Si86xx 1 M B PS , 2.5 K V RMS D IGITAL I SOLATORS Features High-speed operation DC to 1 Mbps No start-up initialization required Wide Operating Supply Voltage 2.5–5.5 V Up to 2500 VRMS isolation 60-year life at rated working voltage High electromagnetic immunity Ultra low power (typical) 5 V Operation 1.6 mA per channel at 1 Mbps 2.5 V Operation 1.5 mA per channel at 1 Mbps Tri-state outputs with ENABLE Schmitt trigger inputs Transient Immunity 50 kV/µs AEC-Q100 qualification Wide temperature range –40 to 125 °C RoHS-compliant packages SOIC-16 wide body SOIC-16 narrow body SOIC-8 narrow body Applications Industrial automation systems Medical electronics Hybrid electric vehicles Isolated switch mode supplies Isolated ADC, DAC Motor control Power inverters Communication systems Safety Regulatory Approvals UL 1577 recognized Up to 2500 VRMS for 1 minute VDE certification conformity IEC 60747-5-2 (VDE0884 Part 2) CSA component notice 5A approval CQC certification approval IEC 60950-1, 61010-1 GB4943.1 Ordering Information: See page 38. Description Silicon Lab's family of ultra-low-power digital isolators are CMOS devices offering substantial data rate, propagation delay, power, size, reliability, and external BOM advantages over legacy isolation technologies. The operating parameters of these products remain stable across wide temperature ranges and throughout device service life for ease of design and highly uniform performance. All device versions have Schmitt trigger inputs for high noise immunity and only require VDD bypass capacitors. All products support Data rates up to 1 Mbps and Enable inputs which provide a single point control for enabling and disabling output drive. All products are safety certified by UL, CSA, VDE, and CQC and support withstand ratings up to 2.5 kVRMS. Rev. 1.0 6/15 Copyright © 2015 by Silicon Laboratories Si86xx Si86xx 2 Rev. 1.0 Si86xx TABLE O F C ONTENTS Section Page 1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.1. Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3. Device Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.1. Device Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 3.2. Undervoltage Lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.3. Layout Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4. Pin Descriptions (Si861x/2x Narrow Body SOIC-8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5. Pin Descriptions (Si863x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 6. Pin Descriptions (Si864x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 7. Pin Descriptions (Si8650/51/52) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 8. Pin Descriptions (Si866x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 9. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 10. Package Outline: 16-Pin Wide Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 11. Land Pattern: 16-Pin Wide-Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 12. Package Outline: 16-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 13. Land Pattern: 16-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 14. Package Outline: 8-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 15. Land Pattern: 8-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 16. Top Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 16.1. Top Marking (16-Pin Wide Body SOIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 16.2. Top Marking Explanation (16-Pin Wide Body SOIC) . . . . . . . . . . . . . . . . . . . . . . . 48 16.3. Top Marking (16-Pin Narrow Body SOIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 16.4. Top Marking Explanation (16-Pin Narrow Body SOIC) . . . . . . . . . . . . . . . . . . . . . . 49 16.5. Top Marking (8-Pin Narrow Body SOIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 16.6. Top Marking Explanation (8-Pin Narrow Body SOIC) . . . . . . . . . . . . . . . . . . . . . . . 50 Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52 Rev. 1.0 3 Si86xx 1. Electrical Specifications Table 1. Recommended Operating Conditions Parameter Ambient Operating Temperature* Supply Voltage Symbol Min Typ Max Unit TA –40 25 125 ºC VDD1 2.5 — 5.5 V VDD2 2.5 — 5.5 V *Note: The maximum ambient temperature is dependent on data frequency, output loading, number of operating channels, and supply voltage. Table 2. Electrical Characteristics (VDD1 = 5 V±10%, VDD2 = 5 V±10%, TA = –40 to 125 °C) Parameter Symbol VDD Undervoltage VDDUV+ Threshold VDD Undervoltage VDDUV– Threshold VDD Undervoltage VDDHYS Hysteresis Positive-Going Input VT+ Threshold Negative-Going VT– Input Threshold Input Hysteresis VHYS High Level Input Voltage VIH Low Level input voltage VIL High Level Output Voltage VOH Low Level Output Voltage Input Leakage Current Output Impedance1 Enable Input High Current Enable Input Low Current VOL IL ZO IENH IENL Test Condition VDD1, VDD2 rising Min 1.95 Typ 2.24 Max 2.375 Unit V VDD1, VDD2 falling 1.88 2.16 2.325 V 50 70 95 mV All inputs rising 1.4 1.67 1.9 V All inputs falling 1.0 1.23 1.4 V 0.38 2.0 — VDD1,VDD2 – 0.4 — — — — — 0.44 — — 4.8 0.50 — 0.8 — V V V V 0.2 — 50 2.0 2.0 0.4 ±10 — — — V µA µA µA loh = –4 mA lol = 4 mA VENx = VIH VENx = VIL Notes: 1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces. 2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature. 3. Start-up time is the time period from the application of power to valid data at the output. 4 Rev. 1.0 Si86xx Table 2. Electrical Characteristics (Continued) (VDD1 = 5 V±10%, VDD2 = 5 V±10%, TA = –40 to 125 °C) Parameter Symbol Test Condition Min DC Supply Current (All inputs 0 V or at Supply) Typ Max Unit Si8610Ax VDD1 VDD2 VDD1 VDD2 VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 0.6 0.8 1.8 0.8 1.2 1.5 2.9 1.5 Si8620Ax VDD1 VDD2 VDD1 VDD2 VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 0.8 1.4 3.3 1.4 1.4 2.2 5.3 2.2 Si8621Ax VDD1 VDD2 VDD1 VDD2 VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 1.2 1.2 2.4 2.4 1.9 1.9 3.8 3.8 VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 0.9 1.9 4.6 1.9 1.6 3.0 7.4 3.0 VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 1.3 1.7 3.9 3.0 2.1 2.7 5.9 4.5 VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 1.0 2.4 6.1 2.5 1.6 3.8 9.2 4.0 mA VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 1.4 2.3 5.2 3.6 2.2 3.7 7.8 5.4 mA VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 1.8 1.8 4.4 4.4 2.9 2.9 6.6 6.6 mA Si8630Ax VDD1 VDD2 VDD1 VDD2 Si8631Ax VDD1 VDD2 VDD1 VDD2 Si8640Ax VDD1 VDD2 VDD1 VDD2 Si8641Ax VDD1 VDD2 VDD1 VDD2 Si8642Ax VDD1 VDD2 VDD1 VDD2 mA mA mA mA mA Notes: 1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces. 2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature. 3. Start-up time is the time period from the application of power to valid data at the output. Rev. 1.0 5 Si86xx Table 2. Electrical Characteristics (Continued) (VDD1 = 5 V±10%, VDD2 = 5 V±10%, TA = –40 to 125 °C) Parameter Si8650Ax VDD1 VDD2 VDD1 VDD2 Si8651Ax VDD1 VDD2 VDD1 VDD2 Si8652Ax VDD1 VDD2 VDD1 VDD2 Si8660Ax VDD1 VDD2 VDD1 VDD2 Si8661Ax VDD1 VDD2 VDD1 VDD2 Si8662Ax VDD1 VDD2 VDD1 VDD2 Si8663Ax VDD1 VDD2 VDD1 VDD2 Symbol Test Condition Min Typ Max VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 1.1 3.1 7.0 3.3 1.8 4.7 9.8 5.0 VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 1.5 2.7 6.6 4.0 2.4 4.1 9.2 6.0 VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 2.0 2.4 5.6 5.0 3.0 3.6 7.8 7.5 VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 1.2 3.5 8.8 3.7 1.9 5.3 12.3 5.6 VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 1.7 3.4 7.9 4.8 2.7 5.1 11.1 7.2 VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 2.2 3.0 7.5 5.6 3.3 4.5 10.5 8.4 VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 2.6 2.6 6.5 6.5 3.9 3.9 9.1 9.1 Unit mA mA mA mA mA mA mA Notes: 1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces. 2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature. 3. Start-up time is the time period from the application of power to valid data at the output. 6 Rev. 1.0 Si86xx Table 2. Electrical Characteristics (Continued) (VDD1 = 5 V±10%, VDD2 = 5 V±10%, TA = –40 to 125 °C) Parameter Symbol Test Condition Min Typ Max 1 Mbps Supply Current (All inputs = 500 kHz square wave, CI = 15 pF on all Outputs) Si8610Ax VDD1 — 1.2 2.0 — 0.9 1.5 VDD2 Si8620Ax — 2.1 3.1 VDD1 — 1.6 2.4 VDD2 Si8621Ax VDD1 — 1.9 2.9 — 1.9 2.9 VDD2 Si8630Ax VDD1 — 2.8 3.9 — 2.2 3.1 VDD2 Si8631Ax VDD1 — 2.7 3.8 — 2.6 3.6 VDD2 Si8640Ax VDD1 — 3.6 5.0 — 2.9 4.0 VDD2 Si8641Ax VDD1 — 3.4 4.8 — 3.3 4.6 VDD2 Si8642Ax — 3.3 4.6 VDD1 — 3.3 4.6 VDD2 Si8650Ax VDD1 — 4.1 5.7 — 3.7 5.2 VDD2 Si8651Ax VDD1 — 4.2 5.8 — 3.8 5.3 VDD2 Si8652Ax — 4.0 5.6 VDD1 — 4.0 5.6 VDD2 Si8660Ax VDD1 — 5.0 7.0 — 4.2 5.9 VDD2 Si8661Ax VDD1 — 4.9 6.9 — 4.6 6.4 VDD2 Unit mA mA mA mA mA mA mA mA mA mA mA mA mA Notes: 1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces. 2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature. 3. Start-up time is the time period from the application of power to valid data at the output. Rev. 1.0 7 Si86xx Table 2. Electrical Characteristics (Continued) (VDD1 = 5 V±10%, VDD2 = 5 V±10%, TA = –40 to 125 °C) Parameter Si8662Ax VDD1 VDD2 Si8663Ax VDD1 VDD2 Symbol Test Condition Min Typ Max Unit — — 5.1 4.7 7.1 6.6 mA — — 4.9 4.9 6.8 6.8 mA 0 — — — — — — — 1 250 35 25 Mbps ns ns ns — — — — — 40 35 2.5 4.0 ns ns ns 2.5 4.0 — 35 350 50 — — ps kV/µs — — — 6.0 8.0 15 11 12 40 ns ns µs Timing Characteristics All Models Maximum Data Rate Minimum Pulse Width Propagation Delay Pulse Width Distortion |tPLH – tPHL| Propagation Delay Skew2 Channel-Channel Skew Output Rise Time Output Fall Time tPHL, tPLH PWD tPSK(P-P) tPSK tr tf Peak eye diagram jitter Common Mode Transient Immunity tJIT(PK) CMTI Enable to Data Valid Enable to Data Tri-State Start-up Time3 ten1 ten2 tSU See Figure 2 See Figure 2 CL = 15 pF See Figure 2 CL = 15 pF See Figure 2 See Figure 8 VI = VDD or 0 V VCM = 1500 V (see Figure 3) See Figure 1 See Figure 1 — ns Notes: 1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces. 2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature. 3. Start-up time is the time period from the application of power to valid data at the output. 8 Rev. 1.0 Si86xx ENABLE OUTPUTS ten1 ten2 Figure 1. ENABLE Timing Diagram 1.4 V Typical Input tPLH tPHL 90% 90% 10% 10% 1.4 V Typical Output tr tf Figure 2. Propagation Delay Timing Rev. 1.0 9 Si86xx 3 to 5 V Supply Si86xx Input Signal Switch 3 to 5 V Isolated Supply VDD1 VDD2 INPUT OUTPUT Oscilloscope GND1 GND2 Isolated Ground Input High Voltage Differential Probe Output Vcm Surge Output High Voltage Surge Generator Figure 3. Common-Mode Transient Immunity Test Circuit 10 Rev. 1.0 Si86xx Table 3. Electrical Characteristics (VDD1 = 3.3 V±10%, VDD2 = 3.3 V±10%, TA = –40 to 125 °C) Parameter Test Condition Min Typ Max Unit VDD Undervoltage Threshold VDDUV+ VDD1, VDD2 rising 1.95 2.24 2.375 V VDD Undervoltage Threshold VDDUV– VDD1, VDD2 falling 1.88 2.16 2.325 V 50 70 95 mV VDD Undervoltage Hysteresis Symbol VDDHYS Positive-Going Input Threshold VT+ All inputs rising 1.4 1.67 1.9 V Negative-Going Input Threshold VT– All inputs falling 1.0 1.23 1.4 V Input Hysteresis VHYS 0.38 0.44 0.50 V High Level Input Voltage VIH 2.0 — — V Low Level Input Voltage VIL — — 0.8 V High Level Output Voltage VOH loh = –4 mA VDD1, VDD2 – 0.4 3.1 — V Low Level Output Voltage VOL lol = 4 mA — 0.2 0.4 V IL — — ±10 µA ZO — 50 — Input Leakage Current 1 Output Impedance Enable Input High Current IENH VENx = VIH — 2.0 — µA Enable Input Low Current IENL VENx = VIL — 2.0 — µA mA DC Supply Current (All inputs 0 V or at supply) Si8610Ax VDD1 VDD2 VDD1 VDD2 VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 0.6 0.8 1.8 0.8 1.2 1.5 2.9 1.5 Si8620Ax VDD1 VDD2 VDD1 VDD2 VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 0.8 1.4 3.3 1.4 1.4 2.2 5.3 2.2 Si8621Ax VDD1 VDD2 VDD1 VDD2 VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 1.2 1.2 2.4 2.4 1.9 1.9 3.8 3.8 Si8630Ax VDD1 VDD2 VDD1 VDD2 VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 0.9 1.9 4.6 1.9 1.6 3.0 7.4 3.0 mA mA mA Notes: 1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces. 2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature. 3. Start-up time is the time period from the application of power to valid data at the output. Rev. 1.0 11 Si86xx Table 3. Electrical Characteristics (Continued) (VDD1 = 3.3 V±10%, VDD2 = 3.3 V±10%, TA = –40 to 125 °C) Parameter Symbol Test Condition Min Typ Max Unit Si8631Ax VDD1 VDD2 VDD1 VDD2 VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 1.3 1.7 3.9 3.0 2.1 2.7 5.9 4.5 mA Si8640Ax VDD1 VDD2 VDD1 VDD2 VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 1.0 2.4 6.1 2.5 1.6 3.8 9.2 4.0 mA Si8641Ax VDD1 VDD2 VDD1 VDD2 VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 1.4 2.3 5.2 3.6 2.2 3.7 7.8 5.4 mA Si8642Ax VDD1 VDD2 VDD1 VDD2 VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 1.8 1.8 4.4 4.4 2.9 2.9 6.6 6.6 mA Si8650Ax VDD1 VDD2 VDD1 VDD2 VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 1.1 3.1 7.0 3.3 1.8 4.7 9.8 5.0 Si8651Ax VDD1 VDD2 VDD1 VDD2 VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 1.5 2.7 6.6 4.0 2.4 4.1 9.2 6.0 Si8652Ax VDD1 VDD2 VDD1 VDD2 VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 2.0 2.4 5.6 5.0 3.0 3.6 7.8 7.5 mA mA mA Notes: 1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces. 2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature. 3. Start-up time is the time period from the application of power to valid data at the output. 12 Rev. 1.0 Si86xx Table 3. Electrical Characteristics (Continued) (VDD1 = 3.3 V±10%, VDD2 = 3.3 V±10%, TA = –40 to 125 °C) Parameter Symbol Test Condition Min Typ Max Si8660Ax VDD1 VDD2 VDD1 VDD2 VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 1.2 3.5 8.8 3.7 1.9 5.3 12.3 5.6 Si8661Ax VDD1 VDD2 VDD1 VDD2 VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 1.7 3.4 7.9 4.8 2.7 5.1 11.1 7.2 Si8662Ax VDD1 VDD2 VDD1 VDD2 VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 2.2 3.0 7.5 5.6 3.3 4.5 10.5 8.4 Si8663Ax VDD1 VDD2 VDD1 VDD2 VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 2.6 2.6 6.5 6.5 3.9 3.9 9.1 9.1 Unit mA mA mA mA Notes: 1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces. 2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature. 3. Start-up time is the time period from the application of power to valid data at the output. Rev. 1.0 13 Si86xx Table 3. Electrical Characteristics (Continued) (VDD1 = 3.3 V±10%, VDD2 = 3.3 V±10%, TA = –40 to 125 °C) Parameter Symbol Test Condition Min Typ Max Unit 1 Mbps Supply Current (All inputs = 500 kHz square wave, CI = 15 pF on all outputs) Si8610Ax VDD1 VDD2 — — 1.2 0.9 2.0 1.5 mA Si8620Ax VDD1 VDD2 — — 2.1 1.6 3.1 2.4 mA Si8621Ax VDD1 VDD2 — — 1.9 1.9 2.9 2.9 mA Si8630Ax VDD1 VDD2 — — 2.8 2.2 3.9 3.1 mA Si8631Ax VDD1 VDD2 — — 2.7 2.6 3.8 3.6 mA Si8640Ax VDD1 VDD2 — — 3.6 2.9 5.0 4.0 mA Si8641Ax VDD1 VDD2 — — 3.4 3.3 4.8 4.6 mA Si8642Ax VDD1 VDD2 — — 3.3 3.3 4.6 4.6 mA Si8650Ax VDD1 VDD2 — — 4.1 3.7 5.7 5.2 mA Si8651Ax VDD1 VDD2 — — 4.2 3.8 5.8 5.3 mA Si8652Ax VDD1 VDD2 — — 4.0 4.0 5.6 5.6 mA Si8660Ax VDD1 VDD2 — — 5.0 4.2 7.0 5.9 mA Notes: 1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces. 2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature. 3. Start-up time is the time period from the application of power to valid data at the output. 14 Rev. 1.0 Si86xx Table 3. Electrical Characteristics (Continued) (VDD1 = 3.3 V±10%, VDD2 = 3.3 V±10%, TA = –40 to 125 °C) Parameter Symbol Test Condition Min Typ Max Unit Si8661Ax VDD1 VDD2 — — 4.9 4.6 6.9 6.4 mA Si8662Ax VDD1 VDD2 — — 5.1 4.7 7.1 6.6 mA Si8663Ax VDD1 VDD2 — — 4.9 4.9 6.8 6.8 mA Notes: 1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces. 2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature. 3. Start-up time is the time period from the application of power to valid data at the output. Rev. 1.0 15 Si86xx Table 3. Electrical Characteristics (Continued) (VDD1 = 3.3 V±10%, VDD2 = 3.3 V±10%, TA = –40 to 125 °C) Parameter Symbol Test Condition Min Typ Max Unit Maximum Data Rate 0 — 1 Mbps Minimum Pulse Width — — 250 ns Timing Characteristics All Models Propagation Delay Pulse Width Distortion |tPLH – tPHL| Propagation Delay Skew2 Channel-Channel Skew tPHL, tPLH See Figure 2 — — 35 ns PWD See Figure 2 — — 25 ns tPSK(P-P) — — 40 ns tPSK — — 35 ns 2.5 4.0 2.5 4.0 Output Rise Time tr CL = 15 pF See Figure 2 — Output Fall Time tf CL = 15 pF See Figure 2 — Peak eye diagram jitter tJIT(PK) See Figure 8 — 350 — ps Common Mode Transient Immunity CMTI VI = VDD or 0 V VCM = 1500 V (see Figure 3) 35 50 — kV/µs Enable to Data Valid ten1 See Figure 1 — 6.0 11 ns Enable to Data Tri-State ten2 See Figure 1 — 8.0 12 ns — 15 40 µs Start-Up Time 3 tSU ns ns Notes: 1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces. 2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature. 3. Start-up time is the time period from the application of power to valid data at the output. 16 Rev. 1.0 Si86xx Table 4. Electrical Characteristics (VDD1 = 2.5 V ±5%, VDD2 = 2.5 V ±5%, TA = –40 to 125 °C) Parameter Symbol Test Condition Min Typ Max Unit VDD Undervoltage Threshold VDDUV+ VDD1, VDD2 rising 1.95 2.24 2.375 V VDD Undervoltage Threshold VDDUV– VDD1, VDD2 falling 1.88 2.16 2.325 V VDD Undervoltage Hysteresis VDDHYS 50 70 95 mV Positive-Going Input Threshold VT+ All inputs rising 1.4 1.67 1.9 V Negative-Going Input Threshold VT– All inputs falling 1.0 1.23 1.4 V Input Hysteresis VHYS 0.38 0.44 0.50 V High Level Input Voltage VIH 2.0 — — V Low Level Input Voltage VIL — — 0.8 V High Level Output Voltage VOH loh = –4 mA VDD1,VD D2 – 0.4 2.3 — V Low Level Output Voltage VOL lol = 4 mA — 0.2 0.4 V IL — — ±10 µA ZO — 50 — Input Leakage Current Output Impedance 1 Enable Input High Current IENH VENx = VIH — 2.0 — µA Enable Input Low Current IENL VENx = VIL — 2.0 — µA mA DC Supply Current (All inputs 0 V or at supply) Si8610Ax VDD1 VDD2 VDD1 VDD2 Si8620Ax VDD1 VDD2 VDD1 VDD2 Si8621Ax VDD1 VDD2 VDD1 VDD2 VI = 0(Ax)) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 0.6 0.8 1.8 0.8 1.2 1.5 2.9 1.5 VI = 0(Ax)) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 0.8 1.4 3.3 1.4 1.4 2.2 5.3 2.2 VI = 0(Ax)) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 1.2 1.2 2.4 2.4 1.9 1.9 3.8 3.8 mA mA Notes: 1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces. 2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature. 3. Start-up time is the time period from the application of power to valid data at the output. Rev. 1.0 17 Si86xx Table 4. Electrical Characteristics (Continued) (VDD1 = 2.5 V ±5%, VDD2 = 2.5 V ±5%, TA = –40 to 125 °C) Parameter Symbol Test Condition Min Typ Max Unit Si8630Ax VDD1 VDD2 VDD1 VDD2 VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 0.9 1.9 4.6 1.9 1.6 3.0 7.4 3.0 mA Si8631Ax VDD1 VDD2 VDD1 VDD2 VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 1.3 1.7 3.9 3.0 2.1 2.7 5.9 4.5 mA Si8640Ax VDD1 VDD2 VDD1 VDD2 VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 1.0 2.4 6.1 2.5 1.6 3.8 9.2 4.0 mA Si8641Ax VDD1 VDD2 VDD1 VDD2 VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 1.4 2.3 5.2 3.6 2.2 3.7 7.8 5.4 mA Si8642Ax VDD1 VDD2 VDD1 VDD2 VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 1.8 1.8 4.4 4.4 2.9 2.9 6.6 6.6 mA Si8650Ax VDD1 VDD2 VDD1 VDD2 VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 1.1 3.1 7.0 3.3 1.8 4.7 9.8 5.0 Si8651Ax VDD1 VDD2 VDD1 VDD2 VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 1.5 2.7 6.6 4.0 2.4 4.1 9.2 6.0 mA mA Notes: 1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces. 2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature. 3. Start-up time is the time period from the application of power to valid data at the output. 18 Rev. 1.0 Si86xx Table 4. Electrical Characteristics (Continued) (VDD1 = 2.5 V ±5%, VDD2 = 2.5 V ±5%, TA = –40 to 125 °C) Parameter Symbol Test Condition Min Typ Max Si8652Ax VDD1 VDD2 VDD1 VDD2 VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 2.0 2.4 5.6 5.0 3.0 3.6 7.8 7.5 Si8660Ax VDD1 VDD2 VDD1 VDD2 VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 1.2 3.5 8.8 3.7 1.9 5.3 12.3 5.6 Si8661Ax VDD1 VDD2 VDD1 VDD2 VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 1.7 3.4 7.9 4.8 2.7 5.1 11.1 7.2 Si8662Ax VDD1 VDD2 VDD1 VDD2 VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 2.2 3.0 7.5 5.6 3.3 4.5 10.5 8.4 Si8663Ax VDD1 VDD2 VDD1 VDD2 VI = 0(Ax) VI = 0(Ax) VI = 1(Ax) VI = 1(Ax) — — — — 2.6 2.6 6.5 6.5 3.9 3.9 9.1 9.1 Unit mA mA mA mA mA Notes: 1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces. 2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature. 3. Start-up time is the time period from the application of power to valid data at the output. Rev. 1.0 19 Si86xx Table 4. Electrical Characteristics (Continued) (VDD1 = 2.5 V ±5%, VDD2 = 2.5 V ±5%, TA = –40 to 125 °C) Parameter Symbol Test Condition Min Typ Max Unit 1 Mbps Supply Current (All inputs = 500 kHz square wave, CI = 15 pF on all outputs) Si8610Ax VDD1 VDD2 — — 1.2 0.9 2.0 1.5 mA Si8620Ax VDD1 VDD2 — — 2.1 1.6 3.1 2.4 mA Si8621Ax VDD1 VDD2 — — 1.9 1.9 2.9 2.9 mA Si8630Ax VDD1 VDD2 — — 2.8 2.2 3.9 3.1 mA Si8631Ax VDD1 VDD2 — — 2.7 2.6 3.8 3.6 mA Si8640Ax VDD1 VDD2 — — 3.6 2.9 5.0 4.0 mA Si8641Ax VDD1 VDD2 — — 3.4 3.3 4.8 4.6 mA Si8642Ax VDD1 VDD2 — — 3.3 3.3 4.6 4.6 mA Si8650Ax VDD1 VDD2 — — 4.1 3.7 5.7 5.2 mA Si8651Ax VDD1 VDD2 — — 4.2 3.8 5.8 5.3 mA Si8652Ax VDD1 VDD2 — — 4.0 4.0 5.6 5.6 mA Si8660Ax VDD1 VDD2 — — 5.0 4.2 7.0 5.9 mA Notes: 1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces. 2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature. 3. Start-up time is the time period from the application of power to valid data at the output. 20 Rev. 1.0 Si86xx Table 4. Electrical Characteristics (Continued) (VDD1 = 2.5 V ±5%, VDD2 = 2.5 V ±5%, TA = –40 to 125 °C) Parameter Symbol Test Condition Min Typ Max Unit Si8661Ax VDD1 VDD2 — — 4.9 4.6 6.9 6.4 mA Si8662Ax VDD1 VDD2 — — 5.1 4.7 7.1 6.6 mA Si8663Ax VDD1 VDD2 — — 4.9 4.9 6.8 6.8 mA Notes: 1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces. 2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature. 3. Start-up time is the time period from the application of power to valid data at the output. Rev. 1.0 21 Si86xx Table 4. Electrical Characteristics (Continued) (VDD1 = 2.5 V ±5%, VDD2 = 2.5 V ±5%, TA = –40 to 125 °C) Parameter Symbol Test Condition Min Typ Max Unit Maximum Data Rate 0 — 1 Mbps Minimum Pulse Width — — 250 ns Timing Characteristics All Models Propagation Delay Pulse Width Distortion |tPLH - tPHL| Propagation Delay Skew2 Channel-Channel Skew tPHL, tPLH See Figure 2 — — 35 ns PWD See Figure 2 — — 25 ns tPSK(P-P) — — 40 ns tPSK — — 35 ns 2.5 4.0 2.5 4.0 Output Rise Time tr CL = 15 pF See Figure 2 — Output Fall Time tf CL = 15 pF See Figure 2 — Peak Eye Diagram Jitter tJIT(PK) See Figure 8 — 350 — ps Common Mode Transient Immunity CMTI VI = VDD or 0 V VCM = 1500 V (see Figure 3) 35 50 — kV/µs Enable to Data Valid ten1 See Figure 1 — 6.0 11 ns Enable to Data Tri-State ten2 See Figure 1 — 8.0 12 ns — 15 40 µs Startup Time 3 tSU ns ns Notes: 1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces. 2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature. 3. Start-up time is the time period from the application of power to valid data at the output. 22 Rev. 1.0 Si86xx Table 5. Regulatory Information* CSA The Si86xx is certified under CSA Component Acceptance Notice 5A, IEC61010-1 and IEC60950-1. For more details, see File 232873. VDE The Si86xx is certified according to IEC 60747-5-2. For more details, see File 5006301-4880-0001. UL The Si86xx is certified under UL1577 component recognition program. For more details, see File E257455. CQC The Si86xx is certified under GB4943.1-2011. For more details, see certificates CQC13001096110 and CQC13001096239. *Note: Regulatory Certifications apply to 2.5 kVRMS rated devices which are production tested to 3.0 kVRMS for 1 sec. For more information, see "8. Pin Descriptions (Si866x)" on page 38. Rev. 1.0 23 Si86xx Table 6. Insulation and Safety-Related Specifications Value Parameter Symbol Test Condition WB SOIC-16 NB SOIC-16 NB SOIC-8 Unit Nominal Air Gap (Clearance)1 L(IO1) 8.0 4.9 4.9 mm Nominal External Tracking (Creepage)1 L(IO2) 8.0 4.01 4.01 mm 0.014 0.014 0.014 600 600 600 VRMS 0.019 0.019 0.040 mm 1012 Minimum Internal Gap (Internal Clearance) Tracking Resistance (Proof Tracking Index) PTI Erosion Depth ED Resistance (Input-Output) 2 Capacitance (Input-Output)2 Input Capacitance IEC60112 3 RIO 10 CIO f = 1 MHz CI 12 10 12 mm 2.0 2.0 2.0 pF 4.0 4.0 4.0 pF Notes: 1. The values in this table correspond to the nominal creepage and clearance values. VDE certifies the clearance and creepage limits as 4.7 mm minimum for the NB SOIC-16 and SOIC-8 packages and 8.5 mm minimum for the WB SOIC-16 package. UL does not impose a clearance and creepage minimum for component-level certifications. CSA certifies the clearance and creepage limits as 3.9 mm minimum for the NB SOIC-16 and SOIC-8 and 7.6 mm minimum for the WB SOIC-16 package. 2. To determine resistance and capacitance, the Si86xx is converted into a 2-terminal device. Pins 1–8 (Pins 1-4 for the NB SOIC-8) are shorted together to form the first terminal and pins 9–16 (Pins 5-8 for the NB SOIC-8) are shorted together to form the second terminal. The parameters are then measured between these two terminals. 3. Measured from input pin to ground. Table 7. IEC 60664-1 (VDE 0844 Part 2) Ratings Specification Parameter Basic Isolation Group Installation Classification 24 Test Conditions NB SOIC-16 NB SOIC-8 WB SOIC-16 I I Rated Mains Voltages < 150 VRMS I-IV I-IV Rated Mains Voltages < 300 VRMS I-III I-IV Rated Mains Voltages < 400 VRMS I-II I-III Rated Mains Voltages < 600 VRMS I-II I-III Material Group Rev. 1.0 Si86xx Table 8. IEC 60747-5-2 Insulation Characteristics for Si86xxxx* Characteristic Parameter WB SOIC-16 NB SOIC-16 SOIC-8 Unit 1200 630 Vpeak VPR Method b1 (VIORM x 1.875 = VPR, 100% Production Test, tm = 1 sec, Partial Discharge < 5 pC) 2250 1182 VIOTM t = 60 sec 6000 6000 2 2 >109 >109 Symbol Maximum Working Insulation Voltage Input to Output Test Voltage Transient Overvoltage Test Condition VIORM Pollution Degree (DIN VDE 0110, Table 1) Insulation Resistance at TS, VIO = 500 V RS Vpeak *Note: Maintenance of the safety data is ensured by protective circuits. The Si86xxxx provides a climate classification of 40/125/21. Table 9. IEC Safety Limiting Values1 Max Parameter Symbol Case Temperature TS Safety Input, Output, or Supply Current IS Device Power Dissipation2 PD Test Condition JA = 100 °C/W (WB SOIC-16), 105 °C/W (NB SOIC-16), 140 °C/W (NB SOIC-8), VI = 5.5 V, TJ = 150 °C, TA = 25 °C WB SOIC-16 NB SOIC-16 NB SOIC-8 Unit 150 150 150 °C 220 215 160 mA 415 415 150 mW Notes: 1. Maximum value allowed in the event of a failure; also see the thermal derating curve in Figures 4, 5 and 6. 2. The Si86xx is tested with VDD1 = VDD2 = 5.5 V, TJ = 150 ºC, CL = 15 pF, input a 150 Mbps 50% duty cycle square wave. Rev. 1.0 25 Si86xx Table 10. Thermal Characteristics Parameter Symbol WB SOIC-16 NB SOIC-16 NB SOIC-8 Unit JA 100 105 140 ºC/W IC Junction-to-Air Thermal Resistance Safety-Limiting Current (mA) 500 450 VDD1, VDD2 = 2.70 V 400 370 VDD1, VDD2 = 3.6 V 300 220 200 VDD1, VDD2 = 5.5 V 100 0 0 50 100 Temperature (ºC) 150 200 Figure 4. (WB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN EN 60747-5-2 Safety-Limiting Current (mA) 500 430 VDD1, VDD2 = 2.70 V 400 360 VDD1, VDD2 = 3.6 V 300 215 200 VDD1, VDD2 = 5.5 V 100 0 0 50 100 Temperature (ºC) 150 200 Figure 5. (NB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN EN 60747-5-2 26 Rev. 1.0 Safety-Limiting Values (mA) Si86xx 400 320 VDD1, VDD2 = 2.5 V 300 270 200 VDD1, VDD2 = 3.3 V 160 VDD1, VDD2 = 5.5 V 100 0 0 50 100 150 Case Temperature (ºC) 200 Figure 6. (NB SOIC-8) Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN EN 60747-5-2 Rev. 1.0 27 Si86xx Table 11. Absolute Maximum Ratings1 Parameter Symbol Min Max Unit TSTG –65 150 ºC Ambient Temperature Under Bias TA –40 125 ºC Junction Temperature TJ — 150 °C VDD1, VDD2 –0.5 7.0 V Input Voltage VI –0.5 VDD + 0.5 V Output Voltage VO –0.5 VDD + 0.5 V Output Current Drive Channel (All devices unless otherwise stated) IO — 10 mA Output Current Drive Channel (All Si86xxxA-x-xx devices) IO — 22 mA Latchup Immunity3 — 100 V/ns Lead Solder Temperature (10 s) — 260 ºC Maximum Isolation (Input to Output) (1 sec) NB SOIC-16, SOIC-8 — 4500 VRMS Maximum Isolation (Input to Output) (1 sec) WB SOIC-16 — 6500 VRMS Storage Temperature2 Supply Voltage Notes: 1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be restricted to conditions as specified in the operational sections of this data sheet. 2. VDE certifies storage temperature from –40 to 150 °C. 3. Latchup immunity specification is for slew rate applied across GND1 and GND2. 28 Rev. 1.0 Si86xx 2. Functional Description 2.1. Theory of Operation The operation of an Si86xx channel is analogous to that of an opto coupler, except an RF carrier is modulated instead of light. This simple architecture provides a robust isolated data path and requires no special considerations or initialization at start-up. A simplified block diagram for a single Si86xx channel is shown in Figure 7. Transmitter Receiver RF OSCILLATOR A MODULATOR SemiconductorBased Isolation Barrier DEMODULATOR B Figure 7. Simplified Channel Diagram A channel consists of an RF Transmitter and RF Receiver separated by a semiconductor-based isolation barrier. Referring to the Transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying. The Receiver contains a demodulator that decodes the input state according to its RF energy content and applies the result to output B via the output driver. This RF on/off keying scheme is superior to pulse code schemes as it provides best-in-class noise immunity, low power consumption, and better immunity to magnetic fields. See Figure 8 for more details. Input Signal Modulation Signal Output Signal Figure 8. Modulation Scheme Rev. 1.0 29 Si86xx 3. Device Operation Device behavior during start-up, normal operation, and shutdown is shown in Figure 9, where UVLO+ and UVLOare the positive-going and negative-going thresholds respectively. Refer to Table 12 to determine outputs when power supply (VDD) is not present. Additionally, refer to Table 13 for logic conditions when enable pins are used. Table 12. Si86xx Logic Operation VI Input1,2 EN Input1,2,3,4 VDDI State1,5,6 VDDO State1,5,6 VO Output1,2 H H or NC P P H L H or NC P P L X7 L P P Hi-Z8 H or NC UP P X7 L UP P X7 X7 P UP X 7 L Hi-Z8 Comments Enabled, normal operation. Disabled. Upon transition of VDDI from unpowered to powered, VO returns to the same state as VI in less than 1 µs. Disabled. Undetermined Upon transition of VDDO from unpowered to powered, VO returns to the same state as VI within 1 µs, if EN is in either the H or NC state. Upon transition of VDDO from unpowered to powered, VO returns to Hi-Z within 1 µs if EN is L. Notes: 1. VDDI and VDDO are the input and output power supplies. VI and VO are the respective input and output terminals. EN is the enable control input located on the same output side. 2. X = not applicable; H = Logic High; L = Logic Low; Hi-Z = High Impedance. 3. It is recommended that the enable inputs be connected to an external logic high or low level when the Si86xx is operating in noisy environments. 4. No Connect (NC) replaces EN1 on some devices. No Connects are not internally connected and can be left floating, tied to VDD, or tied to GND. 5. “Powered” state (P) is defined as 2.5 V < VDD < 5.5 V. 6. “Unpowered” state (UP) is defined as VDD = 0 V. 7. Note that an I/O can power the die for a given side through an internal diode if its source has adequate current. 8. When using the enable pin (EN) function, the output pin state is driven into a high-impedance state when the EN pin is disabled (EN = 0). 30 Rev. 1.0 Si86xx Table 13. Enable Input Truth1 P/N Operation EN11,2 EN21,2 Si861x/2x — — Outputs are enabled and follow input state. Si8630 — H Outputs B1, B2, B3 are enabled and follow input state. — L Outputs B1, B2, B3 are disabled and in high impedance state.3 H X Output A3 enabled and follows input state. L X Output A3 disabled and in high impedance state.3 X H Outputs B1, B2 are enabled and follow input state. X L Outputs B1, B2 are disabled and in high impedance state.3 — H Outputs B1, B2, B3, B4 are enabled and follow the input state. — L Outputs B1, B2, B3, B4 are disabled and in high impedance state.3 H X Output A4 enabled and follows the input state. L X Output A4 disabled and in high impedance state.3 X H Outputs B1, B2, B3 are enabled and follow the input state. X L Outputs B1, B2, B3 are disabled and in high impedance state.3 H X Outputs A3 and A4 are enabled and follow the input state. L X Outputs A3 and A4 are disabled and in high impedance state.3 X H Outputs B1 and B2 are enabled and follow the input state. X L Outputs B1 and B2 are disabled and in high impedance state.3 — H Outputs B1, B2, B3, B4, B5 are enabled and follow input state. — L Outputs B1, B2, B3, B4, B5 are disabled and Logic Low or in high impedance state.3 H X Output A5 enabled and follow input state. L X Output A5 disabled and in high impedance state.3 X H Outputs B1, B2, B3, B4 are enabled and follow input state. X L Outputs B1, B2, B3, B4 are disabled and in high impedance state.3 H X Outputs A4 and A5 are enabled and follow input state. L X Outputs A4 and A5 are disabled and in high impedance state.3 X H Outputs B1, B2, B3 are enabled and follow input state. X L Outputs B1, B2, B3 are disabled and in high impedance state.3 — — Outputs are enabled and follow input state. Si8631 Si8640 Si8641 Si8642 Si8650 Si8651 Si8652 Si866x Notes: 1. Enable inputs EN1 and EN2 can be used for multiplexing, for clock sync, or other output control. These inputs are internally pulled-up to local VDD by a 2 µA current source allowing them to be connected to an external logic level (high or low) or left floating. To minimize noise coupling, do not connect circuit traces to EN1 or EN2 if they are left floating. If EN1, EN2 are unused, it is recommended they be connected to an external logic level, especially if the Si86xx is operating in a noisy environment. 2. X = not applicable; H = Logic High; L = Logic Low. 3. When using the enable pin (EN) function, the output pin state is driven into a high-impedance state when the EN pin is disabled (EN = 0). Rev. 1.0 31 Si86xx 3.1. Device Startup Outputs are held low during powerup until VDD is above the UVLO threshold for time period tSTART. Following this, the outputs follow the states of inputs. 3.2. Undervoltage Lockout Undervoltage Lockout (UVLO) is provided to prevent erroneous operation during device startup and shutdown or when VDD is below its specified operating circuits range. Both Side A and Side B each have their own undervoltage lockout monitors. Each side can enter or exit UVLO independently. For example, Side A unconditionally enters UVLO when VDD1 falls below VDD1(UVLO–) and exits UVLO when VDD1 rises above VDD1(UVLO+). Side B operates the same as Side A with respect to its VDD2 supply. UVLO+ UVLO- VDD1 UVLO+ UVLO- VDD2 INPUT tSTART tSD tSTART tSTART tPHL OUTPUT Figure 9. Device Behavior during Normal Operation 32 Rev. 1.0 tPLH Si86xx 3.3. Layout Recommendations To ensure safety in the end user application, high voltage circuits (i.e., circuits with >30 VAC) must be physically separated from the safety extra-low voltage circuits (SELV is a circuit with <30 VAC) by a certain distance (creepage/clearance). If a component, such as a digital isolator, straddles this isolation barrier, it must meet those creepage/clearance requirements and also provide a sufficiently large high-voltage breakdown protection rating (commonly referred to as working voltage protection). Table 5 on page 23 and Table 6 on page 24 detail the working voltage and creepage/clearance capabilities of the Si86xx. These tables also detail the component standards (UL1577, IEC60747, CSA 5A), which are readily accepted by certification bodies to provide proof for end-system specifications requirements. Refer to the end-system specification (61010-1, 60950-1, 60601-1, etc.) requirements before starting any design that uses a digital isolator. 3.3.1. Supply Bypass The Si86xx family requires a 0.1 µF bypass capacitor between VDD1 and GND1 and VDD2 and GND2. The capacitor should be placed as close as possible to the package. To enhance the robustness of a design, the user may also include resistors (50–300 ) in series with the inputs and outputs if the system is excessively noisy. 3.3.2. Output Pin Termination The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces. Rev. 1.0 33 Si86xx 4. Pin Descriptions (Si861x/2x Narrow Body SOIC-8) VDD1 RF XMITR A1 VDD1/NC GND1 I s o l a t i o n VDD2 RF RCVR GND2/NC A1 RF XMITR B1 A2 RF XMITR GND2 Si8610 NB SOIC-8 VDD1 GND1 I s o l a t i o n VDD2 VDD1 RF RCVR B1 A1 RF XMITR RF RCVR B2 A2 RF RCVR Si8620 NB SOIC-8 GND2 GND1 I s o l a t i o n VDD2 RF RCVR B1 RF XMITR B2 Si8621 NB SOIC-8 Name SOIC-8 Pin# Si861x SOIC-8 Pin# Si862x Type Description VDD1/NC* 1,3 1 Supply Side 1 power supply. GND1 4 4 Ground Side 1 ground. A1 2 2 Digital I/O Side 1 digital input or output. A2 NA 3 Digital I/O Side 1 digital input or output. B1 6 7 Digital I/O Side 2 digital input or output. B2 NA 6 Digital I/O Side 2 digital input or output. VDD2 8 8 Supply Side 2 power supply. GND2/NC* 5.7 5 Ground Side 2 ground. *Note: No connect. These pins are not internally connected. They can be left floating, tied to VDD, or tied to GND. 34 Rev. 1.0 GND2 Si86xx 5. Pin Descriptions (Si863x) VDD1 VDD1 VDD2 GND2 GND1 A1 RF XMITR A2 RF XMITR A3 RF XMITR NC I s o l a t i o n GND2 GND1 RF RCVR B1 A1 RF XMITR RF RCVR B2 A2 RF XMITR RF RCVR B3 A3 RF RCVR NC NC EN2 EN1 NC GND1 VDD2 GND2 Si8630 GND1 I s o l a t i o n RF RCVR B1 RF RCVR B2 RF XMITR B3 NC EN2 Si8631 Name SOIC-16 Pin# Type VDD1 1 Supply Side 1 power supply. 1 Side 1 ground. GND2 Description GND1 2 Ground A1 3 Digital Input Side 1 digital input. A2 4 Digital Input Side 1 digital input. A3 5 Digital I/O NC 6 NA EN1/NC2 7 Digital Input GND1 81 Ground Side 1 ground. GND2 91 Ground Side 2 ground. EN2 10 Digital Input NC 11 NA B3 12 Digital I/O B2 13 Digital Output Side 2 digital output. B1 14 Digital Output Side 2 digital output. GND2 151 Ground Side 2 ground. VDD2 16 Supply Side 2 power supply. Side 1 digital input or output. No Connect. Side 1 active high enable. NC on Si8630 Side 2 active high enable. No Connect. Side 2 digital input or output. Notes: 1. For narrow-body devices, Pin 2 and Pin 8 GND must be externally connected to respective ground. Pin 9 and Pin 15 must also be connected to external ground. 2. No Connect. These pins are not internally connected. They can be left floating, tied to VDD or tied to GND. Rev. 1.0 35 Si86xx 6. Pin Descriptions (Si864x) VDD1 VDD2 GND2 GND1 A1 RF XMITR A2 RF XMITR A3 RF XMITR A4 RF XMITR I s o l a t i o n RF RCVR B1 RF RCVR B2 RF RCVR B3 RF RCVR B4 EN2 NC GND1 GND2 Si8640 VDD1 VDD2 GND2 GND1 A1 RF XMITR A2 RF XMITR A3 RF XMITR A4 RF RCVR I s o l a t i o n RF RCVR RF RCVR RF RCVR RF XMITR GND1 Si8641 B2 B3 B4 GND2 VDD2 GND2 GND1 B1 EN2 EN1 VDD1 A1 RF XMITR A2 RF XMITR A3 RF RCVR A4 RF RCVR I s o l a t i o n RF RCVR B1 RF RCVR B2 RF RF XMITR RCVR B3 RF XMITR B4 EN2 EN1 GND1 Name SOIC-16 Pin# Type VDD1 1 Supply Side 1 power supply. 1 Side 1 ground. Si8642 GND2 Description GND1 2 Ground A1 3 Digital Input Side 1 digital input. A2 4 Digital Input Side 1 digital input. A3 5 Digital I/O Side 1 digital input or output. A4 6 Digital I/O Side 1 digital input or output. EN1/NC2 7 Digital Input GND1 81 Ground Side 1 ground. GND2 91 Ground Side 2 ground. EN2 10 Digital Input B4 11 Digital I/O Side 2 digital input or output. B3 12 Digital I/O Side 2 digital input or output. B2 13 Digital Output Side 2 digital output. B1 14 Digital Output Side 2 digital output. GND2 151 Ground Side 2 ground. VDD2 16 Supply Side 2 power supply. Side 1 active high enable. NC on Si8640. Side 2 active high enable. Notes: 1. For narrow-body devices, Pin 2 and Pin 8 GND must be externally connected to respective ground. Pin 9 and Pin 15 must also be connected to external ground. 2. No Connect. These pins are not internally connected. They can be left floating, tied to VDD or tied to GND. 36 Rev. 1.0 Si86xx 7. Pin Descriptions (Si8650/51/52) VDD1 VDD2 A1 RF XMITR A2 RF XMITR A3 RF XMITR A4 RF XMITR A5 RF XMITR I s o l a t i o n B1 B2 A2 RF XMITR RF RCVR B3 A3 RF XMITR RF RCVR B4 A4 RF XMITR A5 RF RCVR RF RCVR B5 EN2 GND2 Si8650 VDD1 VDD2 RF RCVR NC GND1 VDD1 RF RCVR RF XMITR A1 I s o l a t i o n B1 RF RCVR B2 A2 RF XMITR RF RCVR B3 A3 RF XMITR RF RCVR B4 A4 RF RCVR A5 RF RCVR RF XMITR A1 B5 EN2 EN1 GND1 VDD2 RF RCVR Si8651 GND2 RF XMITR I s o l a t i o n RF RCVR B1 RF RCVR B2 RF RCVR B3 RF RF XMITR RCVR B4 RF XMITR B5 EN2 EN1 GND1 Name SOIC-16 Pin# Type VDD1 1 Supply A1 2 Digital Input Side 1 digital input. A2 3 Digital Input Side 1 digital input. A3 4 Digital Input Side 1 digital input. A4 5 Digital I/O Side 1 digital input or output. A5 6 Digital I/O Side 1 digital input or output. EN1/NC* 7 Digital Input GND1 8 Ground Side 1 ground. GND2 9 Ground Side 2 ground. EN2 10 Digital Input B5 11 Digital I/O Side 2 digital input or output. B4 12 Digital I/O Side 2 digital input or output. B3 13 Digital Output Side 2 digital output. B2 14 Digital Output Side 2 digital output. B1 15 Digital Output Side 2 digital output. VDD2 16 Supply Side 2 power supply. Si8652 GND2 Description Side 1 power supply. Side 1 active high enable. NC on Si8650. Side 2 active high enable. *Note: No Connect. These pins are not internally connected. They can be left floating, tied to VDD or tied to GND. Rev. 1.0 37 Si86xx 8. Pin Descriptions (Si866x) VDD1 RF XMITR A2 RF XMITR A3 RF XMITR A4 RF XMITR A5 RF XMITR A6 RF XMITR GND1 38 VDD1 VDD2 A1 I s o l a t i o n VDD2 RF RCVR B1 A1 RF XMITR RF RCVR B2 A2 RF XMITR RF RCVR B3 A3 RF XMITR RF RCVR B4 A4 RF XMITR RF RCVR B5 A5 RF XMITR RF RCVR B6 A6 RF RCVR Si8660 GND2 GND1 I s o l a t i o n VDD1 B1 A1 RF XMITR RF RCVR B2 A2 RF XMITR RF RCVR B3 A3 RF XMITR RF RCVR B4 A4 RF XMITR RF RCVR B5 A5 RF RCVR RF XMITR B6 A6 RF RCVR GND2 Si8661 GND1 VDD1 VDD2 RF RCVR I s o l a t i o n B1 A1 RF XMITR RF RCVR B2 A2 RF XMITR RF RCVR B3 A3 RF XMITR RF RCVR B4 A4 RF RCVR RF XMITR B5 A5 RF RCVR RF RF XMITR RCVR B6 A6 RF RCVR Si8662 GND2 GND1 Name SOIC-16 Pin# Type Description VDD1 1 Supply A1 2 Digital Input Side 1 digital input. A2 3 Digital Input Side 1 digital input. A3 4 Digital Input Side 1 digital input. A4 5 Digital I/O Side 1 digital input or output. A5 6 Digital I/O Side 1 digital input or output. A6 7 Digital I/O Side 1 digital input or output. GND1 8 Ground Side 1 ground. GND2 9 Ground Side 2 ground. B6 10 Digital I/O Side 2 digital input or output. B5 11 Digital I/O Side 2 digital input or output. B4 12 Digital I/O Side 2 digital input or output. B3 13 Digital Output Side 2 digital output. B2 14 Digital Output Side 2 digital output. B1 15 Digital Output Side 2 digital output. VDD2 16 Supply Side 2 power supply. Side 1 power supply. Rev. 1.0 VDD2 RF RCVR I s o l a t i o n RF RCVR B1 RF RCVR B2 RF RCVR B3 RF XMITR B4 RF XMITR B5 RF RF XMITR RCVR B6 Si8663 GND2 Si86xx 9. Ordering Guide Table 14. Ordering Guide for Valid OPNs1,2 Ordering Part Number (OPN) Number of Number of Max Data Rate Inputs Inputs VDD1 Side VDD2 Side (Mbps) Default Output State Isolation Rating (kV) Temp (°C) Package Si8610AB-B-IS 1 0 1 Low 2.5 –40 to 125 °C SOIC-8 Si8620AB-B-IS 2 0 1 Low 2.5 –40 to 125 °C SOIC-8 Si8621AB-B-IS 1 1 1 Low 2.5 –40 to 125 °C SOIC-8 Si8630AB-B-IS 3 0 1 Low 2.5 –40 to 125 °C WB SOIC-16 Si8630AB-B-IS1 3 0 1 Low 2.5 –40 to 125 °C NB SOIC-16 Si8631AB-B-IS 2 1 1 Low 2.5 –40 to 125 °C WB SOIC-16 Si8631AB-B-IS1 2 1 1 Low 2.5 –40 to 125 °C NB SOIC-16 Si8640AB-B-IS1 4 0 1 Low 2.5 –40 to 125 °C NB SOIC-16 Si8640AB-B-IS 4 0 1 Low 2.5 –40 to 125 °C WB SOIC-16 Si8641AB-B-IS1 3 1 1 Low 2.5 –40 to 125 °C NB SOIC-16 Si8641AB-B-IS 3 1 1 Low 2.5 –40 to 125 °C WB SOIC-16 Si8642AB-B-IS1 2 2 1 Low 2.5 –40 to 125 °C NB SOIC-16 Si8642AB-B-IS 2 2 1 Low 2.5 –40 to 125 °C WB SOIC-16 Si8650AB-B-IS1 5 0 1 Low 2.5 –40 to 125 °C NB SOIC-16 Si8651AB-B-IS1 4 1 1 Low 2.5 –40 to 125 °C NB SOIC-16 Si8652AB-B-IS1 3 2 1 Low 2.5 –40 to 125 °C NB SOIC-16 Si8660AB-B-IS1 6 0 1 Low 2.5 –40 to 125 °C NB SOIC-16 Si8661AB-B-IS1 5 1 1 Low 2.5 –40 to 125 °C NB SOIC-16 Si8662AB-B-IS1 4 2 1 Low 2.5 –40 to 125 °C NB SOIC-16 Si8663AB-B-IS1 3 3 1 Low 2.5 –40 to 125 °C NB SOIC-16 Notes: 1. All packages are RoHS-compliant with peak reflow temperatures of 260 °C according to the JEDEC industry standard classifications and peak solder temperatures. 2. “Si” and “SI” are used interchangeably. Rev. 1.0 39 Si86xx 10. Package Outline: 16-Pin Wide Body SOIC Figure 10 illustrates the package details for the Si86xx Digital Isolator. Table 15 lists the values for the dimensions shown in the illustration. Figure 10. 16-Pin Wide Body SOIC 40 Rev. 1.0 Si86xx Table 15. Package Diagram Dimensions Dimension Min Max A — 2.65 A1 0.10 0.30 A2 2.05 — b 0.31 0.51 c 0.20 0.33 D 10.30 BSC E 10.30 BSC E1 7.50 BSC e 1.27 BSC L 0.40 1.27 h 0.25 0.75 0° 8° aaa — 0.10 bbb — 0.33 ccc — 0.10 ddd — 0.25 eee — 0.10 fff — 0.20 Notes: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. This drawing conforms to JEDEC Outline MS-013, Variation AA. 4. Recommended reflow profile per JEDEC J-STD-020C specification for small body, lead-free components. Rev. 1.0 41 Si86xx 11. Land Pattern: 16-Pin Wide-Body SOIC Figure 11 illustrates the recommended land pattern details for the Si86xx in a 16-pin wide-body SOIC. Table 16 lists the values for the dimensions shown in the illustration. Figure 11. 16-Pin SOIC Land Pattern Table 16. 16-Pin Wide Body SOIC Land Pattern Dimensions Dimension Feature (mm) C1 Pad Column Spacing 9.40 E Pad Row Pitch 1.27 X1 Pad Width 0.60 Y1 Pad Length 1.90 Notes: 1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P1032X265-16AN for Density Level B (Median Land Protrusion). 2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed. 42 Rev. 1.0 Si86xx 12. Package Outline: 16-Pin Narrow Body SOIC Figure 12 illustrates the package details for the Si86xx in a 16-pin narrow-body SOIC (SO-16). Table 17 lists the values for the dimensions shown in the illustration. Figure 12. 16-pin Small Outline Integrated Circuit (SOIC) Package Rev. 1.0 43 Si86xx Table 17. Package Diagram Dimensions Dimension Min Max A — 1.75 A1 0.10 0.25 A2 1.25 — b 0.31 0.51 c 0.17 0.25 D 9.90 BSC E 6.00 BSC E1 3.90 BSC e 1.27 BSC L 0.40 L2 1.27 0.25 BSC h 0.25 0.50 θ 0° 8° aaa 0.10 bbb 0.20 ccc 0.10 ddd 0.25 Notes: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. This drawing conforms to the JEDEC Solid State Outline MS-012, Variation AC. 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. 44 Rev. 1.0 Si86xx 13. Land Pattern: 16-Pin Narrow Body SOIC Figure 13 illustrates the recommended land pattern details for the Si86xx in a 16-pin narrow-body SOIC. Table 18 lists the values for the dimensions shown in the illustration. Figure 13. 16-Pin Narrow Body SOIC PCB Land Pattern Table 18. 16-Pin Narrow Body SOIC Land Pattern Dimensions Dimension Feature (mm) C1 Pad Column Spacing 5.40 E Pad Row Pitch 1.27 X1 Pad Width 0.60 Y1 Pad Length 1.55 Notes: 1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X165-16N for Density Level B (Median Land Protrusion). 2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed. Rev. 1.0 45 Si86xx 14. Package Outline: 8-Pin Narrow Body SOIC Figure 14 illustrates the package details for the Si86xx. Table 19 lists the values for the dimensions shown in the illustration. Figure 14. 8-pin Small Outline Integrated Circuit (SOIC) Package Table 19. Package Diagram Dimensions Symbol Millimeters Min Max A 1.35 1.75 A1 0.10 0.25 A2 1.40 REF 1.55 REF B 0.33 0.51 C 0.19 0.25 D 4.80 5.00 E 3.80 4.00 e 46 1.27 BSC H 5.80 6.20 h 0.25 0.50 L 0.40 1.27 0 8 Rev. 1.0 Si86xx 15. Land Pattern: 8-Pin Narrow Body SOIC Figure 15 illustrates the recommended land pattern details for the Si86xx in an 8-pin narrow-body SOIC. Table 20 lists the values for the dimensions shown in the illustration. Figure 15. PCB Land Pattern: 8-Pin Narrow Body SOIC Table 20. PCM Land Pattern Dimensions (8-Pin Narrow Body SOIC) Dimension Feature (mm) C1 Pad Column Spacing 5.40 E Pad Row Pitch 1.27 X1 Pad Width 0.60 Y1 Pad Length 1.55 Notes: 1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X173-8N for Density Level B (Median Land Protrusion). 2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed. Rev. 1.0 47 Si86xx 16. Top Markings 16.1. Top Marking (16-Pin Wide Body SOIC) Si86XYSV YYWWRTTTTT e4 TW 16.2. Top Marking Explanation (16-Pin Wide Body SOIC) Si86 = Isolator product series XY = Channel Configuration X = # of data channels (5, 4, 3, 2, 1) Y = # of reverse channels (2, 1, 0) (See Ordering Guide for more information). S = Speed Grade (max data rate) and operating mode: A = 1 Mbps (default output = low) B = 150 Mbps (default output = low) D = 1 Mbps (default output = high) E = 150 Mbps (default output = high) V = Insulation rating A = 1 kV; B = 2.5 kV; C = 3.75 kV; D = 5.0 kV Line 1 Marking: Base Part Number Ordering Options Line 2 Marking: YY = Year WW = Workweek Assigned by assembly subcontractor. Corresponds to the year and work week of the mold date. RTTTTT = Mfg Code Manufacturing code from assembly house “R” indicates revision Circle = 1.7 mm Diameter (Center-Justified) “e4” Pb-free symbol Country of Origin ISO Code Abbreviation TW = Taiwan Line 3 Marking: 48 Rev. 1.0 Si86xx 16.3. Top Marking (16-Pin Narrow Body SOIC) e3 Si86XYSV YYWWRTTTTT 16.4. Top Marking Explanation (16-Pin Narrow Body SOIC) Base Part Number Ordering Options Line 1 Marking: (See Ordering Guide for more information). Line 2 Marking: Si86 = Isolator product series XY = Channel Configuration X = # of data channels (5, 4, 3, 2, 1) Y = # of reverse channels (2, 1, 0) S = Speed Grade (max data rate) and operating mode: A = 1 Mbps (default output = low) B = 150 Mbps (default output = low) D = 1 Mbps (default output = high) E = 150 Mbps (default output = high) V = Insulation rating A = 1 kV; B = 2.5 kV; C = 3.75 kV Circle = 1.2 mm Diameter “e3” Pb-Free Symbol YY = Year WW = Work Week Assigned by the assembly subcontractor. Corresponds to the year and work week of the mold date. RTTTTT = Mfg Code Manufacturing code from assembly house “R” indicates revision Rev. 1.0 49 Si86xx 16.5. Top Marking (8-Pin Narrow Body SOIC) Si86XYSV YYWWRF e3 AIXX 16.6. Top Marking Explanation (8-Pin Narrow Body SOIC) Line 1 Marking: Base Part Number Ordering Options (See Ordering Guide for more information). Line 2 Marking: YY = Year WW = Workweek Si86 = Isolator product series XY = Channel Configuration X = # of data channels (2, 1) Y = # of reverse channels (1, 0) S = Speed Grade (max data rate) and operating mode: A = 1 Mbps (default output = low) B = 150 Mbps (default output = low) D = 1 Mbps (default output = high) E = 150 Mbps (default output = high) V = Insulation rating A = 1 kV; B = 2.5 kV; C = 3.75 kV Assigned by assembly subcontractor. Corresponds to the year and workweek of the mold date. R = Product (OPN) Revision F = Wafer Fab Line 3 Marking: 50 Circle = 1.1 mm Diameter Left-Justified “e3” Pb-Free Symbol. First two characters of the manufacturing code. A = Assembly Site I = Internal Code XX = Serial Lot Number Last four characters of the manufacturing code. Rev. 1.0 Si86xx DOCUMENT CHANGE LIST Revision 0.9 to Revision 1.0 Updated Table 5 on page 23. Added CQC certificate numbers. Updated "9. Ordering Guide" on page 39. Removed Removed references to moisture sensitivity levels. note 2. Rev. 1.0 51 Si86xx CONTACT INFORMATION Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 Tel: 1+(512) 416-8500 Fax: 1+(512) 416-9669 Toll Free: 1+(877) 444-3032 Please visit the Silicon Labs Technical Support web page: https://www.silabs.com/support/pages/contacttechnicalsupport.aspx and register to submit a technical support request. Patent Notice Silicon Labs invests in research and development to help our customers differentiate in the market with innovative low-power, small size, analogintensive mixed-signal solutions. Silicon Labs' extensive patent portfolio is a testament to our unique approach and world-class engineering team. The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages. Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc. Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders. 52 Rev. 1.0