Si5367 Data Sheet

Si5367
µ P - P ROGRAMMABLE P RECISION C L O C K M ULTIPLIER
Features





Not recommended for new

designs. For alternatives, see the
Si533x family of products.
Generates any frequency from 
2 kHz to 945 MHz and select
frequencies to 1.4 GHz from an 
input frequency of 10 to 710 MHz

Low jitter clock outputs w/jitter
generation as low as 0.6 ps rms

(50 kHz–80 MHz)
Integrated loop filter with
selectable loop bandwidth

(150 kHz to 1.3 MHz)
Four clock inputs with manual or

automatically controlled
switching
Five clock outputs with selectable
signal format (LVPECL, LVDS,
CML, CMOS)
Support for ITU G.709 FEC ratios
(255/238, 255/237, 255/236)
LOS alarm outputs
I2C or SPI programmable
settings
On-chip voltage regulator for
1.8 V ±5%, 2.5 V ±10%, or
3.5 V ±10% operation
Small size: 14 x 14 mm 100-pin
TQFP
Pb-free, RoHS compliant
Ordering Information:
See page 73.
Applications
SONET/SDH OC-48/OC-192 STM16/STM-64 line cards
 GbE/10GbE, 1/2/4/8/10GFC line
cards
 ITU G.709 and custom FEC line
cards

Wireless base stations
Data converter clocking
 xDSL
 SONET/SDH + PDH clock synthesis
 Test and measurement


Description
The Si5367 is a low jitter, precision clock multiplier for applications requiring clock
multiplication without jitter attenuation. The Si5367 accepts four clock inputs
ranging from 10 to 707 MHz and generates five frequency-multiplied clock outputs
ranging from 2 kHz to 945 MHz and select frequencies to 1.4 GHz. The device
provides virtually any frequency translation combination across this operating
range. The outputs are divided down separately from a common source. The
Si5367 input clock frequency and clock multiplication ratio are programmable
through an I2C or SPI interface. The Si5367 is based on Silicon Laboratories' 3rdgeneration DSPLL® technology, which provides any-frequency synthesis in a
highly integrated PLL solution that eliminates the need for external VCXO and
loop filter components. The DSPLL loop bandwidth is digitally programmable,
providing jitter performance optimization at the application level. Operating from a
single 1.8, 2.5, or 3.5 V supply, the Si5367 is ideal for providing clock
multiplication in high performance timing applications.
Rev. 1.0 9/14
Copyright © 2014 by Silicon Laboratories
Si5367
Si5367
Functional Block Diagram
CKIN1
÷ N31
CKIN2
÷ N32
®
CKIN3
÷ N33
CKIN4
÷ N34
DSPLL
÷ NC1_LS
CKOUT1
÷ NC2_LS
CKOUT2
÷ NC3_LS
CKOUT3
÷ NC4_LS
CKOUT4
÷ NC5_LS
CKOUT5
N1_HS
÷ N2
I2C/SPI Port
Clock Select
Control
Device Interrupt
VDD (1.8 or 2.5 V)
LOS Alarms
GND
2
Rev. 1.0
Si5367
TABLE O F C ONTENTS
Section
Page
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
2. Typical Application Schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1. Further Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4. Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5. Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
6. Pin Descriptions: Si5367 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
7. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8. Package Outline: 100-Pin TQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
9. PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75
10. Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
10.1. Si5367 Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
10.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
Rev. 1.0
3
Si5367
1. Electrical Specifications
Table 1. Recommended Operating Conditions
Parameter
Symbol
Ambient Temperature
TA
Supply Voltage during
Normal Operation
VDD
Test Condition
Min
Typ
Max
Unit
–40
25
85
C
3.3 V Nominal
2.97
3.3
3.63
V
2.5 V Nominal
2.25
2.5
2.75
V
1.8 V Nominal
1.71
1.8
1.89
V
Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.
Typical values apply at nominal supply voltages and an operating temperature of 25 ºC unless otherwise stated.
SIGNAL +
Differential I/Os VICM , VOCM
V
VISE , VOSE
SIGNAL –
(SIGNAL +) – (SIGNAL –)
Differential Peak-to-Peak Voltage
VID,VOD
VICM, VOCM
Single-Ended
Peak-to-Peak Voltage
t
SIGNAL +
VID = (SIGNAL+) – (SIGNAL–)
SIGNAL –
Figure 1. Differential Voltage Characteristics
80%
CKIN, CKOUT
20%
tF
tR
Figure 2. Rise/Fall Time Characteristics
4
Rev. 1.0
Si5367
Table 2. DC Characteristics
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
IDD
LVPECL Format
622.08 MHz Out
All CKOUTs Enabled
—
394
435
mA
LVPECL Format
622.08 MHz Out
1 CKOUT Enabled
—
253
284
mA
CMOS Format
19.44 MHz Out
All CKOUTs Enabled
—
278
321
mA
CMOS Format
19.44 MHz Out
1 CKOUT Enabled
—
229
261
mA
Disable Mode
—
165
—
mA
1.8 V ± 5%
0.9
—
1.4
V
2.5 V ± 10%
1
—
1.7
V
3.3 V ± 10%
1.1
—
1.95
V
CKNRIN
Single-ended
20
40
60
k
Single-Ended Input
Voltage Swing
(See Absolute Specs)
VISE
fCKIN < 212.5 MHz
See Figure 1.
0.2
—
—
VPP
fCKIN > 212.5 MHz
See Figure 1.
0.25
—
—
VPP
Differential Input
Voltage Swing
(See Absolute Specs)
VID
fCKIN < 212.5 MHz
See Figure 1.
0.2
—
—
VPP
fCKIN > 212.5 MHz
See Figure 1.
0.25
—
—
VPP
Supply Current1,2
CKINn Input Pins3
Input Common Mode
Voltage (Input Threshold Voltage)
Input Resistance
VICM
Output Clocks (CKOUTn)4,5
Notes:
1. Current draw is independent of supply voltage.
2. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in
the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when
they are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled.
When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS.
3. No under- or overshoot is allowed.
4. LVPECL outputs require nominal VDD ≥ 2.5 V.
5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.
6. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family Reference
Manual for more details.
Rev. 1.0
5
Si5367
Table 2. DC Characteristics (Continued)
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Common Mode
CKOVCM
LVPECL 100  load
line-to-line
VDD –1.42
—
VDD –1.25
V
Differential Output
Swing
CKOVD
LVPECL 100  load lineto-line
1.1
—
1.9
VPP
Single Ended Output
Swing
CKOVSE
LVPECL 100  load lineto-line
0.5
—
0.93
VPP
Differential Output
Voltage
CKOVD
CML 100  load line-toline
350
425
500
mVPP
CKOVCM
CML 100  load line-toline
—
VDD–0.36
—
V
CKOVD
LVDS
100  load line-to-line
500
700
900
mVPP
Low Swing LVDS
100  load line-to-line
350
425
500
mVPP
CKOVCM
LVDS 100 load line-toline
1.125
1.2
1.275
V
CKORD
CML, LVPECL, LVDS
—
200
—

Output Voltage Low
CKOVOLLH
CMOS
—
—
0.4
V
Output Voltage High
CKOVOHLH
VDD = 1.71 V
CMOS
0.8 x VDD
—
—
V
Common Mode Output
Voltage
Differential Output
Voltage
Common Mode Output
Voltage
Differential Output
Resistance
Notes:
1. Current draw is independent of supply voltage.
2. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in
the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when
they are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled.
When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS.
3. No under- or overshoot is allowed.
4. LVPECL outputs require nominal VDD ≥ 2.5 V.
5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.
6. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family Reference
Manual for more details.
6
Rev. 1.0
Si5367
Table 2. DC Characteristics (Continued)
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)
Parameter
Output Drive Current
(CMOS driving into
CKOVOL for output low
or CKOVOH for output
high. CKOUT+ and
CKOUT– shorted
externally)
Symbol
Test Condition
Min
Typ
Max
Unit
CKOIO
ICMOS[1:0] = 11
VDD = 1.8 V
—
7.5
—
mA
ICMOS[1:0] = 10
VDD = 1.8 V
—
5.5
—
mA
ICMOS[1:0] = 01
VDD = 1.8 V
—
3.5
—
mA
ICMOS[1:0] = 00
VDD = 1.8 V
—
1.75
—
mA
ICMOS[1:0] = 11
VDD = 3.3 V
—
32
—
mA
ICMOS[1:0] = 10
VDD = 3.3 V
—
24
—
mA
ICMOS[1:0] = 01
VDD = 3.3 V
—
16
—
mA
ICMOS[1:0] = 00
VDD = 3.3 V
—
8
—
mA
VDD = 1.71 V
—
—
0.5
V
VDD = 2.25 V
—
—
0.7
V
VDD = 2.97 V
—
—
0.8
V
VDD = 1.89 V
1.4
—
—
V
VDD = 2.25 V
1.8
—
—
V
VDD = 3.63 V
2.5
—
—
V
2-Level LVCMOS Input Pins
Input Voltage Low
Input Voltage High
VIL
VIH
Notes:
1. Current draw is independent of supply voltage.
2. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in
the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when
they are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled.
When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS.
3. No under- or overshoot is allowed.
4. LVPECL outputs require nominal VDD ≥ 2.5 V.
5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.
6. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family Reference
Manual for more details.
Rev. 1.0
7
Si5367
Table 2. DC Characteristics (Continued)
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
3-Level Input Pins6
Input Voltage Low
VILL
—
—
0.15 x VDD
V
Input Voltage Mid
VIMM
0.45 x VDD
—
0.55 x VDD
V
Input Voltage High
VIHH
0.85 x VDD
—
—
V
Input Low Current
IILL
See Note 6
–20
—
—
µA
Input Mid Current
IIMM
See Note 6
–2
—
+2
µA
Input High Current
IIHH
See Note 6
—
—
20
µA
VOL
IO = 2 mA
VDD = 1.71 V
—
—
0.4
V
IO = 2 mA
VDD = 2.97 V
—
—
0.4
V
IO = –2 mA
VDD = 1.71 V
VDD – 0.4
—
—
V
IO = –2 mA
VDD = 2.97 V
VDD – 0.4
—
—
V
RSTb = 0
–100
—
100
µA
LVCMOS Output Pins
Output Voltage Low
Output Voltage Low
Output Voltage High
VOH
Output Voltage High
Disabled Leakage
Current
IOZ
Notes:
1. Current draw is independent of supply voltage.
2. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in
the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when
they are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled.
When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS.
3. No under- or overshoot is allowed.
4. LVPECL outputs require nominal VDD ≥ 2.5 V.
5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.
6. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family Reference
Manual for more details.
8
Rev. 1.0
Si5367
Table 3. AC Characteristics
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
10
—
710
MHz
40
—
60
%
2
—
—
ns
—
—
3
pF
—
—
11
ns
N1  6
0.002
—
945
MHz
N1 = 5
970
—
1134
MHz
N1 = 4
1.213
—
1.4
GHz
—
—
212.5
MHz
CKINn Input Pins
Input Frequency
CKNF
Input Duty Cycle
(Minimum Pulse
Width)
CKNDC
Input Capacitance
CKNCIN
Input Rise/Fall Time
CKNTRF
Whichever is smaller
(i.e., the 40% / 60%
limitation applies only
to high frequency
clocks)
20–80%
See Figure 2
CKOUTn Output Pins
(See ordering section for speed grade vs frequency limits)
Output Frequency
(Output not configured for CMOS or
Disabled)
Maximum Output
Frequency in CMOS
Format
CKOF
CKOF
Output Rise/Fall
(20–80 %) @
622.08 MHz output
CKOTRF
Output not configured for
CMOS or Disabled
See Figure 2
—
230
350
ps
Output Rise/Fall
(20–80%) @
212.5 MHz output
CKOTRF
CMOS Output
VDD = 1.71
CLOAD = 5 pF
—
—
8
ns
Output Rise/Fall
(20–80%) @
212.5 MHz output
CKOTRF
CMOS Output
VDD = 2.97
CLOAD = 5 pF
—
—
2
ns
Output Duty Cycle
Uncertainty @
622.08 MHz
CKODC
100  Load
Line-to-Line
Measured at 50% Point
(Not for CMOS)
—
—
+/-40
ps
Rev. 1.0
9
Si5367
Table 3. AC Characteristics (Continued)
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
LVCMOS Input Pins
Minimum Reset Pulse
Width
tRSTMN
1
—
—
µs
Reset to Microprocessor Access Ready
tREADY
—
—
10
ms
Cin
—
—
3
pF
Input Capacitance
LVCMOS Output Pins
Rise/Fall Times
tRF
CLOAD = 20 pF
See Figure 2
—
25
—
ns
LOSn Trigger Window
LOSTRIG
From last CKINn to 
Internal detection of LOSn
N3 ≠ 1
—
—
4.5 x N3
TCKIN
Time to Clear LOL
after LOS Cleared
tCLRLOL
LOS to LOL
Fold = Fnew
Stable Xa/XB reference
—
10
—
ms
Output Clock Skew
tSKEW
 of CKOUTn to  of
CKOUT_m, CKOUTn
and CKOUT_m at same
frequency and signal
format
PHASEOFFSET = 0
CKOUT_ALWAYS_ON = 1
SQ_ICAL = 1
—
—
100
ps
Phase Change due to
Temperature Variation
tTEMP
Max phase changes from
–40 to +85 °C
—
300
500
ps
Device Skew
10
Rev. 1.0
Si5367
Table 3. AC Characteristics (Continued)
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
—
35
1200
ms
—
0.05
0.1
dB
Jitter Frequency Loop
Bandwidth
5000/BW
—
—
ns pk-pk
1 kHz Offset
—
–90
—
dBc/Hz
10 kHz Offset
—
–113
—
dBc/Hz
100 kHz Offset
—
–118
—
dBc/Hz
1 MHz Offset
—
–132
—
dBc/Hz
PLL Performance
(fin = fout = 622.08 MHz; BW = 120 Hz; LVPECL)
Lock Time
tLOCKMP
Closed Loop Jitter
Peaking
JPK
Jitter Tolerance
JTOL
Phase Noise
fout = 622.08 MHz
CKOPN
Start of ICAL to of LOL
Subharmonic Noise
SPSUBH
Phase Noise @ 100 kHz
Offset
—
–88
—
dBc
Spurious Noise
SPSPUR
Max spur @ n x F3
(n  1, n x F3 < 100 MHz)
—
–93
—
dBc
Table 4. Microprocessor Control
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
I2C Bus Lines (SDA, SCL)
Input Voltage Low
VILI2C
—
—
0.25 x VDD
V
Input Voltage High
VIHI2C
0.7 x VDD
—
VDD
V
VDD = 1.8V
0.1 x VDD
—
—
V
VDD = 2.5 or 3.3 V
0.05 x VDD
—
—
V
VDD = 1.8 V
IO = 3 mA
—
—
0.2 x VDD
V
VDD = 2.5 or 3.3 V
IO = 3 mA
—
—
0.4
V
Hysteresis of Schmitt
trigger inputs
Output Voltage Low
VHYSI2C
VOLI2C
Rev. 1.0
11
Si5367
Table 4. Microprocessor Control (Continued)
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Duty Cycle, SCLK
tDC
SCLK = 10 MHz
40
—
60
%
Cycle Time, SCLK
tc
100
—
—
ns
Rise Time, SCLK
tr
20–80%
—
—
25
ns
Fall Time, SCLK
tf
20–80%
—
—
25
ns
Low Time, SCLK
tlsc
20–20%
30
—
—
ns
High Time, SCLK
thsc
80–80%
30
—
—
ns
Delay Time, SCLK Fall
to SDO Active
td1
—
—
25
ns
Delay Time, SCLK Fall
to SDO Transition
td2
—
—
25
ns
Delay Time, SS Rise
to SDO Tri-state
td3
—
—
25
ns
Setup Time, SS to
SCLK Fall
tsu1
25
—
—
ns
Hold Time, SS to
SCLK Rise
th1
20
—
—
ns
Setup Time, SDI to
SCLK Rise
tsu2
25
—
—
ns
Hold Time, SDI to
SCLK Rise
th2
20
—
—
ns
Delay Time between
Slave Selects
tcs
25
—
—
ns
SPI Specifications
12
Rev. 1.0
Si5367
Table 5. Jitter Generation
Parameter
Symbol
Min
Typ
Max
Unit
4–80 MHz
—
.23
—
psrms
0.05–80 MHz
—
.47
—
ps rms
0.12–20 MHz
—
.48
—
ps rms
Test Condition*
Measurement Filter
Jitter Gen
OC-192
JGEN
Jitter Gen
OC-48
JGEN
*Note: Test conditions:
1. fIN = fOUT = 622.08 MHz
2.
Clock input: LVPECL
3.
Clock output: LVPECL
4.
PLL bandwidth: 877 kHz
5.
114.285 MHz 3rd OT crystal used as XA/XB input
6.
VDD = 2.5 V
7.
TA = 85 °C
Table 6. Thermal Characteristics
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)
Parameter
Thermal Resistance Junction to Ambient
Symbol
Test Condition
Value
Unit
JA
Still Air
40
C°/W
Rev. 1.0
13
Si5367
Table 7. Absolute Maximum Ratings
Symbol
Value
Unit
DC Supply Voltage
VDD
–0.5 to 3.8
V
LVCMOS Input Voltage
VDIG
–0.3 to (VDD + 0.3)
V
CKINn Voltage Level Limits
CKNVIN
0 to VDD
V
XA/XB Voltage Level Limits
XAVIN
0 to 1.2
V
Operating Junction Temperature
TJCT
–55 to 150
C
Storage Temperature Range
TSTG
–55 to 150
C
2
kV
ESD MM Tolerance; All pins except CKIN+/CKIN–
700
V
ESD HBM Tolerance (100 pF, 1.5 kΩ); CKIN+/CKIN–
750
V
ESD MM Tolerance; CKIN+/CKIN–
100
V
Parameter
ESD HBM Tolerance (100 pF, 1.5 kΩ); All pins except
CKIN+/CKIN–
Latch-Up Tolerance
JESD78 Compliant
Note: Permanent device damage may occur if the Absolute Maximum Ratings are exceeded. Functional operation should be
restricted to the conditions as specified in the operation sections of this data sheet. Exposure to absolute maximum
rating conditions for extended periods of time may affect device reliability.
Phase Noise (dBc/Hz)
622 MHz In, 622 MHz Out BW=877 kHz
-50
-70
-90
-110
-130
-150
-170
1000
10000
100000
1000000
10000000 100000000
Offset Frequency (Hz)
Figure 3. Typical Phase Noise Plot
Table 8. Typical RMS Jitter Values
14
Jitter Bandwidth
RMS Jitter (fs)
OC-48, 12 kHz to 20 MHz
374
OC-192, 20 kHz to 80 MHz
388
OC-192, 4 MHz to 80 MHz
181
OC-192, 50 kHz to 80 MHz
377
Broadband, 800 Hz to 80 MHz
420
Rev. 1.0
Si5367
2. Typical Application Schematics
System
Power
Supply
C10
Ferrite
Bead
1 µF
VDD = 3.3 V
CKIN1+
GND
0.1 µF
130 
VDD
130 
C1–9
CKOUT1+
CKIN1–
82 
+
100 
82 
CKOUT1–
Input
Clock
Sources*
0.1 µF
CKOUT5+
VDD = 3.3 V
0.1 µF
0.1 µF
–
Clock
Outputs
+
100 
130 
CKOUT5–
130 
CKIN4+
Si5367
INT_ALM
CKIN4–
82 
Control Mode (L)
Reset
0.1 µF
CnB
82 
–
Interrupt/Alarm Output
Indicator
CKINn Invalid Indicator
(n = 1 to 3)
A[2:0]
Serial Port
Address
CMODE
SDA
Serial Data
RST
SCL
Serial Clock
I2C
Interface
*Note: Assumes differential LVPECL termination (3.3 V) on clock inputs.
Figure 4. Si5367 Typical Application Circuit (I2C Control Mode)
Rev. 1.0
15
Si5367
System
Power
Supply
C10
Ferrite
Bead
1 µF
VDD = 3.3 V
CKIN1+
GND
0.1 µF
130 
VDD
130 
C1–9
CKOUT1+
CKIN1–
82 
Input
Clock
Sources*
0.1 µF
+
100 
82 
CKOUT1–
CKOUT5+
VDD = 3.3 V
0.1 µF
0.1 µF
–
Clock
Outputs
+
100 
130 
130 
CKOUT5–
CKIN4+
INT_ALM
CnB
82 
SS
Control Mode (H)
Reset
CMODE
RST
CKIN_n Invalid
Indicator (n = 1 to 3)
Slave Select
SDO
SDI
Serial Data
In
SCL
Serial Clock
Figure 5. Si5367 Typical Application Circuit (SPI Control Mode)
Rev. 1.0
Interrupt/Alarm Output
Indicator
Serial Data
Out
*Note: Assumes differential LVPECL termination (3.3 V) on clock inputs.
16
–
Si5367
CKIN4–
82 
0.1 µF
SPI
Interface
Si5367
3. Functional Description
3.1. Further Documentation
The Si5367 is a low jitter, precision clock multiplier for
applications requiring clock multiplication without jitter
attenuation. The Si5367 accepts four clock inputs
ranging from 10 to 707 MHz and generates five
frequency-multiplied clock outputs ranging from 2 kHz
to 945 MHz and select frequencies to 1.4 GHz. The
device provides virtually any frequency translation
combination across this operating range. Independent
dividers are available for every input clock and output
clock, so the Si5367 can accept input clocks at different
frequencies and it can generate output clocks at
different frequencies. The Si5367 input clock frequency
and clock multiplication ratio are programmable through
an I2C or SPI interface. Silicon Laboratories offers a
PC-based software utility, DSPLLsim, that can be used
to determine the optimum PLL divider settings for a
given input frequency/clock multiplication ratio
combination that minimizes phase noise and power
consumption. This utility can be downloaded from
http://www.silabs.com/timing (click on Documentation).
Consult the Silicon Laboratories Any-Frequency
Precision Clock Family Reference Manual (FRM) for
detailed information about the Si5367. Additional design
support is available from Silicon Laboratories through
your distributor.
Silicon Laboratories has developed a PC-based
software utility called DSPLLsim to simplify device
configuration, including frequency planning and loop
bandwidth selection. The FRM and this utility can be
downloaded from http://www.silabs.com/timing; click on
Documentation.
The Si5367 is based on Silicon Laboratories' 3rdgeneration DSPLL® technology, which provides anyfrequency synthesis in a highly integrated PLL solution
that eliminates the need for external VCXO and loop
filter components. The Si5367 PLL loop bandwidth is
digitally programmable and supports a range from
150 kHz to 1.3 MHz. The DSPLLsim software utility can
be used to calculate valid loop bandwidth settings for a
given input clock frequency/clock multiplication ratio.
The Si5367 monitors all input clocks for loss-of-signal
and provides a LOS alarm when it detects missing
pulses on its inputs.
In the case when the input clocks enter alarm
conditions, the PLL will freeze the DCO output
frequency near its last value to maintain operation with
an internal state close to the last valid operating state.
The Si5367 has five differential clock outputs. The
signal format of the clock outputs is programmable to
support LVPECL, LVDS, CML, or CMOS loads. If not
required, unused clock outputs can be powered down to
minimize power consumption. In addition, the phase of
each output clock may be adjusted in relation to the
other output clocks. The resolution varies from 800 ps to
2.2 ns depending on the PLL divider settings. Consult
the DSPLLsim configuration software to determine the
phase offset resolution for a given input clock/clock
multiplication ratio combination. For system-level
debugging, a bypass mode is available which drives the
output clock directly from the input clock, bypassing the
internal DSPLL. The device is powered by a single 1.8
or 2.5 V supply.
Rev. 1.0
17
Si5367
4. Register Map
All register bits that are not defined in this map should always be written with the specified Reset Values. The
writing to these bits of values other than the specified Reset Values may result in undefined device behavior.
Registers not listed, such as Register 64, should never be written to.
Register
D7
D6
0
D5
D4
D3
D2
D1
CKOUT_ALWAYS_ON
1
CK_PRIOR4 [1:0]
2
D0
BYPASS_REG
CK_PRIOR3 [1:0]
CK_PRIOR2 [1:0]
CK_PRIOR1 [1:0]
BWSEL_REG [3:0]
3
CKSEL_REG [1:0]
4
AUTOSEL_REG [1:0]
5
ICMOS [1:0]
SQ_ICAL
SFOUT2_REG [2:0]
SFOUT1_REG [2:0]
6
SFOUT4_REG [2:0]
SFOUT3_REG [2:0]
7
SFOUT5_REG [2:0]
FOSREFSEL [2:0]
8
HLOG_4 [1:0]
HLOG_3 [1:0]
HLOG_2 [1:0]
HLOG_1 [1:0]
9
HLOG_5 [1:0]
10
DSBL5_REG
11
19
FOS_EN
FOS_THR [1:0]
DSBL4_REG
DSBL3_REG
DSBL2_REG
DSBL1_REG
PD_CK4
PD_CK3
PD_CK2
PD_CK1
VALTIME [1:0]
20
CK3_BAD_PIN
CK2_BAD_PIN
CK1_BAD_PIN
21
CK4_ACTV_PIN
CK3_ACTV_PIN
CK2_ACTV_PIN
CK_ACTV_POL
CK_BAD_POL
22
INT_PIN
CK1_ACTV_PIN
INT_POL
23
LOS4_MSK
LOS3_MSK
LOS2_MSK
LOS1_MSK
24
FOS4_MSK
FOS3_MSK
FOS2_MSK
FOS1_MSK
25
N1_HS [2:0]
NC1_LS [19:16]
26
NC1_LS [15:8]
27
NC1_LS [7:0]
28
NC2_LS [19:16]
29
NC2_LS [15:8]
30
NC2_LS [7:0]
31
NC3_LS [19:16]
32
NC3_LS [15:8]
33
NC3_LS [7:0]
34
NC4_LS [19:16]
35
NC4_LS [15:8]
36
NC4_LS [7:0]
37
NC5_LS [19:16]
38
NC5_LS [15:8]
18
Rev. 1.0
CKSEL_PIN
Si5367
Register
D7
D6
D5
D4
D3
39
D2
D1
NC5_LS [7:0]
40
N2_LS [19:16]
41
N2_LS [15:8]
42
N2_LS [7:0]
43
N31_ [18:16]
44
N31_[15:8]
45
N31_ [7:0]
46
N32_ [18:16]
47
N31_ [15:8]
48
N32_[7:0]
49
N33_[18:16]
50
N33_[15:8]
51
N33_[7:0]
52
N34_[18:16]
53
N34_[15:8]
54
N34_[7:0]
55
CLKIN2RATE_[2:0]
CLKIN1RATE[2:0]
56
CLKIN4RATE_[2:0]
CLKIN3RATE[2:0]
128
CK4_ACTV_REG CK3_ACTV_REG CK2_ACTV_REG CK1_ACTV_REG
129
LOS4_INT
LOS3_INT
LOS2_INT
LOS1_INT
130
FOS4_INT
FOS3_INT
FOS2_INT
FOS1_INT
131
LOS4_FLG
LOS3_FLG
LOS2_FLG
LOS1_FLG
FOS3_FLG
FOS2_FLG
FOS1_FLG
132
FOS4_FLG
134
PARTNUM_RO [11:4]
135
136
PARTNUM_RO [3:0]
RST_REG
REVID_RO [3:0]
ICAL
138
139
D0
LOS4_EN
[0:0]
LOS3_EN
[0:0]
LOS2_EN [0:0]
LOS1_EN [0:0]
LOS4_EN [1:1]
LOS3_EN [1:1]
LOS2_EN [1:1]
LOS1_EN [1:1]
FOS4_EN
FOS3_EN
FOS2_EN
FOS1_EN
140
INDEPENDENTSKEW1 [7:0]
141
INDEPENDENTSKEW2 [7:0]
142
INDEPENDENTSKEW3 [7:0]
143
INDEPENDENTSKEW4 [7:0]
144
INDEPENDENTSKEW5 [7:0]
Rev. 1.0
19
Si5367
5. Register Descriptions
Register 0.
Bit
D7
D6
D4
D3
D2
CKOUT_ALWAYS_ON
Name
Type
D5
R
R
R/W
D1
D0
BYPASS_REG
R
R
R
R/W
R
Reset value = 0001 0100
Bit
Name
7:6
Reserved
5
20
Function
CKOUT_ALWAYS_ON CKOUT Always On.
This will bypass the SQ_ICAL function. Output will be available even if SQ_ICAL is on and ICAL is not complete or successful. See Table 9.
0: Squelch output until part is calibrated (ICAL).
1: Provide an output. Note: The frequency may be significantly off until the part
is calibrated.
4:2
Reserved
1
BYPASS_REG
0
Reserved
Bypass Register.
This bit enables or disables the PLL bypass mode. Use is only valid when the
part is in digital hold or before the first ICAL.
0: Normal operation
1: Bypass mode. Selected input clock is connected to CKOUT buffers, bypassing PLL. Bypass mode does not support CMOS clock outputs.
Rev. 1.0
Si5367
Register 1.
Bit
D7
D6
D5
D4
D3
D2
D1
D0
Name
CK_PRIOR4 [1:0]
CK_PRIOR3 [1:0]
CK_PRIOR2 [1:0]
CK_PRIOR1 [1:0]
Type
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Reset value = 1110 0100
Bit
Name
Function
7:6
CK_PRIOR4 [1:0] Selects which of the input clocks will be 4th priority in the autoselection state
machine.
00: CKIN1 is 4th priority
01: CKIN2 is 4th priority
10: CKIN3 is 4th priority
11: CKIN4 is 4th priority
5:4
CK_PRIOR3 [1:0] Selects which of the input clocks will be 3rd priority in the autoselection state
machine.
00: CKIN1 is 3rd priority
01: CKIN2 is 3rd priority
10: CKIN3 is 3rd priority
11: CKIN4 is 3rd priority
3:2
CK_PRIOR2 [1:0] CK_PRIOR 2.
Selects which of the input clocks will be 2nd priority in the autoselection state
machine.
00: CKIN1 is 2nd priority
01: CKIN2 is 2nd priority
10: CKIN3 is 2nd priority
11: CKIN4 is 2nd priority
1:0
CK_PRIOR1 [1:0] CK_PRIOR 1.
Selects which of the input clocks will be 1st priority in the autoselection state
machine.
00: CKIN1 is 1st priority
01: CKIN2 is 1st priority
10: CKIN3 is 1st priority
11: CKIN4 is 1st priority
Rev. 1.0
21
Si5367
Register 2.
Bit
D7
D6
D5
Name
BWSEL_REG [3:0]
Type
R/W
D4
D3
D2
D1
D0
R
R
R
R
Reset value = 0100 0010
Bit
7:4
Name
Function
BWSEL_REG [3:0] BWSEL_REG.
Selects nominal f3dB bandwidth for PLL. See the DSPLLsim for settings. After
BWSEL_REG is written with a new value, an ICAL is required for the change to take
effect.
3:0
Reserved
Register 3.
Bit
D7
D6
Name
CKSEL_REG [1:0]
Type
R/W
D5
D4
D3
D2
D1
D0
R
R
R
R
SQ_ICAL
R
R/W
Reset value = 0000 0101
22
Bit
Name
7:6
CKSEL_REG [1:0]
5
Reserved
4
SQ_ICAL
3:0
Reserved
Function
CKSEL_REG.
If the device is operating in manual register-based clock selection mode
(AUTOSEL_REG = 00), and CKSEL_PIN = 0, then these bits select which input
clock will be the active input clock. If CKSEL_PIN = 1, the CKSEL[1:0] input pins
continue to control clock selection and CKSEL_REG is of no consequence.
00: CKIN_1 selected.
01: CKIN_2 selected.
10: CKIN_3 selected.
11: CKIN_4 selected.
SQ_ICAL.
This bit determines if the output clocks will remain enabled or be squelched (disabled) during an internal calibration. See Table 9.
0: Output clocks enabled during ICAL.
1: Output clocks disabled during ICAL.
Rev. 1.0
Si5367
Register 4.
Bit
D7
D6
Name
AUTOSEL_REG [1:0]
Type
R/W
D5
D4
D3
D2
D1
D0
R
R
R
R
R
R
Reset value = 0001 0010
Bit
7:6
5:0
Name
Function
AUTOSEL_REG [1:0] AUTOSEL_REG [1:0].
Selects method of input clock selection to be used.
00: Manual (either register or pin controlled. See CKSEL_PIN).
01: Automatic Non-Revertive
10: Automatic Revertive
11: Reserved
Reserved
Rev. 1.0
23
Si5367
Register 5.
Bit
D7
D6
D5
D4
D3
D2
D1
Name
ICMOS [1:0]
SFOUT2_REG [2:0]
SFOUT1_REG [2:0]
Type
R/W
R/W
R/W
D0
Reset value = 1110 1101
Bit
7:6
5:3
2:0
24
Name
ICMOS [1:0]
Function
ICMOS [1:0].
When the output buffer is set to CMOS mode, these bits determine the output buffer
drive strength. The first number below refers to 3.3 V operation; the second to 1.8 V
operation. These values assume CKOUT+ is tied to CKOUT–.
00: 8 mA/2 mA
01: 16 mA/4 mA
10: 24 mA/6 mA
11: 32 mA (3.3 V operation)/8 mA (1.8 V operation)
SFOUT2_REG [2:0] SFOUT2_REG [2:0].
Controls output signal format and disable for CKOUT2 output buffer. The LVPECL
and CMOS output formats draw more current than either LVDS or CML; however,
there are restrictions in the allowed output format pin settings so that the maximum
power dissipation for the TQFP devices is limited when they are operated at 3.3 V.
When there are four enabled LVPECL or CMOS outputs, the fifth output must be
disabled. When there are five enabled outputs, there can be no more than three
outputs that are either LVPECL or CMOS.
000: Reserved
001: Disable
010: CMOS (Bypass mode not supported.)
011: Low swing LVDS
100: Reserved
101: LVPECL
110: CML
111: LVDS
SFOUT1_REG [2:0] SFOUT1_REG [2:0].
Controls output signal format and disable for CKOUT1 output buffer. The LVPECL
and CMOS output formats draw more current than either LVDS or CML; however,
there are restrictions in the allowed output format pin settings so that the maximum
power dissipation for the TQFP devices is limited when they are operated at 3.3 V.
When there are four enabled LVPECL or CMOS outputs, the fifth output must be
disabled. When there are five enabled outputs, there can be no more than three
outputs that are either LVPECL or CMOS.
000: Reserved
001: Disable
010: CMOS (Bypass mode not supported.)
011: Low swing LVDS
100: Reserved
101: LVPECL
110: CML
111: LVDS
Rev. 1.0
Si5367
Register 6.
Bit
D7
D6
Name
Type
R
R
D5
D4
D3
D2
D1
SFOUT4_REG [2:0]
SFOUT3_REG [2:0]
R/W
R/W
D0
Reset value = 0010 1100
Bit
7:6
5:3
2:0
Name
Function
Reserved
SFOUT4_REG [2:0] SFOUT4_REG [2:0].
Controls output signal format and disable for CKOUT4 output buffer. The LVPECL
and CMOS output formats draw more current than either LVDS or CML; however,
there are restrictions in the allowed output format pin settings so that the maximum
power dissipation for the TQFP devices is limited when they are operated at 3.3 V.
When there are four enabled LVPECL or CMOS outputs, the fifth output must be
disabled. When there are five enabled outputs, there can be no more than three
outputs that are either LVPECL or CMOS.
000: Reserved
001: Disable
010: CMOS (Bypass mode not supported.)
011: Low swing LVDS
100: Reserved
101: LVPECL
110: CML
111: LVDS
SFOUT3_REG [2:0] SFOUT3_REG [2:0].
Controls output signal format and disable for CKOUT3 output buffer. The LVPECL
and CMOS output formats draw more current than either LVDS or CML; however,
there are restrictions in the allowed output format pin settings so that the maximum
power dissipation for the TQFP devices is limited when they are operated at 3.3 V.
When there are four enabled LVPECL or CMOS outputs, the fifth output must be
disabled. When there are five enabled outputs, there can be no more than three
outputs that are either LVPECL or CMOS.
000: Reserved
001: Disable
010: CMOS (Bypass mode not supported.)
011: Low swing LVDS
100: Reserved
101: LVPECL
110: CML
111: LVDS
Rev. 1.0
25
Si5367
Register 7.
Bit
D7
D6
Name
Type
R
R
D5
D4
D3
D2
D1
SFOUT5_REG [2:0]
FOSREFSEL [2:0]
R/W
R/W
D0
Reset value = 0010 1010
Bit
Name
7:6
Reserved
5:3
2:0
26
Function
SFOUT5_REG [2:0] SFOUT5_REG [2:0]
Controls output signal format and disable for CKOUT5 output buffer. The LVPECL
and CMOS output formats draw more current than either LVDS or CML; however,
there are restrictions in the allowed output format pin settings so that the maximum
power dissipation for the TQFP devices is limited when they are operated at 3.3 V.
When there are four enabled LVPECL or CMOS outputs, the fifth output must be
disabled. When there are five enabled outputs, there can be no more than three
outputs that are either LVPECL or CMOS.
000: Reserved
001: Disable
010: CMOS (Bypass mode not supported.)
011: Low swing LVDS
100: Reserved
101: LVPECL
110: CML
111: LVDS
FOSREFSEL [2:0]
FOSREFSEL [2:0].
Selects which input clock is used as the reference frequency for Frequency Off-Set
(FOS) alarms.
000: XA/XB (External reference)
001: CKIN1
010: CKIN2
011: CKIN3
100: CKIN4
101: Reserved
110: Reserved
111: Reserved
Rev. 1.0
Si5367
Register 8.
Bit
D7
D6
D5
D4
D3
D2
D1
D0
Name
HLOG_4[1:0]
HLOG_3[1:0]
HLOG_2[1:0]
HLOG_1[1:0]
Type
R/W
R/W
R/W
R/W
Reset value = 0000 0000
Bit
Name
Function
7:6
HLOG_4 [1:0] HLOG_4 [1:0].
00: Normal operation
01: Holds CKOUT4 output at static logic 0. Entrance and exit from this state will occur
without glitches or runt pulses.
10: Holds CKOUT4 output at static logic 1. Entrance and exit from this state will occur
without glitches or runt pulses.
11: Reserved
5:4
HLOG_3 [1:0] HLOG_3 [1:0].
00: Normal operation
01: Holds CKOUT3 output at static logic 0. Entrance and exit from this state will occur
without glitches or runt pulses.
10: Holds CKOUT3 output at static logic 1. Entrance and exit from this state will occur
without glitches or runt pulses.
11: Reserved.
3:2
HLOG_2 [1:0] HLOG_2 [1:0].
00: Normal operation
01: Holds CKOUT2 output at static logic 0. Entrance and exit from this state will occur
without glitches or runt pulses.
10: Holds CKOUT2 output at static logic 1. Entrance and exit from this state will occur
without glitches or runt pulses.
11: Reserved.
1:0
HLOG_1 [1:0] HLOG_1 [1:0].
00: Normal operation
01: Holds CKOUT1 output at static logic 0. Entrance and exit from this state will occur
without glitches or runt pulses.
10: Holds CKOUT1 output at static logic 1. Entrance and exit from this state will occur
without glitches or runt pulses.
11: Reserved
Rev. 1.0
27
Si5367
Register 9.
Bit
D7
D6
D5
D4
D3
D2
D0
HLOG_5 [1:0]
Name
Type
D1
R
R
R
R
R
R
R/W
Reset value = 1100 0000
28
Bit
Name
7:2
Reserved
1:0
HLOG_5 [1:0]
Function
HLOG_5 [1:0].
00: Normal Operation
01: Holds CKOUT5 output at static logic 0. Entrance and exit from this state will occur
without glitches or runt pulses.
10: Holds CKOUT5 output at static logic 1. Entrance and exit from this state will
occur without glitches or runt pulses.
11: Reserved
Rev. 1.0
Si5367
Register 10.
Bit
D7
D6
D4
DSBL5_REG
Name
Type
D5
R
R
R/W
D3
D2
D1
D0
DSBL4_REG DSBL3_REG DSBL2_REG DSBL1_REG
R
R/W
R/W
R
R
Reset value = 0000 0000
Bit
Name
7:6
Reserved
5
4
Function
DSBL5_REG DSBL5_REG.
This bit controls the powerdown and disable of the CKOUT5 output buffer. If disable
mode is selected, the NC5_LS output divider is also powered down.
0: CKOUT5 enabled.
1: CKOUT5 disabled.
Reserved
3
DSBL4_REG DSBL4_REG.
This bit controls the powerdown and disable of the CKOUT4 output buffer. If disable
mode is selected, the NC4 output divider is also powered down.
0 = CKOUT4 enabled
1 = CKOUT4 disabled
2
DSBL3_REG DSBL3_REG.
This bit controls the powerdown and disable of the CKOUT3 output buffer. If disable
mode is selected, the NC3 output divider is also powered down.
0: CKOUT3 enabled
1: CKOUT3 disabled
1
DSBL2_REG DSBL2_REG.
This bit controls the powerdown and disable of the CKOUT2 output buffer. If disable
mode is selected, the NC2 output divider is also powered down.
0: CKOUT2 enabled
1: CKOUT2 disabled
0
DSBL1_REG DSBL1_REG.
This bit controls the powerdown and disable of the CKOUT1 output buffer. If disable
mode is selected, the NC1 output divider is also powered down.
0: CKOUT1 enabled
1: CKOUT1 disabled
Rev. 1.0
29
Si5367
Register 11.
Bit
D7
D6
D5
D4
Name
Type
R
R
R
R
D3
D2
D1
D0
PD_CK4
PD_CK3
PD_CK2
PD_CK1
R/W
R/W
R/W
R/W
Reset value = 0100 0000
30
Bit
Name
Function
7:4
Reserved
3
PD_CK4
PD_CK4.
This bit controls the powerdown of the CKIN4 input buffer.
0: CKIN4 enabled
1: CKIN4 disabled
2
PD_CK3
PD_CK3.
This bit controls the powerdown of the CKIN3 input buffer.
0: CKIN3 enabled
1: CKIN3 disabled
1
PD_CK2
PD_CK2.
This bit controls the powerdown of the CKIN2 input buffer.
0: CKIN2 enabled
1: CKIN2 disabled
0
PD_CK1
PD_CK1.
This bit controls the powerdown of the CKIN1 input buffer.
0: CKIN1 enabled
1: CKIN1 disabled
Rev. 1.0
Si5367
Register 19.
Bit
D7
D6
D5
D4
D3
Name
FOS_EN
FOS_THR [1:0]
VALTIME [1:0]
Type
R/W
R/W
R/W
D2
D1
D0
R
R
R
Reset value = 0010 1100
Bit
Name
Function
7
FOS_EN
FOS_EN.
Frequency offset enable globally disables FOS. See the individual FOS enables (FOSx_EN, register 139).
00: FOS disable
01: FOS enabled by FOSx_EN
6:5
FOS_THR [1:0] FOS_THR [1:0].
Frequency Offset at which FOS is declared:
00: ± 11 to 12 ppm Stratum 3/3E compliant, with a Stratum 3/3E used for REFCLK.
01: ± 48 to 49 ppm (SMC).
10: ± 30 ppm SONET Minimum Clock (SMC), with a Stratum 3/3E used for REFCLK.
11: ± 200 ppm
4:3
VALTIME [1:0]
2:0
Reserved
VALTIME [1:0].
Sets amount of time for input clock to be valid before the associated alarm is removed.
00: 2 ms
01: 100 ms
10: 200 ms
11: 13 s
Rev. 1.0
31
Si5367
Register 20.
Bit
D7
D6
D5
Name
Type
R
R
R
D4
D3
D2
CK3_BAD_PIN
CK2_BAD_PIN
CK1_BAD_PIN
R/W
R/W
R/W
D1
D0
INT_PIN
R
R/W
Reset value = 0011 1100
32
Bit
Name
Function
7:5
Reserved
4
CK3_BAD_PIN
CK3_BAD_PIN.
The CK3_BAD status can be reflected on the C3B output pin.
0: C3B output pin tristated
1: C3B status reflected to output pin
3
CK2_BAD_PIN
CK2_BAD_PIN.
The CK2_BAD status can be reflected on the C2B output pin.
0: C2B output pin tristated
1: C2B status reflected to output pin
2
CK1_BAD_PIN
CK1_BAD_PIN.
The CK1_BAD status can be reflected on the C1B output pin.
0: C1B output pin tristated
1: C1B status reflected to output pin
1
Reserved
0
INT_PIN
INT_PIN.
Reflects the interrupt status on the INT output pin.
0: Interrupt status not displayed on INT output pin. If ALRMOUT_PIN = 0, output
pin is tristated.
1: Interrupt status reflected to output pin. ALRMOUT_PIN ignored.
Rev. 1.0
Si5367
Register 21.
Bit
D7
D6
D5
Name
Type
R
Force 1
R
D4
D3
D2
D1
D0
CK4_ACTV_PIN*
CK3_ACTV_PIN*
CK2_ACTV_PIN*
CK1_ACTV_PIN*
CKSEL_ PIN*
R/W
R/W
R/W
R/W
R/W
Reset value = 1111 1111
Bit
Name
7:5
Reserved
Function
4
CK4_ACTV_PIN CK4_ACTV_PIN.
If the CKSEL[1]/CK4_ACTV pin is functioning as the CK4_ACTV output (see
CKSEL[1]/CK4_ACTV pin description on CK4_ACTV), the CK4_ACTV_REG status
bit can be reflected to the CK4_ACTV output pin using the CK4_ACTV_PIN enable
function.
0: CK4_ACTV output pin tristated
1: CK4_ACTV status reflected to output pin.
3
CK3_ACTV_PIN CK3_ACTV_PIN.
If the CKSEL[0]/CK3_ACTV pin is functioning as the CK3_ACTV output (see
CKSEL[0]/CK3_ACTV pin description on CK3_ACTV), the CK3_ACTV_REG status
bit can be reflected to the CK3_ACTV output pin using the CK3_ACTV_PIN enable
function.
0: CK3_ACTV output pin tristated.
1: CK3_ACTV status reflected to output pin.
2
CK2_ACTV_PIN CK2_ACTV_PIN.
The CK2_ACTV_REG status bit can be reflected to the CK2_ACTV output pin using
the
CK2_ACTV_PIN enable function.
0: CK2_ACTV output pin tristated.
1: CK2_ACTV status reflected to output pin.
1
CK1_ACTV_PIN CK1_ACTV_PIN.
The CK1_ACTV_REG status bit can be reflected to the CK1_ACTV output pin using
the CK1_ACTV_PIN enable function.
0: CK1_ACTV output pin tristated.
1: CK1_ACTV status reflected to output pin.
0
CKSEL_PIN
CKSEL_PIN.
If manual clock selection is being used, clock selection can be controlled via the
CKSEL_REG[1:0] register bits or the CKSEL[1:0] input pins.
0: CKSEL pins ignored. CKSEL_REG[1:0] register bits control clock selection.
1: CKSEL[1:0] input pins controls clock selection.
*Note: The CKx_ACTV_PIN bits in this register are of consequence only when CKSEL_PIN is 0.
Rev. 1.0
33
Si5367
Register 22.
Bit
D7
D6
D5
D3
D2
D1
FSYNCOUT_POL CK_ACTV_POL CK_BAD_ POL
Name
Type
D4
R/W
R/W
R
R/W
R/W
R/W
D0
INT_POL
R/W
R/W
Reset value = 1101 1111
Bit
Name
7:5
Reserved
4
3
34
Function
FSYNCOUT_POL FSYNCOUT_POL.
Controls active polarity of FSYNCOUT.
0: Active low
1: Active high
CK_ACTV_ POL CK_ACTV_POL.
Sets the active polarity for the CK1_ACTV, CK2_ACTV, CK3_ACTV, and CK4_ACTV
signals when reflected on an output pin.
0: Active low
1: Active high
2
CK_BAD_ POL
1
Reserved
0
INT_POL
CK_BAD_POL.
Sets the active polarity for the C1B, C2B, C3B, and ALRMOUT signals when
reflected
on output pins.
0: Active low
1: Active high
INT_POL.
Sets the active polarity for the interrupt status when reflected on the INT_ALM output
pin.
0: Active low
1: Active high
Rev. 1.0
Si5367
Register 23.
Bit
D7
D6
D5
Name
Type
R
R
R
D4
D3
D2
D1
LOS4_MSK
LOS3_MSK
LOS2_ MSK
LOS1_ MSK
R/W
R/W
R/W
R/W
D0
R
Reset value = 0001 1111
Bit
7:5
4
Name
Reserved
LOS4_MSK
3
LOS3_MSK
2
LOS2_MSK
1
LOS1_MSK
0
Reserved
Function
LOS4_MSK.
Determines if a LOS on CKIN4 (LOS4_FLG) is used in the generation of an interrupt.
Writes to this register do not change the value held in the LOS4_FLG register.
0: LOS4 alarm triggers active interrupt on INT output (if INT_PIN=1).
1: LOS4_FLG ignored in generating interrupt output.
LOS3_MSK.
Determines if a LOS on CKIN3 (LOS3_FLG) is used in the generation of an interrupt.
Writes to this register do not change the value held in the LOS3_FLG register.
0: LOS3 alarm triggers active interrupt on INT output (if INT_PIN=1).
1: LOS3_FLG ignored in generating interrupt output.
LOS2_MSK.
Determines if a LOS on CKIN2 (LOS2_FLG) is used in the generation of an interrupt.
Writes to this register do not change the value held in the LOS2_FLG register.
0: LOS2 alarm triggers active interrupt on INT output (if INT_PIN=1).
1: LOS2_FLG ignored in generating interrupt output.
LOS1_MSK.
Determines if a LOS on CKIN1 (LOS1_FLG) is used in the generation of an interrupt.
Writes to this register do not change the value held in the LOS1_FLG register.
0: LOS1 alarm triggers active interrupt on INT output (if INT_PIN=1).
1: LOS1_FLG ignored in generating interrupt output.
Rev. 1.0
35
Si5367
Register 24.
Bit
D7
D6
D5
Name
Type
R
R
R
D4
D3
D2
D1
FOS4_MSK
FOS3_MSK
FOS2_MSK
FOS1_MSK
R/W
R/W
R/W
R/W
D0
R/W
Reset value = 0011 1111
36
Bit
Name
Function
7:5
Reserved
4
FOS4_MSK
FOS4_MSK.
Determines if the FOS4_FLG is used to in the generation of an interrupt. Writes to this
register do not change the value held in the FOS4_FLG register.
0: FOS4 alarm triggers active interrupt on INToutput (if INT_PIN=1).
1: FOS4_FLG ignored in generating interrupt output.
3
FOS3_MSK
FOS3_MSK.
Determines if the FOS3_FLG is used in the generation of an interrupt. Writes to this
register do not change the value held in the FOS3_FLG register.
0: FOS3 alarm triggers active interrupt on INT output (if INT_PIN=1).
1: FOS3_FLG ignored in generating interrupt output.
2
FOS2_MSK
FOS2_MSK.
Determines if the FOS2_FLG is used in the generation of an interrupt. Writes to this register do not change the value held in the FOS2_FLG register.
0: FOS2 alarm triggers active interrupt on INT output (if INT_PIN=1).
1: FOS2_FLG ignored in generating interrupt output.
1
FOS1_MSK
FOS1_MSK.
Determines if the FOS1_FLG is used in the generation of an interrupt. Writes to this register do not change the value held in the FOS1_FLG register.
0: FOS1 alarm triggers active interrupt on INT output (if INT_PIN=1).
1: FOS1_FLG ignored in generating interrupt output.
0
Reserved
Rev. 1.0
Si5367
Register 25.
Bit
D7
D6
Name
N1_HS [2:0]
Type
R/W
D5
D4
D3
D2
D1
D0
NC1_LS [19:16]
R
R/W
Reset value = 0010 0000
Bit
Name
Function
7:5
N1_HS [2:0]
N1_HS [2:0].
Sets value for N1 high speed divider which drives NCn_LS (n = 1 to 4) low-speed
divider.
000: N1 = 4 Note: Changing the coarse skew via the INC pin is disabled for this value.
001: N1 = 5
010: N1 = 6
011: N1 = 7
100: N1 = 8
101: N1 = 9
110: N1 = 10
111: N1 = 11
4
Reserved
3:0
NC1_LS [19:16] NC1_LS [19:16].
Sets value for NC1 low-speed divider, which drives CKOUT1 output. Must be 0 or odd.
00000000000000000000 = 1
00000000000000000001 = 2
00000000000000000011 = 4
00000000000000000101 = 6
...
11111111111111111111 = 220
Valid divider values=[1, 2, 4, 6, ..., 220].
Register 26.
Bit
D7
D6
D5
D4
D3
Name
NC1_LS [15:8]
Type
R/W
D2
D1
D0
Reset value = 0000 0000
Bit
7:0
Name
Function
NC1_LS [15:8] NC1_LS [15:8].
See Register 25.
Rev. 1.0
37
Si5367
Register 27.
Bit
D7
D6
D5
D4
D3
Name
NC1_LS [7:0]
Type
R/W
D2
D1
D0
D2
D1
D0
Reset value = 0011 0001
Bit
7:0
Name
Function
NC1_LS [7:0] NC1_LS [7:0].
See Register 25.
Register 28.
Bit
D7
D6
D5
D4
D3
NC2_LS [19:16]
Name
Type
R
R
R
R
R/W
Reset value = 0000 0000
Bit
Name
7:4
Reserved
3:0
38
Function
NC1_LS [19:16] NC2_LS [19:16].
Sets value for NC2 low-speed divider, which drives CKOUT2 output. Must be 0 or odd.
00000000000000000000 = 1
00000000000000000001 = 2
00000000000000000011 = 4
00000000000000000101 = 6
...
11111111111111111111 = 220
Valid divider values = [1, 2, 4, 6, ..., 220]
Rev. 1.0
Si5367
Register 29.
Bit
D7
D6
D5
D4
D3
Name
NC2_LS [15:8]
Type
R/W
D2
D1
D0
D2
D1
D0
Reset value = 0000 0000
Bit
7:0
Name
Function
NC2_LS [15:8] NC2_LS [15:8].
See Register 28.
Register 30.
Bit
D7
D6
D5
D4
D3
Name
NC2_LS [7:0]
Type
R/W
Reset value = 0011 0001
Bit
7:0
Name
Function
NC2_LS [7:0] NC2_LS [7:0].
See Register 28.
Rev. 1.0
39
Si5367
Register 31.
Bit
D7
D6
D5
D4
D3
D2
D1
D0
NC3_LS [19:16]
Name
R
Type
R
R
R
R/W
Reset value = 0000 0000
Bit
Name
7:4
Reserved
3:0
Function
NC3_LS [19:16] NC3_LS [19:16.
Sets value for NC3 low-speed divider, which drives CKOUT3 output. Must be 0 or odd.
00000000000000000000 = 1
00000000000000000001 = 2
000000000000000000011 = 4
000000000000000000101 = 6
...
11111111111111111111 = 220
Valid divider values = [1, 2, 4, 6, ..., 220].
Register 32.
Bit
D7
D6
D5
D4
D3
Name
NC3_LS [15:8]
Type
R/W
Reset value = 0000 0000
Bit
7:0
40
Name
Function
NC3_LS [15:8] NC3_LS [15:8].
See Register 31.
Rev. 1.0
D2
D1
D0
Si5367
Register 33.
Bit
D7
D6
D5
D4
D3
Name
NC3_LS [7:0]
Type
R/W
D2
D1
D0
D2
D1
D0
Reset value = 0011 0001
Bit
7:0
Name
Function
NC3_LS [7:0] NC3_LS [7:0].
See Register 31.
Register 34.
Bit
D7
D6
D5
D4
D3
NC4_LS [19:16]
Name
Type
R
R
R
R
R/W
Reset value = 0000 0000
Bit
Name
7:4
Reserved
3:0
NC4_LS [19:16]
Function
NC4_LS [19:16].
Sets value for NC4 low-speed divider, which drives CKOUT4 output. Must be 0 or
odd.
00000000000000000000 = 1
00000000000000000001 = 2
000000000000000000011 = 4
000000000000000000101 = 6
...
11111111111111111111 = 220
Valid divider values = [1, 2, 4, 6, ..., 220].
Rev. 1.0
41
Si5367
Register 35.
Bit
D7
D6
D5
D4
D3
Name
NC4_LS [15:8]
Type
R/W
D2
D1
D0
D2
D1
D0
Reset value = 0000 0000
Bit
7:0
Name
Function
NC4_LS [15:8] NC4_LS [15:8].
See Register 34.
Register 36.
Bit
D7
D6
D5
D4
D3
Name
NC4_LS [7:0]
Type
R/W
Reset value = 0011 0001
Bit
7:0
42
Name
Function
NC4_LS [7:0] NC4_LS [7:0].
See Register 34.
Rev. 1.0
Si5367
Register 37.
Bit
D7
D6
D5
D4
D3
D2
D1
D0
NC5_LS [19:16]
Name
R
Type
R
R
R
R/W
Reset value = 0000 0000
Bit
Name
7:4
Reserved
3:0
NC5_LS
[19:16]
Function
NC5_LS [19:16].
Sets value for NC5 low-speed divider, which drives CKOUT5 output. Must be 0 or odd.
When CK_CONFIG = 0:
00000000000000000000 = 1
00000000000000000001 = 2
000000000000000000011 = 4
000000000000000000101 = 6
...
11111111111111111111 = 220
Valid divider values = [1, 2, 4, 6, ..., 220].
When CK_CONFIG = 1, maximum value limited to 2^19.:
00000000000000000000 = 1
00000000000000000001 = 2
000000000000000000011 = 4
000000000000000000101 = 6
...
01111111111111111111 = 219
Valid divider values = [1, 2, 4, 6, ..., 219].
Register 38.
Bit
D7
D6
D5
D4
D3
Name
NC5_LS [15:8]
Type
R/W
D2
D1
D0
Reset value = 0000 0000
Bit
7:0
Name
Function
NC5_LS [15:8] NC5_LS [15:8].
See Register 37.
Rev. 1.0
43
Si5367
Register 39.
Bit
D7
D6
D5
D4
D3
Name
NC5_LS [7:0]
Type
R/W
D2
D1
D0
D2
D1
D0
Reset value = 0011 0001
Bit
7:0
Name
Function
NC5_LS [7:0] NC5_LS [7:0].
See Register 37.
Register 40.
Bit
D7
D6
D5
D4
D3
N2_LS [19:16]
Name
Type
R
R
R
R
R/W
Reset value = 1100 0000
Bit
Name
7:4
Reserved
3:0
44
Function
N2_LS [19:16] NC2_LS [19:0].
Sets value for N2 low-speed divider, which drives phase detector.
00000000000000100000 = 2
000000000000001000010 = 4
000000000000001000100 = 6
...
00000000001000000000 = 512
Valid divider values = [32,34,36, ...512].
Rev. 1.0
Si5367
Register 41.
Bit
D7
D6
D5
D4
D3
Name
N2_LS [15:8]
Type
R/W
D2
D1
D0
D2
D1
D0
Reset value = 0000 0000
Bit
7:0
Name
Function
N2_LS [15:8] N2_LS [15:8].
See Register 40.
Register 42.
Bit
D7
D6
D5
D4
D3
Name
N2_LS [7:0]
Type
R/W
Reset value = 1111 1001
Bit
Name
7:0
N2_LS [7:0]
Function
N2_LS [7:0].
See Register 40.
Rev. 1.0
45
Si5367
Register 43.
Bit
D7
D6
D5
D4
D3
D2
D1
D0
N31 [18:16]
Name
R
Type
R
R
R
R
R/W
Reset value = 0000 0000
Bit
Name
7:3
Reserved
2:0
N31 [18:16]
Function
N31 [18:0].
Sets value for input divider for CKIN1.
0000000000000000000 = 1
0000000000000000001 = 2
0000000000000000010 = 3
...
1111111111111111111 = 219
Valid divider values = [1, 2, 3, ..., 219].
Register 44.
Bit
D7
D6
D5
D4
D3
Name
N31 [15:8]
Type
R/W
Reset value = 0000 0000
46
Bit
Name
7:0
N31 [15:8]
Function
N31 [15:8].
See Register 43.
Rev. 1.0
D2
D1
D0
Si5367
Register 45.
Bit
D7
D6
D5
D4
D3
Name
N31 [7:0]
Type
R/W
D2
D1
D0
D2
D1
D0
Reset value = 0000 1001
Bit
Name
7:0
N31 [7:0]
Function
N31 [7:0].
See Register 43.
Register 46.
Bit
D7
D6
D5
D4
D3
N32_[18:16]
Name
Type
R
R
R
R
R
R/W
Reset value = 0000 0000
Bit
Name
7:3
Reserved
2:0
N32_[18:16]
Function
N32_[18:0].
Sets value for input divider for CKIN2.
0000000000000000000 = 1
0000000000000000001 = 2
0000000000000000010 = 3
...
1111111111111111111 = 219
Valid divider values=[1, 2, 3, ..., 219].
Rev. 1.0
47
Si5367
Register 47.
Bit
D7
D6
D5
D4
D3
Name
N32_[15:8]
Type
R/W
D2
D1
D0
D2
D1
D0
Reset value = 0000 0000
Bit
Name
7:0
N32_[15:8]
Function
N32_[15:8].
See Register 46.
Register 48.
Bit
D7
D6
D5
D4
D3
Name
N32_[7:0]
Type
R/W
Reset value = 0000 1001
48
Bit
Name
7:0
N32_[7:0]
Function
N32_[7:0].
See Register 46.
Rev. 1.0
Si5367
Register 49.
Bit
D7
D6
D5
D4
D3
D2
D1
D0
N33_[18:16]
Name
R
Type
R
R
R
R
R/W
Reset value = 0000 0000
Bit
Name
18:0
N33_[18:16]
Function
N33_[18:16].
Sets value for input divider for CKIN3.
0000000000000000000 = 1
0000000000000000001 = 2
0000000000000000010 = 3
...
1111111111111111111 = 219
Valid divider values=[1, 2, 3, ..., 219]
Register 50.
Bit
D7
D6
D5
D4
D3
Name
N33_[15:8]
Type
R/W
D2
D1
D0
Reset value = 0000 0000
Bit
Name
7:0
N33_[15:8]
Function
N33_[15:8].
See Register 49.
Rev. 1.0
49
Si5367
Register 51.
Bit
D7
D6
D5
D4
D3
Name
N33_[7:0]
Type
R/W
D2
D1
D0
D2
D1
D0
Reset value = 0000 1001
Bit
Name
7:0
N33_[7:0]
Function
N33_[7:0].
See Register 49.
Register 52.
Bit
D7
D6
D5
D4
D3
N34_[18:16]
Name
Type
R
R
R
R
R
Reset value = 0000 0000
50
Bit
Name
7:0
N34_[18:16]
Function
N34_[18:0].
Sets value for input divider for CKIN4.
0000000000000000000 = 1
0000000000000000001 = 2
0000000000000000010 = 3
...
1111111111111111111 = 219
Valid divider values = [1, 2, 3, ..., 219].
Rev. 1.0
R/W
Si5367
Register 53.
Bit
D7
D6
D5
D4
D3
Name
N34_[15:8]
Type
R/W
D2
D1
D0
D2
D1
D0
Reset value = 0000 0000
Bit
Name
7:0
N34_[15:8]
Function
N34_[15:8].
See Register 52.
Register 54.
Bit
D7
D6
D5
D4
D3
Name
N34_[7:0]
Type
R/W
Reset value = 0000 1001
Bit
Name
7:0
N34_[15:8]
Function
N34_[7:0].
See Register 52.
Rev. 1.0
51
Si5367
Register 55.
Bit
D7
D6
Name
Type
R
R
D5
D4
D3
D2
CLKIN2RATE_[5:3]
CLKIN1RATE[2:0]
R/W
R/W
Reset value = 0000 0000
52
D1
Bit
Name
Function
7:6
Reserved
5:3
CLKIN2RATE[5:3]
2:0
CLKIN1RATE [2:0] CLKIN1RATE[2:0].
CKINn frequency selection for FOS alarm monitoring.
000: 10–27 MHz
001: 25–54 MHz
002: 50–105 MHz
003: 95–215 MHz
004: 190–435 MHz
005: 375–710 MHz
006: Reserved
007: Reserved
CLKIN2RATE[2:0].
CKINn frequency selection for FOS alarm monitoring.
000: 10–27 MHz
001: 25–54 MHz
002: 50–105 MHz
003: 95–215 MHz
004: 190–435 MHz
005: 375–710 MHz
006: Reserved
007: Reserved
Rev. 1.0
D0
Si5367
Register 56.
Bit
D7
D6
Name
Type
R
R
D5
D4
D3
D2
D1
CLKIN4RATE_[5:3]
CLKIN3RATE[2:0]
R/W
R/W
D0
Reset value = 0000 0000
Bit
Name
7:6
Reserved
Function
5:3
CLKIN4RATE[5:3] CLKIN4RATE[2:0].
CKINn frequency selection for FOS alarm monitoring.
000: 10–27 MHz
001: 25–54 MHz
002: 50–105 MHz
003: 95–215 MHz
004: 190–435 MHz
005: 375–710 MHz
006: Reserved
007: Reserved
2:0
CLKIN3RATE [2:0] CLKIN3RATE[2:0].
CKINn frequency selection for FOS alarm monitoring.
000: 10–27 MHz
001: 25–54 MHz
002: 50–105 MHz
003: 95–215 MHz
004: 190–435 MHz
005: 375–710 MHz
006: Reserved
007: Reserved
Rev. 1.0
53
Si5367
Register 128.
Bit
D7
D6
D5
D4
D2
D1
D0
CK4_ACTV_REG CK3_ACTV_REG CK2_ACTV_REG CK1_ACTV_REG
Name
Type
D3
R
R
R
R
R
R
R
R
Reset value = 0010 0000
54
Bit
Name
7:4
Reserved
Function
3
CK4_ACTV_REG CK4_ACTV_REG.
Indicates if CKIN4 is currently the active clock for the PLL input.
0: CKIN4 is not the active input clock. Either it is not selected or LOS4_INT is 1.
1: CKIN_4 is the active input clock.
2
CK3_ACTV_REG CK3_ACTV_REG.
Indicates if CKIN3 is currently the active clock for the PLL input.
0: CKIN3 is not the active input clock - either it is not selected or LOS3_INT is 1.
1: CKIN3 is the active input clock.
1
CK2_ACTV_REG CK2_ACTV_REG.
Indicates if CKIN2 is currently the active clock for the PLL input.
0: CKIN2 is not the active input clock. Either it is not selected or LOS2_INT is 1.
1: CKIN2 is the active input clock.
0
CK1_ACTV_REG CK1_ACTV_REG.
Indicates if CKIN1 is currently the active clock for the PLL input.
0: CKIN1 is not the active input clock. Either it is not selected or LOS1_INT is 1.
1: CKIN1 is the active input clock.
Rev. 1.0
Si5367
Register 129.
Bit
D7
D6
D5
Name
Type
R
R
R
D4
D3
D2
D1
LOS4_INT
LOS3_INT
LOS2_INT
LOS1_INT
R
R
R
R
D0
R
Reset value = 0001 1110
Bit
Name
Function
7:5
Reserved
4
LOS4_INT
LOS4_INT.
Indicates the LOS status on CKIN4.
0: Normal operation.
1: Internal loss-of-signal alarm on CKIN4 input.
3
LOS3_INT
LOS3_INT.
Indicates the LOS status on CKIN3.
0: Normal operation.
1: Internal loss-of-signal alarm on CKIN3 input.
2
LOS2_INT
LOS2_INT.
Indicates the LOS status on CKIN2.
0: Normal operation.
1: Internal loss-of-signal alarm on CKIN2 input.
1
LOS1_INT
LOS1_INT.
Indicates the LOS status on CKIN1.
0: Normal operation.
1: Internal loss-of-signal alarm on CKIN1 input.
0
Reserved
Rev. 1.0
55
Si5367
Register 130.
Bit
D7
D6
D5
D3
R
R
R
R
R
Reset value = 0000 0001
56
D2
FOS4_INT FOS3_INT FOS2_INT
Name
Type
D4
Bit
Name
Function
7:5
Reserved
4
FOS4_INT
FOS4_INT.
CKIN4 Frequency Offset Status.
0: Normal operation.
1: Internal frequency offset alarm on CKIN4 input.
3
FOS3_INT
FOS3_INT.
CKIN3 Frequency Offset Status.
0: Normal operation.
1: Internal frequency offset alarm on CKIN3 input.
2
FOS2_INT
FOS2_INT.
CKIN2 Frequency Offset Status.
0: Normal operation.
1: Internal frequency offset alarm on CKIN2 input.
1
FOS1_INT
FOS1_INT.
CKIN1 Frequency Offset Status.
0: Normal operation.
1: Internal frequency offset alarm on CKIN1 input.
0
Reserved
Rev. 1.0
R
D1
D0
FOS1_INT
R
R
Si5367
Register 131.
Bit
D7
D6
D5
Name
Type
R
R
R
D4
D3
LOS4_FLG
LOS3_FLG
R/W
R/W
D2
D1
D0
LOS2_FLG LOS1_FLG
R/W
R/W
R
Reset value = 0001 1111
Bit
Name
Function
7:5
Reserved
4
LOS4_FLG
LOS4_FLG.
CKIN4 Loss-of-Signal Flag.
0: Normal operation.
1: Held version of LOS4_INT. Generates active output interrupt if output interrupt pin is
enabled (INT_PIN=1) and if not masked by LOS4_MSK bit. Flag cleared by writing
location to 0.
3
LOS3_FLG
LOS3_FLG.
CKIN3 Loss-of-Signal Flag.
0: Normal operation.
1: Held version of LOS3_INT. Generates active output interrupt if output interrupt pin is
enabled (INT_PIN = 1) and if not masked by LOS3_MSK bit. Flag cleared by writing
location to 0.
2
LOS2_FLG
LOS2_FLG.
CKIN2 Loss-of-Signal Flag.
0: Normal operation.
1: Held version of LOS2_INT. Generates active output interrupt if output interrupt pin is
enabled (INT_PIN = 1) and if not masked by LOS2_MSK bit. Flag cleared by writing
location to 0.
1
LOS1_FLG
LOS1_FLG.
CKIN1 Loss-of-Signal Flag.
0: Normal operation.
1: Held version of LOS1_INT. Generates active output interrupt if output interrupt pin is
enabled (INT_PIN = 1) and if not masked by LOS1_MSK bit. Flag cleared by writing
location to 0.
0
Reserved
Rev. 1.0
57
Si5367
Register 132.
Bit
D7
D6
D4
D3
D2
D1
D0
R/W
R
FOS4_FLG FOS3_FLG FOS2_FLG FOS1_FLG
Name
Type
D5
R
R
R/W
R/W
R/W
R/W
Reset value = 0000 0010
58
Bit
Name
Function
7:6
Reserved
5
FOS4_FLG
FOS4_FLG.
CLKIN_4 Frequency Offset Flag.
0: Normal operation.
1: Held version of FOS4_INT. Generates active output interrupt if output interrupt pin is
enabled (INT_PIN=1) and if not masked by FOS4_MSK bit. Flag cleared by writing
location to 0.
4
FOS3_FLG
FOS3_FLG.
CLKIN_3 Frequency Offset Flag.
0: Normal operation.
1: Held version of FOS3_INT. Generates active output interrupt if output interrupt pin is
enabled (INT_PIN=1) and if not masked by FOS3_MSK bit. Flag cleared by writing
location to 0.
3
FOS2_FLG
FOS2_FLG.
CLKIN_2 Frequency Offset Flag.
0: Normal operation.
1: Held version of FOS2_INT. Generates active output interrupt if output interrupt pin is
enabled (INT_PIN = 1) and if not masked by FOS2_MSK bit. Flag cleared by writing
location to 0.
2
FOS1_FLG
FOS1_FLG.
CLKIN_1 Frequency Offset Flag.
0: Normal operation.
1: Held version of FOS1_INT. Generates active output interrupt if output interrupt pin is
enabled (INT_PIN = 1) and if not masked by FOS1_MSK bit. Flag cleared by writing
location to 0.
1:0
Reserved
Rev. 1.0
Si5367
Register 134.
Bit
D7
D6
D5
D4
D3
Name
PARTNUM_RO [11:4]
Type
R
D2
D1
D0
D2
D1
D0
Reset value = 0000 0100
Bit
7:0
Name
Function
PARTNUM_RO [11:4] PARTNUM_RO [11:4].
Device ID:
0000 0100 0011'b = Si5367
Register 135.
Bit
D7
D6
D5
D4
D3
Name
PARTNUM_RO [3:0]
REVID_RO [3:0]
Type
R
R
Reset value = 0100 0010
Bit
7:4
3:0
Name
Function
PARTNUM_RO [7:4] PARTNUM_RO [3:0].
See Register 134.
REVID_RO [3:0]
REVID_RO [3:0].
Indicates revision number of device.
0000: Revision A
0001: Revision B
0010: Revision C
Other codes: Reserved
Rev. 1.0
59
Si5367
Register 136.
Bit
D7
D6
Name
RST_REG
ICAL
Type
R/W
R/W
D5
D4
D3
D2
D1
D0
R
R
R
R
R
R
Reset value = 0000 0000
Bit
Name
7
RST_REG
6
ICAL
Function
RST_REG.
Internal Reset.
0: Normal operation.
1: Reset of all internal logic. Outputs tristated or disabled during reset.
ICAL.
Start an Internal Calibration Sequence.
For proper operation, the device must go through an internal calibration sequence. ICAL
is a self-clearing bit. Writing a one to this location initiates an ICAL. The calibration is
complete once the LOL alarm goes low. A valid stable clock (within 100 ppm) must be
present to begin ICAL.
Note: Any divider, CLKINn_RATE or BWSEL_REG changes require an ICAL to take effect.
Changes in SFOUTn_REG, PD_CKn, or DSBLn_REG will cause a random change in skew
until an ICAL is completed.
0: Normal operation.
1: Writing a "1" initiates internal self-calibration. Upon completion of internal selfcalibration, ICAL is internally reset to zero.
5:0
60
Reserved
Rev. 1.0
Si5367
Register 138.
Bit
D7
D6
D5
D4
Name
Type
R
R
R
R
D3
D2
D1
D0
LOS4_EN[1:1]
LOS3_EN[1:1]
LOS2_EN[1:1]
LOS1_EN [1:1]
R/W
R/W
R/W
R/W
Reset value = 0000 1111
Bit
Name
7:4
Reserved
3
Function
LOS4_EN [1:0] LOS4_EN [1:0].
Note: LOS1_EN is split between two registers.
00: Disable LOS monitoring.
01: Reserved.
10: Enable LOSA monitoring.
11: Enable LOS monitoring.
LOSA is a slower and less sensitive version of LOS. See the Family Reference Manual
for details.
2
LOS3_EN [1:0] LOS3_EN [1:0].
Note: LOS1_EN is split between two registers.
00: Disable LOS monitoring.
01: Reserved.
10: Enable LOSA monitoring.
11: Enable LOS monitoring.
LOSA is a slower and less sensitive version of LOS. See the Family Reference Manual
for details.
1
LOS2_EN [1:0] LOS2_EN [1:0].
Note: LOS1_EN is split between two registers.
00: Disable LOS monitoring.
01: Reserved.
10: Enable LOSA monitoring.
11: Enable LOS monitoring.
LOSA is a slower and less sensitive version of LOS. See the Family Reference Manual
for details.
0
LOS1_EN [1:0] LOS1_EN [1:0].
Note: LOS1_EN is split between two registers.
00: Disable LOS monitoring.
01: Reserved.
10: Enable LOSA monitoring.
11: Enable LOS monitoring.
LOSA is a slower and less sensitive version of LOS. See the Family Reference Manual
for details.
Rev. 1.0
61
Si5367
Register 139.
Bit
D7
D6
Name
LOS4_EN [0:0]
LOS3_EN [0:0]
Type
R/W
R/W
D5
D4
D3
LOS2_EN [0:0] LOS1_EN [0:0]
R/W
R/W
D2
FOS4_EN FOS3_EN
R/W
R/W
D1
D0
FOS2_EN
FOS1_EN
R/W
R/W
Reset value = 1111 1111
Bit
7
Name
Function
LOS4_EN [0:0] LOS4_EN [0:0].
Enable CKIN1 LOS Monitoring on the Specified Input (1 of 2).
Note: LOS1_EN is split between two registers.
00: Disable LOS monitoring.
01: Reserved.
10: Enable LOSA monitoring.
11: Enable LOS monitoring.
LOSA is a slower and less sensitive version of LOS. See the family reference manual for
details.
6
LOS3_EN [0:0] LOS3_EN [0:0].
Enable CKIN1 LOS Monitoring on the Specified Input (1 of 2).
Note: LOS1_EN is split between two registers.
00: Disable LOS monitoring.
01: Reserved.
10: Enable LOSA monitoring.
11: Enable LOS monitoring.
LOSA is a slower and less sensitive version of LOS. See the family reference manual for
details.
5
LOS2_EN [0:0] LOS2_EN.
Enable CKIN1 LOS Monitoring on the Specified Input (1 of 2).
Note: LOS1_EN is split between two registers.
00: Disable LOS monitoring.
01: Reserved.
10: Enable LOSA monitoring.
11: Enable LOS monitoring.
LOSA is a slower and less sensitive version of LOS. See the family reference manual for
details.
4
LOS1_EN [0:0] LOS1_EN [0:0].
Enable CKIN1 LOS Monitoring on the Specified Input (1 of 2).
Note: LOS1_EN is split between two registers.
00: Disable LOS monitoring.
01: Reserved.
10: Enable LOSA monitoring.
11: Enable LOS monitoring.
LOSA is a slower and less sensitive version of LOS. See the family reference manual for
details.
62
Rev. 1.0
Si5367
Bit
Name
Function
3
FOS4_EN
FOS4_EN.
Enables FOS on a Per Channel Basis.
0: Disable FOS monitoring.
1: Enable FOS monitoring.
2
FOS3_EN
FOS3_EN.
Enables FOS on a Per Channel Basis.
0: Disable FOS monitoring.
1: Enable FOS monitoring.
1
FOS2_EN
FOS2_EN.
Enables FOS on a Per Channel Basis.
0: Disable FOS monitoring.
1: Enable FOS monitoring.
0
FOS1_EN
FOS1_EN.
Enables FOS on a Per Channel Basis.
0: Disable FOS monitoring.
1: Enable FOS monitoring.
Register 140.
Bit
D7
D6
D5
D4
D3
D2
Name
INDEPENDENTSKEW1 [7:0]
Type
R/W
D1
D0
Reset value = 0000 0000
Bit
7:0
Name
Function
INDEPENDENTSKEW1 [7:0] INDEPENDENTSKEW1 [7:0].
8-bit field that represents a 2s complement of the phase offset in terms of
clocks from the high speed output divider.
Rev. 1.0
63
Si5367
Register 141.
Bit
D7
D6
D5
D4
D3
D2
Name
INDEPENDENTSKEW2 [7:0]
Type
R/W
D1
D0
Reset value = 0000 0001
Bit
7:0
Name
Function
INDEPEND-ENTSKEW2 [7:0] INDEPENDENTSKEW2 [7:0].
8-bit field that represents a 2s complement of the phase offset in terms of
clocks from the high speed output divider.
Register 142.
Bit
D7
D6
D5
D4
D3
D2
Name
INDEPENDENTSKEW3 [7:0]
Type
R/W
D1
D0
Reset value = 0000 0000
Bit
7:0
Name
Function
INDEPEND-ENTSKEW3 [7:0] INDEPENDENTSKEW3 [7:0].
8-bit field that represents a 2s complement of the phase offset in terms of
clocks from the high speed output divider.
Register 143.
Bit
D7
D6
D5
D4
D3
D2
Name
INDEPENDENTSKEW4 [7:0]
Type
R/W
D1
D0
Reset value = 0000 0000
Bit
7:0
64
Name
Function
INDEPEND-ENTSKEW4 [7:0] INDEPENDENTSKEW4 [7:0].
8-bit field that represents a 2s complement of the phase offset in terms
of clocks from the high speed output divider.
Rev. 1.0
Si5367
Register 144.
Bit
D7
D6
D5
D4
D3
D2
Name
INDEPENDENTSKEW5 [7:0]
Type
R/W
D1
D0
Reset value = 0000 0000
Bit
7:0
Name
Function
INDEPEND-ENTSKEW5 [7:0] INDEPENDENTSKEW5 [7:0].
8-bit field that represents a 2s complement of the phase offset in terms
of clocks from the high speed output divider when CK_CONFIG = 0.
Table 9. CKOUT_ALWAYS_ON and SQICAL Truth Table
CKOUT_ALWAYS_ON
SQICAL
Results
Output to Output Skew
Preserved?
0
0
CKOUT OFF until after the first ICAL
N
0
1
CKOUT OFF until after the first successful
ICAL (i.e., when LOL is low)
Y
1
0
CKOUT always ON, including during an ICAL
N
1
1
CKOUT always ON, including during an ICAL
Y
Table 10 lists all of the register locations that should be followed by an ICAL after their contents are changed.
Rev. 1.0
65
Si5367
Table 10. Register Locations Requiring ICAL
Addr
66
Register
0
BYPASS_REG
0
CKOUT_ALWAYS_ON
1
CK_PRIOR4
1
CK_PRIOR3
1
CK_PRIOR2
1
CK_PRIOR1
2
BWSEL_REG
5
ICMOS
7
FOSREFSEL
10
DSBL5_REG
10
DSBL4_REG
10
DSBL3_REG
10
DSBL2_REG
10
DSBL1_REG
11
PD_CK2
11
PD_CK1
19
FOS_EN
19
FOS_THR
19
VALTIME
25
N1_HS
26
NC1_LS
28
NC2_LS
31
NC3_LS
34
NC4_LS
37
NC5_LS
40
N2_HS
40
N2_LS
43
N31
46
N32
49
N33
51
N34
55
CLKIN2RATE
55
CLKIN1RATE
56
CLKIN4RATE
56
CLKIN3RATE
Rev. 1.0
Si5367
VDD
CKOUT3+
CKOUT3–
VDD
NC
VDD
CKOUT1–
CKOUT1+
VDD
NC
CKOUT5–
VDD
CKOUT5+
VDD
CMODE
VDD
CKOUT2+
CKOUT2–
NC
VDD
VDD
CKOUT4–
VDD
CKOUT4+
VDD
6. Pin Descriptions: Si5367
NC
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76
75
1
NC
NC
2
74
NC
RST
3
73
NC
NC
4
72
NC
VDD
5
71
SDI
VDD
6
70
A2_SS
GND
7
69
A1
GND
8
68
A0
C1B
9
67
NC
C2B
10
66
NC
C3B
11
65
GND
INT_ALM
12
64
GND
CS0_C3A
13
63
VDD
GND
14
62
VDD
VDD
15
61
SDA_SDO
SCL
NC
16
17
60
59
C2A
GND
18
58
C1A
GND
19
57
CS1_C4A
NC
GND
Si5367
GND PAD
Rev. 1.0
NC
NC
NC
NC
NC
CKIN1–
GND
51
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
CKIN1+
25
GND
NC
VDD
NC
GND
52
CKIN3–
24
GND
NC
CKIN3+
53
NC
23
NC
GND
NC
CKIN2–
GND
CKIN2+
54
GND
22
VDD
NC
GND
GND
CKIN4–
55
CKIN4+
21
GND
GND
VDD
20
GND
NC
56
67
Si5367
Table 11. Si5367 Pin Descriptions
Pin #
Pin Name
I/O
Signal Level
Description
1, 2, 4, 17, 20,
22, 23, 24, 25,
37, 47, 48, 49,
50, 51, 52, 53,
56, 66, 67, 72,
73, 74, 75, 80,
85, 95
NC
3
RST
I
LVCMOS
External Reset.
Active low input that performs external hardware reset of
device. Resets all internal logic to a known state and
forces the device registers to their default value. Clock
outputs are disabled during reset. The part must be programmed after a reset or power-on to get a clock output.
See Family Reference Manual for details.
This pin has a weak pull-up.
5, 6, 15, 27, 32,
42, 62, 63, 76,
79, 81, 84, 86,
89, 91, 94, 96,
99, 100
VDD
Vdd
Supply
VDD.
The device operates from a 1.8 or 2.5 V supply. Bypass
capacitors should be associated with the following VDD
pins:
Pins
Bypass Cap
5, 6
0.1 µF
15
0.1 µF
27
0.1 µF
62, 63
0.1 µF
76, 79
1.0 µF
81, 84
0.1 µF
86, 89
0.1 µF
91, 94
0.1 µF
96, 99, 100
0.1 µF
7, 8, 14, 16, 18,
19, 21, 26, 28,
31, 33, 36, 38,
41, 43, 46, 54,
55, 64, 65
GND
GND
Supply
Ground.
This pin must be connected to system ground. Minimize
the ground path impedance for optimal performance.
9
C1B
O
LVCMOS
CKIN1 Invalid Indicator.
This pin performs the CK1_BAD function if
CK1_BAD_PIN = 1 and is tristated if CK1_BAD_PIN = 0.
Active polarity is controlled by CK_BAD_POL.
0 = No alarm on CKIN1.
1 = Alarm on CKIN1.
10
C2B
O
LVCMOS
CKIN2 Invalid Indicator.
This pin performs the CK2_BAD function if
CK2_BAD_PIN = 1 and is tristated if CK2_BAD_PIN = 0.
Active polarity is controlled by CK_BAD_POL.
0 = No alarm on CKIN2.
1 = Alarm on CKIN2.
No Connect.
These pins must be left unconnected for normal operation.
Note: Internal register names are indicated by underlined italics, e.g. INT_PIN. See Si5368 Register Map.
68
Rev. 1.0
Si5367
Table 11. Si5367 Pin Descriptions (Continued)
Pin #
Pin Name
I/O
Signal Level
Description
11
C3B
O
LVCMOS
CKIN3 Invalid Indicator.
This pin performs the CK3_BAD function if
CK3_BAD_PIN = 1 and is tristated if CK3_BAD_PIN = 0.
Active polarity is controlled by CK_BAD_POL.
0 = No alarm on CKIN3.
1 = Alarm on CKIN3.
12
INT_ALM
O
LVCMOS
Interrupt/Alarm Output Indicator.
This pin functions as a maskable interrupt output with
active polarity controlled by the INT_POL register bit.
The INT output function can be turned off by setting
INT_PIN = 0. If the ALRMOUT function is desired
instead on this pin, set ALRMOUT_PIN = 1 and
INT_PIN = 0.
0 = ALRMOUT not active.
1 = ALRMOUT active.
The active polarity is controlled by CK_BAD_POL. If no
function is selected, the pin tristates.
13
57
CS0_C3A
CS1_C4A
I/O
LVCMOS
Input Clock Select/CKIN3 or CKIN4 Active Clock
Indicator.
Input: If manual clock selection is chosen, and if
CKSEL_PIN = 1, the CKSEL pins control clock
selection and the CKSEL_REG bits are ignored.
CS[1:0]
Active Input Clock
00
CKIN1
01
CKIN2
10
CKIN3
11
CKIN4
If configured as inputs, these pins must not
float.
Output: If CKSEL_PIN = 0, the CKSEL_REG register
bits control this function.
If auto clock selection is enabled, then they
serve as the CKIN_n active clock indicator.
0 = CKIN3 (CKIN4) is not the active input clock
1 = CKIN3 (CKIN4) is currently the active input
to the PLL
The CKn_ACTV_REG bit always reflects the
active clock status for CKIN_n. If
CKn_ACTV_PIN = 1, this status will also be
reflected on the CnA pin with active polarity controlled by the CK_ACTV_POL bit. If
CKn_ACTV_PIN = 0, this output tristates.
Note: Internal register names are indicated by underlined italics, e.g. INT_PIN. See Si5368 Register Map.
Rev. 1.0
69
Si5367
Table 11. Si5367 Pin Descriptions (Continued)
Pin #
Pin Name
I/O
Signal Level
Description
29
30
CKIN4+
CKIN4–
I
MULTI
Clock Input 4.
Differential clock input. This input can also be driven with
a single-ended signal. CKIN4 serves as the frame sync
input associated with the CKIN2 clock when
CK_CONFIG_REG = 1.
34
35
CKIN2+
CKIN2–
I
MULTI
Clock Input 2.
Differential input clock. This input can also be driven with
a single-ended signal.
39
40
CKIN3+
CKIN3–
I
MULTI
Clock Input 3.
Differential clock input. This input can also be driven with
a single-ended signal. CKIN3 serves as the frame sync
input associated with the CKIN1 clock when
CK_CONFIG_REG = 1.
44
45
CKIN1+
CKIN1–
I
MULTI
Clock Input 1.
Differential clock input. This input can also be driven with
a single-ended signal.
58
C1A
O
LVCMOS
CKIN1 Active Clock Indicator.
This pin serves as the CKIN1 active clock indicator. The
CK1_ACTV_REG bit always reflects the active clock status for CKIN1. If CK1_ACTV_PIN = 1, this status will
also be reflected on the C1A pin with active polarity controlled by the CK_ACTV_POL bit. If
CK1_ACTV_PIN = 0, this output tristates.
59
C2A
O
LVCMOS
CKIN2 Active Clock Indicator.
This pin serves as the CKIN2 active clock indicator. The
CK2_ACTV_REG bit always reflects the active clock status for CKIN_2. If CK2_ACTV_PIN = 1, this status will
also be reflected on the C2A pin with active polarity controlled by the CK_ACTV_POL bit. If
CK2_ACTV_PIN = 0, this output tristates.
60
SCL
I
LVCMOS
Serial Clock.
This pin functions as the serial port clock input for both
SPI and I2C modes.
This pin has a weak pull-down.
61
SDA_SDO
I/O
LVCMOS
Serial Data.
In I2C microprocessor control mode (CMODE = 0), this
pin functions as the bidirectional serial data port.In SPI
microprocessor control mode (CMODE = 1), this pin
functions as the serial data output.
68
69
A0
A1
I
LVCMOS
Serial Port Address.
In I2C control mode (CMODE = 0), these pins function as
hardware controlled address bits. The I2C address is
1101 [A2][A1][A0.]
In SPI control mode (CMODE = 1), these pins are
ignored.
This pin has a weak pull-down.
Note: Internal register names are indicated by underlined italics, e.g. INT_PIN. See Si5368 Register Map.
70
Rev. 1.0
Si5367
Table 11. Si5367 Pin Descriptions (Continued)
Pin #
Pin Name
I/O
Signal Level
Description
70
A2_SS
I
LVCMOS
Serial Port Address/Slave Select.
In I2C microprocessor control mode (CMODE = 0), this
pin functions as a hardware controlled address bit. The
I2C address is 1101 [A2][A1][A0.]
In SPI microprocessor control mode (CMODE = 1), this
pin functions as the slave select input.
This pin has a weak pull-down.
71
SDI
I
LVCMOS
Serial Data In.
In SPI microprocessor control mode (CMODE = 1), this
pin functions as the serial data input.
In I2C microprocessor control mode (CMODE = 0), this
pin is ignored.
This pin has a weak pull-down.
77
78
CKOUT3+
CKOUT3–
O
MULTI
Clock Output 3.
Differential clock output. Output signal format is selected
by SFOUT3_REG register bits. Output is differential for
LVPECL, LVDS, and CML compatible modes. For CMOS
format, both output pins drive identical single-ended
clock outputs.
82
83
CKOUT1–
CKOUT1+
O
MULTI
Clock Output 1.
Differential clock output. Output signal format is selected
by SFOUT1_REG register bits. Output is differential for
LVPECL, LVDS, and CML compatible modes. For CMOS
format, both output pins drive identical single-ended
clock outputs.
87
88
CKOUT5–
CKOUT5+
O
MULTI
Clock Output 5.
Differential clock output. Output signal format is selected
by SFOUT5_REG register bits. Output is differential for
LVPECL, LVDS, and CML compatible modes. For CMOS
format, both output pins drive identical single-ended
clock outputs.
90
CMODE
I
LVCMOS
92
93
CKOUT2+
CKOUT2–
O
MULTI
Control Mode.
Selects I2C or SPI control mode for the device.
0 = I2C Control Mode.
1 = SPI Control Mode.
This pin must be tied high or low.
Clock Output 2.
Differential clock output. Output signal format is selected
by SFOUT2_REG register bits. Output is differential for
LVPECL, LVDS, and CML compatible modes. For CMOS
format, both output pins drive identical single-ended
clock outputs.
Note: Internal register names are indicated by underlined italics, e.g. INT_PIN. See Si5368 Register Map.
Rev. 1.0
71
Si5367
Table 11. Si5367 Pin Descriptions (Continued)
Pin #
Pin Name
I/O
Signal Level
Description
97
98
CKOUT4–
CKOUT4+
O
MULTI
Clock Output 4.
Differential clock output. Output signal format is selected
by SFOUT4_REG register bits. Output is differential for
LVPECL, LVDS, and CML compatible modes. For CMOS
format, both output pins drive identical single-ended
clock outputs.
GND PAD
GND PAD
GND
Supply
Ground Pad.
The ground pad must provide a low thermal and electrical impedance to a ground plane.
Note: Internal register names are indicated by underlined italics, e.g. INT_PIN. See Si5368 Register Map.
72
Rev. 1.0
Si5367
7. Ordering Guide
Ordering Part
Number
Output Clock
Frequency Range
Package
ROHS6,
Pb-Free
Temperature Range
Si5367A-C-GQ*
.002–945 MHz
970–1134 MHz
1.213–1.4 GHz
100-Pin 14 x 14 mm TQFP
Yes
–40 to 85 °C
Si5367B-C-GQ*
.002–808 MHz
100-Pin 14 x 14 mm TQFP
Yes
–40 to 85 °C
Si5367C-C-GQ*
.002–346 MHz
100-Pin 14 x 14 mm TQFP
Yes
–40 to 85 °C
*Note: Not recommended for new designs. For alternatives, see the Si533x family.
Rev. 1.0
73
Si5367
8. Package Outline: 100-Pin TQFP
Figure 6 illustrates the package details for the Si5367. Table 12 lists the values for the dimensions shown in the
illustration.
Figure 6. 100-Pin Thin Quad Flat Package (TQFP)
Table 12. 100-Pin Package Diagram Dimensions
Dimension
Min
Nom
Max
Dimension
Min
Nom
A
—
—
1.20
E
16.00 BSC
A1
0.05
—
0.15
E1
14.00 BSC
A2
0.95
1.00
1.05
E2
3.85
4.00
4.15
b
0.17
0.22
0.27
L
0.45
0.60
0.75
c
0.09
—
0.20
aaa
—
—
0.20
D
16.00 BSC
bbb
—
—
0.20
D1
14.00 BSC
ccc
—
—
0.08
ddd
—
—
0.08

0º
3.5º
7º
D2
e
3.85
4.00
4.15
0.50 BSC
Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This package outline conforms to JEDEC MS-026, variant AED-HD.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body
Components.
74
Max
Rev. 1.0
Si5367
9. PCB Land Pattern
Figure 7. PCB Land Pattern Diagram
Rev. 1.0
75
Si5367
Table 13. PCB Land Pattern Dimensions
Dimension
MIN
MAX
e
0.50 BSC.
E
15.40 REF.
D
15.40 REF.
E2
3.90
4.10
D2
3.90
4.10
GE
13.90
—
GD
13.90
—
X
—
0.30
Y
1.50 REF.
ZE
—
16.90
ZD
—
16.90
R1
R2
0.15 REF
—
1.00
Notes:
General
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.
3. This Land Pattern Design is based on IPC-7351 guidelines.
4. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition
(LMC) is calculated based on a Fabrication Allowance of 0.05 mm.
Solder Mask Design
5. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder
mask and the metal pad is to be 60 µm minimum, all the way around the pad.
Stencil Design
6. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be
used to assure good solder paste release.
7. The stencil thickness should be 0.125 mm (5 mils).
8. The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads.
9. A 4 x 4 array of 0.80 mm square openings on 1.05 mm pitch should be used for the center
ground pad.
Card Assembly
10. A No-Clean, Type-3 solder paste is recommended.
11. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for
Small Body Components.
76
Rev. 1.0
Si5367
10. Top Marking
10.1. Si5367 Top Marking

10.2. Top Marking Explanation
Mark Method:
Laser
Logo Size:
9.2 x 3.1 mm
Center-Justified
Font Size:
3.0 Point (1.07 mm)
Right-Justified
Line 1 Marking:
Device Part Number
Si5367x-C-GQ
X = Speed Grade
See "7. Ordering Guide" on page 73.
Line 2 Marking:
YY = Year
WW = Workweek
Assigned by the Assembly Supplier.
Corresponds to the year and workweek of the mold date.
R = Die Revision
Line 3 Marking:
TTTTT = Mfg Code
Manufacturing Code
Circle = 1.8 mm Diameter
Center-Justified
“e3” Pb-Free Symbol
Country of Origin
ISO Code Abbreviation
Rev. 1.0
77
Si5367
DOCUMENT CHANGE LIST
Revision 0.1 to Revision 0.2
Changed LVTTL to LVCMOS in Absolute Maximum
Ratings table.
 Updated “6. Pin Descriptions: Si5367”.

Changed
FSOUT (pins 87 and 88) to CLKOUT5.
FS_ALIGN (pin 21) control pin to GND.
Changed pin 16 to ground.
Changed
Revision 0.2 to Revision 0.3
Removed references to latency control, INC, and
DEC pins.
 Updated block diagram on page 1.
 Added Figure 3, “Typical Phase Noise Plot,” on page
14.
 Updated “6. Pin Descriptions: Si5367”.

Changed
font of register names to underlined italics.
Updated "7. Ordering Guide" on page 73.
 Added “9. PCB Land Pattern”.

Revision 0.3 to Revision 0.4
Changed 1.8 V operating range to ±5%.
 Clarified "6. Pin Descriptions: Si5367" on page 67.
 Updated "8. Package Outline: 100-Pin TQFP" on
page 74.

Revision 0.4 to Revision 0.5








Changed “any-rate” to “any-frequency” throughout.
Expanded and reordered electrical specification
Tables 1 through 7.
Added "4. Register Map" on page 18.
Added "5. Register Descriptions" on page 20.
Added "10. Top Marking" on page 77.
Updated Table 5, “Jitter Generation,” on page 13.
Updated "7. Ordering Guide" on page 73.
"3. Pin Descriptions: Si5322" on page 14.
Revision 0.5 to Revision 1.0
Updated logo.
 Transitioned to full production.

78
Rev. 1.0
Si5367
NOTES:
Rev. 1.0
79
ClockBuilder Pro
One-click access to Timing tools,
documentation, software, source
code libraries & more. Available for
Windows and iOS (CBGo only).
www.silabs.com/CBPro
Timing Portfolio
www.silabs.com/timing
SW/HW
www.silabs.com/CBPro
Quality
www.silabs.com/quality
Support and Community
community.silabs.com
Disclaimer
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using
or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and
"Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to
make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the
included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses
granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent
of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant
personal injury or death. Silicon Laboratories products are not designed or authorized for military applications. Silicon Laboratories products shall under no circumstances be used in
weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.
Trademark Information
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®,
ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand
names mentioned herein are trademarks of their respective holders.
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA
http://www.silabs.com