Si864x Data Sheet Low-Power Quad-Channel Digital Isolators Silicon Lab's family of ultra-low-power digital isolators are CMOS devices offering substantial data rate, propagation delay, power, size, reliability, and external BOM advantages over legacy isolation technologies. The operating parameters of these products remain stable across wide temperature ranges and throughout device service life for ease of design and highly uniform performance. All device versions have Schmitt trigger inputs for high noise immunity and only require VDD bypass capacitors. Data rates up to 150 Mbps are supported, and all devices achieve propagation delays of less than 10 ns. Enable inputs provide a single point control for enabling and disabling output drive. Ordering options include a choice of isolation ratings (1.0, 2.5, 3.75 and 5 kV) and a selectable fail-safe operating mode to control the default output state during power loss. All products >1 kV are safety certified by UL, CSA, VDE, and CQC, and products in wide-body packages support reinforced insulation withstanding up to 5 kVRMS. Applications • Industrial automation systems • Medical electronics • Hybrid electric vehicles • Isolated switch mode supplies • Isolated ADC, DAC • Motor control • Power inverters • Communications systems Safety Regulatory Approvals • UL 1577 recognized • Up to 5000 VRMS for 1 minute • CSA component notice 5A approval • IEC 60950-1, 61010-1, 60601-1 (reinforced insulation) • VDE certification conformity • Si864xxT options certified to reinforced VDE 0884-10 • All other options certified to IEC 60747-5-5 and reinforced 60950-1 • CQC certification approval • GB4943.1 KEY FEATURES • High-speed operation • DC to 150 Mbps • No start-up initialization required • Wide Operating Supply Voltage • 2.5–5.5 V • Up to 5000 VRMS isolation • Reinforced VDE 0884-10, 10 kV surgecapable (Si864xxT) • 60-year life at rated working voltage • High electromagnetic immunity • Ultra low power (typical) 5 V Operation • 1.6 mA per channel at 1 Mbps • 5.5 mA per channel at 100 Mbps 2.5 V Operation • 1.5 mA per channel at 1 Mbps • 3.5 mA per channel at 100 Mbps • Tri-state outputs with ENABLE • Schmitt trigger inputs • Selectable fail-safe mode • Default high or low output (ordering option) • Precise timing (typical) • 10 ns propagation delay • 1.5 ns pulse width distortion • 0.5 ns channel-channel skew • 2 ns propagation delay skew • 5 ns minimum pulse width • Transient Immunity 50 kV/µs • AEC-Q100 qualification • Wide temperature range • –40 to 125 °C • RoHS-compliant packages • SOIC-16 wide body • SOIC-16 narrow body • QSOP-16 silabs.com | Smart. Connected. Energy-friendly. Rev. 1.9 Si864x Data Sheet Ordering Guide 1. Ordering Guide Table 1.1. Ordering Guide for Valid OPNs1, 2 Max Data Rate (Mbps) Default Output State Isolation Rating (kV) Temp (°C) Package 0 150 Low 1.0 –40 to 125 °C QSOP-16 4 0 150 Low 2.5 –40 to 125 °C NB SOIC-16 Si8640BB-B-IS 4 0 150 Low 2.5 –40 to 125 °C WB SOIC-16 Si8640BC-B-IS1 4 0 150 Low 3.75 –40 to 125 °C NB SOIC-16 Si8640EC-B-IS1 4 0 150 High 3.75 –40 to 125 °C NB SOIC-16 Si8640BD-B-IS 4 0 150 Low 5.0 –40 to 125 °C WB SOIC-16 Si8640ED-B-IS 4 0 150 High 5.0 –40 to 125 °C WB SOIC-16 Si8641BA-B-IU 3 1 150 Low 1.0 –40 to 125 °C QSOP-16 Si8641BA-C-IU 3 1 150 Low 1.0 –40 to 125 °C QSOP-16 Si8641BB-B-IU 3 1 150 Low 2.5 –40 to 125 °C QSOP-16 Si8641BB-B-IS1 3 1 150 Low 2.5 –40 to 125 °C NB SOIC-16 Si8641BB-B-IS 3 1 150 Low 2.5 –40 to 125 °C WB SOIC-16 Si8641BC-B-IS1 3 1 150 Low 3.75 –40 to 125 °C NB SOIC-16 Si8641EC-B-IS1 3 1 150 High 3.75 –40 to 125 °C NB SOIC-16 Si8641BD-B-IS 3 1 150 Low 5.0 –40 to 125 °C WB SOIC-16 Si8641ED-B-IS 3 1 150 High 5.0 –40 to 125 °C WB SOIC-16 Si8642BA-B-IU 2 2 150 Low 1.0 –40 to 125 °C QSOP-16 Si8642BA-C-IU 2 2 150 Low 1.0 –40 to 125 °C QSOP-16 Si8642EA-B-IU 2 2 150 High 1.0 –40 to 125 °C QSOP-16 Si8642BB-B-IS1 2 2 150 Low 2.5 –40 to 125 °C NB SOIC-16 Si8642BB-B-IS 2 2 150 Low 2.5 –40 to 125 °C WB SOIC-16 Si8642BC-B-IS1 2 2 150 Low 3.75 –40 to 125 °C NB SOIC-16 Si8642EC-B-IS1 2 2 150 High 3.75 –40 to 125 °C NB SOIC-16 Si8642BD-B-IS 2 2 150 Low 5.0 –40 to 125 °C WB SOIC-16 Si8642ED-B-IS 2 2 150 High 5.0 –40 to 125 °C WB SOIC-16 Si8645BA-B-IU 4 0 150 Low 1.0 –40 to 125 °C QSOP-16 Si8645BA-C-IU 4 0 150 Low 1.0 –40 to 125 °C QSOP-16 Si8645BB-B-IU 4 0 150 Low 2.5 –40 to 125 °C QSOP-16 Si8645BB-B-IS1 4 0 150 Low 2.5 –40 to 125 °C NB SOIC-16 Si8645BB-B-IS 4 0 150 Low 2.5 –40 to 125 °C WB SOIC-16 Si8645BC-B-IS1 4 0 150 Low 3.75 –40 to 125 °C NB SOIC-16 Si8645BD-B-IS 4 0 150 Low 5.0 –40 to 125 °C WB SOIC-16 Number of Inputs Number of Inputs VDD1 Side VDD2 Side Si8640BA-B-IU 4 Si8640BB-B-IS1 Ordering Part Number (OPN) silabs.com | Smart. Connected. Energy-friendly. Rev. 1.9 | 1 Si864x Data Sheet Ordering Guide Ordering Part Number (OPN) Number of Inputs Number of Inputs VDD1 Side VDD2 Side Max Data Rate (Mbps) Default Output State Isolation Rating (kV) Temp (°C) Package Product Options with Reinforced VDE 0884-10 Rating with 10 kV Surge Capability Si8640BT-IS 4 0 150 Low 5.0 –40 to 125 °C WB SOIC-16 Si8640ET-IS 4 0 150 High 5.0 –40 to 125 °C WB SOIC-16 Si8641BT-IS 3 1 150 Low 5.0 –40 to 125 °C WB SOIC-16 Si8641ET-IS 3 1 150 High 5.0 –40 to 125 °C WB SOIC-16 Si8642BT-IS 2 2 150 Low 5.0 –40 to 125 °C WB SOIC-16 Si8642ET-IS 2 2 150 High 5.0 –40 to 125 °C WB SOIC-16 Si8645BT-IS 4 0 150 Low 5.0 –40 to 125 °C WB SOIC-16 Si8645ET-IS 4 0 150 Low 5.0 –40 to 125 °C WB SOIC-16 Note: 1. All packages are RoHS-compliant with peak reflow temperatures of 260 °C according to the JEDEC industry standard classifications and peak solder temperatures. 2. “Si” and “SI” are used interchangeably. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.9 | 2 Si864x Data Sheet System Overview 2. System Overview 2.1 Theory of Operation The operation of an Si864x channel is analogous to that of an opto coupler, except an RF carrier is modulated instead of light. This simple architecture provides a robust isolated data path and requires no special considerations or initialization at start-up. A simplified block diagram for a single Si864x channel is shown in the figure below. Figure 2.1. Simplified Channel Diagram A channel consists of an RF Transmitter and RF Receiver separated by a semiconductor-based isolation barrier. Referring to the transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying. The Receiver contains a demodulator that decodes the input state according to its RF energy content and applies the result to output B via the output driver. This RF on/off keying scheme is superior to pulse code schemes as it provides best-in-class noise immunity, low power consumption, and improved immunity to magnetic fields. See the following figure for more details. Figure 2.2. Modulation Scheme silabs.com | Smart. Connected. Energy-friendly. Rev. 1.9 | 3 Si864x Data Sheet System Overview 2.2 Eye Diagram The figure below illustrates an eye diagram taken on an Si8640. For the data source, the test used an Anritsu (MP1763C) Pulse Pattern Generator set to 1000 ns/div. The output of the generator's clock and data from an Si8640 were captured on an oscilloscope. The results illustrate that data integrity was maintained even at the high data rate of 150 Mbps. The results also show that 2 ns pulse width distortion and 350 ps peak jitter were exhibited. Figure 2.3. Eye Diagram silabs.com | Smart. Connected. Energy-friendly. Rev. 1.9 | 4 Si864x Data Sheet Device Operation 3. Device Operation Device behavior during start-up, normal operation, and shutdown is shown in Figure 3.1 Device Behavior during Normal Operation on page 7, where UVLO+ and UVLO– are the respective positive-going and negative-going thresholds. Refer to the following tables to determine outputs when power supply (VDD) is not present and for logic conditions when enable pins are used. Table 3.1. Si86xx Logic Operation VI Input1, 2 EN Input1, 2, 3, 4 VDDI State1, 5, 6 VDDO State1, 5, 6 VO Output1, 2 H H or NC P P H L H or NC P P L X7 L P P Hi-Z8 X7 H or NC UP P L9 H9 X7 L UP P X7 X7 P UP Hi-Z8 Comments Enabled, normal operation. Disabled. Upon transition of VDDI from unpowered to powered, VO returns to the same state as VI in less than 1 µs. Disabled. Undetermined Upon transition of VDDO from unpowered to powered, VO returns to the same state as VI within 1 µs, if EN is in either the H or NC state. Upon transition of VDDO from unpowered to powered, VO returns to Hi-Z within 1 µs if EN is L. Note: 1. VDDI and VDDO are the input and output power supplies. VI and VO are the respective input and output terminals. EN is the enable control input located on the same output side. 2. X = not applicable; H = Logic High; L = Logic Low; Hi-Z = High Impedance. 3. It is recommended that the enable inputs be connected to an external logic high or low level when the Si86xx is operating in noisy environments. 4. No Connect (NC) replaces EN1 on Si8640/45. No Connect replaces EN2 on the Si8645. No Connects are not internally connected and can be left floating, tied to VDD, or tied to GND. 5. “Powered” state (P) is defined as 2.5 V < VDD < 5.5 V. 6. “Unpowered” state (UP) is defined as VDD = 0 V. 7. Note that an I/O can power the die for a given side through an internal diode if its source has adequate current. 8. When using the enable pin (EN) function, the output pin state is driven into a high-impedance state when the EN pin is disabled (EN = 0). 9. See 1. Ordering Guide for details. This is the selectable fail-safe operating mode (ordering option). Some devices have default output state = H, and some have default output state = L, depending on the ordering part number (OPN). For default high devices, the data channels have pull-ups on inputs/outputs. For default low devices, the data channels have pull-downs on inputs/ outputs. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.9 | 5 Si864x Data Sheet Device Operation Table 3.2. Enable Input Truth Part Number EN11, 2 EN21, 2 Si8640 — H Outputs B1, B2, B3, B4 are enabled and follow the input state. — L Outputs B1, B2, B3, B4 are disabled and in high impedance state.3 H X Output A4 enabled and follows the input state. L X Output A4 disabled and in high impedance state.3 X H Outputs B1, B2, B3 are enabled and follow the input state. X L Outputs B1, B2, B3 are disabled and in high impedance state.3 H X Outputs A3 and A4 are enabled and follow the input state. L X Outputs A3 and A4 are disabled and in high impedance state.3 X H Outputs B1 and B2 are enabled and follow the input state. X L Outputs B1 and B2 are disabled and in high impedance state.3 — — Outputs B1, B2, B3, B4 are enabled and follow the input state. Si8641 Si8642 Si8645 Operation Note: 1. Enable inputs EN1 and EN2 can be used for multiplexing, for clock sync, or other output control. EN1, EN2 logic operation is summarized for each isolator product in Table 2. These inputs are internally pulled-up to local VDD allowing them to be connected to an external logic level (high or low) or left floating. To minimize noise coupling, do not connect circuit traces to EN1 or EN2 if they are left floating. If EN1, EN2 are unused, it is recommended they be connected to an external logic level, especially if the Si86xx is operating in a noisy environment. 2. X = not applicable; H = Logic High; L = Logic Low. 3. When using the enable pin (EN) function, the output pin state is driven into a high-impedance state when the EN pin is disabled (EN = 0). silabs.com | Smart. Connected. Energy-friendly. Rev. 1.9 | 6 Si864x Data Sheet Device Operation 3.1 Device Startup Outputs are held low during powerup until VDD is above the UVLO threshold for time period tSTART. Following this, the outputs follow the states of inputs. 3.2 Undervoltage Lockout Undervoltage Lockout (UVLO) is provided to prevent erroneous operation during device startup and shutdown or when VDD is below its specified operating circuits range. Both Side A and Side B each have their own undervoltage lockout monitors. Each side can enter or exit UVLO independently. For example, Side A unconditionally enters UVLO when VDD1 falls below VDD1(UVLO–) and exits UVLO when VDD1 rises above VDD1(UVLO+). Side B operates the same as Side A with respect to its VDD2 supply. Figure 3.1. Device Behavior during Normal Operation 3.3 Layout Recommendations To ensure safety in the end-user application, high-voltage circuits (i.e., circuits with >30 VAC) must be physically separated from the safety extra-low-voltage circuits (SELV is a circuit with <30 VAC) by a certain distance (creepage/clearance). If a component, such as a digital isolator, straddles this isolation barrier, it must meet those creepage/clearance requirements and also provide a sufficiently large high-voltage breakdown protection rating (commonly referred to as working voltage protection). Table 4.6 Insulation and Safety-Related Specifications on page 21 and Table 4.8 IEC 60747-5-5 Insulation Characteristics for Si86xxxx 1 on page 22 detail the working voltage and creepage/clearance capabilities of the Si86xx. These tables also detail the component standards (UL1577, IEC60747, CSA 5A), which are readily accepted by certification bodies to provide proof for end-system specifications requirements. Refer to the endsystem specification (61010-1, 60950-1, 60601-1, etc.) requirements before starting any design that uses a digital isolator. 3.3.1 Supply Bypass The Si864x family requires a 0.1 µF bypass capacitor between VDD1 and GND1 and VDD2 and GND2. The capacitor should be placed as close as possible to the package. To enhance the robustness of a design, the user may also include resistors (50–300 Ω ) in series with the inputs and outputs if the system is excessively noisy. 3.3.2 Output Pin Termination The nominal output impedance of an isolator driver channel is approximately 50 Ω, ±40%, which is a combination of the value of the onchip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces. 3.4 Fail-Safe Operating Mode Si86xx devices feature a selectable (by ordering option) mode whereby the default output state (when the input supply is unpowered) can either be a logic high or logic low when the output supply is powered. See Table 3.1 Si86xx Logic Operation on page 5 and 1. Ordering Guide for more information. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.9 | 7 Si864x Data Sheet Device Operation 3.5 Typical Performance Characteristics The typical performance characteristics depicted in the following diagrams are for information purposes only. Refer to 4. Electrical Specifications for actual specification limits. Figure 3.2. Si8640/45 Typical VDD1 Supply Current vs. Data Rate 5, 3.3, and 2.5 V Operation Figure 3.3. Si8640/45 Typical VDD2 Supply Current vs. Data Rate 5, 3.3, and 2.5 V Figure 3.4. Si8641 Typical VDD1 Supply Current vs. Data Rate 5, 3.3, and 2.5 V Operation Figure 3.5. Si8641 Typical VDD2 Supply Current vs. Data Rate 5, 3.3, and 2.5 V Operation (15 pF Load) Figure 3.7. Propagation Delay vs. Temperature (5.0 V Data) Figure 3.6. Si8642 Typical VDD1 or VDD2 Supply Current vs. Data Rate 5, 3.3, and 2.5 V Operation (15 pF Load) silabs.com | Smart. Connected. Energy-friendly. Rev. 1.9 | 8 Si864x Data Sheet Electrical Specifications 4. Electrical Specifications Table 4.1. Recommended Operating Conditions Parameter Symbol Min Typ Max Unit Ambient Operating Temperature 1 TA –40 25 125 1 °C Supply Voltage VDD1 2.5 — 5.5 V VDD2 2.5 — 5.5 V Note: 1. The maximum ambient temperature is dependent on data frequency, output loading, number of operating channels, and supply voltage. Table 4.2. Electrical Characteristics 1 Parameter Symbol Test Condition Min Typ Max Unit VDD Undervoltage Threshold VDDUV+ VDD1, VDD2 rising 1.95 2.24 2.375 V VDD Undervoltage Threshold VDDUV– VDD1, VDD2 falling 1.88 2.16 2.325 V VDD Undervoltage Hysteresis VDDHYS 50 70 95 mV Positive-Going Input Threshold VT+ All inputs rising 1.4 1.67 1.9 V Negative-Going Input Threshold VT– All inputs falling 1.0 1.23 1.4 V Input Hysteresis VHYS 0.38 0.44 0.50 V High Level Input Voltage VIH 2.0 — — V Low Level Input Voltage VIL — — 0.8 V High Level Output Voltage VOH loh = –4 mA VDD1, VDD2 – 0.4 4.8 — V Low Level Output Voltage VOL lol = 4 mA — 0.2 0.4 V — — ±10 µA — — ±15 — 50 — Ω — 2.0 — µA — 10.0 — Input Leakage Current Si864xxA/B/C/D IL Si864xxT Output Impedance 2 ZO Enable Input Current Si864xxA/B/C/D IENH, IENL VENx = VIH or VIL Si864xxT DC Supply Current (All Inputs 0 V or at Supply) Si8640Bx, Ex, Si8645Bx VDD1 VI = 0(Bx), 1(Ex) — 1.0 1.6 VDD2 VI = 0(Bx), 1(Ex) — 2.4 3.8 VDD1 VI = 1(Bx), 0(Ex) — 6.1 9.2 VDD2 VI = 1(Bx), 0(Ex) — 2.5 4.0 silabs.com | Smart. Connected. Energy-friendly. mA Rev. 1.9 | 9 Si864x Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max VDD1 VI = 0(Bx), 1(Ex) — 1.4 2.2 VDD2 VI = 0(Bx), 1(Ex) — 2.3 3.7 VDD1 VI = 1(Bx), 0(Ex) — 5.2 7.8 VDD2 VI = 1(Bx), 0(Ex) — 3.6 5.4 VDD1 VI = 0(Bx), 1(Ex) — 1.8 2.9 VDD2 VI = 0(Bx), 1(Ex) — 1.8 2.9 VDD1 VI = 1(Bx), 0(Ex) — 4.4 6.6 VDD2 VI = 1(Bx), 0(Ex) — 4.4 6.6 VDD1 — 3.6 5.0 VDD2 — 2.9 4.0 VDD1 — 3.4 4.8 VDD2 — 3.3 4.6 VDD1 — 3.3 4.6 VDD2 — 3.3 4.6 VDD1 — 3.6 5.0 VDD2 — 4.0 5.6 VDD1 — 3.7 5.2 VDD2 — 4.1 5.8 VDD1 — 3.9 5.4 VDD2 — 3.9 5.4 VDD1 — 3.6 5.0 VDD2 — 17.5 22.8 Unit Si8641Bx, Ex mA Si8642Bx, Ex mA 1 Mbps Supply Current (All Inputs = 500 kHz Square Wave, CI = 15 pF on All Outputs) Si8640Bx, Ex, Si8645Bx mA Si8641Bx, Ex mA Si8642Bx, Ex mA 10 Mbps Supply Current (All Inputs = 5 MHz Square Wave, CI = 15 pF on All Outputs) Si8640Bx, Ex, Si8645Bx mA Si8641Bx, Ex mA Si8642Bx, Ex mA 100 Mbps Supply Current (All Inputs = 50 MHz Square Wave, CI = 15 pF on All Outputs) Si8640Bx, Ex, Si8645Bx silabs.com | Smart. Connected. Energy-friendly. mA Rev. 1.9 | 10 Si864x Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit VDD1 — 7.3 9.8 mA VDD2 — 14.3 18.5 VDD1 — 11 14.3 VDD2 — 11 14.3 Maximum Data Rate 0 — 150 Mbps Minimum Pulse Width — — 5.0 ns 5.0 8.0 13 ns — 0.2 4.5 ns tPSK(P-P) — 2.0 4.5 ns tPSK — 0.4 2.5 ns — 2.5 4.0 ns — 2.5 4.0 ns — 350 — ps See Figure 4.3 CommonMode Transient Immunity Test Circuit on page 13 35 50 — 60 100 — Si8641Bx, Ex Si8642Bx, Ex mA Timing Characteristics Si864xBx, Ex Propagation Delay Pulse Width Distortion |tPLH – tPHL| Propagation Delay Skew 3 Channel-Channel Skew tPHL, tPLH PWD See Figure 4.2 Propagation Delay Timing on page 13 See Figure 4.2 Propagation Delay Timing on page 13 All Models CL = 15 pF Output Rise Time tr See Figure 4.2 Propagation Delay Timing on page 13 CL = 15 pF Output Fall Time Peak Eye Diagram Jitter tf tJIT(PK) See Figure 4.2 Propagation Delay Timing on page 13 See Figure 2.3 Eye Diagram on page 4 VI = VDD or 0 V Common Mode Transient Immunity CMTI Si86xxxA/B/C/D Si86xxxT VCM = 1500 V kV/µs Enable to Data Valid ten1 See Figure 4.1 ENABLE Timing Diagram on page 13 — 6.0 11 ns Enable to Data Tri-State ten2 See Figure 4.1 ENABLE Timing Diagram on page 13 — 8.0 12 ns Input power loss to valid default output tSD See Figure 3.1 Device Behavior during Normal Operation on page 7 — 8.0 12 ns Start-up Time 4 tSU — 15 40 µs silabs.com | Smart. Connected. Energy-friendly. Rev. 1.9 | 11 Si864x Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Note: 1. VDD1 = 5 V ±10%; VDD2 = 5 V ±10%, TA = –40 to 125 °C 2. The nominal output impedance of an isolator driver channel is approximately 50 Ω, ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled-impedance PCB traces. 3. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature. 4. Start-up time is the time period from the application of power to the appearance of valid data at the output. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.9 | 12 Si864x Data Sheet Electrical Specifications Figure 4.1. ENABLE Timing Diagram Figure 4.2. Propagation Delay Timing Figure 4.3. Common-Mode Transient Immunity Test Circuit silabs.com | Smart. Connected. Energy-friendly. Rev. 1.9 | 13 Si864x Data Sheet Electrical Specifications Table 4.3. Electrical Characteristics 1 Parameter Symbol Test Condition Min Typ Max Unit VDD Undervoltage Threshold VDDUV+ VDD1, VDD2 rising 1.95 2.24 2.375 V VDD Undervoltage Threshold VDDUV– VDD1, VDD2 falling 1.88 2.16 2.325 V VDD Undervoltage Hysteresis VDDHYS 50 70 95 mV Positive-Going Input Threshold VT+ All inputs rising 1.4 1.67 1.9 V Negative-Going Input Threshold VT– All inputs falling 1.0 1.23 1.4 V Input Hysteresis VHYS 0.38 0.44 0.50 V High Level Input Voltage VIH 2.0 — — V Low Level Input Voltage VIL — — 0.8 V High Level Output Voltage VOH loh = –4 mA VDD1, VDD2 – 0.4 3.1 — V Low Level Output Voltage VOL lol = 4 mA — 0.2 0.4 V — — ±10 µA — — ±15 — 50 — Ω — 2.0 — µA — 10.0 — Input Leakage Current Si864xxA/B/C/D IL Si864xxT Output Impedance 2 ZO Enable Input Current Si864xxA/B/C/D IENH, IENL VENx = VIH or VIL Si864xxT DC Supply Current (All Inputs 0 V or at Supply) Si8640Bx, Ex, Si8645Bx VDD1 VI = 0(Bx), 1(Ex) — 1.0 1.6 VDD2 VI = 0(Bx), 1(Ex) — 2.4 3.8 VDD1 VI = 1(Bx), 0(Ex) — 6.1 9.2 VDD2 VI = 1(Bx), 0(Ex) — 2.5 4.0 VDD1 VI = 0(Bx), 1(Ex) — 1.4 2.2 VDD2 VI = 0(Bx), 1(Ex) — 2.3 3.7 VDD1 VI = 1(Bx), 0(Ex) — 5.2 7.8 VDD2 VI = 1(Bx), 0(Ex) — 3.6 5.4 VDD1 VI = 0(Bx), 1(Ex) — 1.8 2.9 VDD2 VI = 0(Bx), 1(Ex) — 1.8 2.9 VDD1 VI = 1(Bx), 0(Ex) — 4.4 6.6 VDD2 VI = 1(Bx), 0(Ex) — 4.4 6.6 mA Si8641Bx, Ex mA Si8642Bx, Ex mA 1 Mbps Supply Current (All Inputs = 500 kHz Square Wave, CI = 15 pF on All Outputs) silabs.com | Smart. Connected. Energy-friendly. Rev. 1.9 | 14 Si864x Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit VDD1 — 3.6 5.0 mA VDD2 — 2.9 4.0 VDD1 — 3.4 4.8 VDD2 — 3.3 4.6 VDD1 — 3.3 4.6 VDD2 — 3.3 4.6 VDD1 — 3.6 5.0 VDD2 — 3.4 4.7 VDD1 — 3.5 4.9 VDD2 — 3.6 5.1 VDD1 — 3.6 5.0 VDD2 — 3.6 5.0 VDD1 — 3.6 5.0 VDD2 — 12.3 15.9 VDD1 — 5.9 7.9 VDD2 — 10.3 13.4 VDD1 — 8.2 10.7 VDD2 — 8.2 10.7 Maximum Data Rate 0 — 150 Mbps Minimum Pulse Width — — 5.0 ns 5.0 8.0 13 ns Si8640Bx, Ex, Si8645Bx Si8641Bx, Ex mA Si8642Bx, Ex mA 10 Mbps Supply Current (All Inputs = 5 MHz Square Wave, CI = 15 pF on All Outputs) Si8640Bx, Ex, Si8645Bx mA Si8641Bx, Ex mA Si8642Bx, Ex mA 100 Mbps Supply Current (All Inputs = 50 MHz Square Wave, CI = 15 pF on All Outputs) Si8640Bx, Ex, Si8645Bx mA Si8641Bx, Ex mA Si8642Bx, Ex mA Timing Characteristics Si864xBx, Ex Propagation Delay silabs.com | Smart. Connected. Energy-friendly. tPHL, tPLH See Figure 4.2 Propagation Delay Timing on page 13 Rev. 1.9 | 15 Si864x Data Sheet Electrical Specifications Parameter Pulse Width Distortion |tPLH – tPHL| Propagation Delay Skew 3 Channel-Channel Skew Symbol Test Condition Min Typ Max Unit PWD See Figure 4.2 Propagation Delay Timing on page 13 — 0.2 4.5 ns tPSK(P-P) — 2.0 4.5 ns tPSK — 0.4 2.5 ns — 2.5 4.0 ns — 2.5 4.0 ns — 350 — ps See Figure 4.3 CommonMode Transient Immunity Test Circuit on page 13 35 50 — 60 100 — All Models CL = 15 pF Output Rise Time tr See Figure 4.2 Propagation Delay Timing on page 13 CL = 15 pF Output Fall Time Peak Eye Diagram Jitter tf tJIT(PK) See Figure 4.2 Propagation Delay Timing on page 13 See Figure 2.3 Eye Diagram on page 4 VI = VDD or 0 V Common Mode Transient Immunity CMTI Si86xxxA/B/C/D Si86xxxT VCM = 1500 V kV/µs Enable to Data Valid ten1 See Figure 4.1 ENABLE Timing Diagram on page 13 — 6.0 11 ns Enable to Data Tri-State ten2 See Figure 4.1 ENABLE Timing Diagram on page 13 — 8.0 12 ns Input power loss to valid default output tSD See Figure 3.1 Device Behavior during Normal Operation on page 7 — 8.0 12 ns Start-up Time 4 tSU — 15 40 µs Note: 1. VDD1 = 3.3 V ±10%; VDD2 = 3.3 V ±10%, TA = –40 to 125 °C 2. The nominal output impedance of an isolator driver channel is approximately 50 Ω, ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled-impedance PCB traces. 3. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature. 4. Start-up time is the time period from the application of power to the appearance of valid data at the output. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.9 | 16 Si864x Data Sheet Electrical Specifications Table 4.4. Electrical Characteristics 1 Parameter Symbol Test Condition Min Typ Max Unit VDD Undervoltage Threshold VDDUV+ VDD1, VDD2 rising 1.95 2.24 2.375 V VDD Undervoltage Threshold VDDUV– VDD1, VDD2 falling 1.88 2.16 2.325 V VDD Undervoltage Hysteresis VDDHYS 50 70 95 mV Positive-Going Input Threshold VT+ All inputs rising 1.4 1.67 1.9 V Negative-Going Input Threshold VT– All inputs falling 1.0 1.23 1.4 V Input Hysteresis VHYS 0.38 0.44 0.50 V High Level Input Voltage VIH 2.0 — — V Low Level Input Voltage VIL — — 0.8 V High Level Output Voltage VOH loh = –4 mA VDD1, VDD2 – 0.4 2.3 — V Low Level Output Voltage VOL lol = 4 mA — 0.2 0.4 V — — ±10 µA — — ±15 — 50 — Ω — 2.0 — µA — 10.0 — Input Leakage Current Si864xxA/B/C/D IL Si864xxT Output Impedance2 ZO Enable Input Current Si864xxA/B/C/D IENH, IENL VENx = VIH or VIL Si864xxT DC Supply Current (All Inputs 0 V or at Supply) Si8640Bx, Ex, Si8645Bx VDD1 VI = 0(Bx), 1(Ex) — 1.0 1.6 VDD2 VI = 0(Bx), 1(Ex) — 2.4 3.8 VDD1 VI = 1(Bx), 0(Ex) — 6.1 9.2 VDD2 VI = 1(Bx), 0(Ex) — 2.5 4.0 VDD1 VI = 0(Bx), 1(Ex) — 1.4 2.2 VDD2 VI = 0(Bx), 1(Ex) — 2.3 3.7 VDD1 VI = 1(Bx), 0(Ex) — 5.2 7.8 VDD2 VI = 1(Bx), 0(Ex) — 3.6 5.4 VDD1 VI = 0(Bx), 1(Ex) — 1.8 2.9 VDD2 VI = 0(Bx), 1(Ex) — 1.8 2.9 VDD1 VI = 1(Bx), 0(Ex) — 4.4 6.6 VDD2 VI = 1(Bx), 0(Ex) — 4.4 6.6 mA Si8641Bx, Ex mA Si8642Bx, Ex mA 1 Mbps Supply Current (All Inputs = 500 kHz Square Wave, CI = 15 pF on All Outputs) silabs.com | Smart. Connected. Energy-friendly. Rev. 1.9 | 17 Si864x Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit VDD1 — 3.6 5.0 mA VDD2 — 2.9 4.0 VDD1 — 3.4 4.8 VDD2 — 3.3 4.6 VDD1 — 3.3 4.6 VDD2 — 3.3 4.6 VDD1 — 3.6 5.0 VDD2 — 3.1 4.3 VDD1 — 3.5 4.8 VDD2 — 3.4 4.8 VDD1 — 3.4 4.8 VDD2 — 3.4 4.8 VDD1 — 3.6 5.0 VDD2 — 9.9 12.8 VDD1 — 5.2 7.0 VDD2 — 8.5 11.1 VDD1 — 6.9 9.0 VDD2 — 6.9 9.0 Maximum Data Rate 0 — 150 Mbps Minimum Pulse Width — — 5.0 ns 5.0 8.0 14 ns Si8640Bx, Ex, Si8645Bx Si8641Bx, Ex mA Si8642Bx, Ex mA 10 Mbps Supply Current (All Inputs = 5 MHz Square Wave, CI = 15 pF on All Outputs) Si8640Bx, Ex, Si8645Bx mA Si8641Bx, Ex mA Si8642Bx, Ex mA 100 Mbps Supply Current (All Inputs = 50 MHz Square Wave, CI = 15 pF on All Outputs) Si8640Bx, Ex, Si8645Bx mA Si8641Bx, Ex mA Si8642Bx, Ex mA Timing Characteristics Si864xBx, Ex Propagation Delay silabs.com | Smart. Connected. Energy-friendly. tPHL, tPLH See Figure 4.2 Propagation Delay Timing on page 13 Rev. 1.9 | 18 Si864x Data Sheet Electrical Specifications Parameter Pulse Width Distortion |tPLH -tPHL| Propagation Delay Skew 3 Channel-Channel Skew Symbol Test Condition Min Typ Max Unit PWD See Figure 4.2 Propagation Delay Timing on page 13 — 0.2 5.0 ns tPSK(P-P) — 2.0 5.0 ns tPSK — 0.4 2.5 ns — 2.5 4.0 ns — 2.5 4.0 ns — 350 — ps See Figure 4.3 CommonMode Transient Immunity Test Circuit on page 13 35 50 — 60 100 — All Models CL = 15 pF Output Rise Time tr See Figure 4.2 Propagation Delay Timing on page 13 CL = 15 pF Output Fall Time Peak Eye Diagram Jitter tf tJIT(PK) See Figure 4.2 Propagation Delay Timing on page 13 See Figure 2.3 Eye Diagram on page 4 VI = VDD or 0 V Common Mode Transient Immunity CMTI Si86xxxA/B/C/D Si86xxxT VCM = 1500 V kV/µs Enable to Data Valid ten1 See Figure 4.1 ENABLE Timing Diagram on page 13 — 6.0 11 ns Enable to Data Tri-State ten2 See Figure 4.1 ENABLE Timing Diagram on page 13 — 8.0 12 ns Input power loss to valid default output tSD See Figure 3.1 Device Behavior during Normal Operation on page 7 — 8.0 12 ns Start-up Time 4 tSU — 15 40 µs Note: 1. VDD1 = 2.5 V ±5%; VDD2 = 2.5 V ±5%, TA = –40 to 125 °C 2. The nominal output impedance of an isolator driver channel is approximately 50 Ω, ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled-impedance PCB traces. 3. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature. 4. Start-up time is the time period from the application of power to the appearance of valid data at the output. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.9 | 19 Si864x Data Sheet Electrical Specifications Table 4.5. Regulatory Information 1, 2, 3, 4 For all Product Options Except Si864xxT CSA The Si864x is certified under CSA Component Acceptance Notice 5A. For more details, see File 232873. 61010-1: Up to 600 VRMS reinforced insulation working voltage; up to 600 VRMS basic insulation working voltage. 60950-1: Up to 600 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage. 60601-1: Up to 125 VRMS reinforced insulation working voltage; up to 380 VRMS basic insulation working voltage. VDE The Si864x is certified according to IEC 60747-5-5. For more details, see File 5006301-4880-0001. 60747-5-5: Up to 1200 Vpeak for basic insulation working voltage. 60950-1: Up to 600 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage. UL The Si864x is certified under UL1577 component recognition program. For more details, see File E257455. Rated up to 5000 VRMS isolation voltage for basic protection. CQC The Si864x is certified under GB4943.1-2011. For more details, see certificates CQC13001096110 and CQC13001096239. Rated up to 600 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage. For All Si864xxT Product Options CSA Certified under CSA Component Acceptance Notice 5A. For more details, see File 232873. 60950-1: Up to 600 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage. VDE Certified according to VDE 0884-10. UL Certified under UL1577 component recognition program. For more details, see File E257455. Rated up to 5000 VRMS isolation voltage for basic protection. CQC Certified under GB4943.1-2011 Rated up to 600 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage. Note: 1. Regulatory Certifications apply to 2.5 kVRMS rated devices, which are production tested to 3.0 kVRMS for 1 s. 2. Regulatory Certifications apply to 3.75 kVRMS rated devices, which are production tested to 4.5 kVRMS for 1 s. 3. Regulatory Certifications apply to 5.0 kVRMS rated devices, which are production tested to 6.0 kVRMS for 1 s. 4. For more information, see the Ordering Guide. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.9 | 20 Si864x Data Sheet Electrical Specifications Table 4.6. Insulation and Safety-Related Specifications Parameter Symbol Test Condition Value Unit WB SOIC-16 NB SOIC-16 QSOP-16 Nominal Air Gap (Clearance) 1 L(IO1) 8.0 4.9 3.6 mm Nominal External Tracking (Creepage) 1 L(IO2) 8.0 4.01 3.6 mm 0.014 0.014 0.014 mm 600 600 600 VRMS Minimum Internal Gap (Internal Clearance) Tracking Resistance PTI IEC60112 (Proof Tracking Index) Erosion Depth ED 0.019 0.019 0.031 mm Resistance (Input-Output) 2 RIO 1012 1012 1012 Ω Capacitance (Input-Output) 2 CIO 2.0 2.0 2.0 pF 4.0 4.0 4.0 pF f = 1 MHz CI Input Capacitance 3 Note: 1. The values in this table correspond to the nominal creepage and clearance values. VDE certifies the clearance and creepage limits as 4.7 mm minimum for the NB SOIC-16 package and QSOP-16 packages and 8.5 mm minimum for the WB SOIC-16 package. UL does not impose a clearance and creepage minimum for component-level certifications. CSA certifies the clearance and creepage limits as 3.9 mm minimum for the NB SOIC-16, 3.6 mm for QSOP-16 packages, and 7.6 mm minimum for the WB SOIC-16 package. 2. To determine resistance and capacitance, the Si86xx is converted into a 2-terminal device. Pins 1–8 are shorted together to form the first termina and pins 9–16 are shorted together to form the second terminal. The parameters are then measured between these two terminals. 3. Measured from input pin to ground. Table 4.7. IEC 60664-1 Ratings Parameter Test Conditions Specification WB SOIC-16 NB SOIC-16 QSOP-16 I I I Basic Isolation Group Material Group Installation Classification Rated Mains Voltages < 150 VRMS I-IV I-IV I-IV Rated Mains Voltages < 300 VRMS I-IV I-III I-III Rated Mains Voltages < 400 VRMS I-III I-II I-II Rated Mains Voltages < 600 VRMS I-III I-II I-II silabs.com | Smart. Connected. Energy-friendly. Rev. 1.9 | 21 Si864x Data Sheet Electrical Specifications Table 4.8. IEC 60747-5-5 Insulation Characteristics for Si86xxxx 1 Parameter Maximum Working Insulation Voltage Symbol Test Condition Characteristic Unit WB SOIC-16 NB SOIC-16 QSOP-16 1200 630 630 Vpeak 2250 1182 1182 Vpeak 6000 6000 6000 Vpeak Si864xxT tested with magnitude 6250 V x 1.6 = 10 kV 6250 — — Si864xxB/C/D tested with 4000 V 4000 4000 4000 2 2 2 >109 >109 >109 VIORM Method b1 Input to Output Test Voltage VPR (VIORM x 1.875 = VPR, 100% Production Test, tm = 1 sec, Partial Discharge < 5 pC) Transient Overvoltage VIOTM t = 60 sec Tested per IEC 60065 with surge voltage of 1.2 µs/50 µs Surge Voltage VIOSM Vpeak Pollution Degree (DIN VDE 0110, Table 1) Insulation Resistance at TS, VIO = 500 V RS Ω Note: 1. Maintenance of the safety data is ensured by protective circuits. The Si86xxxx provides a climate classification of 40/125/21. Table 4.9. IEC Safety Limiting Values 1 Parameter Case Temperature Symbol Test Condition TS Max WB SOIC-16 NB SOIC-16 QSOP-16 Unit 150 150 150 °C 220 210 210 mA 275 275 275 mW θJA = 100 °C/W (WB SOIC-16) Safety Input, Output, or Supply Current IS 105 °C/W (NB SOIC-16, QSOP-16) VI = 5.5 V, TJ = 150 °C, TA = 25 °C Device Power Dissipation 2 PD Note: 1. Maximum value allowed in the event of a failure; also see the thermal derating curve in Figure 4.4 (WB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN EN 60747-5-5/VDE 0884-10, as Applies on page 23 and Figure 4.5 (NB SOIC-16, QSOP-16) Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN EN 60747-5-5/VDE 0884-10, as Applies on page 23. 2. The Si86xx is tested with VDD1 = VDD2 = 5.5 V; TJ = 150 ºC; CL = 15 pF, input a 150 Mbps 50% duty cycle square wave. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.9 | 22 Si864x Data Sheet Electrical Specifications Table 4.10. Thermal Characteristics Parameter IC Junction-to-Air Thermal Resistance Symbol WB SOIC-16 NB SOIC-16/QSOP-16 Unit θJA 100 105 °C/W Figure 4.4. (WB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN EN 60747-5-5/VDE 0884-10, as Applies Figure 4.5. (NB SOIC-16, QSOP-16) Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN EN 60747-5-5/VDE 0884-10, as Applies silabs.com | Smart. Connected. Energy-friendly. Rev. 1.9 | 23 Si864x Data Sheet Electrical Specifications Table 4.11. Absolute Maximum Ratings 1 Parameter Symbol Min Max Unit Storage Temperature 2 TSTG –65 150 °C Operating Temperature TA –40 125 °C Junction Temperature TJ — 150 °C VDD1, VDD2 –0.5 7.0 V Input Voltage VI –0.5 VDD + 0.5 V Output Voltage VO –0.5 VDD + 0.5 V Output Current Drive Channel IO — 10 mA Lead Solder Temperature (10 s) — 260 °C Maximum Isolation (Input to Output) (1 sec) — 4500 VRMS — 6500 VRMS Supply Voltage NB SOIC-16 Maximum Isolation (Input to Output) (1 sec) WB SOIC-16 Note: 1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be restricted to conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum ratings for exteneded periods may degrade performance. 2. VDE certifies storage temperature from –40 to 150 °C. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.9 | 24 Si864x Data Sheet Pin Descriptions 5. Pin Descriptions VDD1 VDD2 GND2 GND1 A1 RF XMITR A2 RF XMITR A3 RF XMITR A4 RF XMITR I s o l a t i o n RF RCVR B1 RF RCVR B2 RF RCVR B3 RF RCVR B4 VDD1 GND2 GND1 A1 RF XMITR A2 RF XMITR A3 RF XMITR A4 RF RCVR I s o l a t i o n EN2/NC NC RF RCVR B1 RF RCVR B2 RF RCVR B3 RF XMITR B4 GND2 Si8640/45 VDD2 GND2 GND1 A1 RF XMITR A2 RF XMITR A3 RF RCVR A4 RF RCVR Si8641 RF RCVR B1 RF RCVR B2 RF RF XMITR RCVR B3 RF XMITR B4 EN2 GND1 GND1 I s o l a t i o n EN1 EN2 EN1 GND1 VDD1 VDD2 Si8642 GND2 Name SOIC-16 Pin# Type VDD1 1 Supply Side 1 power supply. GND1 21 Ground Side 1 ground. A1 3 Digital Input Side 1 digital input. A2 4 Digital Input Side 1 digital input. A3 5 Digital I/O Side 1 digital input or output. A4 6 Digital I/O Side 1 digital input or output. EN1/NC2 7 Digital Input GND1 81 Ground Side 1 ground. GND2 91 Ground Side 2 ground. EN2/NC2 10 Digital Input B4 11 Digital I/O Side 2 digital input or output. B3 12 Digital I/O Side 2 digital input or output. B2 13 Digital Output Side 2 digital output. B1 14 Digital Output Side 2 digital output. GND2 151 Ground Side 2 ground. VDD2 16 Supply Side 2 power supply. GND2 Description Side 1 active high enable. NC on Si8640/45. Side 2 active high enable. NC on Si8645. Note: 1. For narrow-body devices, Pin 2 and Pin 8 GND must be externally connected to respective ground. Pin 9 and Pin 15 must also be connected to external ground. 2. No Connect. These pins are not internally connected. They can be left floating, tied to VDD or tied to GND. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.9 | 25 Si864x Data Sheet Package Outline: 16-Pin Wide Body SOIC 6. Package Outline: 16-Pin Wide Body SOIC The figure below illustrates the package details for the the Si864x Digital Isolator. The table lists the values for the dimensions shown in the illustration. Figure 6.1. 16-Pin Wide Body SOIC silabs.com | Smart. Connected. Energy-friendly. Rev. 1.9 | 26 Si864x Data Sheet Package Outline: 16-Pin Wide Body SOIC Table 6.1. 16-Pin Wide Body SOIC Package Diagram Dimensions1, 2, 3, 4 Dimension Min Max A — 2.65 A1 0.10 0.30 A2 2.05 — b 0.31 0.51 c 0.20 0.33 D 10.30 BSC E 10.30 BSC E1 7.50 BSC e 1.27 BSC L 0.40 1.27 h 0.25 0.75 θ 0° 8° aaa — 0.10 bbb — 0.33 ccc — 0.10 ddd — 0.25 eee — 0.10 fff — 0.20 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. This drawing conforms to JEDEC Outline MS-013, Variation AA. 4. Recommended reflow profile per JEDEC J-STD-020C specification for small body, lead-free components. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.9 | 27 Si864x Data Sheet Land Pattern: 16-Pin Wide Body SOIC 7. Land Pattern: 16-Pin Wide Body SOIC The figure below illustrates the recommended land pattern details for the Si864x in a 16-pin wide-body SOIC package. The table lists the values for the dimensions shown in the illustration. Figure 7.1. PCB Land Pattern: 16-Pin Wide Body SOIC Table 7.1. 16-Pin Wide Body SOIC Land Pattern Dimensions1, 2 Dimension Feature (mm) C1 Pad Column Spacing 9.40 E Pad Row Pitch 1.27 X1 Pad Width 0.60 Y1 Pad Length 1.90 Note: 1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P1032X265-16AN for Density Level B (Median Land Protrusion). 2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.9 | 28 Si864x Data Sheet Package Outline: 16-Pin Narrow Body SOIC 8. Package Outline: 16-Pin Narrow Body SOIC The figure below illustrates the package details for the Si864x in a 16-pin narrow-body SOIC (SO-16). The table lists the values for the dimensions shown in the illustration. Figure 8.1. 16-Pin Narrow Body SOIC silabs.com | Smart. Connected. Energy-friendly. Rev. 1.9 | 29 Si864x Data Sheet Package Outline: 16-Pin Narrow Body SOIC Table 8.1. 16-Pin Narrow Body SOIC Package Diagram Dimensions1, 2, 3, 4 Dimension Min Max A — 1.75 A1 0.10 0.25 A2 1.25 — b 0.31 0.51 c 0.17 0.25 D 9.90 BSC E 6.00 BSC E1 3.90 BSC e 1.27 BSC L 0.40 L2 1.27 0.25 BSC h 0.25 0.50 θ 0° 8° aaa 0.10 bbb 0.20 ccc 0.10 ddd 0.25 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. This drawing conforms to the JEDEC Solid State Outline MS-012, Variation AC. 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.9 | 30 Si864x Data Sheet Land Pattern: 16-Pin Narrow Body SOIC 9. Land Pattern: 16-Pin Narrow Body SOIC The figure below illustrates the recommended land pattern details for the Si864x in a 16-pin narrow-body SOIC. The table lists the values for the dimensions shown in the illustration. Figure 9.1. PCB Land Pattern: 16-Pin Narrow Body SOIC Table 9.1. 16-Pin Narrow Body SOIC Land Pattern Dimensions1, 2 Dimension Feature (mm) C1 Pad Column Spacing 5.40 E Pad Row Pitch 1.27 X1 Pad Width 0.60 Y1 Pad Length 1.55 Note: 1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X165-16N for Density Level B (Median Land Protrusion). 2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.9 | 31 Si864x Data Sheet Package Outline: 16-Pin QSOP 10. Package Outline: 16-Pin QSOP The figure below illustrates the package details for the Si864x in a 16-pin QSOP package. The table lists the values for the dimensions shown in the illustration. Figure 10.1. 16-Pin QSOP silabs.com | Smart. Connected. Energy-friendly. Rev. 1.9 | 32 Si864x Data Sheet Package Outline: 16-Pin QSOP Table 10.1. 16-Pin QSOP Package Diagram Dimensions1, 2, 3, 4 Dimension Min Max A — 1.75 A1 0.10 0.25 A2 1.25 — b 0.20 0.30 c 0.17 0.25 D 4.89 BSC E 6.00 BSC E1 3.90 BSC e 0.635 BSC L 0.40 L2 1.27 0.25 BSC h 0.25 0.50 θ 0° 8° aaa 0.10 bbb 0.20 ccc 0.10 ddd 0.25 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. This drawing conforms to the JEDEC Solid State Outline MO-137, Variation AB. 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020D specification for Small Body Components. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.9 | 33 Si864x Data Sheet Land Pattern: 16-Pin QSOP 11. Land Pattern: 16-Pin QSOP The figure below illustrates the recommended land pattern details for the Si864x in a 16-pin QSOP package. The table lists the values for the dimensions shown in the illustration. Figure 11.1. PCB Land Pattern: 16-Pin QSOP Table 11.1. 16-Pin Wide Body SOIC Land Pattern Dimensions1, 2 Dimension Feature (mm) C1 Pad Column Spacing 5.40 E Pad Row Pitch 0.635 X1 Pad Width 0.40 Y1 Pad Length 1.55 Note: 1. This Land Pattern Design is based on IPC-7351 pattern SOP63P602X173-16N for Density Level B (Median Land Protrusion). 2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.9 | 34 Si864x Data Sheet Top Marking: 16-Pin Wide Body SOIC 12. Top Marking: 16-Pin Wide Body SOIC Si86XYSV YYWWRTTTTT e4 TW Figure 12.1. 16-Pin Wide Body SOIC Top Marking Table 12.1. 16-Pin Wide Body SOIC Top Marking Explanation Line 1 Marking: Base Part Number Si86 = Isolator product series Ordering Options X = # of data channels (4) (See 1. Ordering Guide for more information.) Y = # of reverse channels (5, 2, 1, 0)1 S = Speed Grade (max data rate) and operating mode: B = 150 Mbps (default output = low) E = 150 Mbps (default output = high) V = Insulation rating A = 1 kV; B = 2.5 kV; C = 3.75 kV; D = 5.0 kV; T = 5.0 kV with 10 kV surge capability. Line 2 Marking: YY = Year WW = Workweek RTTTTT = Mfg Code Assigned by assembly subcontractor. Corresponds to the year and workweek of the mold date. Manufacturing code from assembly house “R” indicates revision Line 3 Marking: Circle = 1.7 mm Diameter “e4” Pb-Free Symbol (Center-Justified) Country of Origin ISO Code Ab- TW = Taiwan breviation Note: 1. Si8645 has 0 reverse channels. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.9 | 35 Si864x Data Sheet Top Marking: 16-Pin Narrow Body SOIC 13. Top Marking: 16-Pin Narrow Body SOIC e3 Si86XYSV YYWWRTTTTT Figure 13.1. 16-Pin Narrow Body SOIC Top Marking Table 13.1. 16-Pin Narrow Body SOIC Top Marking Explanation Line 1 Marking: Base Part Number Si86 = Isolator product series Ordering Options X = # of data channels (4) (See 1. Ordering Guide for more information.) Y = # of reverse channels (5, 2, 1, 0)1 S = Speed Grade (max data rate) and operating mode: B = 150 Mbps (default output = low) E = 150 Mbps (default output = high) V = Insulation rating A = 1 kV; B = 2.5 kV; C = 3.75 kV Line 2 Marking: Circle = 1.2 mm Diameter “e3” Pb-Free Symbol YY = Year Assigned by the Assembly House. Corresponds to the year and work week of the mold date. WW = Work Week RTTTTT = Mfg Code Manufacturing code from assembly house “R” indicates revision Note: 1. Si8645 has 0 reverse channels. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.9 | 36 Si864x Data Sheet Top Marking: QSOP 14. Top Marking: QSOP Figure 14.1. QSOP Top Marking Table 14.1. QSOP Top Marking Explanation Line 1 Marking: Base Part Number 86 = Isolator product series Ordering Options X = # of data channels (4) (See 1. Ordering Guide for more information.) Y = # of reverse channels (5, 2, 1, 0)1 S = Speed Grade (max data rate) and operating mode: B = 150 Mbps (default output = low) E = 150 Mbps (default output = high) V = Insulation rating A = 1 kV; B = 2.5 kV; C = 3.75 kV Line 2 Marking: RTTTTT = Mfg Code Manufacturing code from assembly house “R” indicates revision Line 3 Marking: YY = Year WW = Work Week Assigned by the Assembly House. Corresponds to the year and work week of the mold date. Note: 1. Si8645 has 0 reverse channels. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.9 | 37 Si864x Data Sheet Document Change List 15. Document Change List Revision 0.1 to Revision 0.2 • Added chip graphics on page 1. • Moved Tables 1 and 11 to page 18. • Updated Table 6, “Insulation and Safety-Related Specifications,” on page 15. • Updated Table 8, “IEC 60747-5-5 Insulation Characteristics for Si86xxxx*,” on page 16. • Moved Table 1 to page 4. • Moved Table 2 to page 5. • Moved “Typical Performance Characteristics” to page 8. • Updated "3. Pin Descriptions" on page 9. • Updated "4. Ordering Guide" on page 10. Revision 0.2 to Revision 1.0 • Reordered spec tables to conform to new convention. • Removed “pending” throughout document. Revision 1.0 to Revision 1.1 • Updated High Level Output Voltage VOH to 3.1 V in Table 3, “Electrical Characteristics,” on page 8. • Updated High Level Output Voltage VOH to 2.3 V in Table 4, “Electrical Characteristics,” on page 11. Revision 1.1 to Revision 1.2 • Updated Table 3, “Ordering Guide for Valid OPNs” on page 10. • Updated Note 1 with MSL2A. • Updated Current Revision Devices. Revision 1.2 to Revision 1.3 • Updated "4. Ordering Guide" on page 10 to include MSL2A. Revision 1.3 to Revision 1.4 • Updated Table 11 on page 18. • Added junction temperature spec. • Updated "2.3.1. Supply Bypass" on page 7. • Removed “3.3.2 Pin Connections” on page 23. • Updated "3. Pin Descriptions" on page 9. • Updated table notes. • Updated "4. Ordering Guide" on page 10. • Removed Rev A devices. • Updated "5. Package Outline: 16-Pin Wide Body SOIC" on page 12. • Updated Top Marks. • Added revision description. Revision 1.4 to Revision 1.5 • Updated "4. Ordering Guide" on page 10. • Updated "11.5. Top Marking (16-Pin QSOP)" on page 22. Revision 1.5 to Revision 1.6 • Added Figure 3, “Common Mode Transient Immunity Test Circuit,” on page 7. • Added references to CQC throughout. • Added references to 2.5 kVRMS devices throughout. • Updated "4. Ordering Guide" on page 10. • Updated "11.1. Top Marking (16-Pin Wide Body SOIC)" on page 20. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.9 | 38 Si864x Data Sheet Document Change List Revision 1.6 to Revision 1.7 • Updated Table 5 on page 14. • Added CQC certificate numbers. • Updated "4. Ordering Guide" on page 10. • Added Si8640BA OPN. • Removed references to moisture sensitivity levels. • Removed Note 2. Revision 1.7 to Revision 1.8 • Added product options Si8641BB-B-IU, Si8645BB-B-IU and Si864xxT in 1. Ordering Guide. • Added spec line items for Input and Enable Leakage Currents pertaining to Si864xxT in Electrical Specifications. • Added new spec for tSD in 4. Electrical Specifications. • Updated IEC 60747-5-2 to IEC 60747-5-5 throughout document. Revision 1.8 to Revision 1.9 • Deleted duplicate Si8641BB-B-IU OPN listing and corrected Si8645BB-B-IU listing in 1. Ordering Guide. • Added QSOP-16 information to Table 4.7 IEC 60664-1 Ratings on page 21. • Added QSOP-16 information to Table 4.8 IEC 60747-5-5 Insulation Characteristics for Si86xxxx 1 on page 22. • Added QSOP-16 information to Table 4.9 IEC Safety Limiting Values 1 on page 22. • Added QSOP-16 reference to Figure 4.5 (NB SOIC-16, QSOP-16) Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN EN 60747-5-5/VDE 0884-10, as Applies on page 23. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.9 | 39 Table of Contents 1. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1 Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Eye Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 . . 3. Device Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.1 Device Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.2 Undervoltage Lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.3 Layout Recommendations. 3.3.1 Supply Bypass . . . . 3.3.2 Output Pin Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 . 7 . 7 3.4 Fail-Safe Operating Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.5 Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . 8 4. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6. Package Outline: 16-Pin Wide Body SOIC. . . . . . . . . . . . . . . . . . . . 26 7. Land Pattern: 16-Pin Wide Body SOIC . . . . . . . . . . . . . . . . . . . . . 28 8. Package Outline: 16-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . 29 9. Land Pattern: 16-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . 31 10. Package Outline: 16-Pin QSOP . . . . . . . . . . . . . . . . . . . . . . . 32 11. Land Pattern: 16-Pin QSOP . . . . . . . . . . . . . . . . . . . . . . . . 34 12. Top Marking: 16-Pin Wide Body SOIC. . . . . . . . . . . . . . . . . . . . . 35 13. Top Marking: 16-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . 36 14. Top Marking: QSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 15. Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Table of Contents 40 Smart. Connected. Energy-Friendly Products Quality Support and Community www.silabs.com/products www.silabs.com/quality community.silabs.com Disclaimer Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Trademark Information Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders. Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA http://www.silabs.com