Si8440/Si8441/Si8442/Si8450/Si8451/Si8452/Si8455 QSOP Four and Five-Channel Digital Isolators

Si844x/5x QSOP
F O UR A N D F IVE - C HANNEL D IGITAL I SOLA TORS
Features

High-speed operation

DC
Up to 1000 VRMS isolation

Precise timing (typical)
to 150 Mbps
No start-up initialization required
 Wide Operating Supply Voltage:
2.70–5.5 V
 Ultra low power (typical)
5 V Operation:

<10
ns worst case
ns pulse width distortion
0.5 ns channel-channel skew
2 ns propagation delay skew
6 ns minimum pulse width
N
ot
fo R
r N ec
e w om
m
D e
e s nd
ig e
ns d
1.5
1.6 mA per channel at 1 Mbps  Transient Immunity 25 kV/µs
6 mA per channel at 100 Mbps  Wide temperature range
2.70 V Operation:
–40 to 125 °C at 150 Mbps
< 1.4 mA per channel at 1 Mbps
 RoHS-compliant packages
< 4 mA per channel at 100 Mbps
QSOP-16
<
<

High electromagnetic immunity
Applications
Industrial automation systems
Isolated switch mode supplies
 Isolated ADC, DAC


Motor control
Power inverters
 Communications systems


Safety Regulatory Approvals

UL 1577 recognized
Up

to 1000 VRMS for 1 minute
CSA component notice 5A
approval

VDE certification conformity
IEC
60747-5-2
(VDE0884 Part 2)
Ordering Information:
See page 25.
Description
Silicon Lab's family of ultra-low-power digital isolators are CMOS
devices offering substantial data rate, propagation delay, power, size,
reliability, and external BOM advantages when compared to legacy
isolation technologies. The operating parameters of these products
remain stable across wide temperature ranges throughout their
service life. For ease of design, only VDD bypass capacitors are
required.
Data rates up to 150 Mbps are supported, and all devices achieve
worst-case propagation delays of less than 10 ns. These devices are
available in a 16-pin QSOP package.
Rev. 1.2 9/13
Copyright © 2013 by Silicon Laboratories
Si844x/5x QSOP
N
ot
fo R
r N ec
e w om
m
D e
e s nd
ig e
ns d
Si8 44x/5x Q S O P
2
Rev. 1.2
Si844x/5x QSOP
TABLE O F C ONTENTS
Section
Page
N
ot
fo R
r N ec
e w om
m
D e
e s nd
ig e
ns d
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1. Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2. Eye Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3. Device Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4. Layout Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5. Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3. Errata and Design Migration Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1. Power Supply Bypass Capacitors (Revision C and Revision D) . . . . . . . . . . . . . . . . 23
4. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6. Package Outline: 16-Pin QSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7. Land Pattern: 16-Pin QSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
8. Top Marking: 16-Pin QSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.1. 16-Pin QSOP Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Rev. 1.2
3
Si8 44x/5x Q S O P
1. Electrical Specifications
Table 1. Recommended Operating Conditions
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
TA
150 Mbps, 15 pF, 5 V
–40
25
125
°C
VDD1
2.70
—
5.5
V
VDD2
2.70
—
5.5
V
Ambient Operating Temperature*
Supply Voltage
N
ot
fo R
r N ec
e w om
m
D e
e s nd
ig e
ns d
*Note: The maximum ambient temperature is dependent on data frequency, output loading, number of operating channels,
and supply voltage.
Table 2. Absolute Maximum Ratings1
Parameter
Symbol
Min
Typ
Max
Unit
TSTG
–65
—
150
°C
TA
–40
—
125
°C
VDD1, VDD2
–0.5
—
6.0
V
Input Voltage
VI
–0.5
—
VDD + 0.5
V
Output Voltage
VO
–0.5
—
VDD + 0.5
V
Output Current Drive Channel
IO
—
—
10
mA
Lead Solder Temperature (10 s)
—
—
260
°C
Maximum Isolation (Input to Output) (1 sec)
QSOP-16
—
—
1000
VRMS
Storage Temperature
2
Ambient Temperature Under Bias
Supply Voltage
Notes:
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be
restricted to conditions as specified in the operational sections of this data sheet.
2. VDE certifies storage temperature from –40 to 150 °C.
4
Rev. 1.2
Si844x/5x QSOP
Table 3. Electrical Characteristics
(VDD1 =5 V±10%, VDD2 =5 V±10%, TA = –40 to 125 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
High Level Input Voltage
VIH
2.0
—
—
V
Low Level Input Voltage
VIL
—
—
0.8
V
High Level Output Voltage
VOH
loh = –4 mA
VDD1,VDD2 – 0.4
4.8
—
V
Low Level Output Voltage
VOL
lol = 4 mA
—
0.2
0.4
V
IL
—
—
±10
µA
ZO
—
85
—

Input Leakage Current
1
N
ot
fo R
r N ec
e w om
m
D e
e s nd
ig e
ns d
Output Impedance
Enable Input High Current
IENH
VENx = VIH
—
2.0
—
µA
Enable Input Low Current
IENL
VENx = VIL
—
2.0
—
µA
DC Supply Current (All inputs 0 V or at Supply)
Si8455Bx
VDD1
VDD2
VDD1
VDD2
All inputs 0 DC
All inputs 0 DC
All inputs 1 DC
All inputs 1 DC
—
—
—
—
1.6
2.9
7.0
3.1
2.4
4.4
10.5
4.7
Si8442Bx
VDD1
VDD2
VDD1
VDD2
All inputs 0 DC
All inputs 0 DC
All inputs 1 DC
All inputs 1 DC
—
—
—
—
2.3
2.3
4.5
4.5
3.5
3.5
6.8
6.8
mA
mA
1 Mbps Supply Current (All inputs = 500 kHz square wave, CI = 15 pF on all outputs)
Si8455Bx
VDD1
VDD2
—
—
4.3
3.5
6.5
5.3
mA
Si8442Bx
VDD1
VDD2
—
—
3.6
3.6
5.4
5.4
mA
10 Mbps Supply Current (All inputs = 5 MHz square wave, CI = 15 pF on all outputs)
Si8455Bx
VDD1
VDD2
—
—
4.3
4.8
6.5
6.7
mA
Si8442Bx
VDD1
VDD2
—
—
4.2
4.2
5.9
5.9
mA
Notes:
1. The nominal output impedance of an isolator driver channel is approximately 85 , ±40%, which is a combination of
the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled
impedance PCB traces.
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at
the same supply voltages, load, and ambient temperature.
3. Start-up time is the time period from the application of power to valid data at the output.
Rev. 1.2
5
Si8 44x/5x Q S O P
Table 3. Electrical Characteristics (Continued)
(VDD1 =5 V±10%, VDD2 =5 V±10%, TA = –40 to 125 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)
Si8455Bx
VDD1
VDD2
—
—
4.6
24
6.9
30
mA
Si8442Bx
VDD1
VDD2
—
—
11.8
11.8
14.8
14.8
mA
N
ot
fo R
r N ec
e w om
m
D e
e s nd
ig e
ns d
Timing Characteristics
Si845xAx, Si8442Bx
Maximum Data Rate
0
—
1.0
Mbps
Minimum Pulse Width
—
—
250
ns
Propagation Delay
tPHL, tPLH
See Figure 2
—
—
35
ns
PWD
See Figure 2
—
—
25
ns
tPSK(P-P)
—
—
40
ns
tPSK
—
—
35
ns
Maximum Data Rate
0
—
150
Mbps
Minimum Pulse Width
—
—
6.0
ns
Pulse Width Distortion
|tPLH - tPHL|
Propagation Delay Skew2
Channel-Channel Skew
Si845xBx, Si8442Bx
Propagation Delay
Pulse Width Distortion
|tPLH - tPHL|
Propagation Delay Skew2
Channel-Channel Skew
tPHL, tPLH
See Figure 2
3.0
6.0
9.5
ns
PWD
See Figure 2
—
1.5
2.5
ns
tPSK(P-P)
—
2.0
3.0
ns
tPSK
—
0.5
1.8
ns
All Models
Output Rise Time
tr
CL = 15 pF
See Figure 2
—
3.8
5.0
ns
Output Fall Time
tf
CL = 15 pF
See Figure 2
—
2.8
3.7
ns
CMTI
VI = VDD or 0 V
—
25
—
kV/µs
ten1
See Figure 1
—
5.0
8.0
ns
ten2
See Figure 1
—
7.0
9.2
ns
—
15
40
µs
Common Mode Transient
Immunity
Enable to Data Valid
Enable to Data Tri-State
3
Start-up Time
tSU
Notes:
1. The nominal output impedance of an isolator driver channel is approximately 85 , ±40%, which is a combination of
the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled
impedance PCB traces.
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at
the same supply voltages, load, and ambient temperature.
3. Start-up time is the time period from the application of power to valid data at the output.
6
Rev. 1.2
Si844x/5x QSOP
ENABLE
OUTPUTS
ten1
N
ot
fo R
r N ec
e w om
m
D e
e s nd
ig e
ns d
ten2
Figure 1. ENABLE Timing Diagram
1.4 V
Typical
Input
tPLH
1.4 V
Typical
Output
tPHL
90%
90%
10%
10%
tr
tf
Figure 2. Propagation Delay Timing
Rev. 1.2
7
Si8 44x/5x Q S O P
Table 4. Electrical Characteristics
(VDD1 = 3.3 V±10%, VDD2 = 3.3 V±10%, TA = –40 to 125 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
High Level Input Voltage
VIH
2.0
—
—
V
Low Level Input Voltage
VIL
—
—
0.8
V
High Level Output Voltage
VOH
loh = –4 mA
VDD1,VDD2 – 0.4
3.1
—
V
Low Level Output Voltage
VOL
lol = 4 mA
—
0.2
0.4
V
IL
—
—
±10
µA
ZO
—
85
—

Input Leakage Current
N
ot
fo R
r N ec
e w om
m
D e
e s nd
ig e
ns d
Output Impedance
1
Enable Input High Current
IENH
VENx = VIH
—
2.0
—
µA
Enable Input Low Current
IENL
VENx = VIL
—
2.0
—
µA
DC Supply Current (All inputs 0 V or at supply)
Si8455Bx
VDD1
VDD2
VDD1
VDD2
All inputs 0 dc
All inputs 0 dc
All inputs 1 dc
All inputs 1 dc
—
—
—
—
1.6
2.9
7.0
3.1
2.4
4.4
10.5
4.7
Si8442Bx
VDD1
VDD2
VDD1
VDD2
All inputs 0 dc
All inputs 0 dc
All inputs 1 dc
All inputs 1 dc
—
—
—
—
2.3
2.3
4.5
4.5
3.5
3.5
6.8
6.8
mA
mA
1 Mbps Supply Current (All inputs = 500 kHz square wave, CI = 15 pF on all outputs)
Si8455Bx
VDD1
VDD2
—
—
4.3
3.5
6.5
5.3
mA
Si8442Bx
VDD1
VDD2
—
—
3.6
3.6
5.4
5.4
mA
10 Mbps Supply Current (All inputs = 5 MHz square wave, CI = 15 pF on all outputs)
Si8455Bx
VDD1
VDD2
—
—
4.3
4.8
6.5
6.7
mA
Si8442Bx
VDD1
VDD2
—
—
4.2
4.2
5.9
5.9
mA
Notes:
1. The nominal output impedance of an isolator driver channel is approximately 85 , ±40%, which is a combination of the
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled
impedance PCB traces.
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at
the same supply voltages, load, and ambient temperature.
3. Start-up time is the time period from the application of power to valid data at the output.
8
Rev. 1.2
Si844x/5x QSOP
Table 4. Electrical Characteristics (Continued)
(VDD1 = 3.3 V±10%, VDD2 = 3.3 V±10%, TA = –40 to 125 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)
Si8455Bx
VDD1
VDD2
—
—
4.4
16.8
6.6
21
mA
Si8442Bx
VDD1
VDD2
—
—
8.6
8.6
10.8
10.8
mA
N
ot
fo R
r N ec
e w om
m
D e
e s nd
ig e
ns d
Timing Characteristics
Si845xBx, Si8442Bx
Maximum Data Rate
0
—
1.0
Mbps
Minimum Pulse Width
—
—
250
ns
Propagation Delay
tPHL,tPLH
See Figure 2
—
—
35
ns
PWD
See Figure 2
—
—
25
ns
tPSK(P-P)
—
—
40
ns
tPSK
—
—
35
ns
Maximum Data Rate
0
—
150
Mbps
Minimum Pulse Width
—
—
6.0
ns
Pulse Width Distortion
|tPLH - tPHL|
Propagation Delay Skew2
Channel-Channel Skew
Si845xBx, Si8442Bx
Propagation Delay
Pulse Width Distortion
|tPLH - tPHL|
Propagation Delay Skew2
Channel-Channel Skew
tPHL, tPLH
See Figure 2
3.0
6.0
9.5
ns
PWD
See Figure 2
—
1.5
2.5
ns
tPSK(P-P)
—
2.0
3.0
ns
tPSK
—
0.5
1.8
ns
All Models
Output Rise Time
tr
CL = 15 pF
See Figure 2
—
4.3
6.1
ns
Output Fall Time
tf
CL = 15 pF
See Figure 2
—
3.0
4.3
ns
CMTI
VI = VDD or 0 V
—
25
—
kV/µs
ten1
See Figure 1
—
5.0
8.0
ns
ten2
See Figure 1
—
7.0
9.2
ns
—
15
40
µs
Common Mode Transient
Immunity
Enable to Data Valid
Enable to Data Tri-State
Start-up Time
3
tSU
Notes:
1. The nominal output impedance of an isolator driver channel is approximately 85 , ±40%, which is a combination of the
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled
impedance PCB traces.
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at
the same supply voltages, load, and ambient temperature.
3. Start-up time is the time period from the application of power to valid data at the output.
Rev. 1.2
9
Si8 44x/5x Q S O P
Table 5. Electrical Characteristics1
(VDD1 = 2.70 V, VDD2 = 2.70 V, TA = –40 to 125 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
High Level Input Voltage
VIH
2.0
—
—
V
Low Level Input Voltage
VIL
—
—
0.8
V
High Level Output Voltage
VOH
loh = –4 mA
VDD1,VDD2 – 0.4
2.3
—
V
Low Level Output Voltage
VOL
lol = 4 mA
—
0.2
0.4
V
Input Leakage Current
IL
—
—
±10
µA
Impedance2
ZO
—
85
—

Enable Input High Current
IENH
VENx = VIH
—
2.0
—
µA
Enable Input Low Current
IENL
VENx = VIL
—
2.0
—
µA
N
ot
fo R
r N ec
e w om
m
D e
e s nd
ig e
ns d
Output
DC Supply Current (All inputs 0 V or at supply)
Si8455Bx
VDD1
VDD2
VDD1
VDD2
All inputs 0 DC
All inputs 0 DC
All inputs 1 DC
All inputs 1 DC
—
—
—
—
1.6
2.9
7.0
3.1
2.4
4.4
10.5
4.7
Si8442Bx
VDD1
VDD2
VDD1
VDD2
All inputs 0 DC
All inputs 0 DC
All inputs 1 DC
All inputs 1 DC
—
—
—
—
2.3
2.3
4.5
4.5
3.5
3.5
6.8
6.8
mA
mA
1 Mbps Supply Current (All inputs = 500 kHz square wave, CI = 15 pF on all outputs)
Si8455Bx
VDD1
VDD2
—
—
4.3
3.5
6.5
5.3
mA
Si8442Bx
VDD1
VDD2
—
—
3.6
3.6
5.4
5.4
mA
10 Mbps Supply Current (All inputs = 5 MHz square wave, CI = 15 pF on all outputs)
Si8455Bx
VDD1
VDD2
—
—
4.3
4.8
6.5
6.7
mA
Si8442Bx
VDD1
VDD2
—
—
4.2
4.2
5.9
5.9
mA
Notes:
1. Specifications in this table are also valid at VDD1 = 2.6 V and VDD2 = 2.6 V when the operating temperature range is
constrained to TA = 0 to 85 °C.
2. The nominal output impedance of an isolator driver channel is approximately 85 , ±40%, which is a combination of the
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled
impedance PCB traces.
3. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the
same supply voltages, load, and ambient temperature.
4. Start-up time is the time period from the application of power to valid data at the output.
10
Rev. 1.2
Si844x/5x QSOP
Table 5. Electrical Characteristics1 (Continued)
(VDD1 = 2.70 V, VDD2 = 2.70 V, TA = –40 to 125 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)
Si8455Bx
VDD1
VDD2
—
—
4.3
13.3
6.5
16.6
mA
Si8442Bx
VDD1
VDD2
—
—
7.2
7.2
9.0
9.0
mA
N
ot
fo R
r N ec
e w om
m
D e
e s nd
ig e
ns d
Timing Characteristics
Si845xBx, Si8442Bx
Maximum Data Rate
0
—
1.0
Mbps
Minimum Pulse Width
—
—
250
ns
Propagation Delay
tPHL,tPLH
See Figure 2
—
—
35
ns
PWD
See Figure 2
—
—
25
ns
tPSK(P-P)
—
—
40
ns
tPSK
—
—
35
ns
Maximum Data Rate
0
—
150
Mbps
Minimum Pulse Width
—
—
6.0
ns
Pulse Width Distortion
|tPLH – tPHL|
Propagation Delay Skew3
Channel-Channel Skew
Si845xBx, Si8442Bx
Propagation Delay
Pulse Width Distortion
|tPLH – tPHL|
Propagation Delay Skew3
Channel-Channel Skew
tPHL, tPLH
See Figure 2
3.0
6.0
9.5
ns
PWD
See Figure 2
—
1.5
2.5
ns
tPSK(P-P)
—
2.0
3.0
ns
tPSK
—
0.5
1.8
ns
Notes:
1. Specifications in this table are also valid at VDD1 = 2.6 V and VDD2 = 2.6 V when the operating temperature range is
constrained to TA = 0 to 85 °C.
2. The nominal output impedance of an isolator driver channel is approximately 85 , ±40%, which is a combination of the
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled
impedance PCB traces.
3. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the
same supply voltages, load, and ambient temperature.
4. Start-up time is the time period from the application of power to valid data at the output.
Rev. 1.2
11
Si8 44x/5x Q S O P
Table 5. Electrical Characteristics1 (Continued)
(VDD1 = 2.70 V, VDD2 = 2.70 V, TA = –40 to 125 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Output Rise Time
tr
CL = 15 pF
See Figure 2
—
4.8
6.5
ns
Output Fall Time
tf
CL = 15 pF
See Figure 2
—
3.2
4.6
ns
CMTI
VI = VDD or 0 V
—
25
—
kV/µs
ten1
See Figure 1
—
5.0
8.0
ns
ten2
See Figure 1
—
7.0
9.2
ns
—
15
40
µs
All Models
N
ot
fo R
r N ec
e w om
m
D e
e s nd
ig e
ns d
Common Mode Transient
Immunity
Enable to Data Valid
Enable to Data Tri-State
Start-up Time
4
tSU
Notes:
1. Specifications in this table are also valid at VDD1 = 2.6 V and VDD2 = 2.6 V when the operating temperature range is
constrained to TA = 0 to 85 °C.
2. The nominal output impedance of an isolator driver channel is approximately 85 , ±40%, which is a combination of the
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled
impedance PCB traces.
3. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the
same supply voltages, load, and ambient temperature.
4. Start-up time is the time period from the application of power to valid data at the output.
Table 6. Regulatory Information*
CSA
The Si84xx is certified under CSA Component Acceptance Notice 5A. For more details, see File 232873.
VDE
The Si84xx is certified according to IEC 60747-5-2. For more details, see File 5006301-4880-0001.
60747-5-2: Up to 560 Vpeak for basic insulation working voltage.
UL
The Si84xx is certified under UL1577 component recognition program. For more details, see File E257455.
*Note: Regulatory Certifications apply to 1.0 kVRMS rated devices which are production tested to 1.2 kVRMS for 1 sec.
For more information, see "5. Ordering Guide" on page 25.
12
Rev. 1.2
Si844x/5x QSOP
Table 7. Insulation and Safety-Related Specifications
Parameter
Symbol
Test Condition
Value
Unit
QSOP-16
Nominal Air Gap (Clearance)
L(IO1)
3.6
mm
Nominal External Tracking (Creepage)
L(IO2)
3.6
mm
0.008
mm
600
VRMS
Minimum Internal Gap (Internal Clearance)
PTI
IEC 60112
Erosion Depth
ED
0.031
mm
Resistance (Input-Output)1
RIO
1012

2.0
pF
4.0
pF
N
ot
fo R
r N ec
e w om
m
D e
e s nd
ig e
ns d
Tracking Resistance (Proof Tracking Index)
Capacitance
(Input-Output)1
CIO
Input Capacitance2
f = 1 MHz
CI
Notes:
1. To determine resistance and capacitance, the Si84xx is converted into a 2-terminal device. Pins 1–8 are shorted
together to form the first terminal and pins 9–16 are shorted together to form the second terminal. The parameters are
then measured between these two terminals.
2. Measured from input pin to ground.
Table 8. IEC 60664-1 (VDE 0844 Part 2) Ratings
Parameter
Basic Isolation Group
Installation Classification
Test Condition
Material Group
Specification
I
Rated Mains Voltages < 150 VRMS
I-IV
Rated Mains Voltages < 300 VRMS
I-III
Rated Mains Voltages < 400 VRMS
I-II
Rated Mains Voltages < 600 VRMS
I-II
Rev. 1.2
13
Si8 44x/5x Q S O P
Table 9. IEC 60747-5-2 Insulation Characteristics for Si84xxxB*
Parameter
Symbol
Maximum Working Insulation Voltage
Characteristic
Unit
560
V peak
VIORM
Input to Output Test Voltage
Transient Overvoltage
Test Condition
V peak
VPR
Method b1
(VIORM x 1.875 = VPR, 100%
Production Test, tm =1 sec,
Partial Discharge < 5 pC)
1050
VIOTM
t = 60 sec
4000
2
N
ot
fo R
r N ec
e w om
m
D e
e s nd
ig e
ns d
Pollution Degree (DIN VDE 0110, Table 1)
Insulation Resistance at TS, VIO = 500 V
V peak
>109
RS

*Note: Maintenance of the safety data is ensured by protective circuits. The Si84xx provides a climate classification of
40/125/21.
Table 10. Safety Limiting Values1
Max
Parameter
Symbol
Case Temperature
TS
Safety input, output, or
supply current
IS
Device Power Dissipation2
PD
Test Condition
JA = 105 °C/W (QSOP-16),
VI =5.5 V, TJ =150 °C, TA = 25 °C
Min Typ
Unit
Si844x
Si845x
QSOP-16 QSOP-16
—
—
150
150
°C
—
—
210
215
mA
—
—
275
415
mW
Notes:
1. Maximum value allowed in the event of a failure; also see the thermal derating curve in Figures 3 and 4.
2. The Si84xx is tested with VDD1 = VDD2 = 5.5 V, TJ = 150 ºC, CL = 15 pF, input a 150 Mbps 50% duty cycle square
wave.
14
Rev. 1.2
Si844x/5x QSOP
Table 11. Thermal Characteristics
Parameter
Symbol
Si84xx QSOP-16
Unit
JA
105
°C/W
IC Junction-to-Air Thermal Resistance
430
400
VDD1, VDD2 = 2.70 V
360
VDD1, VDD2 = 3.6 V
300
N
ot
fo R
r N ec
e w om
m
D e
e s nd
ig e
ns d
Safety-Limiting Current (mA)
500
210
200
VDD1, VDD2 = 5.5 V
100
0
0
50
100
Temperature (ºC)
150
200
Figure 3. (Si844x, QSOP-16) Thermal Derating Curve, Dependence of Safety Limiting Values
with Case Temperature per DIN EN 60747-5-2
Safety-Limiting Current (mA)
500
430
400
VDD1, VDD2 = 2.70 V
360
VDD1, VDD2 = 3.6 V
300
215
200
VDD1, VDD2 = 5.5 V
100
0
0
50
100
Temperature (ºC)
150
200
Figure 4. (Si845x, QSOP-16) Thermal Derating Curve, Dependence of Safety Limiting Values
with Case Temperature per DIN EN 60747-5-2
Rev. 1.2
15
Si8 44x/5x Q S O P
2. Functional Description
2.1. Theory of Operation
The operation of an Si84xx channel is analogous to that of an opto coupler, except an RF carrier is modulated
instead of light. This simple architecture provides a robust isolated data path and requires no special
considerations or initialization at start-up. A simplified block diagram for a single Si84xx channel is shown in
Figure 5.
Transmitter
Receiver
A
N
ot
fo R
r N ec
e w om
m
D e
e s nd
ig e
ns d
RF
OSCILLATOR
MODULATOR
SemiconductorBased Isolation
Barrier
DEMODULATOR
B
Figure 5. Simplified Channel Diagram
A channel consists of an RF Transmitter and RF Receiver separated by a semiconductor-based isolation barrier.
Referring to the Transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying. The
Receiver contains a demodulator that decodes the input state according to its RF energy content and applies the
result to output B via the output driver. This RF on/off keying scheme is superior to pulse code schemes as it
provides best-in-class noise immunity, low power consumption, and better immunity to magnetic fields. See
Figure 6 for more details.
Input Signal
Modulation Signal
Output Signal
Figure 6. Modulation Scheme
16
Rev. 1.2
Si844x/5x QSOP
2.2. Eye Diagram
N
ot
fo R
r N ec
e w om
m
D e
e s nd
ig e
ns d
Figure 7 illustrates an eye-diagram taken on an Si8455. For the data source, the test used an Anritsu (MP1763C)
Pulse Pattern Generator set to 1000 ns/div. The output of the generator's clock and data from an Si8455 were
captured on an oscilloscope. The results illustrate that data integrity was maintained even at the high data rate of
150 Mbps. The results also show that 2 ns pulse width distortion and 250 ps peak jitter were exhibited.
Figure 7. Eye Diagram
Rev. 1.2
17
Si8 44x/5x Q S O P
2.3. Device Operation
Device behavior during start-up, normal operation, and shutdown is shown in Table 12. Table 13 provides an
overview of the output states when the Enable pins are active.
Table 12. Si84xx Logic Operation Table
Input1,2
EN
Input1,2,3
VDDI
State1,4,5
VDDO
State1,4,5
VO Output1,2
H
H or NC
P
P
H
L
H or NC
P
P
L
X6
L
P
P
Hi-Z7
H or NC
UP
P
L
L
UP
P
Hi-Z7
P
UP
X6
X6
X
6
Comments
Enabled, normal operation.
Disabled.
N
ot
fo R
r N ec
e w om
m
D e
e s nd
ig e
ns d
VI
X
6
Upon transition of VDDI from unpowered to powered, VO returns to the same state as VI in less
than 1 µs.
Disabled.
Undetermined Upon transition of VDDO from unpowered to powered, VO returns to the same state as VI within
1 µs, if EN is in either the H or NC state. Upon transition of VDDO from unpowered to powered, VO
returns to Hi-Z within 1 µs if EN is L.
Notes:
1. VDDI and VDDO are the input and output power supplies. VI and VO are the respective input and output terminals. EN
is the enable control input located on the same output side.
2. X = not applicable; H = Logic High; L = Logic Low; Hi-Z = High Impedance.
3. It is recommended that the enable inputs be connected to an external logic high or low level when the Si84xx is
operating in noisy environments.
4. "Powered" state (P) is defined as 2.70 V < VDD < 5.5 V.
5. "Unpowered" state (UP) is defined as VDD = 0 V.
6. Note that an I/O can power the die for a given side through an internal diode if its source has adequate current.
7. When using the enable pin (EN) function, the output pin state goes into a high-impedance state when the EN pin is
disabled (EN = 0).
18
Rev. 1.2
Si844x/5x QSOP
Table 13. Enable Input Truth Table1
P/N
Operation
EN11,2 EN21,2
Si8442
X
Outputs A3 and A4 are enabled and follow input state.
L
X
Outputs A3 and A4 are disabled and Logic Low or in high impedance state.3
X
H
Outputs B1 and B2 are enabled and follow input state.
X
L
Outputs B1 and B2 are disabled and Logic Low or in high impedance state.3
—
—
Outputs B1, B2, B3, B4, B5 are enabled and follow input state.
N
ot
fo R
r N ec
e w om
m
D e
e s nd
ig e
ns d
Si8455
H
Notes:
1. Enable inputs EN1 and EN2 can be used for multiplexing, for clock sync, or other output control. These inputs are
internally pulled-up to local VDD by a 3 µA current source allowing them to be connected to an external logic level (high
or low) or left floating. To minimize noise coupling, do not connect circuit traces to EN1 or EN2 if they are left floating. If
EN1, EN2 are unused, it is recommended they be connected to an external logic level, especially if the Si845x is
operating in a noisy environment.
2. X = not applicable; H = Logic High; L = Logic Low.
3. When using the enable pin (EN) function, the output pin state goes into a high-impedance state when the EN pin is
disabled (EN = 0).
Rev. 1.2
19
Si8 44x/5x Q S O P
2.4. Layout Recommendations
To ensure safety in the end user application, high voltage circuits (i.e., circuits with >30 VAC) must be physically
separated from the safety extra-low voltage circuits (SELV is a circuit with <30 VAC) by a certain distance
(creepage/clearance). If a component, such as a digital isolator, straddles this isolation barrier, it must meet those
creepage/clearance requirements and also provide a sufficiently large high-voltage breakdown protection rating
(commonly referred to as working voltage protection). Refer to the end-system specification (61010-1, 60950-1,
etc.) requirements before starting any design that uses a digital isolator.
The following sections detail the recommended bypass and decoupling components necessary to ensure robust
overall performance and reliability for systems using the Si84xx digital isolators.
2.4.1. Supply Bypass
N
ot
fo R
r N ec
e w om
m
D e
e s nd
ig e
ns d
Digital integrated circuit components typically require 0.1 µF (100 nF) bypass capacitors when used in electrically
quiet environments. However, digital isolators are commonly used in hazardous environments with excessively
noisy power supplies. To counteract these harsh conditions, it is recommended that an additional 1 µF bypass
capacitor be added between VDD and GND on both sides of the package. The capacitors should be placed as
close as possible to the package to minimize stray inductance. If the system is excessively noisy, it is
recommended that the designer add 50 to 100  resistors in series with the VDD supply voltage source and 50 to
300  resistors in series with the digital inputs/outputs (see Figure 8). For more details, see "3. Errata and Design
Migration Guidelines" on page 23.
All components upstream or downstream of the isolator should be properly decoupled as well. If these components
are not properly decoupled, their supply noise can couple to the isolator inputs and outputs, potentially causing
damage if spikes exceed the maximum ratings of the isolator (6 V). In this case, the 50 to 300  resistors protect
the isolator's inputs/outputs (note that permanent device damage may occur if the absolute maximum ratings are
exceeded). Functional operation should be restricted to the conditions specified in Table 1, “Recommended
Operating Conditions,” on page 4.
2.4.2. Pin Connections
No connect pins are not internally connected. They can be left floating, tied to VDD, or tied to GND.
2.4.3. Output Pin Termination
The nominal output impedance of an isolator driver channel is approximately 85 , ±40%, which is a combination
of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving
loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled
impedance PCB traces. The series termination resistor values should be scaled appropriately while keeping in
mind the recommendations described in “2.4.1. Supply Bypass” above.
V Source 1
R1 (50 – 100 )
VDD1
C1
VDD2
50 – 300 
0.1 F
0.1 F
B1
C2
1 F
R2 (50 – 100 )
C4
50 – 300 
A1
V Source 2
C3
Input/Output
Input/Output
1 F
Bx
Ax
50 – 300 
50 – 300 
GND1
GND2
Figure 8. Recommended Bypass Components for the Si84xx Digital Isolator Family
20
Rev. 1.2
Si844x/5x QSOP
2.5. Typical Performance Characteristics
The typical performance characteristics depicted in the following diagrams are for information purposes only. Refer
to Tables 3, 4, and 5 for actual specification limits.
35
35
30
5V
25
20
Current (mA)
Current (mA)
30
3.3V
15
2.70V
10
5V
25
3.3V
20
15
2.70V
10
5
5
0
N
ot
fo R
r N ec
e w om
m
D e
e s nd
ig e
ns d
0
0
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Data Rate (Mbps)
Data Rate (Mbps)
Figure 9. Si8455 Typical VDD1 Supply Current
vs. Data Rate 5, 3.3, and 2.70 V Operation
30
10
25
20
15
3.3V
10
2.70V
5
Falling Edge
9
5V
Delay (ns)
Current (mA)
Figure 11. Si8455 Typical VDD2 Supply Current
vs. Data Rate 5, 3.3, and 2.70 V Operation
(15 pF Load)
8
7
6
0
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Data Rate (Mbps)
Figure 10. Si8442 Typical VDD1 or VDD2 Supply
Current vs. Data Rate 5, 3.3, and 2.70 V
Operation (15 pF Load)
Rev. 1.2
Rising Edge
5
-40
-20
0
20
40
60
80
100
120
Temperature (Degrees C)
Figure 12. Propagation Delay
vs. Temperature
21
Si8 44x/5x Q S O P
High Voltage Lifetime for 1kVrms Rated Isolation Products
1000
Data taken at worst
case conditions of 150o C
10
1
N
ot
fo R
r N ec
e w om
m
D e
e s nd
ig e
ns d
Expected Lifetime, years (at 10 ppm)
100
0.1
0.01
0.001
0.0001
0.00001
0
400
800
1200
1600
2000
2400
2800
3200
Working Voltage, Vrms
Figure 13. Si84xx Time-Dependent Dielectric Breakdown
22
Rev. 1.2
3600
4000
Si844x/5x QSOP
3. Errata and Design Migration Guidelines
No errata exist for Revision D. However, the following recommendations apply to Revision D devices. See "5.
Ordering Guide" on page 25 for more details.
3.1. Power Supply Bypass Capacitors (Revision C and Revision D)
When using the Si844x isolators with power supplies > 4.5 V, sufficient VDD bypass capacitors must be present on
both the VDD1 and VDD2 pins to ensure the VDD rise time is less than 0.5 V/µs (which is > 9 µs for a > 4.5 V
supply). Although rise time is power supply dependent, > 1 µF capacitors are required on both power supply pins
(VDD1, VDD2) of the isolator device.
3.1.1. Resolution
N
ot
fo R
r N ec
e w om
m
D e
e s nd
ig e
ns d
For recommendations on resolving this issue, see "2.4.1. Supply Bypass" on page 20. Additionally, refer to "5.
Ordering Guide" on page 25 for current ordering information.
Rev. 1.2
23
Si8 44x/5x Q S O P
4. Pin Descriptions
VDD1
GND1
RF
XMITR
A2
RF
XMITR
A3
RF
RCVR
A4
RF
RCVR
GND2
VDD2
GND1
RF
RCVR
B1
A1
RF
XMITR
RF
RCVR
B2
A2
RF
XMITR
RF
RF
XMITR
RCVR
B3
A3
RF
XMITR
RF
XMITR
B4
A4
RF
XMITR
I
s
o
l
a
t
i
o
n
GND2
RF
RCVR
B1
RF
RCVR
B2
RF
RCVR
B3
RF
RCVR
B4
N
ot
fo R
r N ec
e w om
m
D e
e s nd
ig e
ns d
A1
I
s
o
l
a
t
i
o
n
EN1
GND1
Si8442
EN2
A5
GND2
RF
XMITR
GND1
RF
RCVR
Si8455
B5
GND2
Name
SOIC-16
Pin#
Type
Description (Si8442)
Description (Si8455)
VDD1
1
Supply
Side 1 power supply
Side 1 power supply
GND1
2
Ground
Side 1 ground
Side 1 ground
A1
3
Digital Input
Side 1 digital input
Side 1 digital input
4
Digital Input
Side 1 digital input
Side 1 digital input
5
Digital I/O
Side 1 digital output
Side 1 digital input
6
Digital I/O
Side 1 digital output
Side 1 digital input
A5/EN1
7
Digital Input
Side 1 active high enable
Side 1 digital input
GND1
8
Ground
Side 1 ground
Side 1 ground
GND2
9
Ground
Side 2 ground
Side 2 ground
B5/EN2
10
Digital Input or
Enable
Side 2 active high enable
Side 2 digital output
B4
11
Digital I/O
Side 2 digital input
Side 2 digital output
12
Digital I/O
Side 2 digital input
Side 2 digital output
B2
13
Digital Output
Side 2 digital output
Side 2 digital output
B1
14
Digital Output
Side 2 digital output
Side 2 digital output
GND2
15
Ground
Side 2 ground
Side 2 ground
VDD2
16
Supply
Side 2 power supply
Side 2 power supply
A2
A3
A4
B3
24
VDD1
VDD2
Rev. 1.2
Si844x/5x QSOP
5. Ordering Guide
These devices are not recommended for new designs. Please see the Si864x or Si865x datasheet for replacement
options.
Table 14. Ordering Guide for Valid OPNs*
Alternative Part Number of
Number of
Number
Inputs VDD1 Inputs VDD2
(APN)
Side
Side
Maximum
Data Rate
(Mbps)
Isolation
Rating
Si8442BA-D-IU
Si8642BA-C-IU
2
2
150
1 kVrms
Si8455BA-B-IU
Si8655BA-C-IU
5
0
150
1 kVrms
Package Type
QSOP-16
N
ot
fo R
r N ec
e w om
m
D e
e s nd
ig e
ns d
Ordering Part
Number
(OPN)
*Note: All packages are RoHS-compliant. Moisture sensitivity level is MSL2A with peak reflow temperature of 260 °C according to
the JEDEC industry standard classifications and peak solder temperature.
Rev. 1.2
25
Si8 44x/5x Q S O P
6. Package Outline: 16-Pin QSOP
Figure 14 illustrates the package details for the Si84xx in a 16-pin QSOP package. Table 15 lists the values for the
dimensions shown in the illustration.
N
ot
fo R
r N ec
e w om
m
D e
e s nd
ig e
ns d
Figure 14. 16-pin QSOP Package
Table 15. Package Diagram Dimensions
Dimension
Min
Max
A
—
1.75
A1
0.10
0.25
A2
1.25
—
b
0.20
0.30
c
0.17
0.25
D
4.89 BSC
E
6.00 BSC
E1
3.90 BSC
e
0.635 BSC
L
0.40
L2
h
26
1.27
0.25 BSC
0.25
Rev. 1.2
0.50
Si844x/5x QSOP
Table 15. Package Diagram Dimensions (Continued)
Dimension
Min
Max
θ
0°
8°
aaa
0.10
bbb
0.20
ccc
0.10
ddd
0.25
N
ot
fo R
r N ec
e w om
m
D e
e s nd
ig e
ns d
Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to the JEDEC Solid State Outline MO-137, Variation AB.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification
for Small Body Components.
Rev. 1.2
27
Si8 44x/5x Q S O P
7. Land Pattern: 16-Pin QSOP
Figure 15 illustrates the recommended land pattern details for the Si84xx in a 16-pin QSOP. Table 16 lists the
values for the dimensions shown in the illustration.
N
ot
fo R
r N ec
e w om
m
D e
e s nd
ig e
ns d
Figure 15. 16-Pin QSOP PCB Land Pattern
Table 16. 16-Pin QSOP Land Pattern Dimensions
Dimension
Feature
(mm)
C1
Pad Column Spacing
5.40
E
Pad Row Pitch
0.635
X1
Pad Width
0.40
Y1
Pad Length
1.55
Notes:
1. This Land Pattern Design is based on IPC-7351 pattern SOP63P602X173-16N for
Density Level B (Median Land Protrusion).
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card
fabrication tolerance of 0.05 mm is assumed.
28
Rev. 1.2
Si844x/5x QSOP
8. Top Marking: 16-Pin QSOP
8.1. 16-Pin QSOP Top Marking
e3
Si84XYSV
YYWWTTTTTT
N
ot
fo R
r N ec
e w om
m
D e
e s nd
ig e
ns d
8.2. Top Marking Explanation
Line 1 Marking:
Line 2 Marking:
Base Part Number
Ordering Options
(See Ordering Guide for more
information).
Si84 = Isolator product series
XY = Channel Configuration
X = # of data channels (5, 4)
Y = # of reverse channels (2, 0)*
S = Speed Grade
A = 1 Mbps; B = 150 Mbps
V = Insulation rating
A = 1 kV
Circle = 1.2 mm Diameter
“e3” Pb-Free Symbol
YY = Year
WW = Work Week
Assigned by the assembly subcontractor. Corresponds
to the year and work week of the mold date.
TTTTTT = Mfg code
Manufacturing code from assembly purchase order
form.
Circle = 1.2 mm diameter
“e3” Pb-Free Symbol.
*Note: Si8455 has 0 reverse channels.
Rev. 1.2
29
Si8 44x/5x Q S O P
DOCUMENT CHANGE LIST
Revision 0.1 to Revision 1.0





Changed document name from Si84x/5x QSOP to
Si844x/5x QSOP.
Updated " Features" on page 1.
Moved Tables 1 and 2 to page 4.
Updated Tables 6, 7, 8, and 9.
Updated Table 12 footnotes.
Added Figure 13, “Si84xx Time-Dependent
Dielectric Breakdown,” on page 22.
N
ot
fo R
r N ec
e w om
m
D e
e s nd
ig e
ns d

Revision 1.0 to Revision 1.1

Deleted all references to 2.5 kVRMS

Updated Table 6, “Regulatory Information*,” on
page 12.
Updated Figure 13, “Si84xx Time-Dependent
Dielectric Breakdown,” on page 22.
Updated "2.4.1. Supply Bypass" on page 20.
Added Figure 8, “Recommended Bypass
Components for the Si84xx Digital Isolator Family,”
on page 20.
Updated "3.1. Power Supply Bypass Capacitors
(Revision C and Revision D)" on page 23.




Revision 1.1 to Revision 1.2

30
Updated "5. Ordering Guide" on page 25 to include
new title note and “ Alternative Part Number (APN)”
column.
Rev. 1.2
N
ot
fo R
r N ec
e w om
m
D e
e s nd
ig e
ns d
Si844x/5x QSOP
NOTES:
Rev. 1.2
31
Smart.
Connected.
Energy-Friendly
Products
Quality
www.silabs.com/products
www.silabs.com/quality
Support and Community
community.silabs.com
Disclaimer
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers
using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific
device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories
reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy
or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply
or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific
written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected
to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.
Trademark Information
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations
thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®,
USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of
ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA
http://www.silabs.com