.2 A selection instead. This misuse is flagged with the CHxDD bit in the Deploy Status Register (DSR). 6.1.2 Deploy command expiration timer Deploy commands are received for all channels using SPI communications. Once a deploy command is received, it will remain valid for a specified time period selected in the Deploy Configuration Register (DCRx). The deploy status and deploy expiration timer can be read through the Deploy Status Register (DSRx). The deploy expiration timer is 6 bits and the maximum time is 500 ms nominal. 112/202 DocID029274 Rev 1 L9678P, L9678P-S 6.1.3 Deployment drivers Deployment control flow Deployment control logic requires the following conditions to be true to successfully operate a deployment: POR = 1 SSM to be either in Safing State or Arming State a valid arming condition processed by safing logic or FENH and FENL signals to be set (depending on selection of internal or external safing engine) "channel-specific deploy command request bits to be set via SPI in the Deploy command Register (DEPCOM) a global deployment state has to be active, as described in the following figure. Figure 24. Global SPI deployment enable state diagram 660B5HVHW '(3B',6$%/(' 63,B63,'(3(1'(3(1B:5 63,B63,'(3(1'(3(1B:5 81/2&. /2&. '(3B(1$%/(' '!0'03 In case a multiple deployment request would be needed, i.e. deploying the same channel in sequence, a toggle on DEP_DISABLED has to be performed and a new DEPCOM command on the same channel has to be sent. The SPI DEPCOM command is ignored if the device is in the DEP_DISABLED state and the deploy command is not set. While in DEP_ENABLED state, the following functionalities that could be active are forced to their reset state: All squib and DC sensor diagnostic current or voltage sources All squib, DC sensor and ADC diagnostic mux settings, state machine, etc. The SPI_LOCK and SPI_UNLOCK signals are available in the SPIDEPEN command: High-side and Low-side enablers by internal/external safing are global and apply to all channels. The Deploy commands in the Deploy Command Register (DEPCOM) are channel specific. Deployment requires a valid arming command from safing logic or the FENH and FENL signals to be set any time before, during or after the specific sequence of deploy commands is received. It is feasible for a deploy command to be received without a valid arming command from safing logic or the FENH and FENL being set. In this case, the deploy command will be terminated according to the Deploy Command Expiration Timer described in Section 6.1.2. Likewise, a valid arming command or the FENH and FENL signals can be set without receiving a Deploy Command. In this case, the enabling signals will remain active according to the Arming Enable Pulse Stretch Timer or the FENx enabling state. The Arming Enable Pulse Stretch Timers is available in the AEPSTS register. DocID029274 Rev 1 113/202 201 Deployment drivers 6.1.4 L9678P, L9678P-S Deployment success Deploy success flag is set when the deploy timer elapses. This bit (CHxDS) is contained in the Deploy Status Register. Within the Global Status Word register (GSW), a single bit (DEPOK) is also set once any of the four deployment channels sets a deploy success flag. 6.2 Energy reserve - deployment voltage One deployment voltage source pin is used for channels 0 and 1 (SS01) and one for channels 2 and 3 (SS23). These pins are directly connected to the high side drivers for each channel. 6.3 Deployment ground return There are dedicated power ground connections for deployment current, SGx pins. One ground connection is sufficient for two deployments occurring simultaneously. 6.4 Deployment driver protections 6.4.1 Delayed low-side deactivation To control voltage spikes at the squib pins during drivers deactivation at the end of a deployment, the low side driver is switched off after tDEL_SD_LS delay time with respect to the high side deactivation. 6.4.2 Low-side voltage clamp The low side driver is protected against overvoltage at the SRx pins by means of a clamping structure as shown in Figure 23. When the Low side driver is turned off, voltage transients at the SRx pin may be caused by squib inductance. In this case a low side FET drain to gate clamp will reactivate the low side FET allowing for residual inductance current recirculation, thus preventing potential low side FET damage by overvoltage. 6.4.3 Short to battery The low side driver is equipped with current limitation and overcurrent protection circuitry. In case of short to battery at the squib pins, the short circuit current is limited by the Low side driver to ILIM_SR. If this condition lasts for longer than TFLT_ILIM_LS deglitch filter time then the low and high-side drivers will be switched off and latched in this state until a new deployment is commanded after SPI_DEPEN is re triggered. 6.4.4 Short to ground The squib driver is designed to stand a short to ground at the squib pins during deployment. In particular, the current flowing through the short circuit is limited by the high side driver (deployment current) and the high-side FET is sized to handle the related energy. In case the short to ground during deployment occurs after an open circuit, a protection against damage is also available. The high side current regulator would have normally reacted to the open circuit by increasing the Vgs of the high side FET. Thanks to a dedicated 114/202 DocID029274 Rev 1 L9678P, L9678P-S Deployment drivers fast comparator detecting the open condition, the driver is able to discharge the FET gate quickly in order to reduce current overshoot and prevent potential driver damage when the short to ground occurs. 6.4.5 Intermittent open squib A dedicated protection is also available in case of intermittent open load during deployment. In this case, if load is restored after an open circuit, due to slow reaction of the high-side current regulation loop, the current through the squib is limited only to ILIMSRx by the low side driver. If this condition lasts for longer than tLIMOS then the high side is turned off for tHSOFFOS and then reactivated. By this feature, intermittent open squib and short to battery faults may be distinguished and handled properly by the drivers. 6.5 Diagnostics The L9678P provides the following diagnostic feedback for all deployment channels: High voltage leakage test for oxide isolation check on SFx and SRx Leakage to battery and ground on both SFx and SRx pins with or without a squib Loop to loop short diagnostics Squib resistance measurement with leakage cancellation High squib resistance with range from 500 Ω to 2000 Ω SSxy, SFx and VER voltage status High and low side FET diagnostics High side driver diagnostics Loss of ground return diagnostics High side safing FET diagnostics Deployment Timer diagnostic The above diagnostic results are processed through a 10 bit Analog to digital algorithmic converter. These tests can be addressed in two different ways, with a high level approach or a low-level one. The main difference between the two approaches is that with the low level approach the user is allowed to precisely control the diagnostic circuitry, also deciding the proper timings involved in the different tests. On the other hand, the high level approach is an automatic way of getting diagnostic results for which an internal state machine is taking care of instructions and timings. The following is the block diagram of the squib diagnostics. DocID029274 Rev 1 115/202 201 Deployment drivers L9678P, L9678P-S Figure 25. Deployment loop diagnostics 9(5SLQ IURP(QHUJ\5HVHUYH 6DILQJ WUDQVLVWRU 95(6',$* ,65& P$ 66[\ %\SDVV Q) 6TXLEUHVLVWDQFHPHDVXUH V\VWHPHUURU 9JQGRU 9%DW 6)[ 5/HDN 9UHI Y Q) [1 $WR' 6TXLEORRS GULYHUDQG GLDJQRVWLF EORFNV 5VTXLE : WR: 9RXW ELW 7RW HUU /6% /6% 9 9RIIVHW +9DQDORJ08; *DLQ 9JQGRU 9%DW 65[ 6TXLEUHVLVWRU+,*+ ,SXOOGRZQ , P$ 6TXLEUHVLVWRU/2: 6KRUWWR*1' 5OHDN !. : QRGHWHFWLRQ 5OHDN .: GHWHFWLRQ 5/HDN Q) 6*[ 9UHI Y ,6,1. *1'$ ,OLPLW P$ 6KRUWWR%$7 5OHDN !. : QRGHWHFWLRQ 5OHDN .: GHWHFWLRQ 95&0YROWDJHUHJXODWRUFXUUHQWPRQLWRU *$3*36 The leakage diagnostic includes short to battery, short to ground and shorts between loops. The test is applied to each SFx and SRx pin so shorts can be detected regardless of the resistance between the squib pins. 6.5.1 Low level diagnostic approach In this approach, each of the test steps described in the sections below requires user intervention by issuing the proper SPI command. High voltage leakage test for oxide isolation check This test is mandatory to address possible leakages that could not be experienced at low voltages on SFx or SRx pins. The Isource current generator (ISRC) is enabled on the chosen SFx pin. To confirm that the SFx pin has then reached a suitable voltage level, a dedicated ADC measurement on the SFx pin can be requested. Once this test is performed, a leakage test on SFx and SRx pins can be issued to double check possible leakages. Leakage to battery/ground diagnostics Prior to the real test, the Voltage Regulator Current Monitor block (VRCM) has to be tested and validated. The validation of VRCM goes into verifying both the short to battery and short to ground flags. The Isource current generator (ISRC) is first connected to SFx pin to raise its voltage to VRESDIAG. Then, the Voltage Regulator Current Monitor block (VRCM) is enabled and connected to the selected SFx pin. The Isink current limited switch (ISNK) is turned off, as 116/202 DocID029274 Rev 1 L9678P, L9678P-S Deployment drivers well as the pull-down current generator. If the VRCM block works properly, the short to battery flag would be asserted. Then, the Isink current limited switch (ISNK) is connected to SRx pin, the Voltage Regulator Current Monitor block (VRCM) is enabled and connected to the selected SRx pin. The Isource current generator (ISRC) is turned off, as well as the pull-down current generator. If the VRCM block works properly, the short to ground flag would be asserted. Figure 26. SRx pull-down enable logic /3',$*5(43'B&855 +6B21[ (1B3'B&855[ /6B21[ /3',$*5(4 ,65& RU /3',$*5(4 5(6B0($6B&+6(/[ /3',$*5(4,61. /3',$*5(4 95&0 RU /3',$*5(4 /($.B&+6(/[ /3',$*5(4 ',$*B/(9(/ /3',$*5(4 /223B',$*B&+6(/[ DQG /3',$*5(4+,*+B/(9(/ B',$*B6(/ *$3*36 Once the VRCM block is validated, the real leakage tests can be performed. ISRC and ISNK currents have to be kept switched off. The VRCM shall be connected to the desired pin (either SFx or SRx pins); by doing this, also the pull-down current on the selected SRx pin is automatically deactivated. During the test, if no leakage is present the voltage on the selected SFx or SRx pin will be forced by the VRCM to the VREF level and no current is detected or sourced by the VRCM. If there is leakage to ground or battery, the VRCM will sink or source current trying to maintain VREF. Two current comparators, ISTB and ISTG, will detect the abnormal current flow and the relative flags will be given in the LPDIAGSTAT (these flags are not latched and report the real time status of the relevant comparators in case of low-level leakage diagnostic test). In LPDIAGSTAT register are also reported the channel and the pin (SFx or SRx) under test, respectively with LEAK_CHSEL and SQP bit fields. The pull-down currents on the other SRx pins are still active. Therefore, the leakage test that would show a leakage to ground may be depending on a real leakage on the pin under test or on a short between loops. Short between loops diagnostics In case the previous test has reported a leakage to ground fault, the short between loops diagnostics shall be run. The same procedure is followed as described for normal leakage tests except the fact that in this case all the pull-down current generators have to be deactivated (not only the one for the pin under test), by means of the PD_CURR bit in the Diagnostic Request Register (LPDIAGREQ). If a leakage or ground fault is not present, then the channel under test has a short to another squib loop. DocID029274 Rev 1 117/202 201 Deployment drivers L9678P, L9678P-S Table 8. Short between loops diagnostics decoding Channel leakage diagnostics with PD_CURR on (for other channels than the one under test Channel leakage diagnostics with PD_CURR off (for all channels) No fault No fault Short to battery STB fault STB fault Short to ground STG fault STG fault Short between loops STG fault No fault Fault condition on squib channel No shorts The condition of two open channels, i.e. without squib resistance connecting SFx to SRx, that have a short between loops on SFx cannot be detected. If only one of the two shorted SFx pins is open, the fault is indicated on the open channel. Squib resistance measurement During a resistance measurement, a two-step process is performed. At the first step, both ISRC current generator and ISNK current limited switch are enabled and connected to the selected SFx and SRx channel, through ISRC, ISNK and RES_MEAS_CHSEL bit fields in the Loop Diagnostic Request Register (LPDIAGREQ). A differential voltage is created between the SFx and SRx pin based in the ISRC current and squib resistance between the pins. The SPI interface will provide the first resistance measurement voltage (Vout1) based on the amplifying factor of the differential amplifier and a 10 bit internal ADC conversion. The second measurement step (bypass measurement) is performed redirecting ISRC to the selected SRx pin, while keeping ISNK on; this way, the differential amplifier and following ADC will output the offset measurement through SPI (Vout2). Microcontroller is then allowed to calculate the mathematical difference between first and second measurements to obtain the real squib resistance value. The current sources ISRC and ISNK used for Squib Resistance measurements are completely controlled by the user via SPI. Optionally, an automatic control by the IC for current sources switch-off after ADC reading can be activated by enabling the EN_AUTO_SWITCH_OFF bit in the SYS_CFG register. R sq R leak R sq V out1 = G I source ------------------------------- + ------------------------------- V gnd – V refSQL + G V offset R leak + R sq R leak + R sq G R sq V out2 = ------------------------------- V gnd – V refSQL + G V offset R leak + R sq V out R sq = -------------------- (assuming Rleak >> Rsq) G I src where: G = differential amplifier gain. The simplification in the calculation method reported above can result in some amount of error that is already incorporated in the overall tolerance of the squib resistance measurement reported in the electrical parameters table. 118/202 DocID029274 Rev 1 L9678P, L9678P-S Deployment drivers Values of each measurement step can be required addressing the proper ADCREQx code in the Diagnostic Control command (DIAGCTRL) on Table 11: Diagnostics control register (DIAGCTRLx) on page 159. This calculation is tolerant to leakages and, thanks to a dedicated EMI low-pass filter, also to high frequency noises on squib lines. Moreover, L9678P features a slew rate control on the ISRC current generator to mitigate emissions. High squib resistance diagnostics With this test, the device is able to understand if the squib resistance value is below 200 Ω, between 500 Ω and 2000 Ω or beyond 5000 Ω. During a high squib resistance diagnostics, VRCM and ISNK are enabled and connected respectively to SFx and SRx on the selected channel. VREF voltage level outputs on SFx. Current flowing on SFx is measured and compared to ISRlow and ISRhigh thresholds to identify if the resistance is above or below RSRlow or RSRhigh levels. The results are reported in the LPDIAGSTAT register. The relative flags (HSR_HI and HSR_LO) are not latched and reflect the current status of the comparators. High and low side FET diagnostics This couple of tests can only be run during the diagnostic mode of the power-up sequence (Figure 9). Tests are performed individually for HS driver or LS driver, with two dedicated commands. Prior to either the HS or LS FET diagnostics being run, the VRCM has to be first enabled. Within the command to enable the VRCM, also the channel onto which the FET test will be run has to be selected with the LEAK_CHSEL bit field. Running the leakage diagnostics with the appropriate delay time prior to either the HS or LS FET diagnostics will precondition the squib pin to the appropriate voltage level. When the FET diagnostic command is issued with the Diagnostic Register SPI command (SYSDIAGREQ), the VRCM flags will be cleared. The device monitors the current through the VRCM. If the FET is working properly, this current will exceed ISTB (HS test) or ISTG (LS test) and the driver under test is turned off immediately. If the current does not exceed ISTB or ISTG then the test will be terminated and the output is anyway turned off within TFETTIMEOUT. During TFETTIMEOUT period, the bit stating that the FET is enabled will be set (FETON=1) and will be cleared as soon as the FET is switched back off. For all conditions the current on SFx/SRx will not exceed ILIM_VRCM_X, the VRCM block current limitation value. There may be higher currents on the squib lines due to the presence of filter capacitors. During these FET tests, energy available to the squib is limited to less than EFETtest. For high side FET diagnostics, if no faults were indicated in the preceding leakage diagnostics then a normal result would be [STB=1, STG=0]. If the returned result for the high side FET test is not as the previous then either the FET is not functional, a short to ground occurred during the test, or there is a missing SSxy connection for that channel. For low side FET diagnostics if no faults were indicated in the preceding leakage diagnostics then a normal result would be [STB=0, STG=1]. If the returned result for the low side FET test is not as the previous one then either the FET is not functional or a short to battery occurred during the test. In case of SGx loss the low-side FET diagnostic would not indicate a FETfault. DocID029274 Rev 1 119/202 201 Deployment drivers L9678P, L9678P-S The VRCM flags will be given in the LPDIAGSTAT register. The status of the VRCM flags after FET test is latched and can be cleared upon either LPDIAGREQ or SYSDIAGREQ SPI commands. Loss of ground return diagnostics This diagnostics is available during a squib measurement or a high side driver diagnostics. This test is based on the voltage drop across the ground return, if the voltage drop exceeds VSGopen, ground connection is considered as lost. Should the ground connection on the squib driver circuit be missing, the bit related to the channel under test by the two above diagnostics will be activated in the LP_GNDLOSS register. The flag is latched after a proper filter time tSGopen and cleared upon read. High side safing FET diagnostics This test has to be issued during the Diag state of the power-up sequence (Figure 9). Safing FET has to be switched on with the proper code in DSTEST bit field of the SYSDIAGREQ. Therefore, when the command is received, the device activates VSF regulator to supply the external safing FET controller. The user can measure the voltage levels of both the VSF regulator and the SSxy nodes. If the safing FET is properly switched on, the voltage on SSxy is regulated. The measurement request is done via Diagnostic Control command (DIAGCTRLx), while results are reported through ADCRESx bit fields, as shown in Table 11. Deployment timer diagnostic This test allows verifying the correct functionality and duration of the timers used to control the deployment times. This test can be executed only when the IC is in the Diag state by setting the appropriate code in the DSTEST field of the SYSDIAGREQ register. When the test is launched, the IC sequentially triggers the activation of the deployment timers of the various channels (each of them separated by 8ms idle time) and outputs the relevant waveform to the ARM output discrete pin. See the sequence detail in Figure 27. The MCU can therefore test the deployment times by measuring the duration of the high pulses sent by the IC on the ARM pin. The deployment time configuration used during this test is the latest one programmed in the DCRx registers. In case the test is run on a channel with no DCRx deployment time previously configured, a default 8us high pulse is output on ARM for the relevant channel. 120/202 DocID029274 Rev 1 L9678P, L9678P-S Deployment drivers Figure 27. Deployment timer diagnostic sequence )URPDQ\VWDWH ',$*VWDWH63,B6<65(4'67(67 38/6( 38/6(B7(67[ 37B705 PV 37B705 38/6(B7(67[ 38/6(B7(67 37B:$,7 660B5(6(7 38/6(B7(67[ 37 37B705 PV 37B705 38/6(B7(67[ 38/6(B7(67 37B2)) 37 37B705 PV 38/6(B7(67[ 37B705 PV 37B705 38/6(B7(67[ 38/6(B7(67 37 37 37B705 PV 37B705 38/6(B7(67[ 38/6(B7(67 *$3*36 Loop diagnostics control and results registers Diagnostic tests and channels for each test are controlled through the Loop Diagnostic Request Register (LPDIAGREQ), diagnostic results are stored in the Loop Diagnostic Status Register (LPDIAGSTAT). 6.5.2 High level diagnostic approach In this approach, the test steps described in the sections below are coded into a dedicated state machine that helps reducing the user intervention to a minimum. The high-level diagnostic commands are contained in the LPDIAGREQ, LOOP_DIAG_SEL, and LOOP_DIAG_CHSEL registers. These settings are described in the SPI Table for these commands in Read/write register. The high-level diagnostic response is available in the LPDIAGSTAT register. These are described in the SPI Table for this command in Read/write register. The concept is depicted in the following figures. DocID029274 Rev 1 121/202 201 Deployment drivers L9678P, L9678P-S Figure 28. High level loop diagnostic flow1 ,OWLEVELDIAGNOSTICISSELECTEDBIT OF,0$)!'2%1ISLOW/2ANINVALID HIGHLEVELDIAGNOSTICISSELECTED/2WE AREIN$%0?%.!",%$STATE 4)0 ,EAKAGETESTTIMEELAPSED 3",FLAGISASSERTEDIF34' ISNOMOREPRESENT ,EAKAGEISDETECTEDDUETO THEFACTTHAT&%4SWORK PROPERLY/2&%4TEST TIMEOUTELAPSED $)!'?/&& .EWHIGHLEVELDIAGNOSTICREQUEST BITOF,0$)!'2%1ISHIGH 62#-CHECKTIMEELAPSED !.$62#-#(%#+TEST ISSELECTED/262#-FAILS 4)0 7AITENAUGHTIMETO BESURETHATALL CURRENTSANDVOLTAGES SUPPLIESSTARTIN/&&STATE 7!)4?/&& /FFTIMES ,ATCH34"34'FLAGS &0IF,%!+!'%OR &%44TESTSARESELECTED /FFTIMEELAPSED!.$NEW DIAGNOSTICREQUESTIS 62#-?#(%#+/2 ,%!+!'%/23",/2 &%4TESTS 62#-?#(%#+ &%44%34 4)0 &%4TESTTIMEOUTS %NABLE62#$ISABLE)32#AND)3).+ %NABLE(3OR,3&%4IFALSO $34%34OR ,EAKAGETESTTIMEELAPSED !.$&%4TESTISSELECTED !.$./LEAKAGEISPRESENT ,EAKAGETESTTIMEELAPSED !.$,%!+!'%TEST/2 3",ANDNOLEAKAGEIS PRESENT/2&%4TESTAND LEAKAGEISPRESENT ,ATCH34"34'FLAGS &0IF&%4TESTISSELECTED 4)0 ,%!+!'%?4%34? %NABLE62#$ISABLE)32#AND ,EAKAGETESTTIMES )3).+ $ISABLE!,,PULL DOWNCURRENTS 62#-CHECKTIMESS 4)0 %NABLE62#$ISABLE)32#AND)3).+ ,EAKAGETESTTIMEELAPSED !.$3",ISSELECTED !.$LEAKAGEISPRESENT ,%!+!'%?4%34? ,EAKAGETESTTIMES 4)0 %NABLE62#$ISABLE)32#AND)3).+ '!0'03 122/202 DocID029274 Rev 1 L9678P, L9678P-S Deployment drivers Figure 29. High level loop diagnostic flow2 ,OWLEVELDIAGNOSTICISSELECTEDBIT OF,0$)!'2%1ISLOW/2ANINVALID HIGHLEVELDIAGNOSTICISSELECTED/2WE AREIN$%0?%.!",%$STATE %NDOFCONVERSION 3TORERESULTIN!$#2%3" $)!'?/&& 4)0 2ESISTANCERANGETESTTIMEELAPSED ,ATCH(32?()(32?,/FLAGS 315)"2%32!.'% 4%34 .EWHIGHLEVELDIAGNOSTICREQUEST BITOF,0$)!'2%1ISHIGH /FFTIMEELAPSED!.$NEW DIAGNOSTICREQUESTIS315)" 2%3)34!.#%2!.'%TEST 4)0 7AITENOUGHTIMETO BESURETHATALL CURRENTSANDVOLTAGES SUPPLIESSTARTIN/&&STATE 7!)4?/&& 2ESISTANCERANGETEST SETTINGTIMESS 4)0 %NABLE62#%NABLE)3).+ /FFTIMES /FFTIMEELAPSED!.$NEW DIAGNOSTICREQUESTIS 315)"2%3)34!.#%MEASURETEST %NDOFSETTINGTIME 315)"2%3-%!3 #/.6 315)"2%3-%!3 #/.6 %NDOFCONVERSION 3TORERESULTIN!$#2%3! %NDOFSETTINGTIME 315)"2%3-%!3 3%44,% 4)0 %NABLE)32#ON3&X %NABLE)3).+ 2ESISTANCETEST SETTINGTIMESS 315)"2%3-%!3 3%44,% 4)0 2ESISTANCETEST %NABLE)3).+ SETTINGTIMESS %NABLE)32# "90!33)32#ON32X '!0'03 DocID029274 Rev 1 123/202 201 Remote sensor interface 7 L9678P, L9678P-S Remote sensor interface The L9678P-S contains 2 remote sensor interfaces, capable of supporting PSI-5 protocol (standard voltage range). A block diagram of the interface is shown below. The circuitry consists of a power interface that demodulates current flowing in the external sensor and transmits these current states to the decoder, which produces a digital value for each satellite channel. Data are then output through the Remote Sensor Data Registers (RSDRx). The power interface also contains error detection circuitry. When a fault is detected, the error code is stored in a global SPI data buffer in the Remote Sensor Data Registers (RSDRx). Figure 30. Remote sensor interface logic blocks 5HPRWH6HQVRU&RQILJXUDWLRQ5HJ56&5 5HPRWH6HQVRU'DWD5HJ;56'5[ 0DQFKHVWHU 'HFRGHU )DXOW 'HWHFWLRQ 3RZHU ,QSXW 3URWHFWLRQ ; 568[ 5HPRWH6HQVRU)DXOW6WDWXV5HJ56)65 )DXOW6WDWXV5HJ)/765 '!0'03 The Remote Sensor Configuration Registers (RSCRx) allow for configuration of the particular PSI5 protocol adopted by the sensor and the transceiver current limit blanking time. The Remote Sensor Control Register (RSCTRL) allows for interface channels to be switched on and off via SPI. RSU interface has 2 registers per channel, which can report either data or fault information, that can be readout by sending 2 consecutive Read commands of the Remote Sensor Data Register (RSDRx). It is a FIFO, so the first SPI reading contains the oldest received data and the next SPI reading contains the most recent one. SPI accesses both from the same address, i.e. the MCU should do 2 reads of the same RID to get both data samples. The couple of registers will retain only the last two received messages, regardless they have been qualified as valid or invalid data. In case of driver fault (Short to Ground, Short to Battery, Over-current, Open detection, Over-temperature) any message is lost. To re-start a correct reception of messages, it is needed to have no more fault present and fault flag read by MCU. If the device detects an error on the sensor interface, the fault bit in RSDRx (FLTBIT) will be set to '1' and the following bits will be used to report the detected errors. Otherwise, the register will contain only data information. Detailed information on data and fault reporting are explained in the following sections. When a fault condition is detected, the RSFLT bit of the global status word (GSW) is set to 1, except in the case the register is empty for which NODATA fault bit will be set instead. Data are cleared upon reading the RSDRx register. RSU interface is supplied by VSUP regulator as showed in Figure 31. To avoid a too low RSU output voltage in case of battery loss, the upper VINGOOD and VBATMOND 124/202 DocID029274 Rev 1 L9678P, L9678P-S Remote sensor interface thresholds must be selected. In this way the device will detect the battery loss condition in time to guarantee the minimum RSU output voltage required. Figure 31. Remote sensor interface block diagram 9683 95() 568B2& 568B67% 6KRUWWR 9%$7 FRPS 6KRUWWR *1' FRPS P9 568B(QDEOH (0,ILOWHU ,6$7 568[ ,6$7 : Q ) Q) 5;6$76<1& RU &203%$6(287 ,EDVH IVDPSOH 6$7 8S'RZQ FRXQWHU 'LJLWDOZRUG 6DWHOOLWH %DVHFXUUHQW ELWV ,WKUHVKROG 36,FXUUHQWFRPSDUDWRU 7.1 *$3*36 PSI-5 protocol All channels are compliant to the PSI-5 v1.3 specification as described below: Two-wire current interface Manchester coded digital data transmission High data transmission speeds of 125 kbps and 189 kbps Variable data word length (8 & 10 bit only) 1-bit parity Asynchronous operation mode DocID029274 Rev 1 125/202 201 Remote sensor interface L9678P, L9678P-S An example of the data format for one possible PSI-5 protocol configuration is shown below. Data size may vary, but the presence of 2 sync start bits (referenced below as sync bits) and TGap time is consistent regardless the data size. Figure 32. PSI-5 remote sensor protocol (10-bit, 1-bit parity) $ATA4RANSMISSION 4'!0 FRAMEDURATION 3 3 $ $ $ $ $ $ $ $ $ $ 0 -ANCHESTER#ODE 4RANSMISSIONOFX% X%B 4")4 7.1.1 '!0'03 Functional description - remote sensor modes The Remote sensor Interface block provides a hardware connection between the microcontroller and up to two remote sensors. Each channel is independent of the other, and is not influenced by fault conditions, such as short circuits to ground or vehicle battery, on the other channel. Each channel supplies an independently current limited DC voltage to its remote sensor derived from VSUP, and monitors the current draw to extract encoded data. The remote sensors modulate the current draw to transmit Manchester-encoded data back to the receiver. The current level detection threshold for all channels is automatically set by the integrated current adjust feature in order to adapt to the quiescent current draw of the sensors. All channels can be enabled or disabled independently via SPI commands. The operational status of all channels can also be read via SPI command. The message bits are encoded using a Manchester format, in which logic values are determined by a current transition in the middle of the bit time. The interface supports Manchester 2 encoding as shown in Figure 33. Figure 33. Manchester bit encoding %LWWLPH 3TARTBITS ,OGICgg &XUUHQW µ¶ ,OGICgg µ¶ µ¶ µ¶ µ¶ -ANCHESTER 03) '!0'03 The received message data are stored in input data registers that are read out by the microcontroller via the SPI interface. All bits of these registers are simultaneously updated upon reception of the remote sensor message to prevent partial frame data from being sampled via the SPI interface. After the data for a given channel is read via the SPI 126/202 DocID029274 Rev 1 L9678P, L9678P-S Remote sensor interface interface, subsequent requests for data from this channel will result in an error response (NODATA fault). The remote sensor interface is also able to detect faults occurring on the sensor interface. The Remote Sensor Data Register (RSDRx) will report multiple fault flags. When the number of bits decoded is incorrect (either too many or too few), a bit error is indicated. When any bit error is detected (bit time, too many bits or too few bits), the message is discarded. Error bit INVALID is an OR-ed combination of the following errors: Data length error or stop bit error Parity Error of received Remote sensor Message Bit time error (a data bit edge is not received inside the expected time window) Should one or more of the channel faults (STG, STB, CURRENT_HI, OPENDET and RSTEMP) be set, the INVALID and NODATA bits are cleared. 7.1.2 RSU data fields and CRC The remote sensor interface reports both data information and fault information in the Remote Sensor Data Register (RSDRx). Independent data registers are defined for each remote sensor interface and the data contained therein is formatted differently based on whether a fault is detected. See SPI command in Remote sensor data/fault registers w/o fault (RSDRx) on page 91. The data available in the RSDRx register is separated into several bit fields. The Logical Channel ID is a 4-bit field to identify the satellite sensor. The DATA bits are appended to the LCID at the output of the Manchester decoder. The 3-bit CRC bit field is computed on the entire data packet of fields, bits[16:0], which also includes the CHxON and FLTBIT. To satisfy safety requirements, the LCID, DATA and CRC bit fields propagate through the same data path as a single item to the SPI output. The polynomial calculation implemented for PSI5 data is described as in PSI5 specification g(x)=1+x+x^3 with the initialization value equal to "111". Below are the equations to calculate the CRC in combinatorial way: CRC[2] = CRCext[0]+D[0]+D[1]+D[3]+D[6]+D[7]+D[8]+D[10]+D[13]+D[14]+D[15] CRC[1] = CRCext[2]+D[0]+D[1]+D[2]+D[4]+D[7]+D[8]+D[9]+D[11]+D[14]+D[15]+D[16] CRC[0] = CRCext[1]+CRCext[0]+D[0]+D[2]+D[5]+D[6]+D[7]+D[9]+D[12]+D[13]+D[14]+D[16] where D[16:0]= RSDR[16:0] and CRCext[n] are the starting seed values (all '1'). 7.1.3 Detailed description Manchester decoding The Manchester decoder will support remote sensor communication as per PSI specification rev 1.3 for the modes configurable via the STS bits in the RSCRx registers. The Manchester Decoder checks the duty-cycle and period of the start bits to determine their validity, depending on the configuration of the PERIOD_MEAS_DISABLE bit in the RSCRx registers. The expected time windows for the mid bit transitions of each subsequent bit within the received frame is determined by means of the internal oscillator time base. Glitches shorter than 25% of the minimum bit time duration are rejected. DocID029274 Rev 1 127/202 201 Remote sensor interface L9678P, L9678P-S Figure 34. Manchester decoder state diagram 5(6(7B'(&2'(5Æ 6WUREH 5(6(7B&17 ,'/( 7 3(5,2'BB 6WUREH5(&B(1' 6WUREH 5(6(7B&17 FKHFN3$5,7<B(55 7 7 5,6,1*B('*(Æ 3(5,2'BB 6WUREH 5(6(7B&17 6WUREH5(6(7B&17 7 $1<DQG3(5,2'BB 6WUREH 5(6(7B&17 7D 7 $1<DQG 3(5,2'BBRUQRW ),567 :$,7 7*$3 % % 6WUREH 0$1<%,76 6WUREH 5(6(7B&17 3HULRGBB DQG$1<B('*(Æ 6WUREH5(6(7B&17 $ 7E (5525 3HULRGBBDQGQRW$1<B('*( $ % 67$57%,7 '(7 ( & 7 ' ILUVWSXOVHGXW\F\FOHFKHFN )$//,1*B('*(EHIRUHSHULRGBB Æ 6WUREH5(6(7B&17 7 7D 5,6,1*B('*(3HULRGBBÆ 3(5,2'BB DQG$1< VWUREH&+(&.B7,0( 6WUREH5(6(7B&17 6WUREH5(6(7B&17 7E 3(5,2'BB DQGQRW$1< VWUREH &+(&.B7,0( 7 $1<DQG QRW 3(5,2'BB DQG QRW ),567B('*( 6WUREH 5(6(7B&17 6WUREH &+(&.B7,0( $ % ( '$7$5(& 7 ' 7 $1<DQG 3(5,2'BBDQG 67$7( &B1% 6WUREH 5(6(7B&17 6WUREH 1(;7%,7 'DWD)LOW 5,6,1*B('*( )$//,1*B('*( $1< &B1% 67$7( %LW&RXQWHU 3HULRGBB 3HULRGBB 3HULRGBB ),567B('*( 5,6,1*DQG3(5,2'BB 6WUREH5(6(7B&17 & 7 $1<DQG QRW3(5,2'BB DQG 3(5,2'BBDQGQRW 67$7( &B1% 6WUREH 5(6(7B&17 6WUREH1(;7%,7 )LOWHUHG5DZ'DWD 5;6$7IURP&XUUHQW'HPRGXODWRU DIWHUGHJOLWFKHU 'DWD)LOWQQ ³´ 'DWD)LOWQQ ³´ 5,6,1*B('*(RU)$//,1*B('*( ELWIUDPHFRQILJXUDWHG " ^#,'/(#67$7%,7'(7#767$7(#7[( #:$,7[)#(5525` 5(6(7B&17"%LW&RXQWHU %LW&RXQWHU! %LW3HULRG %LW&RXQWHU! %LW3HULRG %LW&RXQWHU! %LW3HULRG 3HULRGBB"$1<" ),567B('*(DIWHUDGHOD\RI7FN 5HPDUNQRWDFRPELQDWRULDOVLJQDO (QGRIPHVVDJHGHILQLWLRQIRUXVHLQWLPHVORWFRQWURO(20 7777D7E *$3*36 128/202 DocID029274 Rev 1 L9678P, L9678P-S Remote sensor interface A Manchester Decoder Error occurs if one or more of the following conditions are true: Two valid start bits are detected, and at least one of the expected 13 mid-bit transitions are not detected Two valid start bits are detected, and more than 13 mid-bit transitions are detected When the number of bits decoded is incorrect (either too many or too few), a bit error is indicated. When any bit error is detected (bit time, too many bits, too few bits), the decoder will revert to the minimum bit time of the selected range and the message is discarded. All errors are readable through the Sensor Fault Status Register and the RSFLT bit in the Global Status Word Register. When a valid message is correctly decoded, the 10/8 data bits are stored into the appropriate RSDRx register together with the related LCID. The RSDRx register contains the 10/8 bits data as they are received from the sensor (no data range check/mask is done at this stage). The 8-bit data word is right-justified inside the 10-bit data field in the RSDRx registers. Current sensor with auto-adjust trip current The current sensor is responsible for translating the current drawn by the sensor into a digital state (refer to Figure 35). Each satellite channel has a dedicated current sensor with hysteresis. Figure 35. Remote sensor current sensing auto adjust 2X3AT )TRIP )SAT EGM! M! )BASE M! COUNT S S '!0'03 The auto adjust feature uses a 7 bit D/A to converter to step up and down the threshold level for detecting the base current through the remote sensor before start bits are transmitted. Once start bits are received, the counter stops and the D/A value remains fixed until the remote sensor message is received. This procedure is repeated for each cycle of the remote sensor. The auto adjust circuit uses the following equation: Ibase = Ioffset + (D/A counts) * 300 µA where Ioffset is fixed to 2.5 mA DocID029274 Rev 1 129/202 201 Remote sensor interface L9678P, L9678P-S The converter default count value is 42, therefore, Ibase = 2.5 mA + 42 * 300 µA Ibase = 15 mA Itrip = Ibase + threshold where threshold is a fixed at 12 mA Thanks to this implementation, Ibase can span from 2.5 mA up to 41 mA covering PSI-5 specification range. As an example, for a remote sensor that operates at 10 mA base current, Itrip = 23 mA. 7.2 Remote sensor interface fault protection 7.2.1 Short to ground, current limit Each output is short circuit protected by an independent current limit circuit. Should the output current level reach or exceed the ILIMTH for a time period greater than TILIMTH the output stage is disabled and an internal up-down counter will count in 25 µs increment up to TILIMTH. The filter time is chosen in order to avoid false current limit detection for in-rush current that may happen at interface switch-on. When the output is turned off due to current limit, the appropriate fault code STG is set in the Remote Sensor Data Register (RSDR). The fault timer latch is cleared when the sensor channel is first disabled and then reenabled through the Remote Sensor Configuration Register (RSCR). This fault condition does not interfere with the normal operation of the IC, nor with the operation of the other channels. When a sensor fault is detected, the RSFLT bit of the GSW is set indicating a fault occurred and can be decoded by addressing the RSFSR register. In order to fulfil the blanking time requirement at channel activation as per PSI-5 specification, a dedicated masking time is applied to the current limitation fault detection each time a channel is activated. 7.2.2 Short to battery All outputs are independently protected against a short to battery condition. Short to battery protection disconnects the channel from its supply rail to guarantee that no adverse condition occurs within the IC. The short-to-battery detection circuit has input offset voltage (10 mV, minimum) to prevent disconnecting of the output under an open circuit condition. A short to battery is detected when the output RSUx pin voltage increases above VSUP supply pin voltage for a TSTBTH time. An internal up-counter will count in 1.5 µs increment up to TSTBTH. The counter will be cleared if the short condition is not present for at least 1.5 µs. Short to battery protection blocks the battery condition to guarantee that no adverse condition occurs within the IC. The channel in short to battery is not shut down by this condition. Other channels are not affected in case of short of one output pin. As in the case previously described, the STB fault code can be read from RSDR bits and any fault will set the RSFLT bit of the global status word register (GSW). The STB bit is cleared upon read. 7.2.3 Cross link The device provides also the capability of a cross link check between outputs, in order to reveal conditions where two output channels are in short. This functionality is allowed by enabling one output channel, while asking for voltage measurement on any of the other ones. 130/202 DocID029274 Rev 1 L9678P, L9678P-S 7.2.4 Remote sensor interface Leakage to battery, open condition The remote sensor interface offers detection of an open sensor condition. The autoadjusting counter for remote sensor current sensing will drop to 0 in case the current flowing through RSUx pin is lower than 3 mA. The OPENDET fault flag is asserted when the fault condition lasts for longer than TRSUOP_FILT deglitch filter time. This fault flag can be read from RSDR bits and any fault will set the RSFLT bit of the global status word register (GSW). The channel in this condition is not shutdown. 7.2.5 Leakage to ground The sensor interface offers as well the detection of a leakage to ground condition, that will possibly raise the sensor current higher than 36 mA. The CURRENT_HI fault flag is asserted when the fault condition lasts for longer than TRSUCH_FILT deglitch filter time. This fault flag can be read from RSDR bits and any fault will set the RSFLT bit of the global status word register (GSW). The channel in this condition is not shutdown. 7.2.6 Thermal shutdown Each output is protected by an independent over-temperature detection circuit. Should the remote sensor interface thermal protection be triggered the output stage is disabled and a corresponding thermal fault is latched and reported through the RSTEMP flag in the Remote Sensor Data Register (RSDRx). The thermal fault flag is cleared when the sensor channel is first disabled and then re-enabled through the Remote Sensor Configuration Register (RSCRx). DocID029274 Rev 1 131/202 201 Watchdog timer 8 L9678P, L9678P-S Watchdog timer This device offers a watchdog implementation by means of a temporal WD. Window times are SPI programmable and a couple of specific codes has to be written within this window in order to serve the WD control. 8.1 Temporal watchdog The temporal watchdog ensures the system software is operating correctly by requiring periodic service from the microcontroller at a programmable rate. This service (watchdog refresh) must occur within a time window, and if serviced too early or too late will enter an error state (WD1_ERROR) reported via the WD1_WDR bit of the FLTSR register. The overall WD1 functionality is described in the state diagram reported in Figure 36. Figure 36. Watchdog state diagram :60B5HVHW )URPDQ\VWDWH :'B/2&.287 :'B:'5 :'B(55B&17 :'B(55B7+B:( :'770!9:'B29(55,'( $1' 63,:'B7(67 :'B/2&.287 PV :'B:'5 PV$1' :'B7295 :'B/2&.287 :'B(55B&17 :'5(6(7 :'B(5525 :'B/2&.287 :'B(55B&17 :' 29(55,'( :',1,7,$/ :'581 :'UHIUHVK2. :'UHIUHVK2. :'B:'5 :'B(55B7+B:( ,I:'B(55B&17:'B(55B7+ :'B/2&.287 63,:'B7(67 :'7(67 :'B(5525 '!0'03 132/202 DocID029274 Rev 1 L9678P, L9678P-S Watchdog timer Following the description of the above states: Table 9. Watchdog timer status description State/Signal WD1 INITIAL Description Default state entered from startup. While in this state, no watchdog service is required, and the IC may stay in this state indefinitely. For system safety, all arming signals are disabled during this state to prevent deployment. WD1 RUN Normal run-time state where WD1 service is required. WD1 TEST A special state used to test the watchdog function. Normally, this state will only be checked once per power cycle by the software, but there is no inherent restriction in the watchdog logic preventing periodic testing. This state allows testing of the watchdog refresh function without setting WD1_LOCKOUT=1, which can only be cleared via WSM reset. Deployment is inhibited when the WD state machine is in this state. WD1 RESET State entered when a WD1_ERROR occurs. This is a timed-duration state that is automatically exited after 1ms. WD1 OVERRIDE A special state used to disable watchdog functionality for development purposes. Other logic within the IC can use this state to emulate the WD1 RUN state without the need to service WD1. WSM_RESET Signal used to reset the WD1 state machine to the WD1 INITIAL state and all signals to their inactive values WD1_refresh OK Signal that is asserted only if the watchdog is refreshed ('A' - 'B' or 'B' - 'A' seq.) within the WD1 time window WD1_ERROR WD1_WDR Signal that is asserted if the watchdog refresh fails to occur during the WD1 time window. Watchdog Reset – latched signal that is activated whenever a watchdog error is qualified. For WD1, this occurs when WD1 service is required, but not received. This signal is SPI-readable. WD1_TM Test Mode – a signal that indicates that WD1 is being tested. This signal is SPI-readable. WD1_LOCKOUT A latched signal activated if an unexpected WD1 error occurs. This signal is permanently latched when set (until WSM_RESET). When set, all arming signals are disabled, preventing deployment. This signal is SPI-readable. SPI_WD1_TEST SPI command used to enter WD1 TEST state from WD1 RUN state, or to enter WD1 OVERRIDE state from INITIAL state if WDT/TM pin voltage is greater than the threshold. This command has no effect in other states. WD1_ERR_CNT Retry counter to let the microcontroller fails multiple times before set LOCKOUT and prevent deployment. WD1_ERR_TH SPI configurable threshold for the retry counter. WD1_ERR_TH_WE Signal to lock the writing of WD1_ERR_TH when watchdog entered RUN state. A single SPI command (WD_TEST) is used to activate test states for the watchdog circuitry. DocID029274 Rev 1 133/202 201 Watchdog timer 8.1.1 L9678P, L9678P-S Watchdog timer configuration The watchdog timer can be configured on two different frequency modes: Fast watchdog with maximum range of 2 ms and a resolution of 8 µs; Slow watchdog with maximum range of 16.3 ms and a resolution of 64 µs. The watchdog window times are SPI programmable. The configuration of watchdog timer frequency and window times can be done by setting the Watchdog Timer Configuration Register (WDTCR) with the appropriate values. However, this configuration is accepted only when the device is in the Init operating state, as shown in Figure 9. As soon as the Diag state is entered, the watchdog control is enabled and the watchdog configuration is fixed and cannot be changed anymore. 8.1.2 Watchdog timer operation While in the WD1_INITIAL state, watchdog service must begin or a SPI command with WD1_TOVR=1 must be received within the first 500 ms. If the WD1 timer override bit is set, the device can stay in the WD1_INITIAL state indefinitely without watchdog service. To refresh WD1, the logic must receive a Watchdog Timer Register (WD1T) SPI command containing the expected key value within the WD1 time window (WDTMIN+WDTDELTA). If it is received too early or too late the WD1_ERROR signal will be asserted. The WD1_ERROR will not be asserted in case a SPI command containing the Watchdog Timer Register (WD1T) with an incorrect key value is received at any time relative to the window (WDTMIN+WDTDELTA). This allows the system software to repeatedly transmit the key value until it needs to change to the correct key value. Upon reception of the correct key value within the window, the logic will reset the watchdog timer to create a new window. The timer is cleared upon writing code 'A' and code 'B' (either in 'A' - 'B' or 'B' - 'A' sequences) to the WD1CTL[1:0] bits, in the WD1T register. The watchdog timer value can be read via the WD1T register. 134/202 DocID029274 Rev 1 L9678P, L9678P-S Watchdog timer Figure 37. Watchdog timer refresh diagram 660B5(6(7 :',1,7 63,B:'B% 63,B:'B$ :'$ :'% :'% 705!0,1 63,B:'B$ 705 6WUREH:'UHIUHVK2. :'$ 705!0,1 63,B:'B% 705 6WUREH:'UHIUHVK2. 705!0$;25 >7050,163,B:'B$@ 705!0$;25 >7050,163,B:'B%@ :'B(5525 '!0'03 8.2 Watchdog reset assertion timer Upon a watchdog reset, the watchdog logic will momentarily assert the RESET pin for time duration twdrst. When the RESET pin has been asserted through the watchdog reset assertion timer, stored faults are maintained and can be read by the microcontroller via SPI following the RESET period. 8.3 Watchdog timer disable input (WDT/TM) This input pin has a passive pull-down and is used to disable the watchdog timer. The state of this pin can be read by SPI through the WDTDIS_S bit in the GSW register. When WDT/TM pin is asserted, the watchdog timer is disabled, the timer is reset to its starting value and no faults are generated. DocID029274 Rev 1 135/202 201 DC sensor interface 9 L9678P, L9678P-S DC sensor interface L9678P implements a circuitry able to interface with a variety of positioning sensors. The sensors that can be connected to the device are Hall-effect, resistive or simple switches. Range of measurements is: Resistive sensor: 65 Ω to 3 kΩ Hall-effect sensor: 2 mA to 20 mA. Within the above ranges, accuracy of ±15% is granted. A reduced accuracy is given in the range 1 mA to 2 mA. Hall sensor and switch interface block diagram is shown below. Figure 38. Switch sensor interface block diagram 95(6',$* %ORFNVVKDUHG PXOWLSOH[HG DPRQJWKHWKHGLIIHUHQWFKDQQHOV 9%* 5 ,'&6 $[5 ,OLP 5 9,179 5 ,'&6 5 '&6[ 5 ,UHI Q)·Q) /9DQDORJPX[ 9*1' ц9 9LQ ELWV 9UHI 9UHI Y 'LJLWDOZRUG '&[YROWDJHSLQ RU,6$7 2SHQORDGLI,RXW '&[ORZHUWKDQP$ '!0'03 The global SPI contains several bits to control and configure the interface. The SWOEN bit is used to enable the output voltage on DCSx pins. The channel to be activated can be chosen by setting CHID bits accordingly. The interface activation is completely controlled by user SPI command. The interface could be optionally configured for "automatic switch-off" immediately after the current or resistance measurement completion by setting the EN_AUTO_SWITCH_OFF bit in the SYS_CFG register. 136/202 DocID029274 Rev 1 L9678P, L9678P-S DC sensor interface The voltage and current for the selected channel are made available to the main ADC by selecting the proper channel and enabling the measurement process by dedicated DIAGCTRLx commands. The device offers the capability to actively keep all the DCSx lines discharged by means of a weak pull down. The pull down is active by default on all channels and it comes to be deactivated in either of the following cases: 1. when the voltage source is active on the relevant channel 2. when a voltage measurement is requested on the relevant channel 3. if SPI bit SWCTRL(DCS_PD_CURR) is set (global pull-down disable for all channels) In case of Hall-effect sensors, a single current measurement is processed. The current load needed for regulating the pin is internally reflected to a reference resistance, whose voltage drop is then measured through the internal ADC converter. When resistive or switch sensors are used, a more complex measurement is performed. In a first step the current information as above described is provided. Then, also the information on the voltage level achieved on the output pin is provided via ADC. By processing these two values, the micro-controller can understand the resistive value. The DCSx voltage is internally rescaled by a voltage divider into the ADC converter voltage range as shown in Figure 38. Additionally a positive voltage offset is internally applied to the scaled voltage in order to allow voltage measurement capability for DCSx down to -1V. In order to have accurate resistive information even in case of an external ground voltage shift on the sensor of up to ±1V, the voltage measurement step actually needs two DCSx voltage measurements. A first voltage measurement has to be done with selection of 6.25 V on the output channel and a second one with the regulator switched off. The difference between the two measurements will cancel out the offsets (both external ground shift and internal offset). The DCSx current and voltage can be retrieved from ADC readings according to the following formulas and related parameters specified in Section 15.19: DC sensor interface and Section 15.23: Voltage diagnostics (analog Mux): ADC REF_hi 1 I DCSx = ------------------------------------ ------------------------------- DIAGCTRLn ADCRESn ADC RES R REF1_IDCSx 2 @DIAGCTRL(ADCREQn) = $04 ADC REF_hi V DCSx = RATIO VDCSx ------------------------------- DIAGCTRLn ADCRESn – V OFF_DCSx ADC RES 2 @DIAGCTRL(ADCREQn = $03 The DCSx sensor resistance can be calculated according to the following formula: V DCSx @(SWCTRL(SWOEN)=1 – V DCSx @(SWCTRL(SWOEN)=0 V DCSx R sensor = ---------------------- = ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- I DCSx I DCSx x @SWCTRL(CHID) = x DocID029274 Rev 1 137/202 201 DC sensor interface L9678P, L9678P-S The device provides also the capability of a cross link check between outputs, in order to reveal conditions where two output channels are in short. This functionality is allowed by enabling one output channel, while asking for voltage measurement on any of the other ones. All parametric requirements for this block can be found in specification tables. Each output is protected against 138/202 Overload conditions by current limit Ground offset between the ECU and the loads of up to ±1 V. Loss of ECU battery Loss of ground Shorts to ground DocID029274 Rev 1 L9678P, L9678P-S Safing logic 10 Safing logic 10.1 Safing logic overview The integrated safing logic uses data from on-board and remote locations by decoding the various SPI communications between the interfaces and the main microcontroller. The safing logic has several programmable features enabling its ability to decode SPI transmissions and can process data from up to 4 sensors. The operating mode involves simple symmetrical data threshold comparisons, with the use of symmetrical or asymmetrical counters. A high level diagram is shown in the figure below. Please note that this top-level diagram is simplified, and references to more detailed flowcharts to show a) message decoding, b) valid data limits, c) effects of the 'combine' function, d) comparison to thresholds and arming, and e) the setting of the 'compare complete bit. Two independent arming outputs, ARM1INT and ARM2INT, are also mapped internally to any of the integrated squib drivers. Figure 39. Top level safing engine flow chart '&8,&6DILQJ/RJLF 7RS/HYHO 67$57 1 63,B06* 5HFHLYHG" < &6B* 63,B6$)B&& 5HDG" < 1 &KHFNVZKHWKHUUHTXHVWDQGUHVSRQVH DUHJRRGIRUHDFKELWVDILQJUHFRUG WDNLQJLQWRDFFRXQW,)ELW'HWHUPLQHV '$7$WDNLQJLQWRDFFRXQW63,)/'6(/ ELW &KHFNVZKHWKHUUHTXHVWDQGUHVSRQVH DUHJRRGIRUHDFKELWVDILQJUHFRUG WDNLQJLQWRDFFRXQW,)ELW 8SGDWHVHYHQWFRXQWHUV LIQRGDWDUHFHLYHG FOHDUV&&ELWV $ * 06*'(& &&B5($' % + % VHW$50,17DQG $50,17PDQDJHGZHOO WLPHUV $50,1* 06*'(& & &KHFNVZKHWKHUGDWDLVZLWKLQUDQJHLI FRQILJXUHG & 9$/'$7 ' &RQYHUWVGDWDWREHFRPSDUHGLQWR FRPELQHGGDWDVXPDQGGLIIHUHQFHLI FRQILJXUHG ' &20%,1( ( ( &RPSDUH'$7$WRWKUHVKROGV XSGDWH HYHQWFRXQWHUV &203$5( ) '!0'03 DocID029274 Rev 1 139/202 201 Safing logic 10.2 L9678P, L9678P-S SPI sensor data decoding Sensor data is regularly communicated with the main microcontroller through multiple SPI messages. Since not all communications between sensors and the microcontroller contain data, it is important for the decoder to properly sort the communications and extract only the targeted data. The solution involves defining specific masking functions, contained within independent safing records, programmed by the user. The following figures detail the SPI message decoding methodology and the ensuing comparisons of valid sensor data to the programmed thresholds. Figure 40. Safing engine - 16-bit message decoding flow chart 06*'(& $ L 6DILQJ5HFRUGLQGH[ 65 65 65 65 L (1B6$)L " 1 < 1 &&>L@ " < &6>L@ FVBDFWLYH" 1 < ,)>L@ " 1 UHTBRN>L@ " < 1 < 63,)/'6(/>L@" QG 63,)/'6(/>L@" VW VW 1 QG 5(637$5*>L@ VW>0,62@ 5(630$6.>L@ 5(637$5*>L@ QG>0,62@ 5(630$6.>L@ PDWFK>L@ UHTBRN>L@ < < GDWDUHVXOW>L@ VW>0,62@ '$7$0$6. >L@ 1 1 5(637$5*>L@ QG>0,62@ 5(630$6.>L@ < < GDWDUHVXOW>L@ VW>0,62@ '$7$0$6. >L@ GDWDUHVXOW>L@ QG>0,62@ '$7$0$6. >L@ PDWFK>L@ 5(637$5*>L@ VW>0,62@ 5(630$6.>L@ 1 PDWFK>L@ UHTBRN>L@ GDWDUHVXOW>L@ QG>0,62@ '$7$0$6. >L@ PDWFK>L@ 5(47$5*>L@ 06>026,@ 5(40$6.>L@" PDWFK>L@ PDWFK&&>L@ UHTBRN>L@ 1 < PDWFK>L@ PDWFK&&>L@ 5(47$5*>L@ 06>026,@ 5(40$6.>L@" PDWFK>L@ 1 < L 1 L 1" < 140/202 UHTBRN>L@ UHTBRN>L@ 1 / 1 / 1 / % 2XWSXWVWR9$/'$7IXQFWLRQ GDWDUHVXOW>L@ UHTBRN>L@ PDWFK>L@ DocID029274 Rev 1 '!0'03 L9678P, L9678P-S Safing logic Figure 41. Safing engine - 32-bit message decoding flow chart 06*'(& % L " < 1 L 1" L UHFRUGV 1 / 1 // < 1 (1B6$)L " L 6DILQJ5HFRUGLQGH[ 65 65 65 65 /VNLSVELW & 1 2XWSXWVWR9$/'$7IXQFWLRQ GDWDUHVXOW>L@ PDWFK>L@ < 1 &&>L@ " < &6>L@ FVBDFWLYH" 1 < ,)>L@ " 1 1 < UHTBRN>L@ " < UHTBRN>L@ 5(637$5*>L@ 0,62 5(630$6.>L@ 5(637$5*>L@ 0,62 5(630$6.>L@ 1 < < GDWDUHVXOW>L@ 0,62 '$7$0$6. >L@ 0DWFK>L@ GDWDUHVXOW>L@ 0,62 '$7$0$6. >L@ 5(47$5*>L@ 026, 5(40$6.>L@" 5(47$5*>L@ 026, 5(40$6.>L@" 1 < PDWFK>L@ 1 PDWFK>L@ 1 < PDWFK>L@ PDWFK>L@ UHTBRN>L@ UHTBRN>L@ L *$3*36 DocID029274 Rev 1 141/202 201 Safing logic L9678P, L9678P-S Figure 42. Safing engine - validate data flow chart 9$/'$7 & L 6DILQJ5HFRUGLQGH[ 65 65 65 65 L 0DWFK>L@ &20%>L@ < 1 1 &KHFNVIRUFRPELQDEOH UHFRUGV = / = / = / L= &20%>L@ < &KHFNVIRURGGLQGLFHV 1 0RGL < 1 0DWFK>L@ 0DWFK&&>L@ < 1 0DWFK>L@ 0DWFK&&>L@ < &&>L@ 1 &&>L@ " < < /,0(1>L@ " 1 /,06(/>L@ " < 1 $EV GDWDUHVXOW>L@ G" $EV GDWDUHVXOW>L@ G" 1 1 < < YDOGDW>L@ YDO&&>L@ YDOGDW>L@ YDO&&>L@ YDOGDW>L@ YDO&&>L@ YDOGDW>L@ YDO&&>L@ YDOGDW>L@ YDO&&>L@ L L < 1 L 1 142/202 L /" L 1" 1 / 1 / 1 / < ' DocID029274 Rev 1 2XWSXWVWR&20%,1(IXQFWLRQ &&>L@ YDOGDW>L@ YDO&&>L@ *$3*36 L9678P, L9678P-S Safing logic Figure 43. Safing engine - combine function flow chart ' &20%,1( L 6DILQJ5HFRUGLQGH[ 65 65 65 65 L 9DO&&>L@ YDO&&>L@ " 1 < &20%>L@ " 1 < WHPS GDWDUHVXOW>L@ GDWDUHVXOW>L@ WHPSGDWDUHVXOW>L@ 1 &20%>L@ " < WHPS GDWDUHVXOW>L@ GDWDUHVXOW>L@ WHPS GDWDUHVXOW>L@ L L 1 L 1" 1 / 1 / 1 / < ( 2XWSXWVWR&203$5(IXQFWLRQ GDWDUHVXOW>L@ &&>L@ FRPS>L@ DocID029274 Rev 1 '!0'03 143/202 201 Safing logic L9678P, L9678P-S Figure 44. Safing engine threshold comparison ( &203$5( L 1 9DOGDW>L@ " 1RPDWFKFDVH < 1 PDWFK>L@ " 1 GDWDUHVXOW>L@ 6$)B7+5(6+>L@ GDWDUHVXOW>L@ 6$)B7+5(6+>L@ < 1 'DWDRXWRI UDQJHFDVH 326B&2817>L@ 326B&2817>L@ 68%B9$/ 326B&2817>L@ " 1(*B&2817>L@ 1(*B&2817>L@ $''B9$/ 1 1(*B&2817>L@ 1(*B&2817>L@ 68%B9$/ 1(*B&2817>L@ " < < 326B&2817>L@ 1 12B'$7$ >L@ " < 326B&2817>L@ 326B&2817>L@ $''B9$/ < < 1 326B&2817>L@ 326B&2817>L@ 68%B9$/ 1(*B&2817>L@ 1(*B&2817>L@ 68%B9$/ 1(*B&2817>L@ 1(*B&2817>L@ " 326B&2817>L@! $503B7+" 1 1(*B&2817>L@! $501B7+" < 1 1 1(*B&2817>L@ $501B7+ 326B&2817>L@ " 1 < 1(*B&2817>L@ < 326B&2817>L@ $503B7+ 1(*B&2817>L@ 326B&2817>L@ < 326B&2817>L@ 0DWFK>L@ YDOGDW>L@ L L < L /" 1 L 1 L 1" 1 / 1 / 1 / < ) '!0'03 144/202 DocID029274 Rev 1 L9678P, L9678P-S Safing logic Figure 45. Safing engine - compare complete * &&B5($' L < &&>L@ " 1 1 12B'$7$ >L@ " < 326B&2817>L@ 326B&2817>L@ 68%B9$/ 1(*B&2817>L@ 1(*B&2817>L@ 68%B9$/ 1(*B&2817>L@ " 1 1(*B&2817>L@ 326B&2817>L@ " 1 < 1(*B&2817>L@ < 326B&2817>L@ 326B&2817>L@ &&>L@ YDO&&>L@ PDWFK&&>L@ L < L 1 L /" < 1 L 1" 1 / 1 / 1 / < + 2XWSXWV &&>L@ PDWFK>L@ PDWFK&&>L@ 326B&2817>L@ 1(*B&2817>L@ DocID029274 Rev 1 '!0'03 145/202 201 Safing logic L9678P, L9678P-S Each safing record has SPI accessible registers defined in the SPI command tables and summarized below: Request Mask and Request Target - to understand what sensor the microcontroller is addressing Response Mask and Response Target - to identify the sensor response – Data Mask - to extract relevant sensor data from the response. Sensor data is extracted as a bit-wise AND result of the SAF_DATA_MASKx and monitored SPI_MISO data – The extracted data is then right-justified into a 16-bit register for 16-bit safing records, respectively, prior to further processing steps which assume data is signed - two-s complement represented Safing Threshold - specific value that sets the comparator limit for successful arming Control: – IF, In Frame - to indicate serial data response is "in frame". There are two types of potential serial data responses, "in-frame" and "out of frame" – CS - to align safing record with a specific SPI CS. The device contains 2 SPI CS inputs for the safing function (SAF_CS0 and SAF_CS1) – ARM - there are two internal arming signals, each active record is assigned or mapped to any arming signal. Several safing records can be mapped to a single arming output – Dwell - Once an arming condition is detected, the safing record remains armed for the specified dwell time – Comb (Combined Data) - specific solution for dual axis high-g sensors specifically oriented off-axis – Lim En (Limit Enable) - to enable PSI5 out-of-range control – Lim Sel (Limit Select) - to select PSI5 out-of-range thresholds between 8-bit and 10-bit protocol – SPIFLDSEL (Spi Field Select) – to determine which 16-bit field in long SPI messages (>31 bit) to use for response on MISO of SPI monitor. If the SPIFLDSEL bit is set to 0 the message bits from 0 (first bit received) to 15 are processed, while if set to 1 the message bits from 16 to 31 are processed. SPIFLDSEL bit will not help L9678P device to work with sensor that places data across this boundary or has response and data in separate 'fields'. In case of message less than 32-bit, always the first 16bits received will be processed regardless of the SPIFLDSEL value. If input packet matches multiple safing records, the safing engine should process all of them and treat them independently. Safing record can only be evaluated on the first matching input packet. Any further data packet matches are ignored (i.e. once CC is set, record can't be processed until is cleared). The En (Record Enable) bit for any record is programmable as on or off at any time and will enable/disable the record itself upon the following sensor sampling period. All CC bits are available in one register (SAF_CC) for access in one single SPI read. Safing Engine must not process sensor data in any state but Safing state (refer to Figure 9). All safing records are cleared on SSM RESET. 146/202 DocID029274 Rev 1 L9678P, L9678P-S Safing logic Comb (Combined Data) bit allows combining X and Y for off-axis oriented sensors. In this case, it is typical for such orientations to add or subtract the sensor response to translate the sensor signal to an on-axis response. Only couples of 16-bit long records have this feature (i.e. 1&2, 3&4). Records are added and subtracted and results compare against two thresholds. Safing engine will process data as follows: Use record (n) and record (n+1), where n = 1, 3. The matching inputs used for math combinations are processed only after both records are captured. The sum of the two matching inputs will be compared to the threshold of record (n). The difference of the two records will be compared to the threshold of record (n+1). If the Comb feature was enabled on only one of the two records in a couple, math would be performed only on it as shown in Figure 43. Example: Table 10. Records results comparison against two threshold Combine Bit Data Resulting Value Record Threshold (assume ARMP) ARMing Result Record 1 0 12 12 48 0 Record 2 0 50 50 48 1 Record 3 0 12 12 48 0 Record 4 1 50 50 – 12 = 38 48 0 Record 1 1 12 12 + 50 = 62 48 1 Record 2 0 50 50 48 1 Record 3 1 12 12 + 50 = 62 48 1 Record 4 1 50 50 – 12 = 38 48 0 In this example the ARM and dwell assignments for record1 only would be asserted. All items in the safing records, except En(Record Enable) bit, can be configured only in Diag state (refer to Figure 9). Additionally, the global bit to select internal or external safing engine is set in Diag state. DocID029274 Rev 1 147/202 201 Safing logic 10.3 L9678P, L9678P-S In-frame and out-of-frame responses Some sensors will communicate data within the current communication frame while others will send data on the next communication frame. Sometimes this is sensor specific and sometimes this is due to the amount of data to be transmitted. A simplified diagram shows the basic communication differences of in and out of frame responses. Figure 46. In-frame example -/3) 2EQUESTN -)3/ 3TATUS 5NUSED 2ESPONSEN '!0'03 Figure 47. Out of frame example -/3) 2EQUESTN 2EQUESTN -)3/ 2EQUESTN 2ESPONSEN '!0'03 Synchronization between clock domains relies upon inter-frame gap. 10.4 Safing state machine operation State machine operation is disabled when the safing state machine reset signal is active as described in the power supply diagnostics and controls section of this document. The outputs of the state machine are ARM1INT and ARM2INT. As previously stated, there is a maximum of 4 safing records available to the state machine. Inputs to the safety state machine are programmed safing records and sensor data. The configuration of the state machine is common to all sensors. 10.4.1 Simple threshold comparison operation In this mode, sensor data received through the sensor SPI interface and validated by the safing record is passed to the safing algorithm. The simple threshold comparison algorithm compares the received data to two thresholds, SAF_TH (positive threshold) and (-SAF_TH) (negative threshold). If the sensor data is greater than SAF_TH or is less than (-SAF_TH) then and event is flagged and the event counter is incremented based on the programmed value of ADD_VAL. If sensor data does not trigger the SAF_TH comparators, the counter is decremented by SUB_VAL. SUB_VAL is programmed by the user and can be the same as or different from ADD_VAL. This feature allows for an asymmetrical counter function making the system either more or less sensitive to sensor data. Since sensor data can indicate a positive or negative event, the algorithm maintains separate event counters, POS_COUNT and NEG_COUNT. The ADD_VAL and SUB_VAL programmed values are the same for all safing sources. On each sensor sample, the event counters, both POS_COUNT and NEG_COUNT, are updated. Each event counter is then compared with a corresponding arming threshold. In this case, POS_COUNT value is compared to ARMP_TH and NEG_COUNT to ARMN_TH. ARMP_TH and ARMN_TH are programmable thresholds set by the user. The compared result will set ARMP and ARMN to either "1" or "0" depending on the comparison status. If 148/202 DocID029274 Rev 1 L9678P, L9678P-S Safing logic ARMP_TH or ARMN_TH are set to 0, the arming will be activated immediately entering in safing state. POS_COUNT and NEG_COUNT are not updated if microcontroller stops reading SAF_CC bits (this must be avoided otherwise ARMING set and reset will not be possible). By way of the assignment of the ADD_VAL, SUB_VAL, ARMP_TH and ARMN_TH settings, the safing engine can be configured to assert arming for either a simple accumulation of COUNTs in a non-consecutive manner, or it could be set to require some number of consecutive samples. 10.5 Safing engine output logic (ARMxINT) SPI messages are monitored and mapped to specific safing records. Each safing record is configured with its own threshold, dwell time and the appropriate ARMxINT internal signal to activate if safing criteria are met. Any enabled safing record can be programmed to an arming signal. All safing records arming status is logically "OR'd" to its programmed arming signal. For example, if safing records 1, 2, 4 are programmed to ARMINT1 and the records are enabled, any of the records can set the ARMINT1 signal. Configuration of safing record mapping to ARMxINT signals is specified in the SAF_CONTROL_x register (refer to Safing control registers (SAF_CONTROL_x) on page 106). While in Diag state, L9678P allows diagnostics of the squib driver HS and LS FETs, ARM pin, VSF output and firing timers. The ARM and VSF output tests are mutually exclusive. For safety purposes, the safing logic circuitry is physically separated from the circuitry that contains the deployment logic. DocID029274 Rev 1 149/202 201 Safing logic L9678P, L9678P-S Figure 48. Safing Engine Arming flow diagram 67$57 L 1 326B&2817>L@ ! $503B7+" 1(*B&2817>L@ ! $501B7+" < $503 1 < $503 $501 $506(/>L@ RU" $506(/>L@ RU" < $501 1 < 1 7,0(5B&17[LVDELW GRZQFRXQWHUDOZD\V UXQQLQJDWPV 1 $50>L@ 7,0(5B&17 ':(//>L@ $50>L@ 7,0(5B&17 ':(//>L@ < 1 7,0(5B&17[FRQWURO H[WHQGVWRIRUKLJKPLG < 7,0(5B&17 ':(//>L@ 7,0(5B&17 ':(//>L@ L 7,0(5B&17 !" 1 L 1" 7,0(5B&17 !" < 1 $50[,17FRQWUROH[WHQGV WRIRUKLJKPLG < $50,17 1 / 1 / 1 / 1 $50,17 $50,17 $50,17 < *$3*36 150/202 DocID029274 Rev 1 L9678P, L9678P-S Safing logic Figure 49. Safing engine diagnostic logic 6&/.B* 026,B* 0,62B* &6B* 6$)B&6 6$)B&6 63,'HFRGH 7KUHVKROG &RPSDUH 3XOVH 6WUHWFK '67(6796) ',$*67$7( $50,17 '67(67$50 '67(6738/6( &+38/6( &+38/6( &+38/6( &+38/6( $50,17 $50,1*67$7( '!0'03 A configurable mask for each internal ARMxINT signal is available for all of the integrated deployment loops (refer to ARMx assignment registers (LOOP_MATRIX_ARMx) on page 97). The un-masked ARMxINT signal for each loop will enable the respective loop drivers (refer to Figure 21). Activation of VSF (regulation rail for High Side Safing FET) occurs upon ARMxINT or FENH/FENL, depending on SPI configuration (refer to Figure 17). Actual High Side Safing FET activation still requires microcontroller signal. L9678P is able to provide arming signals to external deployment loops by means of the discrete output ARM pin. The ARM pin can either output an arming signal generated by the integrated safing engine or an arming signal made by the combination of FENH and FENL input signals, coming from external safing logic. Figure 50. ARM output control logic :'B581 :'B/2&.287 660B5(6(7 $50B(1 :'B29(55,'( $50,17 6DILQJ (QJLQH $50,17 $50 )(1/ )(1+ 6$)(6(/ '!0'03 DocID029274 Rev 1 151/202 201 Safing logic 10.6 L9678P, L9678P-S Arming pulse stretch Upon a valid command processed by the safing logic, the Dwell bits to stretch the arming time assertion (dwell time) apply to each safing record and is used to help safe the deployment sequence to avoid undesired behaviour. Once dwell time has started, it will continue, regardless of the En (Record Enable) bit. Dwell will be truncated in case of SSM reset. Dwell values in the safing records are transferred to the ARM signal. A dedicated counter is designed for ARM output pin. If different dwell values are assigned to ARM, the longer value is used. Dwell times can only be extended, not reduced. If the remaining dwell time is less than the new dwell extension setting, the new setting will be loaded into the dwell counter. Dwell times are user programmable. The behavior of the pulse stretch timer is shown in Figure 51. Figure 51. Pulse stretch timer example $UPLQJ6DILQJ/RJLF 3URFHVVHGUHVXOW $UPLQJ(QDEOH 3XOVH6WUHWFK 3XOVH6WUHWFK7LPH /HVV7KDQ3XOVH 6WUHWFK7LPH 3XOVH6WUHWFK 7LPH '!0'03 10.7 Additional communication line The ACL pin is the Additional Communication Line input that provides a means of safely activating the arming outputs (ARM and VSF) for disposal of restraints devices at the end of vehicle life. A valid ACL detection (as described below) allows L9678P to transition from Scrap state to Arming state. To remain in Arming state L9678P must receive the correct ACL signal; this must occur before the scrap time-out timer expires (TdisEOL). While the System Operating State Machine is in Arming state, the arming outputs are asserted (ARM=1, VSF on). If the ACL is not correctly received before the time-out expires, the System Operating State Machine reverts back to the Scrap state, and the arming outputs are deactivated. 152/202 DocID029274 Rev 1 L9678P, L9678P-S Safing logic Figure 52. Scrap ACL state diagram 660B5 (6(725 1276&5$3VWDWH$1'127$50,1*VWDWH $&/*22' $&/%$' $&/705 5LVLQJHGJH $&/705 $&/*22' $&/%$' $&/705!SHULRGPLQ ULVLQJHGJH $&/*22' $&/%$' $&/705 $&/+,*+ )DOOLQJHGJH $&/705!KLJKPLQ $&/705!KLJKPD[25 )DOOLQJHGJH$&/7,0(5 KLJKPLQ $&//2: $&/705!SHULRGPD[ $&/*22' $&/%$' $&/705 5LVLQJHGJH25 $&/705!SHULRGPD[ $&/705 $&/*22' $&/%$' $&/(5525 '!0'03 A specific waveform needs to be present on this input in order to instruct L9678P to arm all deployment loops. L9678P is designed to support the Additional Communication Line (ACL) aspect of the ISO-26021 standard, which requires an independent hardwired signal (ACL) to implement the scrapping feature. The disposal signal may come from either the vehicle's service connector, or the systems main microcontroller, depending on the end customer's requirements. The arming function monitors the disposal PWM input (ACL pin) for a command to arm all loops for vehicle end-of-life airbag disposal. The disposal signal characteristic is shown in Figure 53. To remain in Arming state, at least three cycles of the ACL signal must be qualified. For the device to qualify the periodic ACL signal, the period and duty cycle are checked. Two consecutive cycles of invalid disposal signal are to be received to disqualify the ACL signal. Figure 53. Disposal PWM signal &\FOHWLPH 2QWLPH '!0'03 The disposal PWM signal cycle time and on time parameters can be found in the electrical parameters tables. DocID029274 Rev 1 153/202 201 General purpose output (GPO) drivers 11 L9678P, L9678P-S General purpose output (GPO) drivers The L9678P contains two GPO drivers configurable either as high-side or low-side modes, controlled in ON-OFF mode or in PWM mode setting the desired duty cycle value through the GPO Control Register (GPOCTRLx). For low side driver configuration, the GPODx pin is the equivalent drain connection of the internal MOSFET and it is the current sink for the output driver. The GPOSx pin is the source connection of the GPO driver and is externally connected to ground. Figure 54. GPO driver block diagram - LS configuration 9%DWW 6HO*32'[ ELWV 9LQ *32)/765 *32[',6$%/( 9UHI 63,:,' ¶*32&5¶ 6 660B5(6(7 5 6(7 &/ 5 /2$' 9 *32'[ 4 (5%2267 4 *32&5*32[/6 (5%2267B2. 287 (1 21 3:0 C &7/ 3:0B&/.XV *32&75/[ > @ &7/ 'ULYHUZLWK 6OHZ5DWH &RQWURO Q) 7HPSHUDWXUH VHQVRU &XUUHQW VHQVH *32)/765 *32[7(03 4 6(7 6 4 4 &/ 5 6(7 6 5 4 &/ 5 7MVG &XUUHQWOLPLWDWLRQ 5 *326[ *32&75/[ >@ K 660B5(6(7 *32)/765 *32[231 4 4 *32)/765 *32[/,0 4 4 6(7 &/ 5 6(7 &/ 5 6 5 6 5 ,RSHQORDG ,OLP 63,5,' ¶*32)/765¶ 660B5(6(7 *$3*36 For high side driver configuration, the GPODx pin will be connected to battery and GPOSx pin will be connected to the load high side. 154/202 DocID029274 Rev 1 L9678P, L9678P-S General purpose output (GPO) drivers Figure 55. GPO driver block diagram - HS configuration 6HO*32'[ 9LQ ELWV 9LQ *32)/765 *32[',6$%/( 9UHI 63,:,' ¶*32&5¶ 6 660B5(6(7 5 6(7 &/ 5 9 *32'[ 4 (5%2267 4 *32&5*32[/6 (5%2267B2. 287 (1 21 3:0 C &7/ 3:0B&/.XV *32&75/[ > @ 'ULYHUZLWK 6OHZ5DWH &RQWURO 7HPSHUDWXUH VHQVRU &7/ &XUUHQW VHQVH *32)/765 *32[7(03 4 6 6(7 4 4 &/ 5 6(7 6 5 4 &/ 5 7MVG &XUUHQWOLPLWDWLRQ 5 *326[ /2$' *32&75/[ >@ K 660B5(6(7 *32)/765 *32[231 4 4 *32)/765 *32[/,0 4 4 6(7 &/ 5 6(7 &/ 5 6 Q) ,RSHQORDG 5 6 5 ,OLP 63,5,' ¶*32)/765¶ 660B5(6(7 *$3*36 The drivers have to be configured in one of the two modes through the GPO Configuration Register (GPOCR) register before being activated. This hardware configuration is only allowed during the Init and Diag states. When configured as high-side, the drivers need ER Boost voltage to be above the VERBST_OK threshold to be enabled. The default state of both drivers is off. The drivers can be independently activated via SPI control bits on GPO Control Register (GPOCTRLx). In addition, a set point on the GPOCTRLx will control the output drivers in PWM with a 125Hz frequency. If PWM control is desired, user should set the needed set point in the GPOxPWM bits of the GPOCTRLx while activating the interface. When all bits are set to '0', the GPOx output will be disabled. PWM control is based on a 125 Hz frequency. 6 bits of GPOCTRLx are reserved to this mode, in order to control the drivers with 64 total levels from a 0% to a full 100% duty cycle. When both GPO channels are used in PWM Mode at the same frequency they are synchronized to provide parallel configuration capability. PWM control is implemented through a careful slew rate control to mitigate EMC emissions while operating the interface. The driver output structure is designed to stand -1V on its terminals and a +1V reverse voltage across source and drain. The GPO driver is protected against short circuits and thermal overload conditions. The output driver contains diagnostics available in the GPO Fault Status Register (GPOFLTSR). All faults except for thermal overload will be latched until the GPOFLTSR register is read. DocID029274 Rev 1 155/202 201 General purpose output (GPO) drivers L9678P, L9678P-S Thermal overload faults will remain active after reading the GPOFLTSR register should the temperature remain above the thermal fault condition. For current limit faults, the output driver will operate in a linear mode (ILIM) until a thermal fault condition is detected. The device also offers an open load diagnostics while in ON state. The diagnostics is run comparing the current through the output stage with a reference threshold IOpenLoad: should the output current be lower than the threshold, the open detection flag is asserted. 156/202 DocID029274 Rev 1 L9678P, L9678P-S 12 ISO9141 transceiver ISO9141 transceiver A block diagram of the function is shown below. Data transmitted by the main microcontroller is sent via the ISOTX pin and data is received via the ISORX pin. The bus output is ISOK. Figure 56. ISO9141 block diagram 9%$7 9,1 : ,625; ,62. YGGT 9,+ *DWH &RQWURO ,627; )/765,/,0;&95 7KHUPDO 6KXWGRZQ )LOWHU WG ,OLQ )/765 27;&95 '!0'03 When the ISOTX pin is asserted, logic high, the ISOK output will be disabled (pulled high by an external resistor). When the ISOTX pin is deasserted, logic low, the ISOK output will be enabled (pulled low by the internal driver). This input pin contains an internal pull-up to command the output to the disabled state in the event of an open circuit condition. The ISORX pin has a push-pull output stage referenced to VDDQ voltage. This output is asserted high when the voltage on the ISOK pin is above the ISOK input receiver threshold, VBATMON, as defined in the electrical tables. This output is deasserted low when the voltage on the ISOK pin is below the ISOK input receiver threshold with hysteresis. ISOK output is a low side driver compatible with ISO9141 physical layer. The output stage is protected against short circuits and diagnostics provide feedback for current limit and thermal shutdown. While in current limit, the output stage will continue to function until thermal limit is reached. Should thermal limit occur, the output stage will shut down until the temperature decreases below the limit threshold with hysteresis. The fault status is reported in the ISO9141 Fault Status Register (ISOFLTSR). DocID029274 Rev 1 157/202 201 System voltage diagnostics 13 L9678P, L9678P-S System voltage diagnostics L9678P has an integrated dedicated circuitry to provide diagnostic feedback and processing of several inputs. These inputs are addressed with an internal analog multiplexer and made available through the SPI digital interface with the Diagnostic Data commands. In order to avoid saturation of high voltage internal signals, an internal voltage divider is used. The diagnostics circuitry is activated by four SPI Diagnostics Control commands (DIAGCTRLx); each of them can address all the available nodes to be monitored, except for what mentioned in Table 11: Diagnostics control register (DIAGCTRLx) on page 159. DIAGCTRLx SPI command bit fields are structured in the following way: DIAGCTRL_A (ADDRESS HEX 3A) 19 18 17 16 15 14 13 12 11 10 9 8 7 MOSI x MISO NEWDATA_A 0 0 x x x x x x x 6 5 x 4 3 2 1 0 1 0 1 0 1 0 ADCREQ_A[6:0] ADCREQ_A[6:0] ADCRES_A[9:0] DIAGCTRL_B (ADDRESS HEX 3B) 19 18 17 16 15 14 13 12 11 10 9 8 7 MOSI MISO x NEWDATA_B 0 0 x x x x x x x 6 5 x 4 3 2 ADCREQ_B [6:0] ADCREQ_B [6:0] ADCRES_B [9:0] DIAGCTRL_C (ADDRESS HEX 3C) 19 18 17 16 15 14 13 12 11 10 9 8 7 MOSI x MISO NEWDATA_C 0 0 x x x x x x x 6 5 x 4 3 2 ADCREQ_C [6:0] ADCREQ_C [6:0] ADCRES_C [9:0] DIAGCTRL_D (ADDRESS HEX 3D) 19 18 17 16 15 14 13 12 11 10 9 8 7 x MOSI MISO NEWDATA_D 0 0 x x x x x x ADCREQ_D [6:0] x x 6 5 4 3 2 ADCREQ_D [6:0] ADCRES_D [9:0] ADCREQ[A-D] bit fields, used to address the different measurements offered, are listed in Table 11: Diagnostics control register (DIAGCTRLx) on page 159 for reference. L9678P diagnostics are structured to take four automatic conversions at a time. In order to get four measurements, four different SPI commands have to be sent (DIAGCTRL_A, DIAGCTRL_B, DIAGCTRL_C and DIAGCTRL_D), in no particular order. 158/202 DocID029274 Rev 1 L9678P, L9678P-S System voltage diagnostics In case the voltage to be measured is not immediately available, the desired inputs for conversion have to be programmed by SPI in advance, to allow them to attain a stable voltage value. This case applies to the squib resistance measurement and diagnostics (refer to Loop diagnostics control and results registers) and to the switch sensor measurement (refer to Section 9: DC sensor interface). CONVRDY_0 bit in GSW is equal to (NEWDATA_A or NEWDATA_B), while CONVRDY_1 bit in GSW corresponds to (NEWDATA_C or NEWDATA_D). Each NEWDATAx flag is asserted when conversion is finished and cleared when result is read out. However result is cleared only when new result for that register is available. When a new request is received it is queued if other conversions are ongoing. The conversions are executed in the same order as their request arrived. The queue is 4 measures long so it's possible to send all 4 requests at the same time and then wait for the results. If a DIAGCTLRx command is received twice, the second conversion request will overwrite the previous one. Requests are sent to the L9678P IC via the ADC measurement Registers (ADCREQx) as shown in Table 11: Diagnostics control register (DIAGCTRLx) on page 159. All diagnostics results are available on the ADCRESx registers, when addressed by the related ADCREQx register (e.g. data requested by ADCREQA would be written to ADCRESA). Table 11. Diagnostics control register (DIAGCTRLx) ADC Request (ADCREQx) ADC Results (ADCRESx) Voltage measurement selection Bit [6:0] Hex Bit [9:0] 0 0 0 0 0 0 0 0 $00 Unused 0 0 0 0 0 0 1 1 $01 ADC Test Pattern 1 Ground reference 0 0 0 0 0 1 0 2 $02 ADC Test Pattern 2 Full scale reference 0 0 0 0 0 1 1 3 $03 DC Sensor ch. selected, Voltage 0 0 0 0 1 0 0 4 $04 DC Sensor ch. selected, Current DCSV_selected DCSI_selected (1) DCSV and DCSI selected 0 0 0 0 1 0 1 5 $05 DC Sensor ch. selected, Resistance 0 0 0 0 1 1 0 6 $06 Squib measurement loop selected Voutx 0 0 0 0 1 1 1 7 $07 Bandgap reference Voltage VBGR 0 0 0 1 0 0 0 8 $08 Bandgap reference monitor Voltage VBGM 0 0 0 1 0 0 1 9 $09 Unused 0 0 0 1 0 1 0 10 $0A Temperature Measurement 0 0 0 1 0 1 1 11 $0B DC Sensor ch 0, Voltage DCSV_0 0 0 0 1 1 0 0 12 $0C DC Sensor ch 1, Voltage DCSV_1 0 0 0 1 1 0 1 13 $0D DC Sensor ch 2, Voltage DCSV_2 0 0 0 1 1 1 0 14 $0E DC Sensor ch 3, Voltage DCSV_3 0 0 0 1 1 1 1 15 $0F Unused 0 0 1 0 0 0 0 16 $10 Unused 0 0 1 0 0 0 1 17 $11 Unused 0 0 1 0 0 1 0 18 $12 Unused DocID029274 Rev 1 TEMP 159/202 201 System voltage diagnostics L9678P, L9678P-S Table 11. Diagnostics control register (DIAGCTRLx) (continued) ADC Request (ADCREQx) ADC Results (ADCRESx) Voltage measurement selection Bit [6:0] Hex Bit [9:0] 0 0 1 0 0 1 1 19 $13 Unused 0 0 1 0 1 0 0 20 $14 Unused 0 0 1 0 1 0 1 21 $15 Unused 0 0 1 0 1 1 0 22 $16 Unused 0 0 1 0 1 1 1 23 $17 Unused 0 0 1 1 0 0 0 24 $18 Unused 0 0 1 1 0 0 1 25 $19 Unused 0 0 1 1 0 1 0 26 $1A Unused 0 0 1 1 0 1 1 27 $1B Unused 0 0 1 1 1 0 0 28 $1C Unused 0 0 1 1 1 0 1 29 $1D Unused 0 0 1 1 1 1 0 30 $1E Unused 0 0 1 1 1 1 1 31 $1F Unused 0 1 0 0 0 0 0 32 $20 Battery monitor Voltage VBATMON 0 1 0 0 0 0 1 33 $21 Device battery Voltage VIN 0 1 0 0 0 1 0 34 $22 Analog internal supply Voltage VINT3V3 0 1 0 0 0 1 1 35 $23 Digital internal supply Voltage CVDD 0 1 0 0 1 0 0 36 $24 ERBOOST voltage 0 1 0 0 1 0 1 37 $25 Unused 0 1 0 0 1 1 0 38 $26 VER Voltage 0 1 0 0 1 1 1 39 $27 VSUP Voltage VSUP 0 1 0 1 0 0 0 40 $28 VDDQ Voltage VDDQ 0 1 0 1 0 0 1 41 $29 WAKEUP Voltage 0 1 0 1 0 1 0 42 $2A VSF Regulator Voltage 0 1 0 1 0 1 1 43 $2B WDT/TM Voltage WDTDIS 0 1 0 1 1 0 0 44 $2C GPO Driver 0 drain Voltage GPOD0 0 1 0 1 1 0 1 45 $2D GPO Driver 0 source Voltage GPOS0 0 1 0 1 1 1 0 46 $2E GPO Driver 1 drain Voltage GPOD1 0 1 0 1 1 1 1 47 $2F GPO Driver 1 source Voltage GPOS1 0 1 1 0 0 0 0 48 $30 Unused 0 1 1 0 0 0 1 49 $31 Unused 0 1 1 0 0 1 0 50 $32 Remote sensor Interface Voltages ch. 0 RSU0 0 1 1 0 0 1 1 51 $33 Remote sensor Interface Voltages ch. 1 RSU1 160/202 DocID029274 Rev 1 ERBOOST VER WAKEUP VSF L9678P, L9678P-S System voltage diagnostics Table 11. Diagnostics control register (DIAGCTRLx) (continued) ADC Request (ADCREQx) ADC Results (ADCRESx) Voltage measurement selection Bit [6:0] Hex Bit [9:0] 0 1 1 0 1 0 0 52 $34 Unused 0 1 1 0 1 0 1 53 $35 Unused 0 1 1 0 1 1 0 54 $36 SSxy Voltage ch. 0 SS01 0 1 1 0 1 1 1 55 $37 SSxy Voltage ch. 1 SS01 0 1 1 1 0 0 0 56 $38 SSxy Voltage ch. 2 SS23 0 1 1 1 0 0 1 57 $39 SSxy Voltage ch. 3 SS23 0 1 1 1 0 1 0 58 $3A Unused 0 1 1 1 0 1 1 59 $3B Unused 0 1 1 1 1 0 0 60 $3C Unused 0 1 1 1 1 0 1 61 $3D Unused 0 1 1 1 1 1 0 61 $3E Unused 0 1 1 1 1 1 1 63 $3F Unused 1 0 0 0 0 0 0 64 $40 Unused 1 0 0 0 0 0 1 65 $41 Unused 1 0 0 0 0 1 0 66 $42 VRESDIAG 1 0 0 0 0 1 1 67 $43 VDD5 1 0 0 0 1 0 0 68 $44 VDD3V3 1 0 0 0 1 0 1 69 $45 ISOK output voltage ISOK 1 0 0 0 1 1 0 70 $46 SF0 voltage SF0 1 0 0 0 1 1 1 71 $47 SF1 voltage SF1 1 0 0 1 0 0 0 72 $48 SF2 voltage SF2 1 0 0 1 0 0 1 73 $49 SF3 voltage SF3 VRESDIAG VDD5 VDD3V3 1. The DC sensor resistance measurement can only be addressed through DIAGCRTL_A command. Results are available through DIAGCTRL_A and DIAGCTRL_B, where ADCRES_A will contain DCSI and ADCRES_B will contain DCSV. Proper scaling is necessary for various voltage measurements. The divider ratios vary by measurement and are summarized by function in the table below. Table 12. Diagnostics divider ratios Divider Ratio Measurements 15:1 VER X ERBOOST X VSF X SSxy X 10:1 DocID029274 Rev 1 7.125:1 7:1 4:1 1:1 161/202 201 System voltage diagnostics L9678P, L9678P-S Table 12. Diagnostics divider ratios (continued) Divider Ratio Measurements 15:1 SFx X VRESDIAG X 10:1 GPODx X GPOSx X VIN X VBATMON X WAKEUP X 7.125:1 7:1 ISOK X VSUP X WDTDIS X RSUx 4:1 1:1 X DCSx X VDDQ X VDD5 X VDD3V3 X VINT3V3 X Bandgap (BGR/BGM) X TEMP X For measurements other than voltage (current, resistance, temperature etc.) the ranges are specified in the electrical parameters section of the relevant block. 13.1 Analog to digital algorithmic converter The device hosts an integrated 10 bit Analog to Digital converter, running at a clock frequency of 16MHz. The ADC output is processed by a D to D converter with the following functions: Use of trimming bits to recover ADC offset and gain errors; Digital low-pass filtering; Conversion from 12 to 10 bits. 10 bits data are filtered inside the digital section. The number of samples that are filtered varies depending on the chosen conversion. As per Section 5.1.2: System configuration register (SYS_CFG), the number of used samples in converting DC sensor, squib or temperature measurements defaults to 8. The number of samples for all other measurements defaults to 4. The sample number can be configured by accessing the SYS_CFG register. After low pass filter, the residual total error is ±4 LSB. This error figure 162/202 DocID029274 Rev 1 L9678P, L9678P-S System voltage diagnostics applies to the case of a precise reference voltage: the spread of reference voltage causes a proportional error in the conversion output. The reference voltage of the ADC is set to 2.5 V. The conversion time is comprised of several factors: the number of measurements loaded into the queue, the number of samples taken for any measurement, and the various settling times. An example of conversion time calculation for a full ADC request queue is reported in Figure 57. The timings reported in Figure 57 are nominal ones, min/max values can be obtained by considering the internal oscillator frequency variation reported in the DC characteristics section. Figure 57. ADC conversion time ',$*&75/B$ 3UH $'& 67B6& ',$*&75/B& ',$*&75/B% ,4 67B6& ,4 67B6& ',$*&75/B' ,4 67B6& 3RVW $'& 3UH$'& ,QLWLDO$'&6HWWOLQJ7LPH V 6 RI6DPSOHVGHIDXOW IRUYROWDJHRQO\PHDVXUHPHQWV 7B6& 6LQJOH6DPSOH&RQYHUVLRQ7LPH V ,4 ,QWUD4XHXH6HWWOLQJ7LPH V 3RVW$'& )LQDO$'&6HWWOLQJ7LPH V '!0'03 DocID029274 Rev 1 163/202 201 Temperature sensor 14 L9678P, L9678P-S Temperature sensor The L9678P provides an internal analog temperature sensor. The sensor is aimed to have a reference for the average junction temperature on silicon surface. The sensor is placed far away from power dissipating stages and squib deployment drivers. The output of the temperature sensor is available via SPI through ADC conversion, as shown in Table 11. The formula to calculate temperature from ADC reading is the following one: ADC REF_hi 220 T C = 180 – --------------- ------------------------------- DIAGCTRLn ADCRESn – 0.739 1.652 ADC RES 2 @ DIAGCTRLn(ADCREQn) = 0Ahex All parametric requirements for this block can be found in specification tables. 164/202 DocID029274 Rev 1 L9678P, L9678P-S 15 Electrical characteristics Electrical characteristics Every parameter in this chapter is fulfilled down to VINGOOD(max). No device damage is granted to occur down to VINBAD(min). GNDA pin is used as ground reference for the voltage measurements performed within the device, unless otherwise stated. All table or parameter declared "Design Info" are not tested during production testing 15.1 Configuration and control All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C Ta +95 °C, VINGOOD(max) VIN 35 V. Table 13. Configuration and control DC specifications N° Symbol Parameter Min Typ Max Unit 1 VNOV Normal operating voltage Design Info Depending on power supply configuration 6 13 18 V 2 VJSV Jump start voltage Design Info -40 °C ≤ Ta ≤ 50 °C 18.00 - 26.50 V 3 VLDV Load dump voltage Transient Design Info 26.50 - 40 V 4 WU_mon WAKEUP monitor threshold - - - 1.5 V 5 WU_off WAKEUP Off threshold - 2 2.5 3 V 6 WU_on WAKEUP On threshold - 4 4.5 5 V 7 WURPD WAKEUP pull-down resistor - 120 300 480 kΩ 8 VBGOOD1 SYS_CTL(VBATMON_TH_SEL)=0 0 5.5 - 6 V 9 VBBAD1 SYS_CTL(VBATMON_TH_SEL)=0 0 5 - 5.5 V 10 VBGOOD2 SYS_CTL(VBATMON_TH_SEL)=0 1 6.3 - 6.8 V 11 VBBAD2 SYS_CTL(VBATMON_TH_SEL)=0 1 5.8 - 6.3 V 12 VBGOOD3 SYS_CTL(VBATMON_TH_SEL)=1 0 7.5 - 8 V 13 VBBAD3 SYS_CTL(VBATMON_TH_SEL)=1 0 7 - 7.5 V 14 VBGOOD4 SYS_CTL(VBATMON_TH_SEL)=11 8.3 - 8.8 V 15 VBBAD4 SYS_CTL(VBATMON_TH_SEL)=11 7.8 - 8.3 V VBATMON input voltage thresholds Condition DocID029274 Rev 1 165/202 201 Electrical characteristics L9678P, L9678P-S Table 13. Configuration and control DC specifications (continued) N° Symbol 16 ILKG_VBATMON_OFF 17 ILKG_VBATMON_ON Parameter Condition VBATMON input leakage Min Typ Max Unit 5 µA Device OFF -5 Device ON Design Info 20 24 30 µA 18 RPD_VBATMON VBATMON pull-down resistance Device ON VBATMON < 10V Design Info 125 250 375 kΩ 19 ILKG_VBATMON_TOT VBATMON total input leakage ILKG_VBATMON_ON + RPD_VBATMO VBATMON = 18V 35 70 105 µA SYS_CTL(VIN_TH_SEL)=0 5 - 5.5 V SYS_CTL(VIN_TH_SEL)=0 4.5 - 5 V SYS_CTL(VIN_TH_SEL)=1 7 - 7.5 V SYS_CTL(VIN_TH_SEL)=1 6.5 - 7 V VIN Thresholds used to 25 VINFASTSLOPE_L change boost regulator transition time 26 VINFASTSLOPE_HYS 9.3 9.8 10.3 V 9 9.5 10 V 0.2 0.3 0.4 V 27 ILKG_VIN_OFF Device OFF, VIN = 40V -10 - 10 µA 28 ILKG_VIN_ON Device ON, VIN = 12V - - 30 mA 29 CVIN - 1 - - - 30 ILKG_VER_OFF Device OFF, VER = 40 V -5 - 5 µA 31 ILKG_VER_ON_L Device ON ERBOOST > VER -5 - 5 µA 32 ILKG_VER_ON_H Device ON ERBOOST < VER - - 200 µA 33 VWD_OVERRIDE_th WDT/TM threshold - 10 12 14 V 34 VWDTDIS_HYST WDT/TM hysteresis - 0.2 0.4 0.5 V 35 IPD_WDTDIS WDT/TM pull-down Current VWDTDIS ≤ 5 V 20 45 70 µA Battery line Input Leakage Total leakage at RT from VIN, VBATMON, ERBSTSW, ERBOOST, BVDD5, VDD5, VDDQ, BVSUP, VSUP VBAT = 12 V Guaranteed by design - - 100 µA Junction temperature Design Info - - 150 °C 20 VINGOOD1 21 VINBAD1 22 VINGOOD2 23 VINBAD2 24 VINFASTSLOPE_H VIN input voltage thresholds VIN input leakage 36 ILKG_BAT 37 Tj 166/202 External VIN capacitor VER input leakage DocID029274 Rev 1 L9678P, L9678P-S Electrical characteristics Table 14. Configuration and control AC specifications No Symbol 1 TFLT_VBATMONTH 2 TFLT_VINTH 3 TFLT_WAKEUP 4 TLATCH_WAKEUP 5 tdon Parameter Condition Min Typ Max Units VBATMON thresholds deglitch filter time - 26 30 34 µs VIN thresholds deglitch filter time - 3 3.5 4 µs Wakeup deglitch filter time - 0.95 1.05 1.15 ms Wakeup latch time - 9.7 10.8 11.9 ms - - 10 ms Min Typ Max Unit Power-up delay time – Wake-up to RESET released Table 15. Open ground detection DC specifications N° Symbol Parameter Condition 1 GNDAOPEN GNDA threshold GNDSUBx=0 100 200 300 mV 2 GNDDOPEN GNDD threshold GNDSUBx=0 100 200 300 mV 3 BSTGNDOPEN BSTGND threshold GNDSUBx=0 100 200 300 mV 4 IPU_BSTGND BSTGND pull-up current - 80 120 160 µA Min Typ Max Unit - 7 11 16 µs - 1.9 2.3 2.7 µs Table 16. Open ground detection AC specifications N° Symbol Parameter 1 GNDA and GNDD TFLT_GNDREFOPEN Open Deglitch Filter Time 2 TFLT_BSTGNDOPEN 15.2 Condition BSTGND Latch Filter Time Internal analog reference All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C Ta +95 °C, VINGOOD1(max) VIN 35 V. Table 17. Internal analog reference N° Symbol 1 VBG1 Bandgap reference 2 VBG2 3 VADC_GROUND 4 Parameter Condition Min Typ Max Unit - -1% 1.2 +1% V Bandgap monitor - -1% 1.2 +1% V ADC Ground reference - -3% 103 +3% mV -1.5% 2.5 +1.5% V VADC_FULLSCALE ADC Full scale reference - DocID029274 Rev 1 167/202 201 Electrical characteristics 15.3 L9678P, L9678P-S Internal regulators All electrical characteristics are valid for the following conditions unless otherwise noted: -40 °C Ta +95 °C, VINGOOD1(max) VIN 35 V. Table 18. Internal regulators DC specifications N° Symbol Parameter Condition Min Typ Max Unit 1 VOUT_VINT3V3 VINT3V3 output voltage - 3.14 3.3 3.46 V 2 VOV_VINT3V3 VINT3V3 over voltage - 3.47 - 3.7 V 3 VUV_VINT3V3 VINT3V3 under voltage - 2.97 - 3.13 V 4 VOUT_VDD VDD output voltage - 3.14 3.3 3.46 V 5 IOUT_VDD VDD current capability External Load is not allowed - - 50 mA 6 ILIM_VDD VDD current limit - 80 - - mA 7 VOV_VDD VDD over voltage - 3.47 - 3.7 V 8 VUV_VDD VDD under voltage - 2.7 - 2.9 V 9 CVDD VDD output capacitance Design Info 60 100 140 nF Table 19. Internal regulators AC specifications N° Symbol 1 TFLT_ VINT_VDD_OV Internal regulator OV Deglitch filter time 2 TFLT_ VINT_VDD_UV Internal regulator UV Deglitch filter time 15.4 Parameter Condition Min Typ. Max Unit - 7 11 16 µs - 7 11 16 V Oscillators All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C Ta +95 °C, 3.14 CVDD 3.46. Table 20. Oscillators AC specifications No Symbol Parameter Min Typ 1 fOSC Main oscillator average frequency - 15.2 16 2 fMOD_OSC Main oscillator modulation frequency SPI_CLK_CNF(MAIN_SS_DIS=0) Design Info - ƒ OSC --------------128 - MHz 3 IMOD_OSC Main oscillator modulation index SPI_CLK_CNF(MAIN_SS_DIS=0) 3 4 5 % 4 fAUX Aux oscillator average frequency - 7.125 7.5 5 fMOD_AUX Aux oscillator modulation frequency SPI_CLK_CNF(AUX_SS_DIS=0) Design Info - ƒ OSC_AUX ---------------------------128 168/202 Conditions / Comments DocID029274 Rev 1 Max Unit 16.8 MHz 7.87 MHz 5 - MHz L9678P, L9678P-S Electrical characteristics Table 20. Oscillators AC specifications (continued) No Symbol 6 IMOD_AUX 7 Parameter Aux oscillator modulation index Main oscillator Low fOSC_LOW_TH Frequency Detection Threshold 15.5 Conditions / Comments Min Typ Max Unit SPI_CLK_CNF(AUX_SS_DIS=0) 3 4 5 % - - 128 ---------- ƒ AUX 174 - MHz Watchdog All electrical characteristics are valid for the following conditions unless otherwise noted: -40 °C Ta +95 °C,VINGOOD1(max) VIN 35 V Table 21. Temporal watchdog timer AC specifications N° Symbol 1 TWDT1_TIMEOUT Temporal watchdog timeout - 2 TWDT1_RST Temporal Watchdog Reset Time - 15.6 Parameter Condition Min Typ Max Unit - - 2.00 ms - - 16.3 ms 0.9 - 1.1 ms Reset All electrical characteristics are valid for the following conditions unless otherwise noted: -40 °C Ta +95 °C; VINGOOD1(max) VIN 35 V, VDDx(min) VDDx VDDx(max), VDDQ = VDD5 or VDD3V3 Table 22. Reset DC specifications N° Symbol 1 VOH_RESET 2 VOL_RESET 3 RPD_RESET Parameter RESET output voltage RESET pull down resistance Condition Min Typ Max Unit ILOAD = -0.5 mA VDDQ -0.6 - VDDQ V ILOAD = 2.0 mA 0 - 0.4 V RESET=VDDQ, Device OFF 65 100 135 kΩ Table 23. Reset AC specifications N° Symbol Parameter 1 TRISE_RESET Rise Time 2 TFALL_RESET 3 THOLD_RESET Condition Min Typ Max Unit 80pF load, 20%-80% - - 1.00 µs Fall Time 80pF load, 20%-80% - - 1.00 µs Reset Hold Time - 0.45 0.5 0.55 ms DocID029274 Rev 1 169/202 201 Electrical characteristics 15.7 L9678P, L9678P-S SPI interface All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C Ta +95 °C, VINGOOD1(max) VIN 35 V, VDDx(min) VDDx VDDx(max) VDDQ = VDD5 or VDD3V3. Table 24. SPI DC specifications N° Symbol Parameter Min Typ Max Unit 1 VIH_CS SPI_CS high level input voltage - 2 - - V 2 VIL_CS SPI_CS low level input voltage - - - 0.8 V 3 IPU_CS SPI_CS pull up current SPI_CS = 0V -70 -45 -20 µA 4 VIH_MOSI MOSI high level input voltage - 2 - - V 5 VIL_MOSI MOSI low level input voltage - - - 0.8 V 6 IPD_MOSI SPI_MOSI pull down current SPI_MOSI = VDDQ 20 45 70 µA 7 VIH_SCK SCK high level input voltage - 2 - - V 8 VIL_SCK SCK low level input voltage - - - 0.8 V 9 IPD_SCK SPI_SCK pull down current SPI_SCK = VDDQ 20 45 70 µA 10 VOH_MISO SPI_MISO high level output voltage ILOAD = -800µA VDDQ -0.5 - VDDQ V 11 VOL_MISO SPI_MISO low level output voltage ILOAD = 2.0mA - - 0.4 V 12 VIH_MISO SPI_MISO high level input voltage - 2 - - V 13 VIL_MISO SPI_MISO low level input voltage - - - 0.8 V 14 ILKG_MISO SPI_MISO tri-state leakage SPI_MISO= VDDQ or 0V -10 - 10 µA 170/202 Condition DocID029274 Rev 1 L9678P, L9678P-S Electrical characteristics Table 25. SPI AC specifications N° Symbol Min Typ Max Unit 1 FSCLK SPI Transfer frequency - - 8 8.08 MHz 2 TSCLK SPI_SCK period - 123.8 - - ns 3 TLEAD Enable lead time - 250 - - ns 4 TLAG Enable lag time - 50 - - ns 5 THIGH_SCLK SPI_SCK high time - 50 - - ns 6 TLOW_SCLK SPI_SCK low time - 50 - - ns 7 TSETUP_MOSI SPI_MOSI input setup time - 20 - - ns 8 THOLD_MOSI SPI_MOSI input hold time - 20 - - ns 9 TACC_MISO SPI_MISO access time 80pF load - - 60 ns 10 TDIS_MISO SPI_MISO disable time 80pF load - - 100 ns 11 TVALID_MISO_OUT SPI_MISO output valid time 80pF load - - 30 ns 12 THOLD_MISO_OUT SPI_MISO output hold time 80pF load 0 - - ns 13 TSETUP_MISO_IN SPI_MISO Input Setup Time 20 ns 14 THOLD_MISO_IN SPI_MISO Input Hold Time 20 ns 15 THOLD_SCLK SPI_SCK hold time - 20 - - ns 16 TFLT_CS SPI_CS noise glitch rejection time - 50 - 300 ns 17 TNODATA SPI interframe time - 400 - - ns Note: Parameter Condition All timing is shown with respect to 10% and 90% of the actual delivered VDDQ voltage. Figure 58. SPI timing diagram 63,B&6 63,B6&/. 06%287 63,B0,62 63,B026, '$7$ /6%287 '21¶7 &$5( 06%,1 '$7$ /6%,1 '!0'03 DocID029274 Rev 1 171/202 201 Electrical characteristics 15.8 L9678P, L9678P-S ER boost All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C Ta +95 °C, VINGOOD1(max) VIN 18 V. Table 26. ER Boost converter DC specifications N° Symbol Parameter 1 VO_ERBST Boost output voltage 2 3 Condition Min Typ Max Unit Across all line and IO_BST load (steady state) ERBST33V=0 Test conditions: IO_BST = 0.1 & 40mA 22.4 23.8 25 V Across all line and IO_BST load (steady state) ERBST33V=1 Test conditions: IO_BST = 0.1 & 20mA 31.4 33 35 V BST33V = 0 0.1 - 60 mA BST33V = 1 0.1 - 40 mA IO_ERBST Boost output current dVSR_ac Line transient response All line, load; dt=100us; BST33V = 0/1 Design Info -8% - 8% % 6 dVLR_ac All line, load; dt=100us; Load transient response BST33V = 0/1 Design Info -8% - 8% % 7 RDSON_ERBST - - 1 Ω 8 IOC_ERBST Over current detection - 550 - 800 mA 9 ILKG_ERBST ERBOOST leakage current ERBOOST=40V Device off - - 5 µA VERBST_OK ERBOOST voltage threshold BST33V = 0 18 20 22 V BST33V = 1 26 28 30 V VERBST_OV ERBOOST Over Voltage BST33V = 0 threshold BST33V = 1 22.6 25 V 31.65 35 V 4 5 10 11 12 13 Power switch resistance - 14 Voltage difference between VIN and VERBST_DIS_TH VIN – ERBOOST ERBOOST to deactivate the ER Boost regulator 1.6 2.2 2.5 V 15 Voltage difference between ERBSTSW and VCLAMP_EN_TH ERBSTSW – ERBOOST ERBOOST to activate the ER Boost CLAMP 1.6 2.2 2.5 V - 150 175 190 °C - 5 10 15 °C 16 TJSD_ERBST 17 THYS_TSDERBST 172/202 Thermal shutdown DocID029274 Rev 1 L9678P, L9678P-S Electrical characteristics Table 27. ER boost converter AC specifications N° Symbol 1 FSW_ERBST Min Typ Max Unit - 1.8 1.882 2.0 MHz 10% to 90% voltage on ERBSTSW VIN ≥ VINFASTSLOPE_L = 10.3 V Iload = 60mA ERboost settings 23 V Guaranteed by design 10 15 - 25 35 ns TRISE_ERBSTSW_FAST TFALL_ERBSTSW_FAST 10% to 90% voltage on ERBSTSW VIN ≤ VINFASTSLOPE_H= 9V Iload=60mA ERboost settings 23 V Guaranteed by design 10 - 25 ns 4 TON_ERBST CERBOOST = 2.2µF, Vin =12V, IO_ERBST= 5mA BST33V = 1 Measured from CS edge to VO_ERBST(min) - - 5 ms 5 TFLT_TSD_ERBST - 10 µs Min Typ Max Unit 2 Parameter Condition ERBOOST switching frequency TRISE_ERBSTSW_SLOW TFALL_ERBSTSW_SLOW ERBSTSW transition time 3 ERBOOST charge-up time Thermal shutdown filter time - Table 28. ER boost converter external components (Design Info) N° Symbol 1 LERBST 2 ESLERBST 3 CBLK_ERBST 4 Parameter Condition Inductance - 8 10 - µH Inductance resistance - - - 0.1 Ω Output bulk capacitance to ensure regulator stability Min capacitance value including derating factors 1 2.2 - - - 0.1 ESRCBLK_ERBST Bulk capacitor ESR µF 5 VFSTR_ERBST Steering diode forward voltage IF=100 mA - - 0.85 V 6 ILKGSTR_ERBST Steering diode reverse leakage Ta = 95 °C - - 100 µA DocID029274 Rev 1 173/202 201 Electrical characteristics 15.9 L9678P, L9678P-S ER charge All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C Ta +95 °C, VINGOOD1(max) VIN 35 V, 8 V ERBOOST. Table 29. ER current generator DC specifications N° Symbol Parameter Condition 1 IER_CHARGE ER charge current ERBOOST – VER 3 V 2 RDSON_ERCHARGE ER charge power resistance (VERBOOST - VVER) / IVER IVER = 10mA Min Typ Max Unit -33 -30 -27 mA - - 22 Ω Min Typ Max Unit - - 6 s Table 30. ER current generator AC specifications N° Symbol 1 TON_ERCAP 15.10 Parameter Condition Energy reserve capacitor charge-up time CVER 4.7mF nominal, BST33V = 0; Design Info ER switch All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C Ta +95 °C, VINGOOD1(max) VIN 35 V. Table 31. ER switch DC specifications N° Symbol 1 RDSON ERSW 2 ILIM,ERSW 3 TJSD_ERSW 4 THYS_TSDERSW Parameter Condition Min Typ Max Unit Power switch resistance ILIM,ERSW(min) 0.5 - 3 Ω ER switch current limit - 400 - 600 mA - 150 175 190 °C - 5 10 15 °C Min Typ Max Unit CVIN = 10µF - - 5 µs - - - 10 µs ER switch activation blanking time after thermal shutdown - 1 - ms Thermal shutdown Table 32. ER switch AC specifications N° Symbol Parameter 1 TON_ERSW ER turn-on time (time to reach either RDSON_ERSW or ILIM_ERSW) 2 Condition TFLT_TSD_ERSW Thermal shutdown filter time 3 174/202 TBLK_ERSW DocID029274 Rev 1 L9678P, L9678P-S 15.11 Electrical characteristics COVRACT All electrical characteristics are valid for the following conditions unless otherwise noted: -40 °C Ta +95 °C, VINGOOD1(max) VIN 35 V, VDDx(min) VDDx VDDx(max), VDDQ = VDD5 or VDD3V3 Table 33. COVRACT DC Specifications N° Symbol 1 VOH_COVRACT 2 VOL_COVRACT Parameter Condition COVRACT output voltage Min Typ Max Unit ILOAD = -0.5 mA VDDQ -0.6 - VDDQ V ILOAD = 2.0 mA 0 - 0.4 V Table 34. COVRACT AC specifications N° Symbol 1 TRISE_COVRACT Rise time 2 TFALL_COVRACT Fall time 15.12 Parameter Condition Min Typ Max Unit 80pF load, 20%-80% - - 0.5 µs 80pF load, 20%-80% - - 0.5 µs VDD5 regulator All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C Ta +95 °C, VINGOOD1(max) VIN 35 V. Table 35. VDD5 regulator DC specifications N° Symbol Parameter Condition Min Typ Max Unit 1 VO_VDD5 Output voltage Across all line and load, steady state 4.85 5 5.15 V 2 IO_BVDD5 Base driver current limit VDD5 > VDD5UVL 4 7 10 mA 3 IO_BVDD5_LOW Base driver current limit Low level VDD5 < VDD5UVL 2 - 5 mA 4 IO_VDD5 Output load current - 0.5 - 200 mA 5 dVSR_ac Line transient response All load IO_VDD5; VIN=6V to 18V @ dt = 1 µs; Design Info 4.5 - 5.5 V 4.5 - 5.5 V 6 dVLR_ac Load transient response All line; IO_VDD5= 1mA to 100mA @dt = 1 µs; Design Info 7 IOF_VDD5 Open feedback current on VDD5 Active only during VDD5_rampup state 55 80 105 µA 8 VDD5OV Over voltage detection - 5.2 - 5.50 V DocID029274 Rev 1 175/202 201 Electrical characteristics L9678P, L9678P-S Table 35. VDD5 regulator DC specifications (continued) N° Symbol Parameter 9 VDD5UV Under voltage detection 10 VDD5UVL Condition Min Typ Max Unit - 4.5 - 4.8 V Under voltage detection low level 1.8 2 2.2 V Min Typ Max Unit Table 36. VDD5 regulator AC specifications N° Symbol 1 TSOFTST_VDD5 2 Parameter Condition Soft start time From 10% to 90% 1 2 3 ms TFLT_VDD5OV Over voltage detection deglitch filter time - 27 30 33 µs 3 TFLT_VDD5UV Under voltage detection deglitch filter time - 27 30 33 µs 4 TFLT_VDD5UVL Under voltage low detection deglitch filter time - 1.5 2 2.5 µs Min Typ Max Unit Table 37. VDD5 regulator external components (Design Info) N° Symbol 1 hFE_PNP 2 Parameter Condition Output transistor gain - 50 250 500 A/A Ft_PNP Output transistor transit frequency - 30 - - MHz 3 RVDD5BE Output transistor baseemitter Pull-up resistance - - 3 - k 4 CBLK_VDD5 Output bulk capacitance Min 4.7µF nominal 3 - 30 µF - - - 50 mΩ 5 ESRCBLK_VDD5 Bulk capacitor ESR 176/202 DocID029274 Rev 1 L9678P, L9678P-S 15.13 Electrical characteristics VDD3V3 regulator All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C Ta +95 °C, VDD5(min) VDD5. Table 38. VDD3V3 regulator DC specifications N° Symbol 1 VO_VDD3V3 2 IO_VDD3V3 3 Parameter Condition Min Typ Max Unit Output voltage Across all line and load, steady state 3.2 3.3 3.4 V Output load current capability - 0.5 - 125 mA - 150 - - mA 3 - 3.6 V 3 - 3.6 V IO_LIM_VDD3V3 Output load current limit All load IO_VDD3V3; VIN = 6 V to 18 V @ dt = 1 µs; Guaranteed by design dVSR_ac Line transient response 7 dVLR_ac All line; IO_VDD3V3= 1mA to 100mA Load transient response @dt = 1 µs; Guaranteed by design 4 VDD3V3OV Over-voltage threshold - 3.43 - 3.6 V 5 VDD3V3UV Under voltage reset threshold - 3 - 3.17 V Min Typ Max Unit 6 Table 39. VDD3V3 regulator AC specifications N° Symbol Parameter 1 TSOFTST_VDD3 2 3 Condition Soft start time From 10% to 90% 1 2 3 ms TFLT_VDD3OV Over voltage detection deglitch filter time - 27 30 33 µs TFLT_VDD3UV Under voltage detection deglitch filter time - 27 30 33 µs Min Typ Max Unit Min 4.7µF nominal 3 - 30 µF - - - 50 mΩ Table 40. VDD3V3 regulator external components (design info) N° Symbol 1 CBLK_VDD3 2 Parameter Condition Output bulk capacitance ESRCBLK_VDD3 Bulk capacitor ESR DocID029274 Rev 1 177/202 201 Electrical characteristics 15.14 L9678P, L9678P-S VSUP regulator All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C Ta +95 °C, VINGOOD2(max) VIN 35 V. Table 41. VSUP regulator DC specifications N° Symbol 1 VO_VSUP 2 Parameter Condition Min Typ Max Unit Output voltage Across all line and load, steady state 6.5 6.8 7.1 V IO_BVSUP Base driver current limit - 4 7 10 mA 3 IO_VSUP Output load current - 0.5 200 mA 4 dVSR_ac Line transient response All load IO_VDD5; VIN = 6 V to 18 V @ dt = 1 µs; Design Info 6.2 7.4 V 6.2 7.4 V 8 V 5 dVLR_ac Load transient response All line; IO_VDD5= 1mA to 100mA @dt = 1µs; Design Info 6 VSUPOV Over voltage detection - 7.6 7 VSUPUV Under voltage detection - 1.8 2 2.2 V Min Typ Max Unit From 10% to 90% 1 2 3 ms Table 42. VSUP AC specifications N° 1 Symbol Parameter Condition TSOFTST_VSUP Soft start time 2 TFLT_VSUPOV Over voltage deglitch filter time - 27 30 33 µs 3 TFLT_VSUPUV Under voltage deglitch filter time - 27 30 33 µs Min Typ Max Unit Table 43. VSUP regulator external components (Design Info) N° Symbol 1 hFE_PNP 2 Ft_PNP 3 RVSUPBE 4 CBLK_VSUP 5 Component Output transistor gain - 50 250 500 A/A Output transistor transit frequency - 30 - - MHz Output transistor BaseEmitter Pull-up Resistance - - 3 - kΩ Output Bulk Capacitance Min 4.7µF nominal 3 - 30 µF - - - 50 mΩ ESRCBLK_VSUP Bulk Capacitor ESR 178/202 Conditions DocID029274 Rev 1 L9678P, L9678P-S 15.15 Electrical characteristics VSF regulator All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C Ta +95 °C, VINGOOD1(max) VIN 35 V, VSF + 2V ERBOOST Table 44. VSF regulator DC specifications N° Symbol Parameter 1 VSF Output voltage 2 Condition Min Typ Max Unit All line, load, IO_VSF up to 6 mA SYS_CFG(VSF_V)= 0 18 20 22 V All line, load, IO_VSF up to 6 mA BST33V = 1, SYS_CFG(VSF_V)= 1 23 25 27 V 3 ILIM_VSF Output load current limit Test conditions: VSF = 0 7 10 13 mA 4 VDO_VSF Drop-out voltage V(ERBOOST-VSF) - - 2 V 5 CVSF Output capacitance Design Info. 2.9 - 14 nF Device OFF -5 5 µA 60 125 188 kΩ 6 ILKG_VSF_OFF VSF input leakage 7 RPD_VSF VSF pull-down resistance Device ON VSF regulator OFF or ON 1.5V<VSF<25V Test condition: VSF = 25V 8 IPD_VSF VSF pull-down current Device ON VSF regulator ON Design Info 34 40 46 µA VSF total pull-down current IPD_VSF_TOT = IPD_VSF + RPD_VSF Device ON VSF regulator ON Test conditions: – VSF = 25V – SYS_CGF(VSF_V)= 0 166 230 462 µA 9 IPD_VSF_TOT Table 45. VSF regulator AC specifications N° Symbol 1 TON,VSF Parameter VSF turn on time Condition CVSF = 14 nF and IO_VSF=0 Measured from VSF_EN = 1 to VSF inside regulation limits DocID029274 Rev 1 Min Typ Max Unit - - 100 µs 179/202 201 Electrical characteristics 15.16 L9678P, L9678P-S Deployment drivers All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C Ta +95 °C, VINGOOD1(max) VIN 35 V, 6 V SSxy 35 V, SSxy - SFx 25 V. Table 46. Deployment drivers - DC specifications N° Symbol 1 Parameter IDEPL_LO Deployment current Condition Min Typ Max Unit R = 2 ohms Considering 9mA as not detected leakage with a 1kOhm equivalent resistance from SFx to GND 1.33 1.4 1.55 A R = 2 ohms, 9 V SSxy Considering 13.5 mA as not detected leakage with a 1 kΩ equivalent resistance from SFx to GND, Not available with tdepl = 2 ms selection 1.94 1.99 2.2 A 2 IDEPL_HI 3 IOC_SR Low side over current detection 2.2 3.1 4 A 4 ILIM_SR Low side current limitation 2.2 3.1 4 A 0.1 - - A - - 2 Ω - - -100 mA -10 - 10 µA 5 ILIM_OC_SR 6 RDSONT 7 IRV_SF - Difference between current -I I limitation and OC LIM_SR OC_SR threshold Total high and low side MOS on Ta = 95 °C resistance Reverse current on SFx Without device malfunction (1) Not to be tested in series production 8 ILKG_SS_OFF Device OFF SSxy ≤ 35V SFx = SFy = 0 9 ILKG_SS_ON Device ON SSxy ≤ 35V SFx = 0 46 66 86 µA Device ON One channel armed SSxy ≤ 35V SFx = 0 410 490 570 µA 10 ILKG_SS_CH_ARMED 180/202 SSxy leakage current DocID029274 Rev 1 L9678P, L9678P-S Electrical characteristics Table 46. Deployment drivers - DC specifications (continued) N° Symbol 11 ILKG_SF_ON Parameter SF leakage current Condition Min Typ Max Unit Device ON, VRESDIAG = VSSxy = 35 V, SFx = 0V-35 V -50 - 50 µA -50 - 50 µA 12 ILKG_SF_OFF Device OFF, VRESDIAG = open, VSSxy = open but all SSxy pins connected, SEx = 0 V - 35 V 13 ILKG_SR_ON Device ON, VRESDIAG = VSSxy = 35 V, SFx = 0V-35 V - - 50 µA Device OFF, VRESDIAG = open, VSSxy = open but all SSxy pins connected, SEx = 0 V - 35 V - - 50 µA 0 - 60 µH 13 - 455 nF 13 - 455 nF - - 10 nF - - 6.5 Ω 1 - 10 m SR leakage current 14 ILKG_SR_OFF 15 LDEPL Load Inductance Maximum load inductance Design Information(2) 16 CSFx 17 CSRx Load capacitance Maximum capacitance to GND Design Information 18 CSSxy SSxy capacitance Maximum capacitance to GND connected directly to SSxy pin Design Information 19 RSFLx Load Impedance Design Information 20 - 21 Wire Length Squib Loops containing a clockspring shall be limited to a maximum length of 3m RWirex Wire resistance Design information 16.8 - 63.4 mΩ/m 22 LWirex Wire Inductance Design Information 0.6 - 1.8 µH/m 23 RCSx Clock spring resistance Maximum number of clock springs is 3 for any IC Design Information 0 - 0.7 Ω 24 LCSx Clock spring inductance Design Information 0 - 42.9 µH 25 kL_CS1 – L_CS2 Clocks pring coupling Design Information 0.739 - 0.903 - 26 LEMI Squib EMI protection Design Information 0 - 7.7 µH 1. In case of an unsupplied device and shorted deployment pins (e.g. to battery voltage), the dynamic reverse current through the high side power stage depends on CSSxy. 2. LDEPL could be calculated in the following way: - Non-ClockSpring Loops LDEPL(max) = LWire(10m*2) + LEMI = (3.6 µH/m * 10m) + 7.7 µH = 43.7 µH - ClockSpring Loops LDEPL(max) = LWire(3m*2) + LCSx + LEMI = (3.6µH/m * 3m) + [42.9 µH * (1 - 0.739)] + 7.7 µH = 29.7 µH - ClockSpring Loops with short to ground LDEPL(max) = LWire(3m) + LCSx + LEMI = (1.8µH/m * 3m) + 42.9µH + 7.7µH = 56 µH. DocID029274 Rev 1 181/202 201 Electrical characteristics L9678P, L9678P-S Figure 59. Deployment drivers diagram %3$%-)0ROTECTION 3YSTEM7IRING)MPEDANCE 3QUIB%-) 0ROTECTION #LOCK3PRING )MPEDANCE 2?#3 3QUIB,OAD ,?#3 3&X 2?7IRE #?3&X ,?%-) ,?7IRE 2?3QUIB K,?#38 7IRE,ENGHTM 32X 2?7IRE ,?7IRE 2?#3 #?32X ,?#3 '!0'03 Table 47. Deployment drivers - AC specifications N° Symbol 1 TDEPL_LO Parameter Condition 1.209 A rising to 1.209 A falling Deployment time 2 1.764 A rising to 1.764 A falling TDEPL_HI 3 Deployment current counter resolution Min Typ Max Unit 2 - 2.268 ms 0.7 - 0.832 ms 0.5 - 0.613 ms 0 - 16 µs - - 32 µs - - 65 µs - - 32 µs 4 TDEP_RES 5 TRISE_IDEPL 6 TDEL_IDEP 7 TFALL_IDEPL 8 Low-side shutdown delay time TDEL_SD-LS (with respect to high-side deactivation) - 50 - - µs 9 Low-side overcurrent to low-side TFLT_LIM_LS deactivation deglitch time in short to battery condition - 80 100 120 µs 10 Low-side overcurrent to high-side deactivation deglitch time in case TOFF_OS_HS of intermittent open squib condition - - - 20 µs 11 TOFF_OS_HS - 4 - 12 µs 182/202 - Rise time 10% - 90% of IDEPL Delay time SPI_CS to 90% IDEPL SSxy = 25 V; RSQ = 2.2 Ω, C = 22 nF, L = 44 µH Fall time 90% - 10% IDEPL High-side off time in case of intermittent open squib condition DocID029274 Rev 1 L9678P, L9678P-S Electrical characteristics 15.17 Squib diagnostic 15.17.1 Squib resistance measurement All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C Ta +95 °C, VINGOOD1(max) VIN 35 V, 6 V SSxy 35 V; 7V VRESDIAG 35V. Table 48. Deployment drivers diagnostics (Squib resistance) N° Symbol 1 RSQ_RANGE_1 2 RSQ_RANGE_2 Condition Min Typ Max Unit Squib Resistance Range 1 LPDIAGREQ(ISRC_CURR_SEL)= 0 0 - 10 Ω Squib Resistance Range 2 LPDIAGREQ(ISRC_CURR_SEL)= 1 0 - 50 Ω GRSQ Squib resistance measurement differential amplifier gain - -2% 5.2 +2% V/V 4 VOFF_RSQ Squib Resistance Measurement Differential Amplifier Output Offset VOUT_RSQ = GRSQ x (VSF – VSR) + Voff_RSQ 200 - 400 mV 5 ISRC_HI_SF ISRC_HI_SR Squib resistance measurement high current source RSQ_RANGE = 1 Ωto 10 Ω LPDIAGREQ(ISRC_CURR_SEL) = 0 LPDIAGREQ(ISRC) = "01" or "10" -5% 40 +5% mA 6 ISRC_LO_SF ISRC_LO_SR Squib resistance measurement low current source RSQ_RANGE = 1 Ωto 50 Ω LPDIAGREQ(ISRC_CURR_SEL) = 1 -10% LPDIAGREQ(ISRC) = "01" or "10" 8 +10% mA 7 ISRC_DELTA Squib Resistance Measurement Delta Current Source - -5% 32 +5% mA 8 SRISRC Squib resistance measurement current source slewrate - 4 7.5 11 mA/µs 9 VSRx_RM SRx voltage during Resistance Measurement LPDIAGREQ(ISRC) = ”01” or “10” LPDIAGREQ(ISINK) = 1 0.5 0.7 1 V 10 ISINK_HI_SR SRx current sink limit high level LPDIAGREQ(ISRC_CURR_SEL) = 0 LPDIAGREQ(ISINK) = 1 50 70 90 mA 11 ISINK_LO_SR SRx current sink limit low level LPDIAGREQ(ISRC_CURR_SEL) = 1 LPDIAGREQ(ISINK) = 1 10 17.5 25 mA 12 IPD_SR SRx current pull down - 0.7 1 1.3 mA 13 RLKG_SF Leakage resistance on SFx Leakage to GND ±1 V or to Battery from 6 V to 18 V. Design info 1 - - kΩ 3 Parameter DocID029274 Rev 1 183/202 201 Electrical characteristics L9678P, L9678P-S Table 48. Deployment drivers diagnostics (Squib resistance) (continued) N° Symbol 14 RSQ_ACC 15 - 15.17.2 Parameter Condition Min Typ Max Unit Accuracy of digital resistance measurement After software calculation All errors included RSQ between 1.0 Ω and 10.0 Ω With High Current Source (40mA) -8 - +8 % EMI Input Low-pass filter Design Info 50 - 100 kHz Squib leakage test (VRCM) All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C Ta +95 °C, VINGOOD1(max) VIN 35 V, VDD3V3(min) VDD3V3 VDD3V3(max). Table 49. Squib leakage test (VRCM) N° Symbol 1 VOUT_VRCM 2 Parameter Condition Min Typ Max Unit Output Voltage on SF or SR pins during Leakage test IOUT = 0 mA -10% 2.5 +10% V IOUT = 6.6 mA -8.7% 2.3 +8.7% V Detection threshold, leakage to GND Leakage detected if RLKG_GSQ 1 kΩ and not detected if RLKG_GSQ 10 kΩ Design Info 1 - 10 kΩ -15% 450 +15% µA 1 - 10 kΩ -15% 1.8 +15% mA 3 RLKG_GSQ_TH 4 ILKG_GSQ_TH Equivalent to resistance range 5 RLKG_BSQ_TH Leakage detected if LKG_BSQ 1 kΩ and not detected if RLKG_BSQ 10 kΩ Design Info 6 ILKG_BSQ_TH Detection threshold, leakage to BATTERY Equivalent to resistance range 7 ILIM_VRCM_SRC VRCM current limitation - -20 - -10 mA 8 ILIM_VRCM_SINK - 10 - 20 mA 9 VSHIFT Design Info -1 - 1 V 10 RSQ_LOW_TH Design Info 200 - 500 Ω 11 IRSQ_LOW_TH -12% 6 +12% mA 12 RSQ_HIGH_TH 2 - 5 kΩ 13 IRSQ_HIGH_TH -15% 700 +15% µA 14 TFLT_LKG 184/202 External ground or battery shift Detection Threshold for “resistance too low” Detection threshold for “resistance too high” Equivalent to resistance range Design Info Equivalent to resistance range Leakage test deglitch filter time DocID029274 Rev 1 8 µs L9678P, L9678P-S 15.17.3 Electrical characteristics High/low side FET test All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C Ta +95 °C, VINGOOD1(max) VIN 35 V, 6 V SSxy 35 V, 7V VRESDIAG 35V. Table 50. High/low side FET test N° Symbol 1 IHS_FET_TH Detection threshold (HS FET test) 2 ILS_FET_TH 3 EFET_TESt 4 Parameter Condition Min Typ Max Unit - -10% 1.8 +10% mA Detection threshold low side FET test - -10% 450 +10% µA Energy transferred to squib during HS/LS FET tests Design Info - - 170 µJ - 1.3 1.5 1.7 µs TFLT_HS_FET_TH FET Test deglitch filter TFLT_LS_FET_TH time 5 TFETTIMEOUT HS/LS FET test time-out - 190 200 210 µs 6 SGxy_OPEN Squib open ground detection GNDSUBx as ground reference 300 450 600 mV 7 TFLT_SGOPEN Squib open ground detection filter time - 46 50 54 µs 15.17.4 Deployment timer test All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C Ta +95 °C, VINGOOD1(max) VIN 35 V Table 51. Deployment timer test No Symbol 1 tPULSE_IDLE 2 IPULSE_HIGH_00 3 IPULSE_HIGH_01 4 IPULSE_HIGH_10 5 IPULSE_HIGH_11 Parameter Comments / Conditions Deployment timer pulse SYSDIAGREQ(DSTEST)=PULSE Test Idle Time SYSDIAGREQ(DSTEST)=PULSE DCR_x(Deploy_Time) = 00 SYSDIAGREQ(DSTEST)=PULSE Deployment timer pulse DCR_x(Deploy_Time) = 01 Test High Time SYSDIAGREQ(DSTEST)=PULSE DCR_x(Deploy_Time) = 10 SYSDIAGREQ(DSTEST)=PULSE DCR_x(Deploy_Time) = 11 DocID029274 Rev 1 Min Typ Max Unit 7 8 9 ms -5% 8 +5% µs -5% 584 +5% µs -5% 792 +5% µs -5% 2160 +5% µs 185/202 201 Electrical characteristics 15.18 L9678P, L9678P-S Remote sensor interface All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C Ta +95 °C, VINGOOD2(max) VIN 35V, VSUP(min) VSUP VSUP(max). Table 52. Remote sensor I/F DC parameters N° Symbol 1 IS_LOW Is 2 3 VLIM_RSU Parameter Condition Min Typ Max Unit Interface quiescent current (low signal current level) According to PSI-5 v1.3, section 5.1.2 - parameter #4 Design info -19 - -4 mA Delta signal current IS_HIGH - IS_LOW According to PSI-5 v1.3, section 5.4 - parameter #6 Design Info 22 - 30 mA Output voltage limitation VSUP = VIN According to PSI-5 v1.3, section 5.1.1 - parameter #1 - - 11 V RSU power switch resistance (VVSUP – VRSU) / IRSU IRSUx = 4-50 mA According to PSI-5 v1.3, section 6.2 - parameter #3 - - 12.5 Ω 10 50 100 mV - - 5 mA 4 RDSON_RSU 5 VSTB_RSU Output short to battery threshold - 6 ISTB_RSU Static reverse current into RSU pin VRSU > VVSUP + VSTB_RSU 7 IOC_RSU Over current detection threshold Interface disabled after TFLT_STD_RSU According to PSI-5 v1.3, section 5.1.2 - parameter #8-9 -105 - -50 mA 8 ILIM_RSU Current limitation RSU = 0 According to PSI-5 v1.3, section 5.1.2, parameter #8-9 -105 - -65 mA 9 ∆ILIM_OC_RSU Difference between current limitation and ILIM_RSU - IOC_RSU OC threshold 0.1 - - mA 10 IB0_RSU Internal base current Default value of internal 7 bit starting value counter -18 -15 -13 mA 11 IS_TH_RSU 12 ILKGG_RSU 13 ILKGB_RSU 14 IOL_RSU 186/202 Trigger point for signal current threshold IRSU = ILOW_RSU = -19mA to -4mA Leakage to GND; detected by IB Trigger point for fault Leakage to BATTERY; current detection detected by IB Output open load detection threshold RSU open DocID029274 Rev 1 IB_RSU + (12-11%) IB_RSU IB_RSU + + (12+11%) 12 mA -48 - -36 mA -3.5 - -1.5 mA ILKGB(min) - ILKGB(max) - L9678P, L9678P-S Electrical characteristics Table 52. Remote sensor I/F DC parameters (continued) N° Symbol 15 DACRES 16 ILSB 17 CRSU 18 TJSD_ERBST Parameter 19 THYS_TSDERBST Condition Min Typ Max Unit - 7 - Bit DAC resolution Design info LSB current - 270 - 330 µA EMC capacitor 22nF nominal Design Info 13 - - nF - 150 175 190 °C - 5 10 15 °C Thermal shutdown Table 53. PSI-5 remote sensor transceiver - AC specifications N° Symbol Parameter 1 TFLT_STD_RSU Over Current Shutdown Filter Time 2 TBLK_OC_RSU Over current shutdown filter time 3 Condition Min Typ Max Unit Normal operation 500 - 600 µs At interface power on (BLKTxSEL = 0) According to PSI-5 v1.3, section 5.2 - parameter #1 4.6 - 5.4 ms At interface power on (BLKTxSEL = 1) According to PSI-5 v1.3, section 5.2 - parameter #2 9.4 - 10.8 ms - - 200 ns 12 - 16 µs - 10 µs Short to battery comparator response time Guaranteed by design TSTB_REC_RSU Short to battery recovery time - 6 TFLT_TSD_RSU Thermal shutdown filter time - 7 TFLT_OPEN_RSU Open detection deglitch filter time - 10 - 15 µs 8 TFLT_LKG_RSU Leakage deglitch filter time 10 - 15 µs 4 TSTB_RSU 5 DocID029274 Rev 1 187/202 201 Electrical characteristics 15.19 L9678P, L9678P-S DC sensor interface All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C Ta +95 °C, VINGOOD2(max) VIN 35V, 8.5 V VRESDIAG 35 V. Table 54. DC sensor interface specifications N° Symbol Parameter 1 VOUT_DCSREG Output voltage regulation mode 2 ILIM_DCSREG Current limitation regulation mode Condition DCS Regulator enabled Min Typ Max Unit -10% 6.25 +10% V 24 27 30 mA -1 - 1.4 V DCS Regulator enabled DCS = 0 3 VDCS_RANGE1 Voltage measurement range1 First voltage measurement (VDCS_MEAS1) to compensate external ground shift and internal offset 4 VDCS_ACC1 Voltage measurement accuracy 1 VDCS = VDCS_RANGE1 Included ADC error -15 - 15 % 5 VDCS_RANGE2 Voltage measurement range 2 - 1.5 - 10 V 6 VDCS_ACC2 Voltage measurement accuracy 2 VDCS = VDCS_RANGE2 Included ADC error -8 - +8 % 7 IDCS_RANGE1 Current measurement range 1 - 1 - 2 mA 8 IDCS_ACC1 Current measurement accuracy 1 IDCS = IDCS_RANGE1 Included ADC error -30 - +30 % 9 IDCS_RANGE2 Current measurement range 2 - 2 - 22 mA 10 IDCS_ACC2 Current measurement accuracy 2 IDCS = IDCS_RANGE2 Included ADC error -12 - +12 % 11 IDCS_RANGE3 Current measurement range 3 Regulator in current limitation - ILIM_DCSREG - mA 12 IDCS_ACC3 Current measurement Accuracy 3 DCS = 0 Included ADC error -12 - +12 % 13 RDCS_RANGE Design info 65 - 3000 Ω 15 % 14 188/202 RDCS_ACC Resistance Measurement Range Accuracy of digital resistance measurement Performing both voltage measurements 1 and 2 -15 After Software calculation All errors included DocID029274 Rev 1 L9678P, L9678P-S Electrical characteristics Table 54. DC sensor interface specifications (continued) N° Symbol Parameter 15 IPD_DCS Pull down current 16 RPD_DCS 17 ITOT_PD_DCS 18 CDCS 19 Min Typ Max Unit VDCS = 1.5V 70 100 130 µA Pull down resistance Device ON, DCS Pull Down Current disabled 90 150 210 kΩ Total pull down current ITOT_PD_DCS = IPD_DCS + RPD_DCS VDCS = 6.5V 100 140 200 µA Output capacitance Design Info 10 - nF IREF_IDCS Internal current reference for DCS current measurement - -5% 300 +5% µA 20 Ratio_VDCS Divider ratio for DCS voltage measurement - -3% 7.125 +3% V/V 21 VOFF_DCS Internal offset during voltage measurement - -4% 0.375 +4% V 15.20 Condition Safing engine All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C Ta +95 °C, VINGOOD1(max) VIN 35V, VDDx(min) VDDx VDDx(max), VDDQ = VDD5 or VDD3V3. Table 55. Arming interface - DC specifications N° Symbol 1 VTH_H_ACL 2 Parameter Condition Min Typ Max Unit - 2.33 - 2.42 V VTH_L_ACL ACL input voltage thresholds - 1.58 - 1.67 V 3 VHYS_ACL ACL hysteresis - 0.6 0.75 0.9 V 4 RPD_ACL ACL pull down resistance VACL = 3.3V 120 200 280 kΩ 5 VOH_ARM ARM output high voltage ILOAD = -0.5 mA Internal safing selected VDDQ -0.60 - VDDQ V 6 VOL_ARM ARM output low voltage ILOAD = 2.0 mA Internal safing selected 0 - 0.4 V 7 RPD_ARM ARM pull down resistance - 65 100 135 kΩ 14 VIH_ FENH FENH high level input voltage - 2 - - V 15 VIL_ FENH FENH low level input voltage - - - 0.8 - 16 IPU_ FENH FENH pull down current FENH = VDDQ 20 45 70 µA 14 VIH_ FENL FENL high level input voltage - 2 - - V DocID029274 Rev 1 189/202 201 Electrical characteristics L9678P, L9678P-S Table 55. Arming interface - DC specifications (continued) N° Symbol Parameter Condition Min Typ Max 15 VIL_ FENL FENL low level input voltage - 16 IPU_ FENL FENL pull up current FENL = 0 14 VIH_SAF_CSx SAF_CSx high level input voltage 15 VIL_SAF_CSx 16 IPU_SAF_CSx Unit - - 0.8 -70 -45 -20 µA - 2 - - V SAF_CSx low level input voltage - - - 0.8 - SAF_CSx pull up current SAF_CSx = 0V -70 -45 -20 µA Table 56. Arming interface - AC specifications N° Symbol 1 TARM 2 TACL_HI 3 TACL_LO 4 TON_ACL_HI 5 TON_ACL_LO 6 TVALID_EOL 7 TDIS_EOL Parameter Min Typ Max Unit - 475 500 525 µs - 213 - 237 ms - 168 - 187 ms - 154 - 171 ms - 114 - 126 ms Scrap validation TACL and TON_ACL valid - 3 - - cycles Scrap timeout - 2 * TACL - - - 0 ms - 30 32 34 ms - 242 270 ms - 1934 2162 ms Sensor sampling period ACL period ACL on-time 8 9 10 TPULSE_STRECH Condition Arming enable pulse stretch time 11 ms 12 TRISE_ARM ARM rise time 80pF load, 20% to 80% Internal Safing Selected - - 1.00 µs 13 TFALL_ARM ARM fall time 80pF load, 20% to 80% Internal Safing Selected - - 1.00 µs 190/202 DocID029274 Rev 1 L9678P, L9678P-S 15.21 Electrical characteristics General purpose output drivers All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C Ta +95 °C, VINGOOD1(max) VIN 35V; GPODx + 5V ERBOOST. Table 57. GPO interface DC specifications N° Symbol Min Typ Max Unit 1 VSAT_GPO Output saturation voltage VGPOD – VGPOS ILOAD = 70 mA - - 0.5 V 2 ILIM_GPO Current limitation VGPOD – VGPOS = 1.5 V 73 110 155 mA 3 IOC_GPO Over current detection threshold - 73 110 155 mA 4 ∆ILIM_OC_GPO Difference between current limitation and OC threshold ILIM_GPO - IOC_GPO 0.1 - - mA 5 IOL_GPO Open load current threshold GPO ON condition; LS and HS configuration 0.1 1 3 mA Diagnostic current on load Voltage measurement in progress through Analog MUX Increased leakage for a short specified time (32 µs) - - 130 µA VGPOD = 18V VGPOS = 0V Power-off or sleep mode -5 - 5 µA ILKG_GPOD_ON VGPOD = 18V VGPOS = 0V Active or passive mode Driver off - - 100 µA ILKG_GPOS_OFF VGPOD = 18V VGPOS = 0V Power-Off or Sleep Mode or ERBOOST = ERBOOST_OK Driver OFF -5 - 5 µA VGPOD = 18V VGPOS = 0V (Active or Passive Mode) and ERBOOST = ERBOOST_OK Driver OFF - - 100 µA VGPOS = VGPOD + 1V Driver OFF - 1 mA 6 IDIAG_GPO 7 ILKG_GPOD_OFF Parameter Condition GPOD output leakage current 8 9 GPOS output leakage current 10 ILKG_GPOS_ON 11 IREV_GPO 12 TJSD_GPO 13 THYS_TSD_GPO 14 CGPO Reverse current Thermal Shutdown Load capacitor - 150 175 190 °C - 5 10 15 °C Min 10nF nominal Design Info 6 - - nF DocID029274 Rev 1 191/202 201 Electrical characteristics L9678P, L9678P-S Table 58. GPO Driver Interface - AC specifications N° Symbol Parameter Min Typ Max Unit 1 SRGPO Output voltage slew rate 30% - 70%; RLOAD = 273Ω, CLOAD = 100nF 0.1 0.25 0.4 V/µs 2 TFLT_OC_GPO Over current detection filter time - 10 12 14 µs 3 TFLT_OL_GPO Open load detection filter time 8 10 12 µs 4 TMASK_ON_GPO Diagnostic mask delay after switch ON CGPO = 100nF typ 40 50 60 µs 5 TFLT_TSD Thermal shutdown filter time - - - 10 µs 6 FPWM_GPO PWM frequency - - 125 - Hz 7 DCPWM_GPO PWM duty cycle Increment Step = 1.6% 0 - 100 % 192/202 Condition DocID029274 Rev 1 L9678P, L9678P-S 15.22 Electrical characteristics ISO9141 interface (K-LINE) All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C Ta +95 °C, VINGOOD(max) VIN 35V. Table 59. ISO9141 interface DC specifications N° Symbol Parameter 1 VIH_ISOTX ISOTX high level input voltage 2 VIL_ISOTX 3 VHYS_ISOTX 4 Condition Min Typ Max Unit - 2 - - V ISOTX low level input voltage - - - 0.8 V ISOTX hysteresis input voltage - 150 - 500 mV IPU_ISOTX ISOTX pull up current ISOTX = 0 -70 -45 -20 µA 5 CIN_ISOTX ISOTX input capacitance Design Info - - 5 pF 6 VTH_DOM_ISOK 7 VTH_REC_ISOK 8 VHYS_ISOK 9 VO_DOM_ISOK 10 ISOK input receiver threshold ISOTX = 0V VIN * VIN * VIN * 0.4 0.45 0.5 V ISOTX = VDDQ VIN * VIN * VIN * 0.5 0.55 0.6 V - VIN * VIN * VIN * 0.1 0.13 0.07 V ISOK output voltage ISOTX = 0V, IISOK = 40mA IOC_ISOK ISOK over current detection 11 ILIM_ISOK 12 ∆ILIM_OC_ISOK 13 ISINK_ISOK ISOK sink current capability 14 ILKG_ISOK ISOK input leakage current VIN < 18V, Driver Off (device is supplied) 15 VOH_ISORX ISORX output high voltage ILOAD = -0.5 mA 16 VOL_ISORX ISORX output low voltage 17 CIN ISOK Input Capacitance 18 TJSD_ISOK 19 THYS_TSD_ISOK - - 1.2 V - 50 - 100 mA ISOK current limitation - 50 - 100 mA Difference between current limitation and OC threshold ILIM_ISOK - IOC_ISOK 0.1 - - mA 40 - - mA -10 - 10 µA VDD Q -0.60 - VDD Q V ILOAD = 2 mA 0 - 0.4 V Design info - - 10 pF - 150 175 190 °C - 5 10 15 °C Thermal shutdown Design Info DocID029274 Rev 1 193/202 201 Electrical characteristics L9678P, L9678P-S Table 60. ISO9141 interface transceiver AC specifications N° Symbol Parameter 1 TFLT_TSD Thermal shutdown filter time 2 TBLK_ISOK 3 Min Typ Max Unit - - - 10 µs Current limit fault blanking time - 8 - 12 µs TRISE_ISORX ISORX rise time 80pF load, 20%-80% - - 0.5 µs 4 TFALL_ISORX ISORX fall time 80pF load, 20%-80% - - 0.5 µs 5 - Baud rate Design Info - 62.5 - kBd 6 TPD_ILTX ISOTX High to Low to ISOK = 70% * VO_REC_ISOK RISOK=510Ω, CISOK=470pF - - 1 µs Propagation delay transmitter Condition 7 TPD_IHTX ISOTX Low to High to ISOK = 30% * VO_DOM_ISOK RISOK=510Ω, CISOK=470pF - - 1.5 µs 8 TPD_ILRX ISOK = VTH_DOM_ISOK to ISORX High to Low RISOK=510Ω, CISOK=470pF - - 1.5 µs ISOK = VTH_REC_ISOK to ISORX Low to High RISOK=510Ω, CISOK=470pF - - 1.5 µs Propagation delay receiver 9 TPD_IHRX 10 TRISE_ISOK ISOK rise time 30% to 70% RISOK=510Ω, CISOK=470pF - - 1.5 µs 11 TFALL_ISOK ISOK fall time 70% to 30% RISOK=510Ω, CISOK=470pF - - 1.5 µs 12 TPDW_RX Receiver pulse width symmetry TPD_ILRX - TPD_IHRX - - 1 µs 13 TPDW_TX Transmitter pulse width symmetry (TPD_ILTX + TFALL_ISOK) – (TPD_IHTX + TRISE_ISOK) - - 1 µs 194/202 DocID029274 Rev 1 L9678P, L9678P-S 15.22.1 Electrical characteristics Analog to digital converter All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C Ta +95 °C, VINGOOD(max) VIN 35V. Table 61. Analog to digital converter N° Symbol Min Typ Max Unit 1 VADC_RANGE 0.1 - 2.5 V 2 VADC_REF ADC reference voltage - -1.5% 2.5 +1.5% V 3 ADC_RES ADC resolution(1) Design Info - 10 - bit DNL Differential non linearity error (DNL) Separation between adjacent levels, measured bit to bit of actual and an ideal output step. No missing codes -1 - +1 LSB 5 INL Integral non linearity error (INL) Maximum difference between the actual analog value at the transition between 2 adjacent steps and its ideal value -3 - +3 LSB 6 EQUANT Quantization Error Design Info -0.5 - 0.5 LSB 7 TotErr Total error Includes INL, DNL, ADC Reference voltage tolerance and quantization error -15 - +15 LSB 8 TotErr_0v1 ADC total error for 0.1V input voltage - -5 - +5 LSB 9 TotErr_2v4 ADC total error for 2.4V input voltage - -15 - +15 LSB 10 - Pre-ADC settling time - - 4.81 - µs 11 - Single conversion time - - 2.25 - µs 12 - Intra-queue settling time - - 3.5 - µs 13 - Post- ADC settling time - - 3.44 - µs 14 - ADC conversion time voltage 4x sampling for each of the 4 conversions in the queue Design Info - 54.75 - µs ADC conversion time – current and voltage 8x sampling for DCS, temperature and squib loop resistance measurements + 4x sampling for remaining 2 conversions in the queue Design Info - 51.25 - µs 4 15 - Parameter Condition ADC input voltage range - 1. LSB = (2.5 V / 1024) = 2.44 mV DocID029274 Rev 1 195/202 201 Electrical characteristics 15.23 L9678P, L9678P-S Voltage diagnostics (analog Mux) All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C Ta +95 °C, VINGOOD(max) VIN 35V. Table 62. Voltage diagnostics (Analog MUX) DC specifications N° Symbol 1 Ratio_1 VIN_RANGE1 = 0.1V … 2.5V 2 Ratio_4 3 Ratio_7 4 5 6 Parameter Condition Min Typ Max Units - 1 - V/V VINPUT_RANGE2 = 1V … 10V (where applicable) -3% 4 +3% V/V VINPUT_RANGE_3 = 1.5V … 17.5V (where applicable) -3% 7 +3% V/V Ratio_10 VINPUT_RANGE_4 = 2V … 25V (where applicable) -3% 10 +3% V/V Ratio_15 VINPUT_RANGE_5 = 3V … 35V (where applicable) -3% 15 +3% V/V High impedance -10 - 10 mV Multiplexer input to GNDA 80 - - kΩ Multiplexer input to GNDA 120 - - kΩ Multiplexer input to GNDA 160 - - kΩ Multiplexer input to GNDA 200 - - kΩ - - 60 µA -12 - +12 % Divider ratios VOFFSET_RATIO_X Divider offset 7 RRATIO_4 8 RRATIO_7 9 RRATIO_10 10 RRATIO_15 11 ILEAK_RATIO_X 12 VMEAS_ACC 15.24 Multiplexer input resistance Additional multiplexer on-state input For All Divider Ratio expect Ratio_1 leakage current Voltage measurement accuracy All range All errors included Temperature sensor All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C Ta +95 °C, VINGOOD(max) VIN 35V. Table 63. Temperature sensor specifications N° Symbol 1 TMON_RANGE 2 TMON_ACC 196/202 Parameter Condition Min Typ Max Units Monitoring temperature range -40 - 150 °C Monitoring temperature accuracy -15 - 15 °C DocID029274 Rev 1 L9678P, L9678P-S Quality information 16 Quality information 16.1 OTP trim bits The device has 43 fuse programmable bits which are used to tune and refine performance characteristics of the device and also provide detailed identification of each component. These bits are only available during production testing and require activation of a special test mode. These bit values are confirmed every transition from POR, and reported in Section 5.1.1: Fault status register (FLTSR) if an error is found. The OTP CRC is implemented using the polynomial calculation (g(x)=1+x+x^3 with initialization value equal to "111"). Equivalent equations are: CRC[2] = C0in + C1in + C2in + d1 + d11 + d12 + d13 + d15 + d18 + d19 + d20 + d22 + d25 + d26 + d27 + d29 + d32 + d33 + d34 + d36 + d39 + d4 + d40 + d41 + d5 + d6 + d8 CRC[1] = C0in + C1in + d0 + d12 + d13 + d14 + d16 + d19 + d2 + d20 + d21 + d23 + d26 + d27 + d28 + d30 + d33 + d34 + d35 + d37 + d40 + d41 + d42 + d5 + d6 + d7 + d9 CRC[0] = C1in + C2in + d0 + d10 + d11 + d12 + d14 + d17 + d18 + d19 + d21 + d24 + d25 + d26 + d28 + d3 + d31 + d32 + d33 + d35 + d38 + d39 + d4 + d40 + d42 + d5 + d7 where d[42:0] are the 43 OTP bits and Cxin are the starting seed values (all '1'). DocID029274 Rev 1 197/202 201 Package information 17 L9678P, L9678P-S Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 17.1 LQFP64 (10x10x1.4 mm) package information Figure 60. LQFP64 (10x10x1.4 mm) package outline 6($7,1* 3/$1( F $ $ $ & E FFF PP *$*(3/$1( & $ . / ' / ' ' 3,1 ,'(17,),&$7,21 ( ( ( H *$3*36 B+B: 198/202 DocID029274 Rev 1 L9678P, L9678P-S Package information Table 64. LQFP64 (10x10x1.4 mm) package mechanical data Dimensions Ref Inches(1) Millimeters Min. Typ. Max. Min. Typ. Max. A - - 1.60 - - 0.0630 A1 0.05 - 0.15 0.0020 - 0.0059 A2 1.350 1.40 1.45 0.0531 0.0551 0.0571 b 0.17 0.22 0.27 0.0067 0.0087 0.0106 c 0.09 - 0.20 0.0035 - 0.0079 D 11.80 12.00 12.20 0.4646 0.4724 0.4803 D1 9.80 10.00 10.20 0.3858 0.3937 0.4016 D3 - 7.50 - - 0.2953 - E 11.80 12.00 12.20 0.4646 0.4724 0.4803 E1 9.80 10.00 10.20 0.3858 0.3937 0.4016 E3 - 7.50 - - 0.2953 - e - 0.50 - - 0.0197 - L 0.45 0.60 0.75 0.0177 0.0236 0.0295 L1 - 1.00 - - 0.0394 - - 0.0031 K ccc 0° (min.), 3.5° (typ.) 7° (max.) - - 0.08 - 1. Values in inches are converted from mm and rounded to 4 decimal digits. DocID029274 Rev 1 199/202 201 Package information 17.2 L9678P, L9678P-S LQFP64 (10x10x1.4) marking information Figure 61. LQFP64 (10x10x1.4) marking information 0DUNLQJDUHD$ 0DUNLQJDUHD% /DVWWZRGLJLWV (6(QJLQHHULQJVDPSOH EODQN!&RPPHUFLDOVDPSOH 3LQ5HI /4)374)37239,(: QRWLQVFDOH *$3*36B(6 Parts marked as ‘ES’ are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST’s Quality department must be contacted to run a qualification activity prior to any decision to use these engineering samples. 200/202 DocID029274 Rev 1 L9678P, L9678P-S 18 Revision history Revision history Table 65. Document revision history Date Revision 05-May-2016 1 Changes Initial release. DocID029274 Rev 1 201/202 201 L9678P, L9678P-S IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2016 STMicroelectronics – All rights reserved 202/202 DocID029274 Rev 1