Si5368 A N Y - F REQUENCY P RECISION C L O C K M ULTIPLIER / J ITTER A TTENUATOR Features Copyright © 2012 by Silicon Laboratories VDD CKOUT3+ CKOUT3– VDD NC VDD CKOUT1– CKOUT1+ VDD NC FS_OUT– VDD FS_OUT+ VDD CMODE VDD CKOUT2+ CKOUT2– 74 NC 3 73 NC 4 72 NC VDD 5 71 SDI VDD 6 70 A2_SS GND GND 7 69 A1 8 68 A0 C1B 9 67 NC C2B C3B 10 66 NC 11 65 T_ALM 12 64 GND GND 0_C3A 13 63 VDD GND 14 62 VDD VDD 15 61 SDA_SDO XA 60 SCL XB 16 17 59 C2A GND 18 58 C1A GND 19 57 CS1_C4A NC 20 56 NC ALIGN 21 55 INC NC 22 23 54 53 DEC NC Si5368 GND PAD NC NC 51 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 NC LOL NC NC CKIN1– GND CKIN1+ GND RATE1 GND CKIN3– CKIN3+ GND NC GND CKIN2– 24 25 NC 52 CKIN2+ NC Rev. 1.0 8/12 NC VDD NC 2 NC NC The Si5368 is a jitter-attenuating precision clock multiplier for applications requiring sub 1 ps rms jitter performance. The Si5368 accepts four clock inputs ranging from 2 kHz to 710 MHz and generates five clock outputs ranging from 2 kHz to 945 MHz and select frequencies to 1.4 GHz. The device provides virtually any frequency translation combination across this operating range. The outputs are divided down separately from a common source. The Si5368 input clock frequency and clock multiplication ratio are programmable through an I2C or SPI interface. The Si5368 is based on Silicon Laboratories' third-generation DSPLL® technology, which provides any-frequency synthesis and jitter attenuation in a highly integrated PLL solution that eliminates the need for external VCXO and loop filter components. The DSPLL loop bandwidth is digitally programmable, providing jitter performance optimization at the application level. Operating from a single 1.8, 2.5 ,or 3.3 V supply, the Si5368 is ideal for providing clock multiplication and jitter attenuation in high performance timing applications. VDD 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 1 GND Description NC NC RST RATE0 Data converter clocking OTN/WDM Muxponder, MSPP, ROADM line cards SONET/SDH + PDH clock synthesis Test and measurement Synchronous Ethernet Broadcast video GND SONET/SDH OC-48/STM-16/OC- 192/STM-64 line cards GbE/10GbE, 1/2/4/8/10/16G Fibre Channel ITU G.709 and custom FEC line cards Wireless basestations CKOUT4– VDD Applications CKOUT4+ Pin Assignments CKIN4– VDD Ordering Information: See page 79. CKIN4+ VDD Supports holdover and freerun modes of operation Five clock outputs with selectable signal format (LVPECL, LVDS, CML, CMOS) SONET frame sync switching and regeneration Support for ITU G.709 and custom FEC ratios (253/226, 239/237, 255/238, 255/237, 255/236) LOL, LOS, FOS alarm outputs Digitally-controlled output phase adjust I2C or SPI programmable settings Pb-free, RoHS compliant GND Generates any frequency from 2 kHz to 945 MHz and select frequencies to 1.4 GHz from an input frequency of 2 kHz to 710 MHz Ultra-low jitter clock outputs with jitter generation as low as 300 fs rms (12 kHz–20 MHz) Integrated loop filter with selectable loop bandwidth (60 Hz to 8.4 kHz) Meets OC-192 GR-253-CORE jitter specifications Four clock inputs with manual or automatically controlled hitless switching and phase build-out Small size: 14 x 14 mm 100-pin TQFP GND Si5368 Si5368 Functional Block Diagram Xtal or Refclock CKIN1 ÷ N31 CKIN2 ÷ N32 CKIN3/FSYNC1 ÷ N33 CKIN4 ÷ N34 DSPLL ® ÷ NC1_LS CKOUT1 ÷ NC2_LS CKOUT2 ÷ NC3_LS CKOUT3 ÷ NC4_LS CKOUT4 ÷ NC5_LS CKOUT5/FS_OUT ÷ N1_HS ÷ N2 2 I C/SPI Port Rate Select Clock Select Skew Control Control FSYNC Realignment Device Interrupt LOL/LOS/FOS Alarms 2 Frame sync mode only { Rev. 1.0 Input Clock 3 VDD (1.8, 2.5, or 3.3 V) Input Clock 4 Output Clock 2 GND Si5368 TABLE O F C ONTENTS Section Page 1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 2. Typical Phase Noise Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3. Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.1. External Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.2. Further Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5. Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 6. Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 7. Pin Descriptions: Si5368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79 8. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 9. Package Outline: 100-Pin TQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 10. Recommended PCB Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 11. Top Marking: 100-Pin TQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 11.1. Si5368 Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 11.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Document Change list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92 Rev. 1.0 3 Si5368 1. Electrical Specifications Table 1. Recommended Operating Conditions1 Parameter Symbol Ambient Temperature TA Supply Voltage during Normal Operation VDD Test Condition Min Typ Max Unit –40 25 85 C 3.3 V Nominal2 2.97 3.3 3.63 V 2.5 V Nominal 2.25 2.5 2.75 V 1.8 V Nominal 1.71 1.8 1.89 V Notes: 1. All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions. Typical values apply at nominal supply voltages and an operating temperature of 25 ºC unless otherwise stated. 2. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when they are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled. When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS. Table 2. DC Characteristics (VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C) Parameter Supply Current1,6 Symbol Test Condition Min Typ Max Unit IDD LVPECL Format 622.08 MHz Out All CKOUTs Enabled — 394 435 mA LVPECL Format 622.08 MHz Out 1 CKOUT Enabled — 253 284 mA CMOS Format 19.44 MHz Out All CKOUTs Enabled — 278 400 mA CMOS Format 19.44 MHz Out 1 CKOUT Enabled — 229 261 mA Disable Mode — 165 — mA Notes: 1. Current draw is independent of supply voltage 2. No under- or overshoot is allowed. 3. LVPECL outputs require nominal VDD ≥ 2.5 V. 4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family Reference Manual for more details. 5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz. 6. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when they are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled. When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS. 4 Rev. 1.0 Si5368 Table 2. DC Characteristics (Continued) (VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C) Parameter Symbol Test Condition Min Typ Max Unit VICM 1.8 V ± 5% 0.9 — 1.4 V 2.5 V ± 10% 1 — 1.7 V 3.3 V ± 10% 1.1 — 1.95 V CKNRIN Single-ended 20 40 60 k Single-Ended Input Voltage Swing (See Absolute Specs) VISE fCKIN < 212.5 MHz See Figure 1. 0.2 — — VPP fCKIN > 212.5 MHz See Figure 1. 0.25 — — VPP Differential Input Voltage Swing (See Absolute Specs) VID fCKIN < 212.5 MHz See Figure 1. 0.2 — — VPP fCKIN > 212.5 MHz See Figure 1. 0.25 — — VPP CKOVCM LVPECL 100 load line-to-line VDD –1.42 — VDD –1.25 V Differential Output Swing CKOVD LVPECL 100 load line-to-line 1.1 — 1.9 VPP Single Ended Output Swing CKOVSE LVPECL 100 load line-to-line 0.5 — 0.93 VPP Differential Output Voltage CKOVD CML 100 load lineto-line 350 425 500 mVPP Common Mode Output Voltage CKOVCM CML 100 load lineto-line — VDD-0.36 — V CKINn Input Pins2 Input Common Mode Voltage (Input Threshold Voltage) Input Resistance Output Clocks (CKOUTn)3,5,6 Common Mode Notes: 1. Current draw is independent of supply voltage 2. No under- or overshoot is allowed. 3. LVPECL outputs require nominal VDD ≥ 2.5 V. 4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family Reference Manual for more details. 5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz. 6. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when they are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled. When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS. Rev. 1.0 5 Si5368 Table 2. DC Characteristics (Continued) (VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C) Parameter Symbol Test Condition Min Typ Max Unit Differential Output Voltage CKOVD LVDS 100 load line-to-line 500 700 900 mVPP Low Swing LVDS 100 load line-to-line 350 425 500 mVPP CKOVCM LVDS 100 load lineto-line 1.125 1.2 1.275 V CKORD CML, LVPECL, LVDS — 200 — Output Voltage Low CKOVOLLH CMOS — — 0.4 V Output Voltage High CKOVOHLH VDD = 1.71 V CMOS 0.8 x VDD — — V CKOIO ICMOS[1:0] =11 VDD = 1.8 V — 7.5 — mA ICMOS[1:0] =10 VDD = 1.8 V — 5.5 — mA ICMOS[1:0] =01 VDD = 1.8 V — 3.5 — mA ICMOS[1:0] =00 VDD = 1.8 V — 1.75 — mA ICMOS[1:0] =11 VDD = 3.3 V — 32 — mA ICMOS[1:0] =10 VDD = 3.3 V — 24 — mA ICMOS[1:0] =01 VDD = 3.3 V — 16 — mA ICMOS[1:0] =00 VDD = 3.3 V — 8 — mA Common Mode Output Voltage Differential Output Resistance Output Drive Current (CMOS driving into CKOVOL for output low or CKOVOH for output high. CKOUT+ and CKOUT– shorted externally) Notes: 1. Current draw is independent of supply voltage 2. No under- or overshoot is allowed. 3. LVPECL outputs require nominal VDD ≥ 2.5 V. 4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family Reference Manual for more details. 5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz. 6. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when they are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled. When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS. 6 Rev. 1.0 Si5368 Table 2. DC Characteristics (Continued) (VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C) Parameter Symbol Test Condition Min Typ Max Unit VDD = 1.71 V — — 0.5 V VDD = 2.25 V — — 0.7 V VDD = 2.97 V — — 0.8 V VDD = 1.89 V 1.4 — — V VDD = 2.25 V 1.8 — — V VDD = 3.63 V 2.5 — — V 2-Level LVCMOS Input Pins Input Voltage Low Input Voltage High VIL VIH Notes: 1. Current draw is independent of supply voltage 2. No under- or overshoot is allowed. 3. LVPECL outputs require nominal VDD ≥ 2.5 V. 4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family Reference Manual for more details. 5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz. 6. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when they are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled. When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS. Rev. 1.0 7 Si5368 Table 2. DC Characteristics (Continued) (VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C) Parameter Symbol Test Condition Min Typ Max Unit 3-Level Input Pins4 Input Voltage Low VILL — — 0.15 x VDD V Input Voltage Mid VIMM 0.45 x VDD — 0.55 x VDD V Input Voltage High VIHH 0.85 x VDD — — V Input Low Current IILL See Note 4 –20 — — µA Input Mid Current IIMM See Note 4 –2 — +2 µA Input High Current IIHH See Note 4 — — 20 µA VOL IO = 2 mA VDD = 1.71 V — — 0.4 V IO = 2 mA VDD = 2.97 V — — 0.4 V IO = –2 mA VDD = 1.71 V VDD –0.4 — — V IO = –2 mA VDD = 2.97 V VDD –0.4 — — V LVCMOS Output Pins Output Voltage Low Output Voltage Low Output Voltage High Output Voltage High VOH Notes: 1. Current draw is independent of supply voltage 2. No under- or overshoot is allowed. 3. LVPECL outputs require nominal VDD ≥ 2.5 V. 4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family Reference Manual for more details. 5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz. 6. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when they are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled. When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS. 8 Rev. 1.0 Si5368 Table 3. AC Specifications (VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C) Parameter Symbol Test Condition Min Typ Max Unit Single-Ended Reference Clock Input Pin XA (XB with cap to GND) Input Resistance XARIN RATE[1:0] = LM, MH, ac coupled — 12 — k Input Voltage Swing XAVPP RATE[1:0] = LM, MH, ac coupled 0.5 — 1.2 VPP Differential Reference Clock Input Pins (XA/XB) Input Voltage Swing XA/XBVPP RATE[1:0] = LM, MH 0.5 — 2.4 VPP CKNF Input frequency and clock multiplication ratio determined by programming device PLL dividers. Consult Silicon Laboratories configuration software DSPLLsim or Any-Frequency Precision Clock Family Reference Manual at www.silabs.com/timing (click on Documentation) to determine PLL divider settings for a given input frequency/clock multiplication ratio combination 0.002 — 710 MHz 0.002 — 0.512 MHz 40 — 60 % 2 — — ns — — 3 pF — — 11 ns CKINn Input Pins Input Frequency Input Clock Frequency (CKIN3, CKIN4 used as FSYNC inputs) CKF Input Duty Cycle (Minimum Pulse Width) CKNDC Input Capacitance CKNCIN Input Rise/Fall Time CKNTRF Whichever is smaller (i.e., the 40% / 60% limitation applies only to high frequency clocks) 20–80% See Figure 2 *Note: Input to output phase skew after an ICAL is not controlled and can assume any value. Rev. 1.0 9 Si5368 Table 3. AC Specifications (Continued) (VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C) Parameter Symbol Test Condition Min Typ Max Unit N1 6 0.002 — 945 MHz N1 = 5 970 — 1134 MHz N1 = 4 1.213 — 1.4 GHz — — 212.5 MHz CKOUTn Output Pins (See ordering section for speed grade vs frequency limits) Output Frequency (Output not configured for CMOS or Disabled) Maximum Output Frequency in CMOS Format CKOF CKOF Output Rise/Fall (20–80 %) @ 622.08 MHz output CKOTRF Output not configured for CMOS or Disabled See Figure 2 — 230 350 ps Output Rise/Fall (20–80%) @ 212.5 MHz output CKOTRF CMOS Output VDD = 1.71 CLOAD = 5 pF — — 8 ns Output Rise/Fall (20–80%) @ 212.5 MHz output CKOTRF CMOS Output VDD = 2.97 CLOAD = 5 pF — — 2 ns Output Duty Cycle Uncertainty @ 622.08 MHz CKODC 100 Load Line-to-Line Measured at 50% Point (Not for CMOS) — — ±40 ps LVCMOS Input Pins Minimum Reset Pulse Width tRSTMN Reset to Microprocessor Access Ready tREADY Input Capacitance 1 Cin µs 10 ms — — 3 pF LVCMOS Output Pins Rise/Fall Times tRF CLOAD = 20pf See Figure 2 — 25 — ns LOSn Trigger Window LOSTRIG From last CKINn to Internal detection of LOSn N3 ≠ 1 — — 4.5 x N3 TCKIN Time to Clear LOL after LOS Cleared tCLRLOL LOS to LOL Fold = Fnew Stable Xa/XB reference — 10 — ms *Note: Input to output phase skew after an ICAL is not controlled and can assume any value. 10 Rev. 1.0 Si5368 Table 3. AC Specifications (Continued) (VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C) Parameter Symbol Test Condition Min Typ Max Unit Output Clock Skew tSKEW of CKOUTn to of CKOUT_m, CKOUTn and CKOUT_m at same frequency and signal format PHASEOFFSET = 0 CKOUT_ALWAYS_ON = 1 SQ_ICAL = 1 — — 100 ps Phase Change due to Temperature Variation* tTEMP Max phase changes from –40 to +85 °C — 300 500 ps Device Skew PLL Performance (fin = fout = 622.08 MHz; BW = 120 Hz; LVPECL) Lock Time tLOCKMP Start of ICAL to of LOL — 35 1200 ms Output Clock Phase Change tP_STEP After clock switch f3 128 kHz — 200 — ps — 0.05 0.1 dB Jitter Frequency Loop Bandwidth 5000/BW — — ns pk-pk 1 kHz Offset — –106 — dBc/Hz 10 kHz Offset — –121 — dBc/Hz 100 kHz Offset — –132 — dBc/Hz 1 MHz Offset — –132 — dBc/Hz Max spur @ n x F3 (n 1, n x F3 < 100 MHz) — –93 –70 dBc Closed Loop Jitter Peaking JPK Jitter Tolerance JTOL Phase Noise fout = 622.08 MHz CKOPN Spurious Noise SPSPUR *Note: Input to output phase skew after an ICAL is not controlled and can assume any value. Rev. 1.0 11 Si5368 Table 4. Microprocessor Control (VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C) Parameter Symbol Test Condition Min Typ Max Unit I2C Bus Lines (SDA, SCL) Input Voltage Low VILI2C — — 0.25 x VDD V Input Voltage High VIHI2C 0.7 x VDD — VDD V VDD = 1.8V 0.1 x VDD — — V VDD = 2.5 or 3.3 V 0.05 x VDD — — V VDD = 1.8 V IO = 3 mA — — 0.2 x VDD V VDD = 2.5 or 3.3 V IO = 3 mA — — 0.4 V Hysteresis of Schmitt trigger inputs Output Voltage Low 12 VHYSI2C VOLI2C Rev. 1.0 Si5368 Table 4. Microprocessor Control (Continued) (VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C) Parameter Symbol Test Condition Min Typ Max Unit Duty Cycle, SCLK tDC SCLK = 10 MHz 40 — 60 % Cycle Time, SCLK tc 100 — — ns Rise Time, SCLK tr 20–80% — — 25 ns Fall Time, SCLK tf 20–80% — — 25 ns Low Time, SCLK tlsc 20–20% 30 — — ns High Time, SCLK thsc 80–80% 30 — — ns Delay Time, SCLK Fall to SDO Active td1 — — 25 ns Delay Time, SCLK Fall to SDO Transition td2 — — 25 ns Delay Time, SS Rise to SDO Tri-state td3 — — 25 ns Setup Time, SS to SCLK Fall tsu1 25 — — ns Hold Time, SS to SCLK Rise th1 20 — — ns Setup Time, SDI to SCLK Rise tsu2 25 — — ns Hold Time, SDI to SCLK Rise th2 20 — — ns Delay Time between Slave Selects tcs 25 — — ns SPI Specifications Rev. 1.0 13 Si5368 Table 5. Jitter Generation Parameter Jitter Gen OC-192 Symbol JGEN Test Condition* Measurement Filter DSPLL BW2 0.02–80 MHz 120 Hz 4–80 MHz 0.05–80 MHz Jitter Gen OC-48 JGEN 0.12–20 MHz Min Typ Max GR-253Specification Unit — 4.2 6.2 30 psPP — .27 0.42 N/A psrms — 3.7 6.4 10 psPP — .14 0.31 N/A psrms — 4.4 6.9 10 psPP — .26 0.41 1.0 ps rms — 3.5 5.4 40.2 psPP — .27 0.41 4.02 ps rms 120 Hz 120 Hz 120 Hz *Note: Test conditions: 1. fIN = fOUT = 622.08 MHz 2. Clock input: LVPECL 3. Clock output: LVPECL 4. PLL bandwidth: 120 Hz 5. 114.285 MHz 3rd OT crystal used as XA/XB input 6. VDD = 2.5 V 7. TA = 85 °C 8. Jitter integration bands include low-pass (–20 dB/Dec) and hi-pass (–60 dB/Dec) roll-offs per Telecordia GR-253-CORE. Table 6. Thermal Characteristics (VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C) Parameter Thermal Resistance Junction to Ambient 14 Symbol Test Condition Value Unit JA Still Air 31 C°/W Rev. 1.0 Si5368 Table 7. Absolute Maximum Limits Parameter Symbol Test Condition Min Typ Max Unit — 3.8 V VDD+0.3 V DC Supply Voltage VDD –0.5 LVCMOS Input Voltage VDIG –0.3 CKINn Voltage Level Limits CKNVIN 0 — VDD V XA/XB Voltage Level Limits XAVIN 0 — 1.2 V Operating Junction Temperature TJCT –55 — 150 ºC Storage Temperature Range TSTG –55 — 150 ºC 2 — — kV ESD MM Tolerance; All pins except CKIN+/CKIN– 150 — — V ESD HBM Tolerance (100 pF, 1.5 k); CKIN+/CKIN– 700 — — V ESD MM Tolerance; CKIN+/CKIN– 100 — — V ESD HBM Tolerance (100 pF, 1.5 k); All pins except CKIN+/CKIN– Latch-up Tolerance JESD78 Compliant Note: Permanent device damage may occur if the Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions specified in the operations sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability. Rev. 1.0 15 Si5368 SIGNAL + Differential I/Os VICM , VOCM V VISE , VOSE SIGNAL – (SIGNAL +) – (SIGNAL –) Differential Peak-to-Peak Voltage VID,VOD VICM, VOCM Single-Ended Peak-to-Peak Voltage t SIGNAL + VID = (SIGNAL+) – (SIGNAL–) SIGNAL – Figure 1. Differential Voltage Characteristics 80% CKIN, CKOUT 20% tF tR Figure 2. Rise/Fall Time Characteristics 16 Rev. 1.0 Si5368 2. Typical Phase Noise Performance Figure 3. Typical Phase Noise Plot Table 8. RMS Jitter by Band Jitter Band Jitter, RMS SONET_OC48, 12 kHz to 20 MHz 249 fs SONET_OC192_A, 20 kHz to 80 MHz 274 fs SONET_OC192_B, 4 MHz to 80 MHz 166 fs SONET_OC192_C, 50 kHz to 80 MHz 267 fs Brick Wall_800 Hz to 80 MHz 274 fs *Note: Jitter integration bands include low-pass (–20 dB/Dec) and hi-pass (–60 dB/Dec) roll-offs per Telecordia GR-253-CORE. Rev. 1.0 17 Si5368 3. Typical Application Circuits C10 System Power Supply Ferrite Bead Option 1: Crystal 1 µF Option 2: Ext. Refclk 114.285 MHz C1–9 0.1 µF 0.1 µF VDD = 3.3 V CKIN1+ XA XB XA XB GND 130 VDD 0.1 µF 130 CKOUT1+ CKOUT1– 82 CKOUT4+ Input Clock Sources* 0.1 µF 0.1 µF – + Clock Outputs 100 VDD = 3.3 V 130 CKOUT4– 130 FS_OUT+ CKIN4+ Si5368 82 INC DEC DEC Rate RATE[1:0] Reset 0.1 µF 0.1 µF INT_ALM 82 INC Control Mode (L) 0.1 µF – + 100 FS_OUT– CKIN4– – Interrupt/Alarm Output Indicator CnB CKINn Invalid Indicator (n = 1 to 3) LOL PLL Loss of Lock Indicator A[2:0] Serial Port Address CMODE SDA Serial Data RST SCL Serial Clock *Note: Assumes differential LVPECL termination (3.3 V) on clock inputs. Figure 4. Si5368 Typical Application Circuit (I2C Control Mode) 18 + 100 CKIN1– 82 0.1 µF Rev. 1.0 I2C Interface Si5368 C10 System Power Supply Ferrite Bead Option 1: Crystal 1 µF Option 2: Ext. Refclk 114.285 MHz C1–9 0.1 µF 0.1 µF VDD = 3.3 V CKIN1+ XA XB XA XB GND 130 VDD 0.1 µF 130 CKOUT1+ CKOUT1– 82 CKOUT4+ Input Clock Sources* CKOUT4– 130 FS_OUT+ CKIN4+ CKIN4– 82 0.1 µF 0.1 µF – + Clock Outputs 100 VDD = 3.3 V 130 + 100 CKIN1– 82 0.1 µF Si5368 0.1 µF 0.1 µF – + 100 FS_OUT– 82 0.1 µF INT_ALM – Interrupt/Alarm Output Indicator CnB CKINn Invalid Indicator (n = 1 to 3) INC INC LOL PLL Loss of Lock Indicator DEC DEC SS Slave Select Rate RATE[1:0] Control Mode (H) Reset CMODE RST SDO Serial Data Out SDI Serial Data In SCL Serial Clock SPI Interface *Note: Assumes differential LVPECL termination (3.3 V) on clock inputs. Figure 5. Si5368 Typical Application Circuit (SPI Control Mode) Rev. 1.0 19 Si5368 4. Functional Description The Si5368 is a jitter-attenuating precision clock multiplier for applications requiring sub 1 ps rms jitter performance. The Si5368 accepts four clock inputs ranging from 2 kHz to 710 MHz and generates five clock outputs ranging from 2 kHz to 945 MHz and select frequencies to 1.4 GHz. The device provides virtually any frequency translation combination across this operating range. Independent dividers are available for every input clock and output clock, so the Si5368 can accept input clocks at different frequencies and it can generate output clocks at different frequencies. The Si5368 input clock frequency and clock multiplication ratio are programmable through an I2C or SPI interface. Optionally, the fifth clock output can be configured as a 2 to 512 kHz SONET/SDH frame synchronization output that is phase aligned with one of the high-speed output clocks. Silicon Laboratories offers a PC-based software utility, DSPLLsim, that can be used to determine the optimum PLL divider settings for a given input frequency/clock multiplication ratio combination that minimizes phase noise and power consumption. This utility can be downloaded from http://www.silabs.com/timing (click on Documentation). The Si5368 is based on Silicon Laboratories' 3rd-generation DSPLL® technology, which provides any-frequency synthesis and jitter attenuation in a highly integrated PLL solution that eliminates the need for external VCXO and loop filter components. The Si5368 PLL loop bandwidth is digitally programmable and supports a range from 60 Hz to 8.4 kHz. The DSPLLsim software utility can be used to calculate valid loop bandwidth settings for a given input clock frequency/clock multiplication ratio. The Si5368 supports hitless switching between input clocks in compliance with GR-253-CORE and GR-1244CORE that greatly minimizes the propagation of phase transients to the clock outputs during an input clock transition (<200 ps typ). Manual, automatic revertive and non-revertive input clock switching options are available. The Si5368 monitors the four input clocks for loss-of-signal and provides a LOS alarm when it detects missing pulses on any of the four input clocks. The device monitors the lock status of the PLL. The lock detect algorithm works by continuously monitoring the phase of the input clock in relation to the phase of the feedback clock. The Si5368 monitors the frequency of CKIN1, CKIN2, CKIN3, and CKIN4 with respect to a selected reference frequency and generates a frequency offset alarm (FOS) if the threshold is exceeded. This FOS feature is available for SONET applications in which both the monitored frequency on CKIN1, CKIN3, and CKIN4 and the reference frequency are integer multiples of 19.44 MHz. Both Stratum 3/3E and SONET Minimum Clock (SMC) FOS thresholds are supported. The Si5368 provides a digital hold capability that allows the device to continue generation of a stable output clock when the selected input reference is lost. During digital hold, the DSPLL generates an output frequency based on a historical average that existed a fixed amount of time before the error event occurred, eliminating the effects of phase and frequency transients that may occur immediately preceding digital hold. Fine phase adjustment is available and is set using the FLAT register bits. The nominal range and resolution of the FLAT[14:0] latency adjustment word are: ±110 ps and 3 ps, respectively. The Si5368 has five differential clock outputs. The electrical format of the clock outputs is programmable to support LVPECL, LVDS, CML, or CMOS loads. If not required, unused clock outputs can be powered down to minimize power consumption. The phase difference between the selected input clock and the output clocks is adjustable in 200 ps increments for system skew control. In addition, the phase of one output clock may be adjusted in relation to the phase of the other output clock. The resolution varies from 800 ps to 2.2 ns depending on the PLL divider settings. Consult the DSPLLsim configuration software to determine the phase offset resolution for a given input clock/clock multiplication ratio combination. For system-level debugging, a bypass mode is available which drives the output clock directly from the input clock, bypassing the internal DSPLL. The device is powered by a single 1.8, 2.5, or 3.3 V supply. 4.1. External Reference An external, 38.88 MHz clock or a low-cost 114.285 MHz 3rd overtone crystal is used as part of a fixed-frequency oscillator within the DSPLL. This external reference is required for the device to operate. Silicon Laboratories recommends using a high-quality crystal. Specific recommendations may be found in the Family Reference Manual. An external clock from a high-quality OCXO or TCXO can also be used as a reference for the device. In digital hold, the DSPLL remains locked to this external reference. Any changes in the frequency of this reference when the DSPLL is in digital hold, will be tracked by the output of the device. Note that crystals can have temperature sensitivities. 20 Rev. 1.0 Si5368 4.2. Further Documentation Consult the Silicon Laboratories Any-Frequency Precision Clock Family Reference Manual (FRM) for detailed information about the Si5368. Additional design support is available from Silicon Laboratories through your distributor. Silicon Laboratories has developed a PC-based software utility called DSPLLsim to simplify device configuration, including frequency planning and loop bandwidth selection. The FRM and this utility can be downloaded from http://www.silabs.com/timing; click on Documentation. Rev. 1.0 21 Si5368 5. Register Map All register bits that are not defined in this map should always be written with the specified Reset Values. The writing to these bits of values other than the specified Reset Values may result in undefined device behavior. Registers not listed, such as Register 64, should never be written to. Register D7 0 1 D6 D5 FREE_RUN CKOUT_ ALWAYS_ ON CK_PRIOR4 [1:0] 2 D4 D3 D2 D1 CK_CONFIG_REG CK_PRIOR3 [1:0] D0 BYPASS_ REG CK_PRIOR2 [1:0] CK_PRIOR1 [1:0] BWSEL_REG [3:0] 3 CKSEL_REG [1:0] 4 AUTOSEL_REG [1:0] 5 ICMOS [1:0] DHOLD SQ_ICAL HIST_DEL [4:0] SFOUT2_REG [2:0] SFOUT1_REG [2:0] 6 SFOUT4_REG [2:0] SFOUT3_REG [2:0] 7 SFOUT5_REG [2:0] FOSREFSEL [2:0] 8 HLOG_4 [1:0] HLOG_3 [1:0] 9 HIST_AVG [4:0] 10 DSBL5_ REG 11 HLOG_2 [1:0] HLOG_5 [1:0] ALIGN_THR [2:0] 12 FPW_VALID FSYNC_ ALIGN_REG FSYNC_ ALIGN_ MODE FSYNC_ SWTCH_ REG DSBL4_ REG DSBL3_ REG DSBL2_ REG DSBL1_ REG PD_CK4 PD_CK3 PD_CK2 PD_CK1 FSKEW_ VALID FSYNC_ SKEW [16:16] 13 FSYNC_PW [7:0] 14 FSYNC_SKEW [15:8] 15 FSYNC_SKEW [7:0] 16 CLAT [7:0] 17 HLOG_1 [1:0] FLAT_VALID FSYNC_PW [9:8] FLAT [14:8] 18 FLAT [7:0] 19 FOS_EN FOS_THR [1:0] 20 21 INCDEC_ PIN 22 FSYNC_ ALIGN_POL 22 FSYNC_ POL VALTIME [1:0] LOCKT [2:0] ALRMOUT_PIN CK3_BAD_ PIN CK2_BAD_ PIN CK1_BAD_ PIN LOL_PIN INT_PIN FSYNC_ ALIGN_PIN CK4_ACTV_PIN CK3_ACTV_PIN CK2_ACTV_PIN CK1_ACTV_PIN CKSEL_PIN FSYNCOUT_POL CK_ACTV_ POL CK_BAD_ POL LOL_POL INT_POL Rev. 1.0 Si5368 Register D4 D3 D2 D1 D0 23 LOS4_MSK LOS3_MSK LOS2_MSK LOS1_MSK LOSX_MSK 24 ALIGN_MSK FOS4_MSK FOS3_MSK FOS2_MSK FOS1_MSK LOL_MSK 25 D7 D6 D5 N1_HS [2:0] NC1_LS [19:16] 26 NC1_LS [15:8] 27 NC1_LS [7:0] 28 NC2_LS [19:16] 29 NC2_LS [15:8] 30 NC2_LS [7:0] 31 NC3_LS [19:16] 32 NC3_LS [15:8] 33 NC3_LS [7:0] 34 NC4_LS [19:16] 35 NC4_LS [15:8] 36 NC4_LS [7:0] 37 NC5_LS [19:16] 38 NC5_LS [15:8] 39 NC5_LS [7:0] 40 N2_HS [2:0] N2_LS [19:16] 41 N2_LS [15:8] 42 N2_LS [7:0] 43 N31_ [18:16] 44 N31_[15:8] 45 N31_ [7:0] 46 N32_ [18:16] 47 N31_ [15:8] 48 N32_[7:0] 49 N33_[18:16] 50 N33_[15:8] 51 N33_[7:0] 52 53 N34_[18:16] N34_[15:8] Rev. 1.0 23 Si5368 Register D7 D6 D5 D4 54 D3 D2 D1 D0 N34_[7:0] 55 CLKIN2RATE_[2:0] CLKIN1RATE[2:0] 56 CLKIN4RATE_[2:0] CLKIN3RATE[2:0] 128 129 130 CLATPROGRESS DIGHOLDVALID ALIGN_INT 131 132 ALIGN_FLG FOS4_FLG CK4_ACTV_REG CK3_ACTV_REG CK2_ACTV_REG CK1_ACTV_REG LOS4_INT LOS3_INT LOS2_INT LOS1_INT LOSX_INT FOS4_INT FOS3_INT FOS2_INT FOS1_INT LOL_INT LOS4_FLG LOS3_FLG LOS2_FLG LOS1_FLG LOSX_FLG FOS3_FLG FOS2_FLG FOS1_FLG LOL_FLG AIGN_ERR [8:8] 133 ALIGN_ERR [7:0] 134 PARTNUM_RO [11:4] 135 136 PARTNUM_RO [3:0] RST_REG REVID_RO [3:0] ICAL 138 139 LOS4_EN [0:0] LOS3_EN [0:0] LOS2_EN [0:0] LOS1_EN [0:0] LOS4_EN [1:1] LOS3_EN [1:1] LOS2_EN [1:1] LOS1_EN [1:1] FOS4_EN FOS3_EN FOS2_EN FOS1_EN 140 INDEPENDENTSKEW1 [7:0] 141 INDEPENDENTSKEW2 [7:0] 142 INDEPENDENTSKEW3 [7:0] 143 INDEPENDENTSKEW4 [7:0] 144 INDEPENDENTSKEW5 [7:0] 24 Rev. 1.0 Si5368 6. Register Descriptions Register 0. Bit D7 Name Type D6 D5 FREE_ RUN CKOUT_ ALWAYS_ON R/W R/W R D4 D3 D2 CK_CONFIG_REG R R/W D1 D0 BYPASS_ REG R R/W R Reset value = 0001 0100 Bit Name 7 Reserved 6 FREE_RUN 5 Function Free Run. Internal to the device, route XA/XB to CKIN2. This allows the device to lock to its external reference. 0: Disable Free Run 1: Enable CKOUT_ CKOUT Always On. ALWAYS_ON This will bypass the SQ_ICAL function. Output will be available even if SQ_ICAL is on and ICAL is not complete or successful. See Table 9. 0: Squelch output until part is calibrated (ICAL). 1: Provide an output. Note: The frequency may be significantly off until the part is calibrated. 4 Reserved 3 CK_CONFIG_REG 2 Reserved 1 BYPASS_ REG 0 Reserved CK_CONFIG_REG. This bit controls the input clock configuration for either normal CLKIN function or FSYNC operation. Whenever CK_CONFIG_REG = 1, FSYNC_ALIGN_MODE must not be set to 1. 0: CKIN_1, 2, 3, 4 inputs do not have a synchronized relationship. CLKOUT5 is an independent output. There is no FSYNCOUT. 1: CKIN_1, 3 and CKIN_2, 4 Clock/FSYNC pairs. CKOUT5 is configured as the FSYNC output. Bypass Register. This bit enables or disables the PLL bypass mode. Use is only valid when the part is in digital hold or before the first ICAL. 0: Normal operation 1: Bypass mode. Selected input clock is connected to CKOUT buffers, bypassing PLL. Bypass mode does not support CMOS clock outputs. Rev. 1.0 25 Si5368 Register 1. Bit D7 D6 D5 D4 D3 D2 D1 D0 Name CK_PRIOR4 [1:0] CK_PRIOR3 [1:0] CK_PRIOR2 [1:0] CK_PRIOR1 [1:0] Type R/W R/W R/W R/W R/W R/W R/W R/W Reset value = 1110 0100 Bit 26 Name Function 7:6 CK_PRIOR4 [1:0] Selects which of the input clocks will be 4th priority in the autoselection state machine. 00: CKIN1 is 4th priority 01: CKIN2 is 4th priority 10: CKIN3 is 4th priority 11: CKIN4 is 4th priority 5:4 CK_PRIOR3 [1:0] Selects which of the input clocks will be 3rd priority in the autoselection state machine. 00: CKIN1 is 3rd priority 01: CKIN2 is 3rd priority 10: CKIN3 is 3rd priority 11: CKIN4 is 3rd priority 3:2 CK_PRIOR2 [1:0] CK_PRIOR 2. Selects which of the input clocks will be 2nd priority in the autoselection state machine. 00: CKIN1 is 2nd priority 01: CKIN2 is 2nd priority 10: CKIN3 is 2nd priority 11: CKIN4 is 2nd priority 1:0 CK_PRIOR1 [1:0] CK_PRIOR 1. Selects which of the input clocks will be 1st priority in the autoselection state machine. 00: CKIN1 is 1st priority 01: CKIN2 is 1st priority 10: CKIN3 is 1st priority 11: CKIN4 is 1st priority Rev. 1.0 Si5368 Register 2. Bit D7 D6 D5 Name BWSEL_REG [3:0] Type R/W D4 D3 D2 D1 D0 R R R R Reset value = 0100 0010 Bit 7:4 3:0 Name Function BWSEL_REG [3:0] BWSEL_REG. Selects nominal f3dB bandwidth for PLL. See the DSPLLsim for settings. After BWSEL_REG is written with a new value, an ICAL is required for the change to take effect. Reserved Rev. 1.0 27 Si5368 Register 3. Bit D7 D6 D5 D4 Name CKSEL_REG [1:0] DHOLD SQ_ICAL Type R/W R/W R/W D3 D2 D1 D0 R R R R Reset value = 0000 0101 Bit 7:6 28 Name Function CKSEL_REG [1:0] CKSEL_REG. If the device is operating in manual register-based clock selection mode (AUTOSEL_REG = 00), and CKSEL_PIN = 0, then these bits select which input clock will be the active input clock. If CKSEL_PIN = 1, the CKSEL[1:0] input pins continue to control clock selection and CKSEL_REG is of no consequence. 00: CKIN_1 selected. 01: CKIN_2 selected. 10: CKIN_3 selected. 11: CKIN_4 selected. 5 DHOLD 4 SQ_ICAL 3:0 Reserved DHOLD. Forces the part into digital hold. This bit overrides all other manual and automatic clock selection controls. 0: Normal operation. 1: Force digital hold mode. Overrides all other settings and ignores the quality of all of the input clocks. SQ_ICAL. This bit determines if the output clocks will remain enabled or be squelched (disabled) during an internal calibration. See Table 9. 0: Output clocks enabled during ICAL. 1: Output clocks disabled during ICAL. Rev. 1.0 Si5368 Register 4. Bit D7 D6 Name AUTOSEL_REG [1:0] Type R/W D5 D4 D3 D2 D1 D0 HIST_DEL [4:0] R R/W Reset value = 0001 0010 Bit Name 7:6 AUTOSEL_REG [1:0] 5 Reserved 4:0 HIST_DEL [4:0] Function AUTOSEL_REG [1:0]. Selects method of input clock selection to be used. 00: Manual (either register or pin controlled. See CKSEL_PIN). 01: Automatic Non-Revertive 10: Automatic Revertive 11: Reserved HIST_DEL [4:0]. Selects amount of delay to be used in generating the history information MHIST, the value of M used during Digital Hold. Rev. 1.0 29 Si5368 Register 5. Bit D7 D6 D5 D4 D3 D2 D1 Name ICMOS [1:0] SFOUT2_REG [2:0] SFOUT1_REG [2:0] Type R/W R/W R/W D0 Reset value = 1110 1101 Bit 7:6 Name ICMOS [1:0] 5:3 SFOUT2_ REG [2:0] 2:0 SFOUT1_ REG [2:0] Function ICMOS [1:0]. When the output buffer is set to CMOS mode, these bits determine the output buffer drive strength. The first number below refers to 3.3 V operation; the second to 1.8 V operation. These values assume CKOUT+ is tied to CKOUT–. 00: 8 mA/2 mA 01: 16 mA/4 mA 10: 24 mA/6 mA 11: 32 mA (3.3 V operation)/8 mA (1.8 V operation) SFOUT2_REG [2:0]. Controls output signal format and disable for CKOUT2 output buffer. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when they are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled. When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS. 000: Reserved 001: Disable 010: CMOS (Bypass mode not supported.) 011: Low swing LVDS 100: Reserved 101: LVPECL 110: CML 111: LVDS SFOUT1_REG [2:0]. Controls output signal format and disable for CKOUT1 output buffer. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when they are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled. When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS. 000: Reserved 001: Disable 010: CMOS (Bypass mode not supported.) 011: Low swing LVDS 100: Reserved 101: LVPECL 110: CML 111: LVDS 30 Rev. 1.0 Si5368 Register 6. Bit D7 D6 Name Type R R D5 D4 D3 D2 D1 SFOUT4_REG [2:0] SFOUT3_REG [2:0] R/W R/W D0 Reset value = 0010 1100 Bit 7:6 5:3 2:0 Name Reserved SFOUT4_REG [2:0] SFOUT3_REG [2:0] Function SFOUT4_REG [2:0]. Controls output signal format and disable for CKOUT4 output buffer. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when they are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled. When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS. 000: Reserved 001: Disable 010: CMOS (Bypass mode not supported.) 011: Low swing LVDS 100: Reserved 101: LVPECL 110: CML 111: LVDS SFOUT3_REG [2:0]. Controls output signal format and disable for CKOUT3 output buffer. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when they are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled. When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS. 000: Reserved 001: Disable 010: CMOS (Bypass mode not supported.) 011: Low swing LVDS 100: Reserved 101: LVPECL 110: CML 111: LVDS Rev. 1.0 31 Si5368 Register 7. Bit D7 D6 D5 Name Type R R D4 D3 D2 D1 SFOUT5_REG [2:0] FOSREFSEL [2:0] R/W R/W D0 Reset value = 0010 1010 Bit Name 7:6 Reserved. 5:3 Function Reserved. SFOUT5_REG [2:0] SFOUT5_REG [2:0] Controls output signal format and disable for CKOUT5 output buffer. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when they are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled. When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS. 000: Reserved 001: Disable 010: CMOS 011: Low swing LVDS 100: Reserved 101: LVPECL 110: CML 111: LVDS 2:0 32 FOSREFSEL [2:0] FOSREFSEL [2:0]. Selects which input clock is used as the reference frequency for Frequency OffSet (FOS) alarms. 000: XA/XB (External reference) 001: CKIN1 010: CKIN2 011: CKIN3 100: CKIN4 101: Reserved 110: Reserved 111: Reserved Rev. 1.0 Si5368 Register 8. Bit D7 D6 D5 D4 D3 D2 D1 D0 Name HLOG_4[1:0] HLOG_3[1:0] HLOG_2[1:0] HLOG_1[1:0] Type R/W R/W R/W R/W Reset value = 0000 0000 Bit Name Function 7:6 HLOG_4 [1:0] HLOG_4 [1:0]. 00: Normal operation 01: Holds CKOUT4 output at static logic 0. Entrance and exit from this state will occur without glitches or runt pulses. 10: Holds CKOUT4 output at static logic 1. Entrance and exit from this state will occur without glitches or runt pulses. 11: Reserved 5:4 HLOG_3 [1:0] HLOG_3 [1:0]. 00: Normal operation 01: Holds CKOUT3 output at static logic 0. Entrance and exit from this state will occur without glitches or runt pulses. 10: Holds CKOUT3 output at static logic 1. Entrance and exit from this state will occur without glitches or runt pulses. 11: Reserved. 3:2 HLOG_2 [1:0] HLOG_2 [1:0]. 00: Normal operation 01: Holds CKOUT2 output at static logic 0. Entrance and exit from this state will occur without glitches or runt pulses. 10: Holds CKOUT2 output at static logic 1. Entrance and exit from this state will occur without glitches or runt pulses. 11: Reserved. 1:0 HLOG_1 [1:0] HLOG_1 [1:0]. 00: Normal operation 01: Holds CKOUT1 output at static logic 0. Entrance and exit from this state will occur without glitches or runt pulses. 10: Holds CKOUT1 output at static logic 1. Entrance and exit from this state will occur without glitches or runt pulses. 11: Reserved Rev. 1.0 33 Si5368 Register 9. Bit D7 D6 D5 Name HIST_AVG [4:0] Type R/W D4 D3 D2 D1 D0 HLOG_5 [1:0] R R/W Reset value = 1100 0000 34 Bit Name 7:3 HIST_AVG [4:0] 2 Reserved 1:0 HLOG_5 [1:0] Function HIST_AVG [4:0]. Selects amount of averaging time to be used in generating MHIST, the value of M used during digital hold. See Family Reference Manual for settings. HLOG_5 [1:0]. 00: Normal Operation 01: Holds CKOUT5 output at static logic 0. Entrance and exit from this state will occur without glitches or runt pulses. 10: Holds CKOUT5 output at static logic 1. Entrance and exit from this state will occur without glitches or runt pulses. 11: Reserved Rev. 1.0 Si5368 Register 10. Bit D7 D6 D4 DSBL5_ REG Name Type D5 R R R/W R D3 D2 D1 D0 DSBL4_ REG DSBL3_ REG DSBL2_ REG DSBL1_ REG R/W R/W R R Reset value = 0000 0000 Bit Name 7:6 Reserved 5 4 Function DSBL5_REG DSBL5_REG. This bit controls the powerdown and disable of the CKOUT5 output buffer. If disable mode is selected, the NC5_LS output divider is also powered down. 0: CKOUT5 enabled. 1: CKOUT5 disabled. Reserved 3 DSBL4_REG DSBL4_REG. This bit controls the powerdown and disable of the CKOUT4 output buffer. If disable mode is selected, the NC4 output divider is also powered down. 0'b=CKOUT4 enabled 1'b=CKOUT4 disabled 2 DSBL3_REG DSBL3_REG. This bit controls the powerdown and disable of the CKOUT3 output buffer. If disable mode is selected, the NC3 output divider is also powered down. 0: CKOUT3 enabled 1: CKOUT3 disabled 1 DSBL2_REG DSBL2_REG. This bit controls the powerdown and disable of the CKOUT2 output buffer. If disable mode is selected, the NC2 output divider is also powered down. 0: CKOUT2 enabled 1: CKOUT2 disabled 0 DSBL1_REG DSBL1_REG. This bit controls the powerdown and disable of the CKOUT1 output buffer. If disable mode is selected, the NC1 output divider is also powered down. 0: CKOUT1 enabled 1: CKOUT1 disabled Rev. 1.0 35 Si5368 Register 11. Bit D7 D5 D4 ALIGN_THR [2:0] Name Type D6 R/W R/W R/W R D3 D2 D1 D0 PD_CK4 PD_CK3 PD_CK2 PD_CK1 R/W R/W R/W R/W Reset value = 0100 0000 36 Bit Name Function 7:5 ALIGN_THR [2:0] ALIGN_THR [2:0]. These bits control the threshold for the alignment error alarm. Input to output sync phase skews that deviate more than the alignment threshold from the ideal value (set by FSYNC_SKEW[16:0]) in either the leading or lagging direction trigger the alignmentalarm. Value is in units of Tclkout2. 000: 4 001: 8 010: 16 011: 32 100: 48 101: 64 110: 96 111: 128 4 Reserved 3 PD_CK4 PD_CK4. This bit controls the powerdown of the CKIN4 input buffer. 0: CKIN4 enabled 1: CKIN4 disabled 2 PD_CK3 PD_CK3. This bit controls the powerdown of the CKIN3 input buffer. 0: CKIN3 enabled 1: CKIN3 disabled 1 PD_CK2 PD_CK2. This bit controls the powerdown of the CKIN2 input buffer. 0: CKIN2 enabled 1: CKIN2 disabled 0 PD_CK1 PD_CK1. This bit controls the powerdown of the CKIN1 input buffer. 0: CKIN1 enabled 1: CKIN1 disabled Rev. 1.0 Si5368 Register 12. Bit D7 D6 D5 D4 D3 D2 D1 D0 Name FPW_ VALID FSYNC_ ALIGN_ REG FSYNC_ ALIGN_ MODE FSYNC_ SWTCH_ REG FSKEW_ VALID FSYNC_ SKEW [16:16] FSYNC_PW [9:8] Type R/W R/W R/W R/W R/W R/W R/W Reset value = 1000 1000 Bit Name Function 7 FPW_VALID FPW_VALID. When in frame sync mode (CK_CONFIG_REG=1), before writing either a new FSYNC_PW[9:0] or NC5_LS [19:0] value, this bit must be set to zero. This causes the existing FSYNC_PW [9:0] or NC5_LS[19:0] value to be held by the internal state machine for use while the new values are written. Once the new FSYNC_PW [9:0] or NC5_LS [19:0] values are completely written, set FPW_VALID = 1 to enable their use. 0: Memorize existing FSYNC_PW[9:0] and NC5_LS [19:0] values and ignore intermediate register values during write of new FSYNC_PW [9:0] and NC5_LS [19:0] values. 1: Use FSYNC_PW[9:0] value directly from registers 6 5 4 3 FSYNC_ FSYNC_ALIGN_REG. ALIGN_REG If FSYNC_ALIGN_PIN=0, this bit controls realignment of FSYNCOUT to the active sync input (CKIN_3 or CKIN_4). If FSYNC_ALIGN_PIN=1, the FSYNC_ALIGN pin controls this function. 0: No realignment 1: Active FSYNC_ ALIGN_ MODE FSYNC_ALIGN_MODE. This bit must be set to 1 when in frame sync mode (when CK_CONFIG_REG = 1). FSYNC_ FSYNC_SWTCH_REG. SWTCH_REG Enables or disables the use of the CKIN3 and CKIN4 loss-of-signal indicators as inputs to the automatic clock selection state machine for the clock configuration mode supporting frame sync switching (CK_CONFIG=1 or CK_CONFIG_REG=1). 0: CKIN3 and CKIN4 status not used in clock selection 1: CKIN3 and CKIN4 status used in clock selection FSKEW_ VALID FSKEW_VALID. Before writing a new FSYNC_SKEW[16:0] value, this bit must be set to zero, which causes the existing FSYNC_SKEW[16:0] value to be held internally by the skew alignment state machine for use while the new value is being written. Once the new FSYNC_SKEW[16:0] is completely written, set FSKEW_VALID=1 to enable its use. 0: Memorize existing FSYNC_SKEW[16:0] value and ignore intermediate register values during write of new FSYNC_SKEW value. 1: Use FSYNC_SKEW[[16:0] value directly from registers. Rev. 1.0 37 Si5368 Bit 2 1:0 Name Function FSYNC_ FSYNC_SKEW [16:0]. SKEW [16:0] Phase skew control for FSYNCOUT. The resolution of the skew control is 1/fCKOUT2. Entered values should be less than the FSYNCOUT period. 0 0000 0000 0000 0000=Zero phase skew. 0 0000 0000 0000 0001=Delay of 1 period of CLKOUT_2. 1 0010 1111 1011 1111=Delay of 77,759 periods of CKOUT2. If CKOUT2=622.08 MHz and FSYNCOUT=8 kHz, this delay equals 125 ms - 1/fCKOUT2 and is the maximum value that should be entered. 1 1111 1111 1111 1111=Delay of 131,071 periods of CKOUT2. FSYNC_ PW [9:0] FSYNC_PW [9:0]. These bits control the pulse width of the FSYNCOUT signal. The resolution of the pulse width control is 1/fCKOUT2. 0000000000=50% duty cycle. 0000000001=1 period of CKOUT2. 0000000010=2 periods of CKOUT2. 1111111111=1023 periods of CKOUT2. Register 13. Bit D7 D6 D5 D4 D3 Name FSYNC_PW [7:0] Type R/W D2 D1 D0 D2 D1 D0 Reset value = 0000 0001 Bit 7:0 Name Function FSYNC_PW [7:0] FSYNC_PW [7:0]. See Register 12. Register 14. Bit D7 D6 D5 D4 D3 Name FSYNC_SKEW [15:8] Type R/W Reset value = 0000 0000 Bit 7:0 38 Name Function FSYNC_SKEW [15:8] FSYNC_SKEW [15:8]. See Register 12. Rev. 1.0 Si5368 Register 15. Bit D7 D6 D5 D4 D3 Name FSYNC_SKEW [7:0] Type R/W D2 D1 D0 D2 D1 D0 Reset value = 0000 0000 Bit Name Function 7:0 FSYNC_SKEW [7:0] FSYNC_SKEW [7:0]. See Register 12. Register 16. Bit D7 D6 D5 D4 D3 Name CLAT [7:0] Type R/W Reset value = 0000 0000 Bit Name Function 7:0 CLAT [7:0] CLAT [7:0]. With INCDEC_PIN=0, this register sets the phase delay for CKOUT_n in units of N1_HS/Fosc. Note: This can take as long as 20 seconds. 01111111: +127 x 1/fOSC (2s compliment) 00000000: 0 1000000: –128 x 1/fOSC (2s compliment) If N2–HS[2:0] = 000, CLAT does not work. Rev. 1.0 39 Si5368 Register 17. Bit D7 D6 D5 D4 D3 Name FLAT_VALID D1 D0 FLAT [14:8] R/W Type D2 R/W Reset value = 1000 0000 Bit 7 6:0 Name Function FLAT_VAILD FLAT_VAILD. Before writing a new FLAT[14:0] value, this bit must be set to zero, which causes the existing FLAT[14:0] value to be held internally for use while the new value is being written. Once the new FLAT[14:0] value is completely written, set FLAT_VALID = 1 to enable its use. 0: Memorize existing FLAT[14:0] value and ignore intermediate register values during write of new FLAT[14:0] value. 1: Use FLAT[14:0] value directly from registers. FLAT [14:0] FLAT [14:0]. Fine resolution control for overall device latency from input clocks to output clocks. Positive values increase the skew. See DSPLLsim for details. Register 18. Bit D7 D6 D5 D4 D3 Name FLAT [7:0] Type R/W Reset value = 0000 0000 40 Bit Name 7:0 FLAT [7:0] Function FLAT [7:0]. See Register 17. Rev. 1.0 D2 D1 D0 Si5368 Register 19. Bit D7 D6 D5 D4 D3 D2 D1 Name FOS_EN FOS_THR [1:0] VALTIME [1:0] LOCKT [2:0] Type R/W R/W R/W R/W D0 Reset value = 0010 1100 Bit Name Function 7 FOS_EN FOS_EN. Frequency offset enable globally disables FOS. See the individual FOS enables (FOSx_EN, register 139). 00: FOS disable 01: FOS enabled by FOSx_EN 6:5 FOS_THR [1:0] FOS_THR [1:0]. Frequency Offset at which FOS is declared: 00: ± 11 to 12 ppm Stratum 3/3E compliant, with a Stratum 3/3E used for REFCLK. 01: ± 48 to 49 ppm (SMC). 10: ± 30 ppm SONET Minimum Clock (SMC), with a Stratum 3/3E used for REFCLK. 11: ± 200 ppm 4:3 VALTIME [1:0] VALTIME [1:0]. Sets amount of time for input clock to be valid before the associated alarm is removed. 00: 2 ms 01: 100 ms 10: 200 ms 11: 13 seconds 2:0 LOCKT [2:0] LOCKT [2:0]. Sets retrigger interval for one shot monitoring phase detector output. One shot is triggered by phase slip in DSPLL. Refer to the Family Reference Manual for more details. 000: 106 ms 001: 53 ms 010: 26.5 ms 011: 13.3 ms 100: 6.6 ms 101: 3.3 ms 110: 1.66 ms 111: 833 us Rev. 1.0 41 Si5368 Register 20. Bit D7 D6 D4 D3 D2 ALRCK3_BAD_ CK2_BAD_ CK1_BAD_ MOUT_PIN PIN PIN PIN Name Type D5 R R R/W R/W R/W D1 D0 LOL_PIN INT_PIN R/W R/W R/W Reset value = 0011 1100 42 Bit Name Function 7:6 Reserved 5 ALRMOUT_PIN ALRMOUT_PIN. The ALRMOUT status can be reflected on the ALRMOUT output pin. The request to reflect the interrupt status on this pin (INT_PIN=1) overrides the ALRMOUT_PIN request. 0: ALRMOUT not reflected on output pin. Output pin disabled if INT_PIN=0. 1: ALRMOUT reflected to output pin if INT_PIN=0. If INT_PIN=1, interrupt status appears on the output pin and ALRMOUT is not available on an output pin. 4 CK3_BAD_PIN CK3_BAD_PIN. The CK3_BAD status can be reflected on the C3B output pin. 0: C3B output pin tristated 1: C3B status reflected to output pin 3 CK2_BAD_PIN CK2_BAD_PIN. The CK2_BAD status can be reflected on the C2B output pin. 0: C2B output pin tristated 1: C2B status reflected to output pin 2 CK1_BAD_PIN CK1_BAD_PIN. The CK1_BAD status can be reflected on the C1B output pin. 0: C1B output pin tristated 1: C1B status reflected to output pin 1 LOL_PIN LOL_PIN. The LOL_INT status bit can be reflected on the LOL output pin. 0: LOL output pin tristated 1: LOL_INT status reflected to output pin 0 INT_PIN INT_PIN. Reflects the interrupt status on the INT output pin. 0: Interrupt status not displayed on INT output pin. If ALRMOUT_PIN = 0, output pin is tristated. 1: Interrupt status reflected to output pin. ALRMOUT_PIN ignored. Rev. 1.0 Si5368 Register 21. Bit D7 D6 Name INCDEC_ PIN Type R/W D5 D4 FSYNC_ CK4_ACTALIGN_PIN V_PIN Force 1 R/W R/W D3 D2 D1 D0 CK3_ACTV_PIN CK2_ACTV_PIN CK1_ACTV_PIN CKSEL_ PIN R/W R/W R/W R/W Reset value = 1111 1111 Bit 7 6 5 Name INCDEC_PIN Function INCDEC_PIN. Determines how coarse skew adjustments can be made. The adjustments can be made via hardware using the INC/DEC pins or with software via the CLAT register. 0: INC and DEC inputs ignored; use CLAT register to adjust skew. 1: INC and DEC inputs control output phase increment/decrement. Reserved FSYNC_ALIGN_PIN FSYNC_ALIGN_PIN. Realignment of FSYNCOUT can be controlled by the FSYNC_ALIGN input pin instead of the FSYNC_ALIGN_REG register bit. 0: FSYNC_ALIGN pin ignored. FSYNC_ALIGN_REG register bit controls FSYNCOUT realignment. 1: FSYNC_ALIGN pin controls FSYNCOUT realignment. 4 CK4_ACTV_PIN CK4_ACTV_PIN. If the CKSEL[1]/CK4_ACTV pin is functioning as the CK4_ACTV output (see CKSEL[1]/CK4_ACTV pin description on CK4_ACTV), the CK4_ACTV_REG status bit can be reflected to the CK4_ACTV output pin using the CK4_ACTV_PIN enable function. 0: CK4_ACTV output pin tristated 1: CK4_ACTV status reflected to output pin. 3 CK3_ACTV_PIN CK3_ACTV_PIN. If the CKSEL[0]/CK3_ACTV pin is functioning as the CK3_ACTV output (see CKSEL[0]/CK3_ACTV pin description on CK3_ACTV), the CK3_ACTV_REG status bit can be reflected to the CK3_ACTV output pin using the CK3_ACTV_PIN enable function. 0: CK3_ACTV output pin tristated. 1: CK3_ACTV status reflected to output pin. 2 CK2_ACTV_PIN CK2_ACTV_PIN. The CK2_ACTV_REG status bit can be reflected to the CK2_ACTV output pin using the CK2_ACTV_PIN enable function. 0: CK2_ACTV output pin tristated. 1: CK2_ACTV status reflected to output pin. Rev. 1.0 43 Si5368 Bit Name Function 1 CK1_ACTV_PIN 0 CKSEL_PIN CK1_ACTV_PIN. The CK1_ACTV_REG status bit can be reflected to the CK1_ACTV output pin using the CK1_ACTV_PIN enable function. 0: CK1_ACTV output pin tristated. 1: CK1_ACTV status reflected to output pin. CKSEL_PIN. If manual clock selection is being used, clock selection can be controlled via the CKSEL_REG[1:0] register bits or the CKSEL[1:0] input pins. 0: CKSEL pins ignored. CKSEL_REG[1:0] register bits control clock selection. 1: CKSEL[1:0] input pins controls clock selection. Note: The CKx_ACTV_PIN bits in this register are of consequence only when CKSEL_PIN is 0. Register 22. Bit D7 D6 Name FSYNC_ ALIGN_ POL FSYNC_ POL Type R/W R/W D5 R D4 D3 D2 D1 D0 FSYNCOUT_POL CK_ACTV_POL CK_BAD_ POL LOL_POL INT_POL R/W R/W R/W R/W R/W Reset value = 1101 1111 44 Bit Name 7 FSYNC_ALIGN_POL 6 FSYNC_POL 5 Reserved 4 FSYNCOUT_POL Function FSYNC_ALIGN_POL. Sets the active polarity or edge for the FSYNC_ALIGN input pin. 0: Active low (falling edge). 1: Active high (rising edge). FSYNC_POL. Sets the active polarity and edge for the CKIN_3 and CKIN_4 inputs when used as frame sync inputs. 0: Active low (falling edge). 1: Active high (rising edge). FSYNCOUT_POL. Controls active polarity of FSYNCOUT. 0: Active low 1: Active high Rev. 1.0 Si5368 Bit Name Function 3 CK_ACTV_ POL 2 CK_BAD_ POL 1 LOL_POL LOL_POL. Sets the active polarity for the LOL status when reflected on an output pin. 0: Active low 1: Active high 0 INT_POL INT_POL. Sets the active polarity for the interrupt status when reflected on the INT_ALM output pin. 0: Active low 1: Active high CK_ACTV_POL. Sets the active polarity for the CK1_ACTV, CK2_ACTV, CK3_ACTV, and CK4_ACTV signals when reflected on an output pin. 0: Active low 1: Active high CK_BAD_POL. Sets the active polarity for the C1B, C2B, C3B, and ALRMOUT signals when reflected on output pins. 0: Active low 1: Active high Register 23. Bit D7 D6 D5 Name Type R R R D4 D3 D2 D1 D0 LOS4_ MSK LOS3_ MSK LOS2_ MSK LOS1_ MSK LOSX_ MSK R/W R/W R/W R/W R/W Reset value = 0001 1111 Bit 7:5 4 Name Reserved LOS4_MSK 3 LOS3_MSK Function LOS4_MSK. Determines if a LOS on CKIN4 (LOS4_FLG) is used in the generation of an interrupt. Writes to this register do not change the value held in the LOS4_FLG register. 0: LOS4 alarm triggers active interrupt on INT output (if INT_PIN=1). 1: LOS4_FLG ignored in generating interrupt output. LOS3_MSK. Determines if a LOS on CKIN3 (LOS3_FLG) is used in the generation of an interrupt. Writes to this register do not change the value held in the LOS3_FLG register. 0: LOS3 alarm triggers active interrupt on INT output (if INT_PIN=1). 1: LOS3_FLG ignored in generating interrupt output. Rev. 1.0 45 Si5368 2 LOS2_MSK 1 LOS1_MSK 0 LOSX_MSK LOS2_MSK. Determines if a LOS on CKIN2 (LOS2_FLG) is used in the generation of an interrupt. Writes to this register do not change the value held in the LOS2_FLG register. 0: LOS2 alarm triggers active interrupt on INT output (if INT_PIN=1). 1: LOS2_FLG ignored in generating interrupt output. LOS1_MSK. Determines if a LOS on CKIN1 (LOS1_FLG) is used in the generation of an interrupt. Writes to this register do not change the value held in the LOS1_FLG register. 0: LOS1 alarm triggers active interrupt on INT output (if INT_PIN=1). 1: LOS1_FLG ignored in generating interrupt output. LOSX_MSK. Determines if a LOS on XA/XB(LOSX_FLG) is used in the generation of an interrupt. Writes to this register do not change the value held in the LOSX_FLG register. 0: LOSX alarm triggers active interrupt on INT output (if INT_PIN=1). 1: LOSX_FLG ignored in generating interrupt output. Register 24. Bit D7 D6 Name Type R R D5 D4 D3 D2 D1 D0 ALIGN_ MSK FOS4_ MSK FOS3_ MSK FOS2_ MSK FOS1_ MSK LOL_MSK R/W R/W R/W R/W R/W R/W Reset value = 0011 1111 46 Bit Name 7:6 Reserved Function 5 ALIGN_MSK ALIGN_MSK. Determines if an alignment alarm (ALIGN_FLG) is used in the generation of an interrupt. Writes to this register do not change the value held in the ALIGN_FLG register. 0: FSYNC alignment alarm triggers active interrupt on INT output (if INT_PIN=1). 1: ALIGN_FLG ignored in generating interrupt output. 4 FOS4_MSK FOS4_MSK. Determines if the FOS4_FLG is used to in the generation of an interrupt. Writes to this register do not change the value held in the FOS4_FLG register. 0: FOS4 alarm triggers active interrupt on INToutput (if INT_PIN=1). 1: FOS4_FLG ignored in generating interrupt output. 3 FOS3_MSK FOS3_MSK. Determines if the FOS3_FLG is used in the generation of an interrupt. Writes to this register do not change the value held in the FOS3_FLG register. 0: FOS3 alarm triggers active interrupt on INT output (if INT_PIN=1). 1: FOS3_FLG ignored in generating interrupt output. Rev. 1.0 Si5368 2 FOS2_MSK FOS2_MSK. Determines if the FOS2_FLG is used in the generation of an interrupt. Writes to this register do not change the value held in the FOS2_FLG register. 0: FOS2 alarm triggers active interrupt on INT output (if INT_PIN=1). 1: FOS2_FLG ignored in generating interrupt output. 1 FOS1_MSK FOS1_MSK. Determines if the FOS1_FLG is used in the generation of an interrupt. Writes to this register do not change the value held in the FOS1_FLG register. 0: FOS1 alarm triggers active interrupt on INT output (if INT_PIN=1). 1: FOS1_FLG ignored in generating interrupt output. 0 LOL_MSK LOL_MSK. Determines if the LOL_FLG is used in the generation of an interrupt. Writes to this register do not change the value held in the LOL_FLG register. 0: LOL alarm triggers active interrupt on INT output (if INT_PIN=1). 1: LOL_FLG ignored in generating interrupt output. Register 25. Bit D7 D6 Name N1_HS [2:0] Type R/W D5 D4 D3 D2 D1 D0 NC1_LS [19:16] R R/W Reset value = 0010 0000 Bit Name Function 7:5 N1_HS [2:0] N1_HS [2:0]. Sets value for N1 high speed divider which drives NCn_LS (n = 1 to 4) low-speed divider. 000: N1 = 4 Note: Changing the coarse skew via the INC pin is disabled for this value. 001: N1 = 5 010: N1 = 6 011: N1 = 7 100: N1 = 8 101: N1 = 9 110: N1 = 10 111: N1 = 11 4 Reserved 3:0 NC1_LS [19:16] NC1_LS [19:0]. Sets value for NC1 low-speed divider, which drives CKOUT1 output. Must be 0 or odd. 00000000000000000000 = 1 00000000000000000001 = 2 00000000000000000011 = 4 00000000000000000101 = 6 ... 11111111111111111111 = 220 Valid divider values = [1, 2, 4, 6, ..., 220]. Rev. 1.0 47 Si5368 Register 26. Bit D7 D6 D5 D4 D3 Name NC1_LS [15:8] Type R/W D2 D1 D0 D2 D1 D0 Reset value = 0000 0000 Bit Name 7:0 NC1_LS [15:8] Function NC1_LS [15:8]. See Register 25. Register 27. Bit D7 D6 D5 D4 D3 Name NC1_LS [7:0] Type R/W Reset value = 0011 0001 Bit 7:0 48 Name Function NC1_LS [7:0] NC1_LS [7:0]. See Register 25. Rev. 1.0 Si5368 Register 28. Bit D7 D6 D5 D4 D3 D1 D0 NC2_LS [19:16] Name Type D2 R R R R R/W Reset value = 0000 0000 Bit Name 7:4 Reserved 3:0 NC1_LS [19:0] Function NC2_LS [19:16]. Sets value for NC2 low-speed divider, which drives CKOUT2 output. Must be 0 or odd. 00000000000000000000=1 00000000000000000001=2 00000000000000000011=4 00000000000000000101=6 ... 11111111111111111111 = 220 Valid divider values = [1, 2, 4, 6, ..., 220] Rev. 1.0 49 Si5368 Register 29. Bit D7 D6 D5 D4 D3 Name NC2_LS [15:8] Type R/W D2 D1 D0 D2 D1 D0 Reset value = 0000 0000 Bit Name 7:0 NC2_LS [15:8] Function NC2_LS [15:8]. See Register 28. Register 30. Bit D7 D6 D5 D4 D3 Name NC2_LS [7:0] Type R/W Reset value = 0011 0001 50 Bit Name 7:0 NC2_LS [7:0] Function NC2_LS [7:0]. See Register 28. Rev. 1.0 Si5368 Register 31. Bit D7 D6 D5 D4 D3 D2 D1 D0 NC3_LS [19:16] Name R Type R R R R/W Reset value = 0000 0000 Bit Name 7:4 Reserved 3:0 NC3_LS [19:0] Function NC3_LS [19:0. Sets value for NC3 low-speed divider, which drives CKOUT3 output. Must be 0 or odd. 00000000000000000000=1 00000000000000000001=2 000000000000000000011=4 000000000000000000101=6 ... 11111111111111111111=220 Valid divider values=[1, 2, 4, 6, ..., 220]. Register 32. Bit D7 D6 D5 D4 D3 Name NC3_LS [15:8] Type R/W D2 D1 D0 Reset value = 0000 0000 Bit Name 7:0 NC3_LS [15:8] Function NC3_LS [15:8]. See Register 31. Rev. 1.0 51 Si5368 Register 33. Bit D7 D6 D5 D4 D3 Name NC3_LS [7:0] Type R/W D2 D1 D0 D2 D1 D0 Reset value = 0011 0001 Bit 7:0 Name Function NC3_LS [7:0] NC3_LS [7:0]. See Register 31. Register 34. Bit D7 D6 D5 D4 D3 NC4_LS [19:16] Name Type R R R R R/W Reset value = 0000 0000 52 Bit Name 7:4 Reserved 3:0 NC4_LS [19:0] Function NC4_LS [19:0]. Sets value for NC4 low-speed divider, which drives CKOUT4 output. Must be 0 or odd. 00000000000000000000 = 1 00000000000000000001 = 2 000000000000000000011 = 4 000000000000000000101 = 6 ... 11111111111111111111 = 220 Valid divider values = [1, 2, 4, 6, ..., 220]. Rev. 1.0 Si5368 Register 35. Bit D7 D6 D5 D4 D3 Name NC4_LS [15:8] Type R/W D2 D1 D0 D2 D1 D0 Reset value = 0000 0000 Bit Name 7:0 NC4_LS [15:8] Function NC4_LS [15:8]. See Register 34. Register 36. Bit D7 D6 D5 D4 D3 Name NC4_LS [7:0] Type R/W Reset value = 0011 0001 Bit Name 7:0 NC4_LS [7:0] Function NC4_LS [7:0]. See Register 34. Rev. 1.0 53 Si5368 Register 37. Bit D7 D6 D5 D4 D3 D2 D1 D0 NC5_LS [19:16] Name R Type R R R R/W Reset value = 0000 0000 Bit Name 7:4 Reserved 3:0 NC5_LS [19:0] Function NC5_LS [19:0]. Sets value for NC5 low-speed divider, which drives CKOUT5 output. Must be 0 or odd. When CK_CONFIG = 0: 00000000000000000000 = 1 00000000000000000001 = 2 000000000000000000011 = 4 000000000000000000101 = 6 ... 11111111111111111111 = 220 Valid divider values=[1, 2, 4, 6, ..., 220]. When CK_CONFIG=1, maximum value limited to 219.: 00000000000000000000 = 1 00000000000000000001 = 2 000000000000000000011 = 4 000000000000000000101 = 6 ... 01111111111111111111 = 219 Valid divider values = [1, 2, 4, 6, ..., 219]. Register 38. Bit D7 D6 D5 D4 D3 Name NC5_LS [15:8] Type R/W Reset value = 0000 0000 54 Bit Name 7:0 NC5_LS [15:8] Function NC5_LS [15:8]. See Register 37. Rev. 1.0 D2 D1 D0 Si5368 Register 39. Bit D7 D6 D5 D4 D3 Name NC5_LS [7:0] Type R/W D2 D1 D0 D2 D1 D0 Reset value = 0011 0001 Bit 7:0 Name Function NC5_LS [7:0] NC5_LS [7:0]. See Register 37. Register 40. Bit D7 D6 Name N2_HS [2:0] Type R/W D5 D4 D3 N2_LS [19:16] R R/W Reset value = 1100 0000 Bit Name Function 7:5 N2_HS [2:0] N2_HS [2:0]. Sets value for N2 high speed divider which drives NCn_LS (n = 1 to 4) low-speed divider. 000:4 001:5 010:6 011:7 100:8 101:9 110:10 111:11. 4 Reserved 3:0 N2_LS [19:16] NC2_LS [19:0]. Sets value for N2 low-speed divider, which drives phase detector. 00000000000000000001 = 2 000000000000000000011 = 4 000000000000000000101 = 6 ... 11111111111111111111 = 220 Valid divider values = [2, 4, 6, ..., 220]. Rev. 1.0 55 Si5368 Register 41. Bit D7 D6 D5 D4 D3 Name N2_LS [15:8] Type R/W D2 D1 D0 D2 D1 D0 Reset value = 0000 0000 Bit 7:0 Name Function N2_LS [15:8] N2_LS [15:8]. See Register 40. Register 42. Bit D7 D6 D5 D4 D3 Name N2_LS [7:0] Type R/W Reset value = 1111 1001 56 Bit Name 7:0 N2_LS [7:0] Function N2_LS [7:0]. See Register 40. Rev. 1.0 Si5368 Register 43. Bit D7 D6 D5 D4 D3 D2 D1 D0 N31 [18:16] Name R Type R R R R R/W Reset value = 0000 0000 Bit Name 7:3 Reserved 2:0 N31 [18:0] Function N31 [18:0]. Sets value for input divider for CKIN1. 0000000000000000000 = 1 0000000000000000001 = 2 0000000000000000010 = 3 ... 1111111111111111111 = 219 Valid divider values = [1, 2, 3, ..., 219]. Register 44. Bit D7 D6 D5 D4 D3 Name N31 [15:8] Type R/W D2 D1 D0 Reset value = 0000 0000 Bit Name 7:0 N31 [15:8] Function N31 [15:8]. See Register 43. Rev. 1.0 57 Si5368 Register 45. Bit D7 D6 D5 D4 D3 Name N31 [7:0] Type R/W D2 D1 D0 D2 D1 D0 Reset value = 0000 1001 Bit Name 7:0 N31 [7:0] Function N31 [7:0]. See Register 43. Register 46. Bit D7 D6 D5 D4 D3 N32_[18:16] Name Type R R R R R Reset value = 0000 0000 58 Bit Name 7:3 Reserved 2:0 N32_[18:0] Function N32_[18:0]. Sets value for input divider for CKIN2. 0000000000000000000 = 1 0000000000000000001 = 2 0000000000000000010 = 3 ... 1111111111111111111 = 219 Valid divider values=[1, 2, 3, ..., 219]. Rev. 1.0 R/W Si5368 Register 47. Bit D7 D6 D5 D4 D3 Name N32_[15:8] Type R/W D2 D1 D0 D2 D1 D0 Reset value = 0000 0000 Bit Name 7:0 N32_[15:8] Function N32_[15:8]. See Register 46. Register 48. Bit D7 D6 D5 D4 D3 Name N32_[7:0] Type R/W Reset value = 0000 1001 Bit Name 7:0 N32_[7:0] Function N32_[7:0]. See Register 46. Rev. 1.0 59 Si5368 Register 49. Bit D7 D6 D5 D4 D3 D2 D1 D0 N33_[18:0] Name R Type R R R R R/W Reset value = 0000 0000 Bit Name 18:0 N33_[18:0] Function N33_[18:0]. Sets value for input divider for CKIN3. 0000000000000000000 = 1 0000000000000000001 = 2 0000000000000000010 = 3 ... 1111111111111111111 = 219 Valid divider values = [1, 2, 3, ..., 219]. Register 50. Bit D7 D6 D5 D4 D3 Name N33_[15:8] Type R/W Reset value = 0000 0000 60 Bit Name 7:0 N33_[15:8] Function N33_[15:8]. See Register 49. Rev. 1.0 D2 D1 D0 Si5368 Register 51. Bit D7 D6 D5 D4 D3 Name N33_[7:0] Type R/W D2 D1 D0 D2 D1 D0 Reset value = 0000 1001 Bit Name 7:0 N33_[7:0] Function N33_[7:0]. See Register 49. Register 52. Bit D7 D6 D5 D4 D3 N34_[18:16] Name Type R R R R R R/W Reset value = 0000 0000 Bit Name 7:0 N34_[18:0] Function N34_[18:0]. Sets value for input divider for CKIN4. 0000000000000000000 = 1 0000000000000000001 = 2 0000000000000000010 = 3 ... 1111111111111111111 = 219 Valid divider values = [1, 2, 3, ..., 219]. Rev. 1.0 61 Si5368 Register 53. Bit D7 D6 D5 D4 D3 Name N34_[15:8] Type R/W D2 D1 D0 D2 D1 D0 Reset value = 0000 0000 Bit Name 7:0 N34_[15:8] Function N34_[15:8]. See Register 52. Register 54. Bit D7 D6 D5 D4 D3 Name N34_[7:0] Type R/W Reset value = 0000 1001 62 Bit Name 7:0 N34_[15:8] Function N34_[7:0]. See Register 52. Rev. 1.0 Si5368 Register 55. Bit D7 D6 Name Type R R D5 D4 D3 D2 D1 CLKIN2RATE_[2:0] CLKIN1RATE[2:0] R/W R/W D0 Reset value = 0000 0000 Bit Name Function 7:6 Reserved 5:3 CLKIN2RATE[2:0] CLKIN2RATE[2:0]. CKINn frequency selection for FOS alarm monitoring. 000: 10–27 MHz 001: 25–54 MHz 002: 50–105 MHz 003: 95–215 MHz 004: 190–435 MHz 005: 375–710 MHz 006: Reserved 007: Reserved 2:0 CLKIN1RATE [2:0] CLKIN1RATE[2:0]. CKINn frequency selection for FOS alarm monitoring. 000: 10–27 MHz 001: 25–54 MHz 002: 50–105 MHz 003: 95–215 MHz 004: 190–435 MHz 005: 375–710 MHz 006: Reserved 007: Reserved Rev. 1.0 63 Si5368 Register 56. Bit D7 D6 Name Type R R D5 D4 D3 D2 CLKIN4RATE_[2:0] CLKIN3RATE[2:0] R/W R/W Reset value = 0000 0000 64 D1 Bit Name Function 7:6 Reserved 5:3 CLKIN4RATE[2:0] CLKIN4RATE[2:0]. CKINn frequency selection for FOS alarm monitoring. 000: 10–27 MHz 001: 25–54 MHz 002: 50–105 MHz 003: 95–215 MHz 004: 190–435 MHz 005: 375–710 MHz 006: Reserved 007: Reserved 2:0 CLKIN3RATE [2:0] CLKIN3RATE[2:0]. CKINn frequency selection for FOS alarm monitoring. 000: 10–27 MHz 001: 25–54 MHz 002: 50–105 MHz 003: 95–215 MHz 004: 190–435 MHz 005: 375–710 MHz 006: Reserved 007: Reserved Rev. 1.0 D0 Si5368 Register 128. Bit D7 D6 D5 D4 Name Type R R R R D3 D2 D1 D0 CK4_ACTV_REG CK3_ACTV_REG CK2_ACTV_REG CK1_ACTV_REG R R R R Reset value = 0010 0000 Bit Name Function 7:4 Reserved 3 CK4_ACTV_REG CK4_ACTV_REG. Indicates if CKIN4 is currently the active clock for the PLL input. 0: CKIN4 is not the active input clock. Either it is not selected or LOS4_INT is 1. 1: CKIN_4 is the active input clock. 2 CK3_ACTV_REG CK3_ACTV_REG. Indicates if CKIN3 is currently the active clock for the PLL input. 0: CKIN3 is not the active input clock - either it is not selected or LOS3_INT is 1. 1: CKIN3 is the active input clock. 1 CK2_ACTV_REG CK2_ACTV_REG. Indicates if CKIN2 is currently the active clock for the PLL input. 0: CKIN2 is not the active input clock. Either it is not selected or LOS2_INT is 1. 1: CKIN2 is the active input clock. 0 CK1_ACTV_REG CK1_ACTV_REG. Indicates if CKIN1 is currently the active clock for the PLL input. 0: CKIN1 is not the active input clock. Either it is not selected or LOS1_INT is 1. 1: CKIN1 is the active input clock. Rev. 1.0 65 Si5368 Register 129. Bit D7 D6 D5 Name Type R R R D4 D3 D2 D1 D0 LOS4_INT LOS3_INT LOS2_INT LOS1_INT LOSX_INT R R R R R Reset value = 0001 1110 66 Bit Name Function 7:5 Reserved 4 LOS4_INT LOS4_INT. Indicates the LOS status on CKIN4. 0: Normal operation. 1: Internal loss-of-signal alarm on CKIN4 input. 3 LOS3_INT LOS3_INT. Indicates the LOS status on CKIN3. 0: Normal operation. 1: Internal loss-of-signal alarm on CKIN3 input. 2 LOS2_INT LOS2_INT. Indicates the LOS status on CKIN2. 0: Normal operation. 1: Internal loss-of-signal alarm on CKIN2 input. 1 LOS1_INT LOS1_INT. Indicates the LOS status on CKIN1. 0: Normal operation. 1: Internal loss-of-signal alarm on CKIN1 input. 0 LOSX_INT LOSX_INT. Indicates the LOS status of the external reference on the XA/XB pins. 0: Normal operation. 1: Internal loss-of-signal alarm on XA/XB reference clock input. Rev. 1.0 Si5368 Register 130. Bit D7 D6 D5 Name CLATPROG- DIGHOLDRESS VALID Type R R ALIGN_ INT R D4 D3 D2 FOS4_INT FOS3_INT FOS2_INT R R R D1 D0 FOS1_INT LOL_INT R R Reset value = 0000 0001 Bit Name Function 7 CLATPROGRESS 6 DIGHOLDVALID 5 ALIGN_INT ALIGN_INT. Alignment Alarm Status. 0: Normal operation. 1: Alignment alarm between input and output frame sync signals. 4 FOS4_INT FOS4_INT. CKIN4 Frequency Offset Status. 0: Normal operation. 1: Internal frequency offset alarm on CKIN4 input. 3 FOS3_INT FOS3_INT. CKIN3 Frequency Offset Status. 0: Normal operation. 1: Internal frequency offset alarm on CKIN3 input. 2 FOS2_INT FOS2_INT. CKIN2 Frequency Offset Status. 0: Normal operation. 1: Internal frequency offset alarm on CKIN2 input. 1 FOS1_INT FOS1_INT. CKIN1 Frequency Offset Status. 0: Normal operation. 1: Internal frequency offset alarm on CKIN1 input. 0 LOL_INT CLAT Progress. Indicates if the last change in the CLAT register has been processed. 0: Coarse skew adjustment not in progress. 1: Coarse skew adjustment in progress. Digital Hold Valid. Indicates if the digital hold circuit has enough samples of a valid clock to meet digital hold specifications. 0: Indicates digital filter has not been filled. The digital hold output frequency (from the filter) is not valid. 1: Indicates digital hold filter has been filled. The digital hold output frequency is valid. LOL_INT. PLL Loss of Lock Status. 0: PLL locked. 1: PLL unlocked. Rev. 1.0 67 Si5368 Register 131. Bit D7 D6 D5 Name Type R R R D4 D3 D2 D1 D0 LOS4_ FLG LOS3_ FLG LOS2_ FLG LOS1_ FLG LOSX_ FLG R/W R/W R/W R/W R/W Reset value = 0001 1111 68 Bit Name Function 7:5 Reserved 4 LOS4_FLG LOS4_FLG. CKIN4 Loss-of-Signal Flag. 0: Normal operation. 1: Held version of LOS4_INT. Generates active output interrupt if output interrupt pin is enabled (INT_PIN=1) and if not masked by LOS4_MSK bit. Flag cleared by writing location to 0. 3 LOS3_FLG LOS3_FLG. CKIN3 Loss-of-Signal Flag. 0: Normal operation. 1: Held version of LOS3_INT. Generates active output interrupt if output interrupt pin is enabled (INT_PIN=1) and if not masked by LOS3_MSK bit. Flag cleared by writing location to 0. 2 LOS2_FLG LOS2_FLG. CKIN2 Loss-of-Signal Flag. 0: Normal operation. 1: Held version of LOS2_INT. Generates active output interrupt if output interrupt pin is enabled (INT_PIN=1) and if not masked by LOS2_MSK bit. Flag cleared by writing location to 0. 1 LOS1_FLG LOS1_FLG. CKIN1 Loss-of-Signal Flag. 0: Normal operation. 1: Held version of LOS1_INT. Generates active output interrupt if output interrupt pin is enabled (INT_PIN=1) and if not masked by LOS1_MSK bit. Flag cleared by writing location to 0. 0 LOSX_FLG LOSX_FLG. External reference (signal on pins XA/XB) Loss-of-Signal Flag. 0: Normal operation. 1: Held version of LOSX_INT. Generates active output interrupt if output interrupt pin is enabled (INT_PIN=1) and if not masked by LOSX_MSK bit. Flag cleared by writing location to 0. Rev. 1.0 Si5368 Register 132. Bit D7 D5 ALIGN_ FLG Name Type D6 R R/W D4 D3 D2 FOS4_FLG FOS3_FLG FOS2_FLG FOS1_FLG R/W R/W R/W R/W D1 D0 LOL_FLG ALIGN_ ERR [8,8] R/W R Reset value = 0000 0010 Bit Name Function 7 Reserved 6 ALIGN_FLG ALIGN_FLG. Alignment Alarm Flag. 0: Normal operation. 1: Held version of ALIGN_INT. Generates active output interrupt if output interrupt pin is enabled (INT_PIN=1) and if not masked by ALIGN_MSK bit. Flag cleared by writing location to 0. 5 FOS4_FLG FOS4_FLG. CLKIN_4 Frequency Offset Flag. 0: Normal operation. 1: Held version of FOS4_INT. Generates active output interrupt if output interrupt pin is enabled (INT_PIN=1) and if not masked by FOS4_MSK bit. Flag cleared by writing location to 0. 4 FOS3_FLG FOS3_FLG. CLKIN_3 Frequency Offset Flag. 0: Normal operation. 1: Held version of FOS3_INT. Generates active output interrupt if output interrupt pin is enabled (INT_PIN=1) and if not masked by FOS3_MSK bit. Flag cleared by writing location to 0. 3 FOS2_FLG FOS2_FLG. CLKIN_2 Frequency Offset Flag. 0: Normal operation. 1: Held version of FOS2_INT. Generates active output interrupt if output interrupt pin is enabled (INT_PIN = 1) and if not masked by FOS2_MSK bit. Flag cleared by writing location to 0. Rev. 1.0 69 Si5368 Bit Name Function 2 FOS1_FLG FOS1_FLG. CLKIN_1 Frequency Offset Flag. 0: Normal operation. 1: Held version of FOS1_INT. Generates active output interrupt if output interrupt pin is enabled (INT_PIN = 1) and if not masked by FOS1_MSK bit. Flag cleared by writing location to 0. 1 LOL_FLG LOL_FLG. PLL Loss of Lock Flag. 0: PLL locked 1: Held version of LOL_INT. Generates active output interrupt if output interrupt pin is enabled (INT_PIN = 1) and if not masked by LOL_MSK bit. Flag cleared by writing location to 0. 0 ALIGN_ERR [8,8] ALIGN_ERR [8:0]. Indicates the magnitude of the deviation of the input to output frame sync phase alignment from the ideal value set in the FSYNC_SKEW[16:0] registers. The alignment error is given in units of tCKOUT_2. If the alignment error exceeds 255 fCKOUT_2 clock cycles, ALIGN_ERR[7:0] limits to its maximum value (11111111). The polarity of the phase deviation (leading or lagging) is given by the ALIGN_ERR[8] bit. 00000000=0 11111111=255 Register 133. Bit D7 D6 D5 D4 D3 Name ALIGN_ERR [7:0] Type R Reset value = 0000 0000 Bit 7:0 70 Name Function ALIGN_ERR [7:0] ALIGN_ERR [7:0]. See Register 132. Rev. 1.0 D2 D1 D0 Si5368 Register 134. Bit D7 D6 D5 D4 D3 Name PARTNUM_RO [11:4] Type R D2 D1 D0 D2 D1 D0 Reset value = 0000 0100 Bit Name Function 7:0 PARTNUM_RO [11:4] PARTNUM_RO [11:4]. Device ID: 0000 0100 0100'b=Si5368 Register 135. Bit D7 D6 D5 D4 D3 Name PARTNUM_RO [3:0] REVID_RO [3:0] Type R R Reset value = 0100 0010 Bit 7:4 3:0 Name Function PARTNUM_RO [3:0] PARTNUM_RO [3:0]. See Register 134. REVID_RO [3:0] REVID_RO [3:0]. Indicates revision number of device. 0000: Revision A 0001: Revision B 0010: Revision C Other codes: Reserved Rev. 1.0 71 Si5368 Register 136. Bit D7 D6 Name RST_REG ICAL Type R/W R/W D5 D4 D3 D2 D1 D0 R R R R R R Reset value = 0000 0000 Bit Name 7 RST_REG 6 ICAL Function RST_REG. Internal Reset. 0: Normal operation. 1: Reset of all internal logic. Outputs tristated or disabled during reset. ICAL. Start an Internal Calibration Sequence. For proper operation, the device must go through an internal calibration sequence. ICAL is a self-clearing bit. Writing a one to this location initiates an ICAL. The calibration is complete once the LOL alarm goes low. A valid stable clock (within 100 ppm) must be present to begin ICAL. Note: Any divider, CLKINn_RATE or BWSEL_REG changes require an ICAL to take effect. Changes in SFOUTn_REG, PD_CKn, or DSBLn_REG will cause a random change in skew until an ICAL is completed. 0: Normal operation. 1: Writing a “1” initiates internal self-calibration. Upon completion of internal selfcalibration, ICAL is internally reset to zero. 5:0 72 Reserved Rev. 1.0 Si5368 Register 138. Bit D7 D6 D5 D4 Name Type R R R R D3 D2 D1 D0 LOS4_EN [1:1] LOS3_EN [1:1] LOS2_EN [1:1] LOS1_EN [1:1] R/W R/W R/W R/W Reset value = 0000 1111 Bit Name 7:4 Reserved 3 LOS4_EN [1:0] Function LOS4_EN [1:0]. Note: LOS1_EN is split between two registers. 00: Disable LOS monitoring. 01: Reserved. 10: Enable LOSA monitoring. 11: Enable LOS monitoring. LOSA is a slower and less sensitive version of LOS. See the Family Reference Manual for details. 2 LOS3_EN [1:0] LOS3_EN [1:0]. Note: LOS1_EN is split between two registers. 00: Disable LOS monitoring. 01: Reserved. 10: Enable LOSA monitoring. 11: Enable LOS monitoring. LOSA is a slower and less sensitive version of LOS. See the Family Reference Manual for details. 1 LOS2_EN [1:0] LOS2_EN [1:0]. Note: LOS1_EN is split between two registers. 00: Disable LOS monitoring. 01: Reserved. 10: Enable LOSA monitoring. 11: Enable LOS monitoring. LOSA is a slower and less sensitive version of LOS. See the Family Reference Manual for details. 0 LOS1_EN [1:0] LOS1_EN [1:0]. Note: LOS1_EN is split between two registers. 00: Disable LOS monitoring. 01: Reserved. 10: Enable LOSA monitoring. 11: Enable LOS monitoring. LOSA is a slower and less sensitive version of LOS. See the Family Reference Manual for details. Rev. 1.0 73 Si5368 Register 139. Bit D7 D6 D5 D4 D3 D2 D1 D0 Name LOS4_EN [0:0] LOS3_EN [0:0] LOS2_EN [0:0] LOS1_EN [0:0] FOS4_EN FOS3_EN FOS2_EN FOS1_EN Type R/W R/W R/W R/W R/W R/W R/W R/W Reset value = 1111 1111 Bit Name 7 LOS4_EN [0:0] Function LOS4_EN [0:0]. Enable CKIN1 LOS Monitoring on the Specified Input (1 of 2). Note: LOS1_EN is split between two registers. 00: Disable LOS monitoring. 01: Reserved. 10: Enable LOSA monitoring. 11: Enable LOS monitoring. LOSA is a slower and less sensitive version of LOS. See the family reference manual for details. 6 LOS3_EN [0:0] LOS3_EN [0:0]. Enable CKIN1 LOS Monitoring on the Specified Input (1 of 2). Note: LOS1_EN is split between two registers. 00: Disable LOS monitoring. 01: Reserved. 10: Enable LOSA monitoring. 11: Enable LOS monitoring. LOSA is a slower and less sensitive version of LOS. See the family reference manual for details. 5 LOS2_EN [0:0] LOS2_EN. Enable CKIN1 LOS Monitoring on the Specified Input (1 of 2). Note: LOS1_EN is split between two registers. 00: Disable LOS monitoring. 01: Reserved. 10: Enable LOSA monitoring. 11: Enable LOS monitoring. LOSA is a slower and less sensitive version of LOS. See the family reference manual for details. 4 LOS1_EN [0:0] LOS1_EN [0:0]. Enable CKIN1 LOS Monitoring on the Specified Input (1 of 2). Note: LOS1_EN is split between two registers. 00: Disable LOS monitoring. 01: Reserved. 10: Enable LOSA monitoring. 11: Enable LOS monitoring. LOSA is a slower and less sensitive version of LOS. See the family reference manual for details. 74 Rev. 1.0 Si5368 Bit Name Function 3 FOS4_EN FOS4_EN. Enables FOS on a Per Channel Basis. 0: Disable FOS monitoring. 1: Enable FOS monitoring. 2 FOS3_EN FOS3_EN. Enables FOS on a Per Channel Basis. 0: Disable FOS monitoring. 1: Enable FOS monitoring. 1 FOS2_EN FOS2_EN. Enables FOS on a Per Channel Basis. 0: Disable FOS monitoring. 1: Enable FOS monitoring. 0 FOS1_EN FOS1_EN. Enables FOS on a Per Channel Basis. 0: Disable FOS monitoring. 1: Enable FOS monitoring. Register 140. Bit D7 D6 D5 D4 D3 D2 Name INDEPENDENTSKEW1 [7:0] Type R/W D1 D0 Reset value = 0000 0000 Bit Name 7:0 INDEPEND-ENTSKEW1 [7:0] Function INDEPENDENTSKEW1 [7:0]. 8 bit field that represents a twos complement of the phase offset in terms of clocks from the high speed output divider. Rev. 1.0 75 Si5368 Register 141. Bit D7 D6 D5 D4 D3 D2 Name INDEPENDENTSKEW2 [7:0] Type R/W D1 D0 Reset value = 0000 0001 Bit Name 7:0 INDEPEND-ENTSKEW2 [7:0] Function INDEPENDENTSKEW2 [7:0]. 8 bit field that represents a twos complement of the phase offset in terms of clocks from the high speed output divider. Register 142. Bit D7 D6 D5 D4 D3 D2 Name INDEPENDENTSKEW3 [7:0] Type R/W D1 D0 Reset value = 0000 0000 Bit 7:0 Name Function INDEPEND-ENTSKEW3 [7:0] INDEPENDENTSKEW3 [7:0]. 8 bit field that represents a twos complement of the phase offset in terms of clocks from the high speed output divider. Register 143. Bit D7 D6 D5 D4 D3 D2 Name INDEPENDENTSKEW4 [7:0] Type R/W D1 D0 Reset value = 0000 0000 Bit 7:0 76 Name Function INDEPEND-ENTSKEW4 [7:0] INDEPENDENTSKEW4 [7:0]. 8 bit field that represents a twos complement of the phase offset in terms of clocks from the high speed output divider. Rev. 1.0 Si5368 Register 144. Bit D7 D6 D5 D4 D3 D2 Name INDEPENDENTSKEW5 [7:0] Type R/W D1 D0 Reset value = 0000 0000 Bit Name Function 7:0 INDEPEND-ENTSKEW5 [7:0] INDEPENDENTSKEW5 [7:0]. 8 bit field that represents a twos complement of the phase offset in terms of clocks from the high speed output divider when CK_CONFIG = 0. Table 9. CKOUT_ALWAYS_ON and SQICAL Truth Table CKOUT_ALWAYS_ON SQICAL Results Output to Output Skew Preserved? 0 0 CKOUT OFF until after the first ICAL N 0 1 CKOUT OFF until after the first successful ICAL (i.e., when LOL is low) Y 1 0 CKOUT always ON, including during an ICAL N 1 1 CKOUT always ON, including during an ICAL Y Table 10 lists all of the register locations that should be followed by an ICAL after their contents are changed. Rev. 1.0 77 Si5368 Table 10. Register Locations Requiring ICAL Address 78 Register 0 BYPASS_REG 0 CKOUT_ALWAYS_ON 1 CK_PRIOR4 1 CK_PRIOR3 1 CK_PRIOR2 1 CK_PRIOR1 2 BWSEL_REG 4 HIST_DEL 5 ICMOS 7 FOSREFSEL 9 HIST_AVG 10 DSBL5_REG 10 DSBL4_REG 10 DSBL3_REG 10 DSBL2_REG 10 DSBL1_REG 11 PD_CK2 11 PD_CK1 19 FOS_EN 19 FOS_THR 19 VALTIME 19 LOCKT 21 INCDEC_PIN 25 N1_HS 26 NC1_LS 28 NC2_LS 31 NC3_LS 34 NC4_LS 37 NC5_LS 40 N2_HS 40 N2_LS 43 N31 46 N32 49 N33 51 N34 55 CLKIN2RATE 55 CLKIN1RATE 56 CLKIN4RATE 56 CLKIN3RATE Rev. 1.0 Si5368 VDD CKOUT3+ CKOUT3– VDD NC VDD CKOUT1– CKOUT1+ VDD NC FS_OUT– VDD FS_OUT+ VDD CMODE VDD CKOUT2+ CKOUT2– NC VDD VDD CKOUT4– VDD CKOUT4+ VDD 7. Pin Descriptions: Si5368 NC 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 1 NC NC 2 74 NC RST 3 73 NC NC 4 72 NC VDD 5 71 SDI VDD 6 70 A2_SS GND GND 7 69 A1 8 68 A0 C1B 9 67 NC C2B 10 66 NC C3B 11 65 INT_ALM 12 64 GND GND CS0_C3A 13 63 VDD GND 14 62 VDD VDD 15 61 SDA_SDO XA 60 SCL XB 16 17 59 C2A GND 18 58 C1A GND 19 57 CS1_C4A NC 20 56 NC FS_ALIGN 21 55 INC NC 22 DEC NC 23 54 53 NC 24 25 GND PAD NC Rev. 1.0 NC LOL NC NC CKIN1– GND CKIN1+ GND GND RATE1 CKIN3– CKIN3+ GND NC GND CKIN2– GND CKIN2+ RATE0 GND CKIN4– CKIN4+ NC GND NC 51 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 VDD 52 GND NC Si5368 79 Si5368 Table 11. Si5368 Pin Descriptions Pin # Pin Name I/O Signal Level Description 1, 2, 4, 20, 22, 23, 24, 25, 37, 47, 48, 50, 51, 52, 53, 56, 66, 67, 72, 73, 74, 75, 80, 85, 95 NC 3 RST I LVCMOS 5, 6, 15, 27, 62, 63, 76, 79, 81, 84, 86, 89, 91, 94, 96, 99, 100 VDD Vdd Supply VDD. The device operates from a 1.8, 2.5, or 3.3 V supply. Bypass capacitors should be associated with the following VDD pins: Pins Bypass Cap 5, 6 0.1 µF 15 0.1 µF 27 0.1 µF 62, 63 0.1 µF 76, 79 1.0 µF 81, 84 0.1 µF 86, 89 0.1 µF 91, 94 0.1 µF 96, 99, 100 0.1 µF 7, 8, 14, 18, 19, 26, 28, 31, 33, 36, 38, 41, 43, 46, 64, 65 GND GND Supply Ground. This pin must be connected to system ground. Minimize the ground path impedance for optimal performance. 9 C1B O LVCMOS CKIN1 Invalid Indicator. This pin performs the CK1_BAD function if CK1_BAD_PIN = 1 and is tristated if CK1_BAD_PIN = 0. Active polarity is controlled by CK_BAD_POL. 0 = No alarm on CKIN1. 1 = Alarm on CKIN1. 10 C2B O LVCMOS CKIN2 Invalid Indicator. This pin performs the CK2_BAD function if CK2_BAD_PIN = 1 and is tristated if CK2_BAD_PIN = 0. Active polarity is controlled by CK_BAD_POL. 0 = No alarm on CKIN2. 1 = Alarm on CKIN2. No Connect. These pins must be left unconnected for normal operation. External Reset. Active low input that performs external hardware reset of device. Resets all internal logic to a known state and forces the device registers to their default value. Clock outputs are disabled during reset. The part must be programmed after a reset or power-on to get a clock output. See Family Reference Manual for details. This pin has a weak pull-up. Note: Internal register names are indicated by underlined italics, e.g. INT_PIN. See Si5368 Register Map. 80 Rev. 1.0 Si5368 Table 11. Si5368 Pin Descriptions (Continued) Pin # Pin Name I/O Signal Level Description 11 C3B O LVCMOS CKIN3 Invalid Indicator. This pin performs the CK3_BAD function if CK3_BAD_PIN = 1 and is tristated if CK3_BAD_PIN = 0. Active polarity is controlled by CK_BAD_POL. 0 = No alarm on CKIN3. 1 = Alarm on CKIN3. 12 INT_ALM O LVCMOS Interrupt/Alarm Output Indicator. This pin functions as a maskable interrupt output with active polarity controlled by the INT_POL register bit. The INT output function can be turned off by setting INT_PIN = 0. If the ALRMOUT function is desired instead on this pin, set ALRMOUT_PIN = 1 and INT_PIN = 0. 0 = ALRMOUT not active. 1 = ALRMOUT active. The active polarity is controlled by CK_BAD_POL. If no function is selected, the pin tristates. 13 57 CS0_C3A CS1_C4A I/O LVCMOS Input Clock Select/CKIN3 or CKIN4 Active Clock Indicator. Input: If manual clock selection is chosen, and if CKSEL_PIN = 1, the CKSEL pins control clock selection and the CKSEL_REG bits are ignored. CS[1:0] Active Input Clock 00 CKIN1 01 CKIN2 10 CKIN3 11 CKIN4 If CKSEL_PIN = 0, the CKSEL_REG register bits control this function and these inputs tristate. If configured as inputs, these pins must not float. Output: If auto clock selection is enabled, then they serve as the CKIN_n active clock indicator. 0 = CKIN3 (CKIN4) is not the active input clock 1 = CKIN3 (CKIN4) is currently the active input to the PLL The CKn_ACTV_REG bit always reflects the active clock status for CKIN_n. If CKn_ACTV_PIN = 1, this status will also be reflected on the CnA pin with active polarity controlled by the CK_ACTV_POL bit. If CKn_ACTV_PIN = 0, this output tristates. 16 17 XA XB I ANALOG External Crystal or Reference Clock. External crystal should be connected to these pins to use internal oscillator based reference. Refer to Family Reference Manual for interfacing to an external reference. External reference must be from a high-quality clock source (TCXO, OCXO). Frequency of crystal or external clock is set by the RATE pins. Note: Internal register names are indicated by underlined italics, e.g. INT_PIN. See Si5368 Register Map. Rev. 1.0 81 Si5368 Table 11. Si5368 Pin Descriptions (Continued) Pin # Pin Name I/O Signal Level Description 21 FS_ALIGN I LVCMOS FSYNC Alignment Control. If FSYNC_ALIGN_PIN = 1 and CK_CONFIG = 1, a logic high on this pin causes the FS_OUT phase to be realigned to the rising edge of the currently active input sync (CKIN_3 or CKIN_4). If FSYNC_ALIGN_PIN = 0, this pin is ignored and the FSYNC_ALIGN_REG bit performs this function. 0 = No realignment. 1 = Realign. This pin has a weak pull-down. 29 30 CKIN4+ CKIN4– I MULTI Clock Input 4. Differential clock input. This input can also be driven with a single-ended signal. CKIN4 serves as the frame sync input associated with the CKIN2 clock when CK_CONFIG_REG = 1. 32 42 RATE0 RATE1 I 3-Level External Crystal or Reference Clock Rate. Three level inputs that select the type and rate of external crystal or reference clock to be applied to the XA/XB port. Refer to the Family Reference Manual for settings. These pins have both a weak pull-up and a weak pull-down; they default to M. 34 35 CKIN2+ CKIN2– I MULTI Clock Input 2. Differential input clock. This input can also be driven with a single-ended signal. 39 40 CKIN3+ CKIN3– I MULTI Clock Input 3. Differential clock input. This input can also be driven with a single-ended signal. CKIN3 serves as the frame sync input associated with the CKIN1 clock when CK_CONFIG_REG = 1. 44 45 CKIN1+ CKIN1– I MULTI Clock Input 1. Differential clock input. This input can also be driven with a single-ended signal. 49 LOL O LVCMOS PLL Loss of Lock Indicator. This pin functions as the active high PLL loss of lock indicator if the LOL_PIN register bit is set to one. 0 = PLL locked. 1 = PLL unlocked. If LOL_PIN = 0, this pin will tristate. Active polarity is controlled by the LOL_POL bit. The PLL lock status will always be reflected in the LOL_INT read only register bit. Note: Internal register names are indicated by underlined italics, e.g. INT_PIN. See Si5368 Register Map. 82 Rev. 1.0 Si5368 Table 11. Si5368 Pin Descriptions (Continued) Pin # Pin Name I/O Signal Level Description 54 DEC I LVCMOS Coarse Latency Decrement. A pulse on this pin decreases the input to output device latency by 1/fOSC (approximately 200 ps). Detailed operations and timing characteristics for this pin may be found in the Any-Frequency Precision Clock Family Reference Manual. There is no limit on the range of latency adjustment by this method. Pin control is enabled by setting INCDEC_PIN = 1 (default). If INCDEC_PIN = 0, this pin is ignored and coarse output latency is controlled via the CLAT register. If both INC and DEC are tied high, phase buildout is disabled and the device maintains a fixed-phase relationship between the selected input clock and the output clock during an input clock switch. Detailed operations and timing characteristics for these pins may be found in the Any-Frequency Precision Clock Family Reference Manual. This pin has a weak pull-down. 55 INC I LVCMOS Coarse Latency Increment. A pulse on this pin increases the input to output device latency by 1/fOSC (approximately 200 ps). Detailed operations, restrictions, and timing characteristics for this pin may be found in the Any-Frequency Precision Clock Family Reference Manual. There is no limit on the range of latency adjustment by this method. Pin control is enabled by setting INCDEC_PIN = 1 (default). Note: INC does not increase latency if NI_HS = 4. If INCDEC_PIN = 0, this pin is ignored and coarse output latency is controlled via the CLAT register. If both INC and DEC are tied high, phase buildout is disabled and the device maintains a fixed-phase relationship between the selected input clock and the output clock during an input clock switch. Detailed operations and timing characteristics for these pins may be found in the Any-Frequency Precision Clock Family Reference Manual. This pin has a weak pull-down. 58 C1A O LVCMOS CKIN1 Active Clock Indicator. This pin serves as the CKIN1 active clock indicator. The CK1_ACTV_REG bit always reflects the active clock status for CKIN1. If CK1_ACTV_PIN = 1, this status will also be reflected on the C1A pin with active polarity controlled by the CK_ACTV_POL bit. If CK1_ACTV_PIN = 0, this output tristates. 59 C2A O LVCMOS CKIN2 Active Clock Indicator. This pin serves as the CKIN2 active clock indicator. The CK2_ACTV_REG bit always reflects the active clock status for CKIN_2. If CK2_ACTV_PIN = 1, this status will also be reflected on the C2A pin with active polarity controlled by the CK_ACTV_POL bit. If CK2_ACTV_PIN = 0, this output tristates. Note: Internal register names are indicated by underlined italics, e.g. INT_PIN. See Si5368 Register Map. Rev. 1.0 83 Si5368 Table 11. Si5368 Pin Descriptions (Continued) Pin # Pin Name I/O Signal Level Description 60 SCL I LVCMOS Serial Clock. This pin functions as the serial port clock input for both SPI and I2C modes. This pin has a weak pull-down. 61 SDA_SDO I/O LVCMOS Serial Data. In I2C microprocessor control mode (CMODE = 0), this pin functions as the bidirectional serial data port. In SPI microprocessor control mode (CMODE = 1), this pin functions as the serial data output. 68 69 A0 A1 I LVCMOS Serial Port Address. In I2C microprocessor control mode (CMODE = 0), these pins function as hardware controlled address bits. The I2C address is 1101 [A2] [A1] [A0]. In SPI microprocessor control mode (CMODE = 1), these pins are ignored. This pin has a weak pull-down. 70 A2_SS I LVCMOS Serial Port Address/Slave Select. In I2C microprocessor control mode (CMODE = 0), this pin functions as a hardware controlled address bit [A2]. In SPI microprocessor control mode (CMODE = 1), this pin functions as the slave select input. This pin has a weak pull-down. 71 SDI I LVCMOS Serial Data In. In SPI microprocessor control mode (CMODE = 1), this pin functions as the serial data input. In I2C microprocessor control mode (CMODE = 0), this pin is ignored. This pin has a weak pull-down. 77 78 CKOUT3+ CKOUT3– O MULTI Clock Output 3. Differential clock output. Output signal format is selected by SFOUT3_REG register bits. Output is differential for LVPECL, LVDS, and CML compatible modes. For CMOS format, both output pins drive identical single-ended clock outputs. 82 83 CKOUT1– CKOUT1+ O MULTI Clock Output 1. Differential clock output. Output signal format is selected by SFOUT1_REG register bits. Output is differential for LVPECL, LVDS, and CML compatible modes. For CMOS format, both output pins drive identical single-ended clock outputs. 87 88 FS_OUT– FS_OUT+ O MULTI Frame Sync Output. Differential frame sync output or fifth high-speed clock output. Output signal format is selected by SFOUT_FSYNC_REG register bits. Output is differential for LVPECL, LVDS, and CML compatible modes. For CMOS format, both output pins drive identical single-ended clock outputs. Duty cycle and active polarity are controlled by FSYNC_PW and FSYNC_POL bits, respectively. Detailed operations and timing characteristics for these pins may be found in the Any-Frequency Precision Clock Family Reference Manual. Note: Internal register names are indicated by underlined italics, e.g. INT_PIN. See Si5368 Register Map. 84 Rev. 1.0 Si5368 Table 11. Si5368 Pin Descriptions (Continued) Pin # Pin Name I/O Signal Level Description 90 CMODE I LVCMOS 92 93 CKOUT2+ CKOUT2– O MULTI Clock Output 2. Differential clock output. Output signal format is selected by SFOUT2_REG register bits. Output is differential for LVPECL, LVDS, and CML compatible modes. For CMOS format, both output pins drive identical single-ended clock outputs. 97 98 CKOUT4– CKOUT4+ O MULTI Clock Output 4. Differential clock output. Output signal format is selected by SFOUT4_REG register bits. Output is differential for LVPECL, LVDS, and CML compatible modes. For CMOS format, both output pins drive identical single-ended clock outputs. GND PAD GND PAD GND Supply Ground Pad. The ground pad must provide a low thermal and electrical impedance to a ground plane. Control Mode. Selects I2C or SPI control mode for the device. 0 = I2C Control Mode. 1 = SPI Control Mode. This pin must be tied high or low. Note: Internal register names are indicated by underlined italics, e.g. INT_PIN. See Si5368 Register Map. Rev. 1.0 85 Si5368 8. Ordering Guide Ordering Part Number Output Clock Frequency Range Package ROHS6, Pb-Free Temperature Range Si5368A-C-GQ 2 kHz–945 MHz 970–1134 MHz 1.213–1.417 GHz 100-Pin 14 x 14 mm TQFP Yes –40 to 85 °C Si5368B-C-GQ 2 kHz–808 MHz 100-Pin 14 x 14 mm TQFP Yes –40 to 85 °C Si5368C-C-GQ 2 kHz–346 MHz 100-Pin 14 x 14 mm TQFP Yes –40 to 85 °C Note: Add an R at the end of the device to denote tape and reel options (for example, Si5368-C-GMR). 86 Rev. 1.0 Si5368 9. Package Outline: 100-Pin TQFP Figure 6 illustrates the package details for the Si5368. Table 12 lists the values for the dimensions shown in the illustration. Figure 6. 100-Pin Thin Quad Flat Package (TQFP) Table 12. 100-Pin Package Diagram Dimensions Dimension Min Nom Max Dimension Min Nom Max A — — 1.20 E 16.00 BSC. A1 0.05 — 0.15 E1 14.00 BSC. A2 0.95 1.00 1.05 E2 3.85 4.00 4.15 b 0.17 0.22 0.27 L 0.45 0.60 0.75 c 0.09 — 0.20 aaa — — 0.20 D 16.00 BSC. bbb — — 0.20 D1 14.00 BSC. ccc — — 0.08 ddd — — 0.08 0º 3.5º 7º D2 e 3.85 4.00 4.15 0.50 BSC. Notes: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. This package outline conforms to JEDEC MS-026, variant AED-HD. 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components. Rev. 1.0 87 Si5368 10. Recommended PCB Layout Figure 7. PCB Land Pattern Diagram 88 Rev. 1.0 Si5368 Table 13. PCB Land Pattern Dimensions Dimension MIN MAX e 0.50 BSC. E 15.40 REF. D 15.40 REF. E2 3.90 4.10 D2 3.90 4.10 GE 13.90 — GD 13.90 — X — 0.30 Y 1.50 REF. ZE — 16.90 ZD — 16.90 R1 R2 0.15 REF — 1.00 Notes: General 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification. 3. This Land Pattern Design is based on IPC-7351 guidelines. 4. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm. Solder Mask Design 5. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. Stencil Design 6. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 7. The stencil thickness should be 0.125 mm (5 mils). 8. The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads. 9. A 4 x 4 array of 0.80 mm square openings on 1.05 mm pitch should be used for the center ground pad. Card Assembly 10. A No-Clean, Type-3 solder paste is recommended. 11. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. Rev. 1.0 89 Si5368 11. Top Marking: 100-Pin TQFP 11.1. Si5368 Top Marking 11.2. Top Marking Explanation Mark Method: Laser Logo Size: 9.2 x 3.1 mm Center-Justified Font Size: 3.0 Point (1.07 mm) Right-Justified Line 1 Marking: Device Part Number X = Speed Grade See "7. Pin Descriptions: Si5368" on page 79. Line 2 Marking: YY = Year WW = Workweek R=Die Revision Assigned by the Assembly Supplier. Corresponds to the year and workweek of the mold date. TTTTT = Mfg Code Manufacturing Code Circle = 1.8 mm Diameter Center-Justified “e3” Pb-Free Symbol Line 3 Marking: Country of Origin ISO Code Abbreviation 90 Rev. 1.0 Si5368 DOCUMENT CHANGE LIST Revision 0.1 to Revision 0.2 Changed LVTTL to LVCMOS in Table 9, “Absolute Maximum Ratings,” on page 18. Updated Figure 4 and Figure 5 on page 19. Updated “5. Register Map”. Added RATE0 to pin description. By changing RATE[1:0] the part can emulate a Si5367. Changed XA/XB pin description to support both differential and single ended external REFCLK. Revision 0.2 to Revision 0.3 Added Figure on p..8. Updated Figure 4, “Si5368 Typical Application Circuit (I2C Control Mode),” and Figure 5, “Si5368 Typical Application Circuit (SPI Control Mode),” on page 19 to show INC and DEC. Updated “5. Register Map”. Changed font of register names to underlined italics. Updated "7. Pin Descriptions: Si5368" on page 79. Added “10. Recommended PCB Layout”. Revision 0.3 to Revision 0.4 Changed VDD specification for 1.8 V. Updated Table 8 on page 16. Updated Table 9 on page 18. Added table under Figure on page 8. Updated "4. Functional Description" on page 20. Clarified "5. Register Map" on page 22 including correcting pin assignments for RATE0 and RATE1. Revision 0.4 to Revision 0.41 Added register map. Added 3.3 V operation. Removed some TBDs from the AC specifications. Revision 0.41 to Revision 1.0 Expanded spec tables. Added device top mark drawing. Changed “any-rate” to “any-frequency” throughout. Added No Bypass mode with CMOS outputs. Minor updates to Table 2 on page 4 and Table 6 on page 14. Removed “2. Typical Phase Noise Performance”. Updated "4. Functional Description" on page 20. Revised "5. Register Map" on page 22. Revised "11. Top Marking: 100-Pin TQFP" on page 90. Rev. 1.0 91 ClockBuilder Pro One-click access to Timing tools, documentation, software, source code libraries & more. Available for Windows and iOS (CBGo only). www.silabs.com/CBPro Timing Portfolio www.silabs.com/timing SW/HW www.silabs.com/CBPro Quality www.silabs.com/quality Support and Community community.silabs.com Disclaimer Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are not designed or authorized for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Trademark Information Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders. Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA http://www.silabs.com