MLX90333 Triaxis 3D-Joystick Position Sensor Features and Benefits Absolute 3D Position Sensor Simple & Robust Magnetic Design Tria⊗is™ Hall Technology Programmable Linear Transfer Characteristics (Alpha, Beta) Selectable Analog (Ratiometric), PWM, Serial Protocol 12 bit Angular Resolution - 10 bit Angular Thermal Accuracy 40 bit ID Number Single Die – SO8 Package RoHS Compliant Dual Die (Full Redundant) – TSSOP16 Package RoHS Compliant Applications 3D Position Sensor 4-Way Scroll Key Man Machine Interface Device Joystick Joypad Ordering Information1 Part No. MLX90333 MLX90333 MLX90333 MLX90333 1 Temperature Suffix K (− 40°C to + 125°C) L (− 40°C to + 150°C) K (− 40°C to + 125°C) L (− 40°C to + 150°C) Package Code DC [SOIC-8] DC [SOIC-8] GO [TSSOP-16] GO [TSSOP-16] Option code - Example: MLX90333KDC 3901090333 Rev. 001 Page 1 of 43 Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor 1. Functional Diagram 3V3 Reg Rev.Pol. & OverVolt. VSS DSP 12 D VX MUX VY G A D VZ x1 A OUT 1 (Analog/PWM) μC 14 -1 5 Tria9 is™ VDD ROM - F/W RAM x1 EEP ROM OUT 2 (Analog/PWM) Figure 1 - Block Diagram (Analog & PWM) DSP VX VZ MUX VY G A Rev.Pol. μC 14 -1 5 Tria9is™ 3V3 Reg D VDD /SS SERIAL PROTOCOL SCLK MOSI/MISO ROM - F/W RAM EEP ROM VSS Figure 2 - Block Diagram (Serial Protocol) 3901090333 Rev. 001 Page 2 of 43 Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor 2. Description The MLX90333 is a monolithic sensor IC featuring the Tria⊗is™ Hall technology. Conventional planar Hall technology is only sensitive to the flux density applied orthogonally to the IC surface. The Tria⊗is™ Hall sensor is also sensitive to the flux density applied parallel to the IC surface. This is obtained through an Integrated Magneto-Concentrator (IMC®) which is deposited on the CMOS die (as an additional back-end step). The MLX90333 is sensitive to the 3 components of the flux density applied to the IC (BX, BY and BZ). This allows the MLX90333 to sense any magnet moving in its surrounding and it enables the design of novel generation of non-contacting joystick position sensors which are often required for both automotive and industrial applications (e.g. man-machine interface). Furthermore, the capability of measuring BX, BY and BZ allows the MLX90333 to be considered as universal non-contacting position sensor i.e. not limited to joystick applications. For instance, a linear travel can be sensed with the MLX90333 once included in a specific magnetic design. In combination with the appropriate signal processing, the magnetic flux density of a small magnet (axial magnetization) moving above the IC can be measured in a non-contacting way (Figure 3). The two (2) angular information are computed from the three (3) vector components of the flux density (i.e. BX, BY and BZ). MLX90333 reports two (2) linear output signals. The output formats are selectable between Analog, PWM and Serial Protocol. Figure 3 - Typical application of MLX90333 3901090333 Rev. 001 Page 3 of 43 Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor TABLE of CONTENTS FEATURES AND BENEFITS ....................................................................................................................... 1 APPLICATIONS............................................................................................................................................ 1 ORDERING INFORMATION......................................................................................................................... 1 1. FUNCTIONAL DIAGRAM...................................................................................................................... 2 2. DESCRIPTION....................................................................................................................................... 3 3. GLOSSARY OF TERMS − ABBREVIATIONS − ACRONYMS ............................................................ 6 4. PINOUT.................................................................................................................................................. 6 5. ABSOLUTE MAXIMUM RATINGS ....................................................................................................... 7 6. DETAILED DESCRIPTION.................................................................................................................... 7 7. MLX90333 ELECTRICAL SPECIFICATION....................................................................................... 13 8. MLX90333 ISOLATION SPECIFICATION .......................................................................................... 15 9. MLX90333 TIMING SPECIFICATION ................................................................................................. 15 10. MLX90333 ACCURACY SPECIFICATION ......................................................................................... 16 11. MLX90333 MAGNETIC SPECIFICATION .......................................................................................... 17 12. MLX90333 CPU & MEMORY SPECIFICATION ................................................................................. 17 13. MLX90333 END-USER PROGRAMMABLE ITEMS ........................................................................... 18 14. DESCRIPTION OF END-USER PROGRAMMABLE ITEMS.............................................................. 19 14.1. OUTPUT CONFIGURATION .........................................................................................................................19 14.2. OUTPUT MODE ..........................................................................................................................................19 14.2.1. Analog Output Mode ............................................................................................................................19 14.2.2. PWM Output Mode...............................................................................................................................19 14.2.3. Serial Protocol Output Mode ...............................................................................................................20 14.3. OUTPUT TRANSFER CHARACTERISTIC.......................................................................................................20 14.3.1. The Polarity and Modulo Parameters ..................................................................................................21 14.3.2. Alpha/Beta Discontinuity Point (or Zero Degree Point) ......................................................................22 14.3.3. LNR Parameters ...................................................................................................................................22 14.3.4. CLAMPING Parameters ......................................................................................................................23 14.3.5. DEADZONE Parameter .......................................................................................................................23 14.4. IDENTIFICATION ........................................................................................................................................24 14.5. SENSOR FRONT-END .................................................................................................................................24 14.5.1. HIGHSPEED Parameter......................................................................................................................24 14.5.2. GAINMIN and GAINMAX Parameters ................................................................................................24 14.5.3. FIELDTHRES_MIN and FIELDTHRES_MAX Parameters.................................................................24 14.6. FILTER ....................................................................................................................................................25 14.6.1. Hysteresis Filter ...................................................................................................................................25 14.6.2. FIR Filters ............................................................................................................................................25 14.6.3. IIR Filters .............................................................................................................................................26 14.7. PROGRAMMABLE DIAGNOSTIC SETTINGS .................................................................................................28 3901090333 Rev. 001 Page 4 of 43 Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor 14.7.1. RESONFAULT Parameter ...................................................................................................................28 14.7.2. EEHAMHOLE Parameter ....................................................................................................................28 14.8. LOCK.........................................................................................................................................................28 14.8.1. MLXLOCK Parameter .........................................................................................................................28 14.8.2. LOCK Parameter .................................................................................................................................28 15. MLX90333 SELF DIAGNOSTIC.......................................................................................................... 29 16. SERIAL PROTOCOL........................................................................................................................... 31 16.1. INTRODUCTION .........................................................................................................................................31 16.2. SERIAL PROTOCOL MODE ...................................................................................................................31 16.3. MOSI (MASTER OUT SLAVE IN) ...............................................................................................................31 16.4. MISO (MASTER IN SLAVE OUT) ...............................................................................................................31 16.5. /SS (SLAVE SELECT) .................................................................................................................................31 16.6. MASTER START-UP ...................................................................................................................................31 16.7. SLAVE START-UP ......................................................................................................................................31 16.8. TIMING ......................................................................................................................................................32 16.9. SLAVE RESET ............................................................................................................................................33 16.10. FRAME LAYER ..........................................................................................................................................33 16.10.1. Frame Type Selection.......................................................................................................................33 16.10.2. Data Frame Structure ......................................................................................................................33 16.10.3. Timing ..............................................................................................................................................33 16.10.4. Data Structure ..................................................................................................................................34 16.10.5. Angle Calculation.............................................................................................................................34 16.10.6. Error Handling.................................................................................................................................34 17. RECOMMENDED APPLICATION DIAGRAMS .................................................................................. 35 17.1. 17.2. 17.3. 17.4. ANALOG OUTPUT WIRING WITH THE MLX90333 IN SOIC PACKAGE .......................................................35 PWM LOW SIDE OUTPUT WIRING ............................................................................................................35 ANALOG OUTPUT WIRING WITH THE MLX90333 IN TSSOP PACKAGE ....................................................36 SERIAL PROTOCOL ....................................................................................................................................36 18. STANDARD INFORMATION REGARDING MANUFACTURABILITY OF MELEXIS PRODUCTS WITH DIFFERENT SOLDERING PROCESSES ........................................................................................ 38 19. ESD PRECAUTIONS........................................................................................................................... 38 20. PACKAGE INFORMATION................................................................................................................. 39 20.1. 20.2. 20.3. 20.4. 20.5. 20.6. SOIC8 - PACKAGE DIMENSIONS ...............................................................................................................39 SOIC8 - PINOUT AND MARKING ...............................................................................................................39 SOIC8 - IMC POSITIONNING .....................................................................................................................40 TSSOP16 - PACKAGE DIMENSIONS...........................................................................................................41 TSSOP16 - PINOUT AND MARKING ..........................................................................................................42 TSSOP16 - IMC POSITIONNING ................................................................................................................42 21. DISCLAIMER ....................................................................................................................................... 43 3901090333 Rev. 001 Page 5 of 43 Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor 3. Glossary of Terms − Abbreviations − Acronyms ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ Gauss (G), Tesla (T): Units for the magnetic flux density − 1 mT = 10 G TC: Temperature Coefficient (in ppm/Deg.C.) NC: Not Connected PWM: Pulse Width Modulation %DC: Duty Cycle of the output signal i.e. TON /(TON + TOFF) ADC: Analog-to-Digital Converter DAC: Digital-to-Analog Converter LSB: Least Significant Bit MSB: Most Significant Bit DNL: Differential Non-Linearity INL: Integral Non-Linearity RISC: Reduced Instruction Set Computer ASP: Analog Signal Processing DSP: Digital Signal Processing ATAN: trigonometric function: arctangent (or inverse tangent) IMC: Integrated Magneto-Concentrator (IMC®) CoRDiC: Coordinate Rotation Digital Computer (i.e. iterative rectangular-to-polar transform) EMC: Electro-Magnetic Compatibility 4. Pinout2 Pin # SOIC-8 TSSOP-16 Analog / PWM Serial Protocol Analog / PWM Serial Protocol 1 VDD VDD VDIG1 VDIG1 2 Test 0 Test 0 VSS1 (Ground1) VSS1 (Ground1) 3 Not Used /SS VDD1 VDD1 4 Out 2 SCLK Test 01 Test 01 5 Out 1 MOSI / MISO Not Used /SS2 6 Test 1 Test 1 Out 22 SCLK2 7 VDIG VDIG Out 12 MOSI2 / MISO2 8 VSS (Ground) VSS (Ground) Test 12 Test 12 9 VDIG2 VDIG2 10 VSS2 (Ground2) VSS2 (Ground2) 11 VDD2 VDD2 12 Test 02 Test 02 13 Not Used /SS1 14 Out 21 SCLK1 15 Out 11 MOSI1 / MISO1 16 Test 11 Test 11 For optimal EMC behavior, it is recommended to connect the unused pins (Not Used and Test) to the Ground (see section 16). 2 See Section 14.1 for the Out 1 and Out 2 configuration 3901090333 Rev. 001 Page 6 of 43 Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor 5. Absolute Maximum Ratings Parameter Value Supply Voltage, VDD (overvoltage) + 20 V Reverse Voltage Protection − 10 V Positive Output Voltage + 10 V (Analog or PWM) + 14 V (200 s max − TA = + 25°C) Both outputs OUT 1 & OUT 2 Output Current (IOUT) ± 30 mA Reverse Output Voltage − 0.3 V Both outputs OUT 1 & OUT 2 Reverse Output Current − 50 mA Both outputs OUT 1 & OUT 2 Operating Ambient Temperature Range, TA − 40°C … + 150°C Storage Temperature Range, TS − 40°C … + 150°C Magnetic Flux Density ±4T Exceeding the absolute maximum ratings may cause permanent damage. maximum-rated conditions for extended periods may affect device reliability. Exposure to absolute- 6. Detailed Description As described on the block diagram (Figure 1 and Figure 2), the magnetic flux density applied to the IC is sensed through the Tria⊗is™ sensor front-end. This front-end consists into two orthogonal pairs (for each of the two directions parallel with the IC surface i.e. X and Y) of conventional planar Hall plates (sensitive element – blue area on Figure 4) and an Integrated Magneto-Concentrator (IMC® yellow disk on Figure 4). Bz Bz Bz Bz Figure 4 - Tria⊗is™ sensor front-end (4 Hall plates + IMC® disk) Two orthogonal components (respectively BX⊥ and BY⊥) proportional to the parallel components (respectively BX// and BY//) are induced through the IMC and can be measured by both respective pairs of conventional planar Hall plates as those are sensitive to the flux density applied orthogonally to them and the IC surface. The third component BZ is also sensed by those four (4) conventional Hall plates as shown above. 3901090333 Rev. 001 Page 7 of 43 Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor In summary, along X-axis, the left Hall plate measures “BX⊥ - BZ” while the right Hall plate measures “-BX⊥ - BZ”. Similarly, along the Y-axis, the left Hall plate measures “BY⊥ - BZ” while the right Hall plate measures “-BY⊥ - BZ”. Through an appropriate signal processing, the Tria⊗is™ sensor front-end reports the three (3) components of the applied magnetic flux density B i.e. BX, BY and BZ. Indeed, by subtracting the signals from the two (2) Hall plates in each pair, the components BX⊥ and BY⊥ are measured while BZ is cancelled. To the contrary, by adding the signals from the two (2) Hall plates in each pair, the component BZ is measured while BX⊥ and BY⊥ are cancelled In a joystick based on a “gimbal” mechanism as shown on Figure 3 (left), the magnet (axial magnetization) moves on a hemisphere centered at the IC. The flux density is described through the following relationships: B X = SIN (α ) ⋅ COS ( β ) BY = COS (α ) ⋅ SIN ( β ) BZ = COS (α ) ⋅ COS ( β ) Those components are plotted on the Figure 5, Figure 6 and Figure 7. Figure 5 – Magnetic Flux Density – BX, BY, BZ 3901090333 Rev. 001 Page 8 of 43 Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor 400 300 Magnetic Flux Density (G) 200 100 0 -100 -200 -300 -400 -90 -45 BX 0 Alpha α (Deg) 45 BY 90 BZ Figure 6 – Magnetic Flux Density – β = 0 Deg – BX ∝ sin(α), BY = 0 & BZ ∝ cos(α) 400 300 Magnetic Flux Density (G) 200 100 0 -100 -200 -300 -400 -90 -45 BX 0 Beta β (Deg) BY 45 90 BZ Figure 7 – Magnetic Flux Density – α = 0 Deg – BX = 0, BY ∝ sin(β) & BZ ∝ cos(β) Three (3) differential voltages corresponding to the three (3) components of the applied flux density are provided to the ADC (Analog-to-Digital Converter – Figure 8 and Figure 9). The Hall signals are processed through a fully differential analog chain featuring the classic offset cancellation technique (Hall plate quadrature spinning and chopper-stabilized amplifier). The amplitude of VZ is smaller than the other two (2) components VX and VY due to fact that the magnetic gain of the IMC only affects the components parallel to the IC surface. 3901090333 Rev. 001 Page 9 of 43 Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor 2000 ADC Input Voltages VX, VY & VZ (mV) 1500 1000 500 0 -500 -1000 -1500 -2000 -90 -45 VX 0 Alpha α (Deg) 45 VY 90 VZ Figure 8 – ADC Input Signals – β = 0 Deg – VX ∝ BX ∝ sin(α),VY = BY = 0 & VZ ∝ BZ ∝ cos(α) 2000 ADC Input Voltages VX, VY & VZ (mV) 1500 1000 500 0 -500 -1000 -1500 -2000 -90 -45 VX 0 Beta β (Deg) VY 45 90 VZ Figure 9 – ADC Input Signals – α = 0 Deg – VX = BX = 0, VY ∝ BY ∝ sin(β) & VZ ∝ BZ ∝ cos(β) 3901090333 Rev. 001 Page 10 of 43 Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor The conditioned analog signals are converted through an ADC (configurable − 14 or 15 bits) and provided to a DSP block for further processing. The DSP stage is based on a 16 bit RISC micro-controller whose primary function is the extraction of the two (2) angular information from the three (3) raw signals (after socalled front-end compensation steps) through the following operations: ⎛k V ⎞ α = ATAN ⎜⎜ Z Z ⎟⎟ ⎝ VX ⎠ ⎛k V ⎞ β = ATAN ⎜⎜ Z Z ⎟⎟ ⎝ VY ⎠ where kZ is a programmable parameter. First of all, kZ is used to compensate the smaller amplitude of VZ vs. VX & VY. On the other hand, kZ allows also a targeted reduction of the linearity error through a normalization of the raw signals prior to performing the “ATAN” function. In a joystick based on a “ball & socket” joint as shown on Figure 3 (right), the magnet (axial magnetization) moves on a hemisphere centered at the pivot point. The flux density is described through slightly more complex equations but the MLX90333 offers an alternate algorithm to extract both angular informations: ⎛ (k V ) 2 + (k V ) 2 Z Z t Y α = ATAN ⎜ ⎜ VX ⎝ ⎞ ⎟ ⎟ ⎠ ⎛ (k V ) 2 + (k V ) 2 Z Z t X β = ATAN ⎜ ⎜ VY ⎝ ⎞ ⎟ ⎟ ⎠ where kZ and kt are programmable parameters. The DSP functionality is governed by the micro-code (firmware − F/W) of the micro-controller which is stored into the ROM (mask programmable). In addition to the ″ATAN″ function, the F/W controls the whole analog chain, the output transfer characteristic, the output protocol, the programming/calibration and also the self-diagnostic modes. In the MLX90333, the ″ATAN″ function is computed via a look-up table (i.e. it is not obtained through a CoRDiC algorithm). Due to the fact that the ″ATAN″ operation is performed on the ratios ″VZ/VX″ and ″VZ/VY″, the angular information are intrinsically self-compensated vs. flux density variations (due to airgap change, thermal or ageing effects) affecting the magnetic signal. This feature allows therefore an improved thermal accuracy vs. joystick based on conventional linear Hall sensors. Once the angular information is computed (over 360 degrees), it is further conditioned (mapped) vs. the target transfer characteristic and it is provided at the output(s) as: • • • an analog output level through a 12 bit DAC followed by a buffer a digital PWM signal with 12 bit depth (programmable frequency 100 Hz … 1 kHz) a digital Serial Protocol (SP − 14 bits computed angular information available) 3901090333 Rev. 001 Page 11 of 43 Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor For instance, the analog output can be programmed for offset, gain and clamping to meet any rotary position sensor output transfer characteristic: Vout(α) = ClampLo Vout(α) = Voffset + Gain × α Vout(α) = ClampHi for α ≤ αmin for αmin ≤ α ≤ αmax for α ≥ αmax Vout(β) = ClampLo Vout(β) = Voffset + Gain × β Vout(β) = ClampHi for β ≤ βmin for βmin ≤ β ≤ βmax for β ≥ βmax where Voffset, Gain, ClampLo and ClampHi are the main adjustable parameters for the end-user. The linear part of the transfer curve can be adjusted through a 3 point calibration. Once only one output is used, a 5 point calibration is also available for further improvement of the linearity. The calibration parameters are stored in EEPROM featuring a Hamming Error Correction Coding (ECC). The programming steps do not require any dedicated pins. The operation is done using the supply and output nodes of the IC. The programming of the MLX90333 is handled at both engineering lab and production line levels by the Melexis Programming Unit PTC-04 with the MLX90316 daughterboard and dedicated software tools (DLL − User Interface). 3901090333 Rev. 001 Page 12 of 43 Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor 7. MLX90333 Electrical Specification DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (K or L). Parameter Nominal Supply Voltage Supply Current(3) POR Level Output Current Both outputs OUT 1 & OUT 2 Output Short Circuit Current Both outputs OUT 1 & OUT 2 Output Load Both outputs OUT 1 & OUT 2 Symbol Test Conditions VDD Idd VDD POR Iout Ishort RL Slow 8.5 11 mA Fast mode(4) 13.5 16 mA 2.7 3 V Supply Under Voltage 2 Analog Output mode -8 8 mA PWM Output mode -20 20 mA Vout = 0 V 12 15 mA Vout = 5 V 12 15 mA Vout = 14 V (TA = 25°C) 24 45 mA 1 10 ∞(6) kΩ 1 10 ∞(6) kΩ 3 %VDD Pull-down to Ground Pull-up to 5V(5) Vsat_hi Pull-down load RL ≥ 5 kΩ Digital Saturation Output Level VsatD_lo Both outputs OUT 1 & OUT 2 Diag_hi BVSSPD Passive Diagnostic Output Level BVSSPU Both outputs OUT 1 & OUT 2 (Broken Track Diagnostic) (7) BVDDPD BVDDPU 4.5 V Both outputs OUT 1 & OUT 2 Active Diagnostic Output Level Units 5.5 Pull-up load RL ≥ 10 kΩ Diag_lo Max 5 Vsat_lo VsatD_hi Typ mode(4) Analog Saturation Output Level Both outputs OUT 1 & OUT 2 Min 96 %VDD Pull-up Low Side RL ≥ 10 kΩ 1.5 Push-Pull (IOUT = -20mV) Push-Pull (IOUT = 20mV) 97 %VDD Pull-down load RL ≥ 5 kΩ 1 Pull-up load RL ≥ 10 kΩ 1.5 Pull-down load RL ≥ 5 kΩ 96 Pull-up load RL ≥ 5 kΩ 98 4(7) Pull-down load RL ≤ 10 kΩ Pull-up load RL ≥ 1kΩ 99 Broken VDD(7) & Broken VDD & Pull-up load to 5V 100 0 Pull-down load RL ≥ 1kΩ %VDD %VDD Broken VSS& Broken VSS(7) & %VDD %VDD %VDD 1 No Broken Track diagnostic %VDD %VDD Clamped Output Level Clamp_lo Programmable 0 100 %VDD(8) Both outputs OUT 1 & OUT 2 Clamp_hi Programmable 0 100 %VDD(8) 3 For the dual version, the supply current is multiplied by 2 section 14.5.1 for details concerning Slow and Fast mode 5 Applicable for output in Analog and PWM (Open-Drain) modes 6 RL < ∞ for output in PWM mode 7 For detailed information, see also section 15 8 Clamping levels need to be considered vs the saturation of the output stage (see Vsat_lo and Vsat_hi) 4 See 3901090333 Rev. 001 Page 13 of 43 Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor As an illustration of the previous table, the MLX90333 fits the typical classification of the output span described on the Figure 10. 100 % 90 % 96 % 92 % 88 % Diagnostic Band (High) Clamping High 80 % Output Level 70 % 60 % 50 % Linear Range 40 % 30 % 20 % 10 % 0% 12 % 8% 4% Clamping Low Diagnostic Band (Low) Figure 10 - Output Span Classification 3901090333 Rev. 001 Page 14 of 43 Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor 8. MLX90333 Isolation Specification DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (K or L). Only valid for the package code GO i.e. dual die version. Parameter Symbol Isolation Resistance Test Conditions Between 2 dies Min Typ Max 4 Units MΩ 9. MLX90333 Timing Specification DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (K or L). Parameter Main Clock Frequency Symbol Ck Sampling Rate Step Response Time Watchdog Start-up Cycle Ts Wd Tsu Analog Output Slew Rate PWM Frequency FPWM Test Conditions Min Typ Max Units Slow mode(9) 7 MHz Fast mode(9) 20 MHz Slow mode(10) 600 1000 μs Fast mode(10) 200 330 μs Slow mode(9), Filter=5(10) 4 ms Fast mode(9), Filter=0(10) 600 μs 5 ms 15 ms 400 See Section 15 Slow and Fast mode(9) COUT = 42 nF 200 COUT = 100 nF 100 PWM Output Enabled 100 V/ms 1000 Hz Digital Output Rise Time Mode 5 – 10nF, RL = 10 kΩ 120 μs Both outputs OUT 1 & OUT 2 Mode 7 – 10nF, RL = 10 kΩ 2.2 μs Digital Output Fall Time Mode 5 – 10nF, RL = 10 kΩ 1.8 μs Both outputs OUT 1 & OUT 2 Mode 7 – 10nF, RL = 10 kΩ 1.9 μs 9 See section 14.5.1 for details concerning Slow and Fast mode section 14.6 for details concerning Filter parameter 10 See 3901090333 Rev. 001 Page 15 of 43 Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor 10. MLX90333 Accuracy Specification DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (K or L). Parameter ADC Resolution on the raw signals X, Y and Z Offset on the Raw Signals X, Y and Z Symbol RADC Test Conditions Max Units 15 bits Fast Mode(11) 14 bits Mismatch on the Raw Signals X, TA = 25°C Y and Z SMISMXY Between X and Y SMISMXZ Between X and Z SMISMYZ Between Y and Z -60 60 LSB15 -1 1 % End-User programmable(12) (kt parameter) Thermal Offset Drift at the DSP input (excl. DAC and output stage) Temperature suffix K -60 +60 LSB15 Temperature suffix L -90 +90 LSB15 Temperature suffix K - 0.3 + 0.3 %VDD Temperature suffix L - 0.4 + 0.4 %VDD Temperature suffix K - 0.3 + 0.3 % Temperature suffix L - 0.5 + 0.5 % Thermal Offset Drift #2 Thermal Offset Drift of the DAC (to be considered only for the analog output mode) and Output Stage Thermal Drift of Sensitivity Mismatch Analog Output Resolution Typ Slow Mode(11) X0, Y0, Z0 TA = 25°C Thermal Offset Drift #1 on the raw signals X, Y and Z(13) Min RDAC 12 bits DAC 0.025 %VDD/LSB (Theoretical – Noise free) Output stage Noise Noise INL -4 DNL -1 Clamped Output pk-pk(14) 1 LSB 0.05 %VDD 5 10 LSB15 Gain = 14, Fast mode, Filter=0 10 20 LSB15 0 0.1 %VDD -0.1 RPWM LSB Gain = 14, Slow mode, Filter=5 Ratiometry Error PWM Output Resolution 0 +4 12 bits 0.025 %DC/LSB (Theoretical – Jitter free) PWM Jitter JPWM Gain = 11, FPWM = 250 Hz – 800Hz Serial Protocol Output Resolution RSPI Theoretical – Jitter free 5 14 LSB12 bits 15 bits corresponds to 14 bits + sign and 14 bits corresponds to 13 bits + sign. After angular calculation, this corresponds to 0.005Deg/LSB15 in Low Speed Mode and 0.01Deg/LSB14 in High Speed. 12 The mismatch between X and Z (Y and Z) is end-user programmable through the 2 parameters kZ and kt as described in the formulas page 11 in order to take into account the IC mismatch and system tolerances (magnetic and mechanical). 13 To evaluate the error affecting the computed angle i.e. “ATAN” function (See section 6), it is important to take into account the actual value of the factor kZ as it amplifies the signal VZ and consequently its drift too. 14 The application diagram used is described in the recommended wiring. For detailed information, refer to section Filter in application mode (Section 14.6). 11 3901090333 Rev. 001 Page 16 of 43 Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor 11. MLX90333 Magnetic Specification DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (K or L). Parameter Symbol Test Conditions Min Typ Max Units Magnetic Flux Density BX, BY 20 50 70(15) mT Magnetic Flux Density BZ 24 75 140 mT TCm -2400 0 ppm/°C Magnet Temperature Coefficient 12. MLX90333 CPU & Memory Specification The DSP is based on a 16 bit RISC µController. This CPU provides 5 Mips while running at 20 MHz. Parameter 15 Symbol Test Conditions Min Typ Max Units ROM 10 kB RAM 256 B EEPROM 128 B Above 70 mT, the IMC starts saturating yielding to an increase of the linearity error. 3901090333 Rev. 001 Page 17 of 43 Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor 13. MLX90333 End-User Programmable Items Parameter Comments MAINMODE Select Outputs Configuration Outputs Mode Define the output stages mode PWMPOL1 PWM Polarity (Out 1) PWMPOL2 PWM Polarity (Out 2) PWM_Freq PWM Frequency 3-Points 4 segments transfer curve for single angle output ALPHA_POL Revert the Sign of Alpha ALPHA_MOD180 Modulo Operation (180deg) on Alpha ALPHA_DP Alpha Discontinuity Point ALPHA_DEADZONE Alpha Dead Zone ALPHA_S0 Initial Slope ALPHA_X Alpha X Coordinate ALPHA_Y Alpha Y Coordinate ALPHA_S1 Alpha S Coordinate BETA_POL Revert the Sign of Beta BETA_MOD180 Modulo Operation (180deg) on Beta BETA_DP Beta Discontinuity Point BETA_DEADZONE Beta Dead Zone BETA_S0 Beta Dead Zone BETA_X Beta X Coordinate BETA_Y Beta Y Coordinate BETA_S1 Beta S Coordinate CLAMP_LOW Clamping Low CLAMP_HIGH Clamping High 2D XYZ SPI Only KZ KT FIELDTHRES_LOW FIELDTHRES_HIGH DERIVGAIN FILTER FILTER A1 Filter coefficient A1 for FILTER=6 FILTER A2 Filter coefficient A2 for FILTER=6 FILTERFIRST FHYST MELEXISID1 MELEXISID2 MELEXISID3 CUSTUMERID1 End-User Programmable Items continues... 3901090333 Rev. 001 Page 18 of 43 Default Values # bit 0 2 2 3 0 1 0 1 1000h 16 0 1 0 1 1 1 0 8 0 6 4000h 16 4000h 16 8000h 16 4000h 16 0 1 1 1 0 6 0 8 4000h 16 4000h 16 8000h 16 4000h 16 0% 16 100% 16 0 1 0 1 B3h 8 80h 8 0h 8 0h 8 40h 8 3 8 6600h 16 2A00h 16 0 1 0 8 MLX 16 MLX 16 MLX 16 1 16 Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor … End-User Programmable Items CUSTUMERID2 CUSTUMERID3 HIGHSPEED GAINMIN GAINMAX EEHAMHOLE RESONFAULT MLXLOCK LOCK 14. 17d MLX 0 0 41d 3131h 0 0 0 16 16 1 8 8 16 2 1 1 Description of End-User Programmable Items 14.1. Output Configuration The parameter MAINMODE defines the output stages configuration MAINMODE OUT1 OUT2 0 ALPHA BETA 1 BETA ALPHA 2 ALPHA ALPHA DERIVATE 3 BETA BETA DERIVATE 14.2. Output Mode The MLX90333 outputs type is defined by the Output Mode parameter. Parameter Value Analog Output Mode 2 Analog Rail-to-Rail 5 Low Side (NMOS) 7 Push-Pull PWM Output Mode Serial N/A Description Low Side (NMOS) 14.2.1. Analog Output Mode The Analog Output Mode is a rail-to-rail and ratiometric output with a push-pull output stage configuration allows the use of a pull-up or pull-down resistor. 14.2.2. PWM Output Mode If one of the PWM Output modes is selected, the output signal is a digital signal with Pulse Width Modulation (PWM). In mode 5, the output stage is an open drain NMOS transistor (low side), to be used with a pull-up resistor to VDD. In mode 7, the output stage is a push-pull stage for which Melexis recommends the use of a pull-up resistor to VDD. The PWM polarity of the Out 1 (Out 2) is selected by the PWMPOL1 (PWMPOL2) parameter: 3901090333 Rev. 001 Page 19 of 43 Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor • • PWMPOL1 (PWMPOL2) = 0 for a low level at 100% PWMPOL1 (PWMPOL2) = 1 for a high level at 100% The PWM frequency is selected by the PWM_Freq parameter. PWM Frequency Code Pulse-Width Modulation Frequency (Hz) Oscillator Mode 100 200 500 1000 Low Speed 35000 17500 7000 3500 High Speed - 50000 20000 10000 For instance, in Low Speed Mode, set PWM_Freq = 7000 (decimal) to set the PWM frequency at 500Hz. 14.2.3. Serial Protocol Output Mode The MLX90333 features a digital Serial Protocol mode. The MLX90333 is considered as a Slave node. The frame layer type is defined by the parameter XYZ as described in the next table. Parameter Value XYZ Description 0 Regular SPI Frame Alpha, Beta 1 X,Y, Z Frame See the dedicated Serial Protocol section for a full description (Section 16). 14.3. Output Transfer Characteristic Parameter 3-Points Value Description 0 Regular Alpha, Beta Output (2 times 2 segments) 1 Alpha (or Beta) Single Output (1 time 4 segments) The 3-Points parameters allow the user to use the 3-points mapping (4 segments). This mode can only be used for Mainmode equals 2 and 3. • 3-Points = 0, the parameters list is described as bellow (Angle Alpha and Beta): 3901090333 Rev. 001 Parameter Value ALPHA_POL BETA_POL 0 1 ALPHA_MOD180 BETA_MOD180 0 1 ALPHA_DP BETA_DP 0 … 359.9999 deg ALPHA_X BETA_X 0 … 359.9999 deg ALPHA_Y BETA_Y 0 … 100 % ALPHA_S0 0 … 17 %/deg Page 20 of 43 Unit Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor • ALPHA_S1 BETA_S0 BETA_S1 CLAMP_LOW 0 … 100 % CLAMP_HIGH 0 … 100 % ALPHA_DEADZONE BETA_DEADZONE 0 … 359.9999 deg 3-Points = 1, the parameters list is described as bellow (Alpha or Beta): Parameter Value Unit 0 Æ CCW ALPHA_POL 1 Æ CW DP LNR_A_X LNR_B_X LNR_C_X LNR_A_Y LNR_B_Y LNR_C_Y LNR_S0 LNR_A_S LNR_B_S LNR_C_S 0 … 359.9999 deg 0 … 359.9999 deg 0 … 100 % 0 … 17 %/deg -17… 0 … 17 %/deg CLAMP_LOW 0 … 100 % CLAMP_HIGH 0 … 100 % DEADZONE 0 … 359.9999 deg 14.3.1. The Polarity and Modulo Parameters The angle Alpha is defined as the arctangent of Z/X and Beta as the arctangent of Z/Y. It is possible to invert the polarity of these angles via the parameters ALPHA_POL and BETA_POL set to “1”. The MLX90313 can also be insensitive ALPHA_MOD180/BETA_MOD180 to “1”. to the field polarity by setting the z β α y x 3901090333 Rev. 001 Page 21 of 43 Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor 14.3.2. Alpha/Beta Discontinuity Point (or Zero Degree Point) The Discontinuity Point defines the zero point of the circle (Alpha or Beta). The discontinuity point places the origin at any location of the trigonometric circle (see Figure 13). For a Joystick Application, Melexis recommends to set the DP to zero. 14.3.3. LNR Parameters The LNR parameters, together with the clamping values, fully define the relation (the transfer function) between the digital angles (Alpha and Beta) and the output signals. The shape of the MLX90333 transfer function from the digital angle values to the output voltages is described by the drawing below (See Figure 11). Four segments can be programmed but the clamping levels are necessarily flat (3-Points = 0). 100% C Clamping High AlphaOut CLAMPHIGH ALPHA_S1 B ALPHA_Y ALPHA_S0 A CLAMPLOW 0% 0° Clamping Low ALPHA_X Alpha 360° Figure 11 - Digital Angle (Alpha) Transfer Characteristic (Idem ditto for Beta) In the case of one single angle output (3-Points = 1), the shape of the MLX90333 transfer function from the digital angle values to the output voltage is described by the drawing below (See Figure 12). Six segments can be programmed but the clamping levels are necessarily flat. 3901090333 Rev. 001 Page 22 of 43 Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor 100 % Clamping High CLAMPHIGH C Slope LNR_C_S LNR_C_Y B Slope LNR_B_S LNR_B_Y A Slope LNR_A_S LNR_A_Y Slope LNR_S0 Clamping Low CLAMPLOW 0% LNR_A_X 0 LNR_B_X LNR_C_X 360 (Deg.) Figure 12 – Digital Angle (Alpha) Transfer Characteristic for Single Angle Output 14.3.4. CLAMPING Parameters The clamping levels are two independent values to limit the output voltage range. The CLAMP_LOW parameter adjusts the minimum output voltage level. The CLAMP_HIGH parameter sets the maximum output voltage level. Both parameters have 16 bits of adjustment. In analog mode, the resolution will be limited by the D/A converter (12 bits) to 0.024%VDD. In PWM mode, the resolution will be 0.024%DC. In SPI mode, the resolution is 14bits or 0.022deg over 360deg. 14.3.5. DEADZONE Parameter The dead zone is defined as the angle window between 0 and 359.9999 (See Figure 13). When the digital angle (Alpha or Beta) lies in this zone, the IC is in fault mode (RESONFAULT must be set to “1” – See 14.7.1). In case of ALPHA_MOD180 (or BETA_MOD180) is not set, the angle between 180° and 360° will generate a “deadzone” fault, unless DEADZONE=0. z 90° α 180° Programmable 0° point 0° x Programmable Forbidden Zone Figure 13 – Discontinuity Point and Dead Zone (Alpha – Idem ditto for Beta) 3901090333 Rev. 001 Page 23 of 43 Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor 14.4. Identification Parameter MELEXSID1 MELEXSID2 MELEXSID3 CUSTUMERID1 CUSTUMERID2 CUSTUMERID3 Value 0 … 65535 0 … 65535 0 … 65535 0 … 65535 0 … 65535 0 … 65535 Unit Identification number: 48 bits freely useable by Customer for traceability purpose. 14.5. Sensor Front-End Parameter Value Unit HIGHSPEED 0 = Slow mode 1 = Fast mode GAINMIN 0 … 41 GAINMAX 0 … 41 FIELDTHRES_MIN 0 … 100 % FIELDTHRES_MAX 0 … 100 % 14.5.1. HIGHSPEED Parameter The HIGHSPEED parameter defines the main frequency for the DSP. • HIGHSPEED = 0 selects the Slow mode with a 7 MHz master clock. • HIGHSPEED = 1 selects the Fast mode with a 20 MHz master clock. For better noise performance, the Slow Mode must be enabled. 14.5.2. GAINMIN and GAINMAX Parameters The MLX90333 features an automatic gain control (AGC) of the analog chain. The AGC loop is based on Max(|VX|, |VY|, |VZ|) = |Amplitude| = Radius and it targets an amplitude of 90% of the ADC input span. The current gain can be read out with the programming unit PTC-04 and gives a rough indication of the applied magnetic flux density (Amplitude). GAINMIN & GAINMAX define the boundaries within the gain setting is allowed to vary. Outside this range, the outputs are set in diagnostic low. 14.5.3. FIELDTHRES_MIN and FIELDTHRES_MAX Parameters The strength of the applied field is constantly calculated in a background process. The value of this field can be read out with the PTC-04 and FIELDTHRES_MIN & FIELDTHRES_MAX define the boundaries within the actual field strength (Radius) is allowed to vary. Outside this range, the outputs are set in diagnostic low. 3901090333 Rev. 001 Page 24 of 43 Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor 14.6. FILTER Parameter Value Unit FHYST 0 … 11 ; step 0.04 deg FILTER 0… 6 FILTERFIRST 0 1 The MLX90333 includes 3 types of filters: • Hysteresis Filter: programmable by the FHYST parameter • Low Pass FIR Filters controlled with the Filter parameter • Low Pass IIR Filter controlled with the Filter parameter and the coefficients FILTER A1 and FILTER A2 Note: if the parameter FILTERFIRST is set to “1”, the filtering is active on the digital angle. If set to “0”, the filtering is active on the output transfer function. 14.6.1. Hysteresis Filter The FHYST parameter is a hysteresis filter. The output value of the IC is not updated when the digital step is smaller than the programmed FHYST parameter value. The output value is modified when the increment is bigger than the hysteresis. The hysteresis filter reduces therefore the resolution to a level compatible with the internal noise of the IC. The hysteresis must be programmed to a value close to the noise level. Please note that for the programmable version, the FHYST parameter is set to 4 by default. If you do not wish this feature, please set it to “0”. 14.6.2. FIR Filters The MLX90333 features 6 FIR filter modes controlled with Filter = 0…5. The transfer function is described below: yn = j 1 j ∑a i =0 ∑a x i =0 i n −i i The characteristics of the filters no 0 to 5 is given in the Table 1. Filter No (j) Type Coefficients a0… a5 Title 90% Response Time 99% Response Time Efficiency RMS (dB) Efficiency P2P (dB) 0 Disable N/A No Filter 1 1 0 0 1 2 3 4 Finite Impulse Response 110000 121000 133100 111100 Extra Light Light 2 3 4 4 2 3 4 4 2.9 4.0 4.7 5.6 2.9 3.6 5.0 6.1 5 122210 5 5 6.2 7.0 Table 1 - FIR Filters Selection Table 3901090333 Rev. 001 Page 25 of 43 Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor FIR and HYST Filters : Step response Comparative Plot 40000 x(n) fir(n) [0..65535] Scale 38000 hyst(n) 36000 34000 32000 30000 0 5 10 15 Milliseconds 20 25 30 FIR and HYST Filter : Gaussian white noise response 40200 x(n) 40150 fir(n) hyst(n) [0..65535] Scale 40100 40050 40000 39950 39900 39850 39800 0 50 100 150 Milliseconds Figure 14 - Step Response and Noise Response for FIR (No 3) and FHYST=10 14.6.3. IIR Filters The IIR Filter is enabled with Filter = 6. The diagram of the IIR Filter implemented in the MLX90333 is given in Figure 15. Only the parameter A1 and A2 are configurable (See Table 2). b0 = 1 x(n) y(n) Z-1 Z-1 -a1 b1 = 2 Z-1 Z-1 b2 = 1 -a2 Figure 15 - IIR Diagram 3901090333 Rev. 001 Page 26 of 43 Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor Filter No Type Title 90% Response Time Efficiency RMS (dB) Efficiency P2P (dB) Coefficient A1 Coefficient A2 11 9.9 12.9 26112 10752 16 11.4 14.6 28160 12288 6 2nd Order Infinite Impulse Response (IIR) Medium & Strong 26 40 52 13.6 15.3 16.2 17.1 18.8 20 29120 30208 31296 12992 13952 14976 100 >20 >20 31784 15412 Table 2 - IIR Filter Selection Table The Figure 16 shows the response of the filter to a Gaussian noise with default coefficient A1 and A2. IIR Filter - Gaussian White Noise Response 40200 [0…65535] Scale 40150 x(n) 40100 y(n) 40050 40000 39950 39900 39850 39800 0 50 100 150 Time Figure 16 - Noise Response for the IIR Filter 3901090333 Rev. 001 Page 27 of 43 Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor 14.7. Programmable Diagnostic Settings Parameter Value 0 1 0 3131h RESONFAULT EEHAMHOLE Unit 14.7.1. RESONFAULT Parameter This RESONFAULT parameter enables the soft reset when a fault is detected by the CPU when the parameter is set to 1. By default, the parameter is set to “0” but it is recommended to set it to “1” to activate the self diagnostic modes (See section 15). Note that in the User Interface (MLX90333UI), the RESONFAULT is a cluster of the following two bits, i.e. the 2 bits are both disabled or both enabled: • DRESONFAULT: disable the reset in case of a fault. • DOUTINFAULT: disable output in diagnostic low in case of fault. 14.7.2. EEHAMHOLE Parameter The EEHAMHOLE parameter disables the memory recovery (Hamming code) check when a fault is detected by the CRC when it is equal to 3131h. By default the parameter is set to 0 (enable memory recovery). 14.8. Lock Parameter Value 0 1 0 1 MLXLOCK LOCK Unit 14.8.1. MLXLOCK Parameter MLXLOCK locks all the parameters set by Melexis. 14.8.2. LOCK Parameter LOCK locks all the parameters set by the user. Once the lock is enabled, it is not possible to change the EEPROM values anymore. Note that the lock bit should be set by the solver function “MemLock”. 3901090333 Rev. 001 Page 28 of 43 Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor 15. MLX90333 Self Diagnostic The MLX90333 provides numerous self-diagnostic features. Those features increase the robustness of the IC functionality as it will prevent the IC to provide erroneous output signal in case of internal or external failure modes (“fail-safe”). Action ROM CRC Error at start up (64 words including Intelligent Watch Dog - IWD) ROM CRC Error (Operation Background task) RAM Test Fail (Start up) Effect on Outputs Diagnostic low(17) CPU Reset (16) Enter Endless Loop: - Progress (watchdog Acknowledge) - Set Outputs in Diagnostic low CPU Reset Immediate Diagnostic low Diagnostic low Calibration Data CRC Error (Start-Up) Hamming Code Recovery Hamming Code Recovery Error (Start-Up) Calibration Data CRC Error (Operation - Background) Dead Zone Alpha Dead Zone Beta CPU Reset Immediate Diagnostic low CPU Reset Immediate Diagnostic low Set Outputs in Diagnostic low. Normal Operation until the “dead zone” is left. Set Outputs in Diagnostic low Normal mode and CPU Reset If recovery Set Outputs in Diagnostic low Normal mode and CPU Reset If recovery Set Outputs in Diagnostic low Normal mode, and No CPU Reset If recovery Immediate Diagnostic low Set Outputs in Diagnostic low Normal mode, and CPU Reset If recovery Set Outputs in Diagnostic low Normal mode, and CPU Reset If recovery Immediate Diagnostic low ADC Clipping (ADC Output is 0000h or 7FFFh) Radius Overflow ( > 100% ) or Radius Underflow ( < 50 % ) Field Clipping (Radius < FIELDTHRES_LOW or Radius > FIELDTHRES_HIGH) Rough Offset Clipping (RO is < 0d or > 127d) Gain Clipping (Gain < GAINMIN or GAIN > GAINMAX) DAC Monitor (Digital to Analog converter) Set Outputs in Diagnostic low. Normal Mode with immediate recovery without CPU Reset MLX90333 Fault Mode continues… 16 All the outputs are already in Diagnostic low (start-up) Start-Up Time is increased by 3 ms if successful recovery See 14.7.2 Immediate recovery if the “dead zone” is left Immediate Diagnostic low Immediate Diagnostic low (50 % - 100 %) No magnet / field too high See also 14.5.2 Immediate Diagnostic low Immediate Diagnostic low See also 14.5.2 Immediate Diagnostic low CPU reset means 1. 2. 3. 4. 17 Remark All the outputs are already in Diagnostic low - (start-up) Core Reset (same as Power-On-Reset). It induces a typical start up time. Periphery Reset (same as Power-On-Reset) Fault Flag/Status Lost The reset can be disabled by clearing the RESONFAULT bit (See 14.7.1) Refer to section 7 for the Diagnostic Output Level specifications 3901090333 Rev. 001 Page 29 of 43 Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor …MLX90333 Fault Mode Fault Mode ADC Monitor (Analog to Digital Converter) Undervoltage Mode Action Set Outputs in Diagnostic low. Normal Mode with immediate recovery without CPU Reset Effect on Outputs Immediate Diagnostic low At Start-Up, wait Until VDD > 3V. - VDD < POR level => Outputs high impedance During operation, CPU Reset after 3 ms debouncing Remark ADC Inputs are Shorted Firmware Flow Error CPU Reset - POR level < VDD < 3 V => Outputs in Diagnostic low. Immediate Diagnostic low Read/Write Access out of physical memory Write Access to protected area (IO and RAM Words) Unauthorized entry in “SYSTEM” Mode VDD > 7 V CPU Reset Immediate Diagnostic low Intelligent Watchdog (Observer) 100% Hardware detection CPU Reset Immediate Diagnostic low 100% Hardware detection CPU Reset Immediate Diagnostic low 100% Hardware detection Set Output High Impedance (Analog) 100% Hardware detection VDD > 9.4 V IC is switched off (internal supply) CPU Reset on recovery Pull down resistive load => Diag. Low Pull up resistive load => Diag. High(17) Pull down resistive load => Diag. Low Pull up resistive load => Diag. High Broken VSS CPU Reset on recovery Pull down resistive load => Diag. Low Pull up resistive load => Diag. High Broken VDD CPU Reset on recovery Pull down resistive load => Diag. Low Pull up resistive load => Diag. High 3901090333 Rev. 001 Page 30 of 43 No valid diagnostic for VPULLUP = VDD. Pull up load (≤ 10kΩ) to VPULLUP > 8 V to meet Diag Hi spec > 96% Vdd. 100% Hardware detection. Pull down load ≤ 10 kΩ to meet Diag Low spec: - < 4% VDD (temperature suffix K) - contact Melexis for temperature suffix L No valid diagnostic for VPULLUP = VDD. Pull up load (≤ 10kΩ) to VPULLUP > 8 V to meet Diag Hi spec > 96% Vdd. Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor 16. Serial Protocol 16.1. Introduction The MLX90333 features a digital Serial Protocol mode. The MLX90333 is considered as a Slave node. The serial protocol of the MLX90333 is a three wires protocol (/SS, SCLK, MOSI-MISO): • • • /SS pin is a 5 V tolerant digital input SCLK pin is a 5 V tolerant digital input MOSI-MISO pin is a 5 V tolerant open drain digital input/output The basic knowledge of the standard SPI specification is required for the good understanding of the present section. 16.2. SERIAL PROTOCOL Mode • • CPHA = 1 Æ CPOL = 0 Æ even clock changes are used to sample the data active-Hi clock The positive going edge shifts a bit to the Slave’s output stage and the negative going edge samples the bit at the Master’s input stage. 16.3. MOSI (Master Out Slave In) The Master sends a command to the Slave to get the angle information. 16.4. MISO (Master In Slave Out) The MISO of the slave is an open-collector stage. Due to the capacitive load (TBD) a >1 kΩ pull-up is used for the recessive high level (in fast mode). Note that MOSI and MISO use the same physical pin of the MLX90333. 16.5. /SS (Slave Select) The /SS pin enables a frame transfer (if CPHA = 1). It allows a re-synchronization between Slave and Master in case of communication error. 16.6. Master Start-Up /SS, SCLK, MISO can be undefined during the Master start-up as long as the Slave is re-synchronized before the first frame transfer. 16.7. Slave Start-Up The slave start-up (after power-up or an internal failure) takes 16 ms. Within this time /SS and SCLK is ignored by the Slave. The first frame can therefore be sent after 16 ms. MISO is Hi-Z (i.e. Hi-Impedance) until the Slave is selected by its /SS input. MLX90333 will cope with any signal from the Master while starting up. 3901090333 Rev. 001 Page 31 of 43 Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor 16.8. Timing To synchronize communication, the Master deactivates /SS high for at least t5 (1.5 ms). In this case, the Slave will be ready to receive a new frame. The Master can re-synchronize at any time, even in the middle of a byte transfer. Note: Any time shorter than t5 leads to an undefined frame state, because the Slave may or may not have seen /SS inactive. t6 t1 t1 t7 t1 t1 t1 t4 t2 t9 t5 SCLK MOSI/ MISO /SS 2 Startbytes Timings 18 Min(18) Byte 0 Byte 1 Max t1 2.3 μs / 6.9 μs - t2 12.5 μs / 37.5 μs - t4 2.3 μs / 6.9 μs - t5 300 μs / 1500 μs - t5 0μs t6 2.3 μs / 6.9 μs - t7 15 μs / 45 μs - t9 - <1 μs TStartUp - < 10 ms / 16 ms - Byte 2 Byte 7 Remarks No capacitive load on MISO. t1 is the minimum clock period for any bits within a byte. t2 the minimum time between any other byte Time between last clock and /SS=high=chip de-selection Minimum /SS = Hi time where it’s guaranteed that a frame resynchronizations will be started. Maximum /SS = Hi time where it’s guaranteed that NO frame resynchronizations will be started. The time t6 defines the minimum time between /SS = Lo and the first clock edge t7 is the minimum time between the StartByte and the Byte0 Maximum time between /SS = Hi and MISO Bus High-Impedance Minimum time between reset-inactive and any master signal change Timings shown for oscillator base frequency of 20MHz (Fast Mode) / 7 MHz (Slow Mode) 3901090333 Rev. 001 Page 32 of 43 Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor 16.9. Slave Reset On internal soft failures the Slave resets after 1 second or after an (error) frame is sent. On internal hard failures the Slave resets itself. In that case, the Serial Protocol will not come up. The serial protocol link is enabled only after the completion of the first synchronization (the Master deactivates /SS for at least t5). 16.10. Frame Layer 16.10.1. Frame Type Selection See the programmable parameter XYZ in section 14.2.3 to select between the Alpha, Beta Frame and the X, Y, Z Frame. 16.10.2. Data Frame Structure The Figure 17 gives the timing diagram for the SPI Frame. The latch point for the angle measurement is at the last clock before the first data frame byte. Latch point /SS SCLK MOSI F F F F F F F F F F F F F F F F F F F F F F MISO F F D A T A D A T A D A T A S U M F F D A T A XYZ 0 1 Alpha X Beta Y Error Z Figure 17 - Timing Diagram for the SPI Frame A data frame consists of: Data Frame XYZ = 0 1 start byte XYZ = 1 FFh 2 data bytes (LSByte first) Alpha X 2 data bytes (LSByte first) Beta Y 2 data bytes (LSByte first) Error Code Z 1 SUM byte 8 LSB of the sum of the transmitted bytes 16.10.3. Timing There are no timing limits for frames: a frame transmission could be initiated at any time. There is no interframe time defined. 3901090333 Rev. 001 Page 33 of 43 Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor 16.10.4. Data Structure The DATA could be a valid angle/field component or an error condition. The two meanings are distinguished by the LSB. DATA: Angle/ Field Component A[15:0] with (Span)/216 Less Significant Byte msb A7 A6 A5 A4 A3 Most Significant Byte A2 A1 lsb A0 msb A15 A14 A13 A12 A11 A10 lsb A8 A9 DATA: Error Less Significant Byte msb E7 E6 E5 E4 E3 BIT E0 E1 E2 E3 E4 NAME F_ADCMONITOR F_ADCSATURA F_GAINTOOLOW E5 E6 F_GAINTOOHIGH F_NORMTOOLOW E7 E8 F_FIELDTOOLOW F_FIELDTOOHIGH E9 E10 E11 E12 E13 E14 E15 F_ROCLAMP F_DEADZONEALPHA F_DEADZONEBETA Most Significant Byte E2 E1 lsb E0 msb E15 E14 E13 E12 E11 E10 E9 lsb E8 ADC Failure ADC Saturation (Electrical failure or field too strong) The gain code is strictly less than EE_GAINMIN The gain code is strictly greater than EE_GAINMAX Goes high when the fast norm (the max of absolute x,y,z) is below 30% The norm (Square root) is strictly less than EE_FIELDLOW The norm (Square root) is strictly greater than EE_FIELDHIGH Analog Chain Rough Offset Compensation: Clipping The angle ALPHA lies in the deadzone The angle BETA lies in the deadzone 16.10.5. Angle Calculation All communication timing is independent (asynchronous) of the angle data processing. The angle is calculated continuously by the Slave: • • Slow Mode: every 1.5 ms at most. Fast Mode: every 350 μs at most. The last angle calculated is hold to be read by the Master at any time. Only valid angles are transferred by the Slave, because any internal failure of the Slave will lead to a soft reset. 16.10.6. Error Handling In case of any errors listed in section 16.10.4, the Serial protocol will be initialized and the error condition can be read by the master. The slave will perform a soft reset once the error frame is sent. In case of any other errors (ROM CRC error, EEPROM CRC error, RAM check error, intelligent watchdog error…) the Slave’s serial protocol is not initialized. The MOSI/MISO pin will stay Hi-impedant (no error frames are sent). 3901090333 Rev. 001 Page 34 of 43 Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor 17. Recommended Application Diagrams 17.1. Analog Output Wiring with the MLX90333 in SOIC Package ECU 5V Vdd 8 1 Vdd C1 100nF Vss MLX90333 Test 1 NotUsed C2 100nF Vdig GND C3 100nF ADC Test 2 5 4 Out 2 C6 4.7nF R1 10k Out 1 Out 1 R2 10k C4 100nF Out 2 C5 4.7nF Figure 18 – Recommended wiring for the MLX90333 in SOIC8 package 17.2. PWM Low Side Output Wiring ECU 5V Vdd 8 1 Vdd C1 100nF Vss MLX90333 Test 1 NotUsed C2 100nF Vdig ADC 5 PWM 1 PWM 1 C6 4.7nF 5V Test 2 4 PWM 2 GND C3 4.7nF R1 1k R2 1k C4 4.7nF PWM 2 C5 4.7nF Figure 19 – Recommended wiring for a PWM Low Side Output configuration 3901090333 Rev. 001 Page 35 of 43 Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor 17.3. Analog Output Wiring with the MLX90333 in TSSOP Package ECU VDD1 Vdd1 GND1 C31 100nF 16 C1 100nF GND1 GND1 1 C2 100nF Vdig1 Out2_1 Vss1 Out1_1 Out1_1 Vdd1 C4 100nF MLX90333 C62 100nF Out2_2 Vdd2 Out1_2 Vss2 C32 100nF Out2_1 VDD2 Vdd2 GND2 10K 4.7nF ADC 9 8 Vdig2 GND2 C5 100nF C61 100nF GND2 Out1_2 Out2_2 Figure 20 – Recommended wiring for the MLX90333 in TSSOP16 package (dual die). 17.4. Serial Protocol Generic schematics for single slave and dual slave applications are described. SPI Master GND 5V 8 1 Vdd C1 100nF Vss Vdd _SS _SS MLX90333 Test 0 R4 C2 100nF Vdig SCLK R5 Test 1 SCLK MOSI MISO _MOSI 5 4 /SS R3 R1 MOSI R2 3.3V/5V Figure 21 – MLX90333 − Single Die − Serial Protocol Mode 3901090333 Rev. 001 Page 36 of 43 Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor μCtrl Pull-up 90316 Supply Supply Supply R1 (Ω) R2 (Ω) R3 (Ω) R4 (Ω) (V) (V) (V) 5V μCtrl w/o O.D. w/o 3.3V 5V 5V 5V 100 1000 20,000 1000 5V μCtrl w/o O.D. w/ 3.3V 5V 3.3V 5V 150 1000 N/A 1000 3.3V μCtrl w/o O.D. (19) 3.3V 3.3V 5V 150 1000 N/A N/A 5V μCtrl w/ O.D. w/o 3.3V (20) 5V 5V 5V 100 1000 20,000 1000 3.3V μCtrl w/ O.D. 3.3V 3.3V 5V 150 1000 N/A N/A Table 3 - Resistor Values for Common Specific Applications Application Type 19 20 R5 (Ω) MOS Type 20,000 20,000 N/A 20,000 N/A BS170 BS170 BS170 N/A N/A μCtrl w/ O.D. : Micro-controller with open-drain capability (for instance NEC V850ES series) μCtrl w/o O.D. : Micro-controller without open-drain capability (like TI TMS320 series or ATMEL AVR ) 3901090333 Rev. 001 Page 37 of 43 Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor 18. Standard information regarding manufacturability of Melexis products with different soldering processes Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level according to following test methods: Reflow Soldering SMD’s (Surface Mount Devices) • • • IPC/JEDEC J-STD-020 Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices (Classification reflow profiles according to table 5-2) EIA/JEDEC JESD22-A113 Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing (Reflow profiles according to table 2) Melexis Working Instruction 341901308 Wave Soldering SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices) • • • EN60749-20 Resistance of plastic- encapsulated SMD’s to combined effect of moisture and soldering heat EIA/JEDEC JESD22-B106 and EN60749-15 Resistance to soldering temperature for through-hole mounted devices Melexis Working Instruction 341901309 Iron Soldering THD’s (Through Hole Devices) • • EN60749-15 Resistance to soldering temperature for through-hole mounted devices Melexis Working Instruction 341901309 Solderability SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices) • • EIA/JEDEC JESD22-B102 and EN60749-21 Solderability Melexis Working Instruction 3304312 For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc) additional classification and qualification tests have to be agreed upon with Melexis. The application of Wave Soldering for SMD’s is allowed only after consulting Melexis regarding assurance of adhesive strength between device and board. For more information on the lead free topic please see quality page at our website: http://www.melexis.com/quality.aspx 19. ESD Precautions Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). Always observe Electro Static Discharge control procedures whenever handling semiconductor products. 3901090333 Rev. 001 Page 38 of 43 Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor 20. Package Information 20.1. SOIC8 - Package Dimensions 1.27 TYP NOTES: 3.81 3.99** 4.80 4.98* 5.80 6.20** All dimensions are in millimeters (anlges in degrees). * Dimension does not include mold flash, protrusions or gate burrs (shall not exceed 0.15 per side). ** Dimension does not include interleads flash or protrusion (shall not exceed 0.25 per side). *** Dimension does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm total in excess of the dimension at maximum material condition. Dambar cannot be located on the lower radius of the foot. 1.37 1.57 1.52 1.72 0.19 0.25 0° 8° 0.100 0.250 0.36 0.46*** 0.41 1.27 8 Out 1 MOSI/MISO Test 1 Vdig Vss 20.2. SOIC8 - Pinout and Marking Marking : Part Number MLX90333 (3 digits) Die Version (3 digits) 5 333 333Bxx 123456 123456 Bottom 3901090333 Rev. 001 WW Out 2 SCLK \SS Test 0 YY Lot number (6 digits) Week Date code (2 digits) Year Date code (2 digits) 4 Vdd 1 Bxx TOP Page 39 of 43 Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor 20.3. SOIC8 - IMC Positionning CW 8 7 6 5 CCW COS 1.25 1.65 1 2 3 0.46 +/- 0.06 4 1.96 2.26 SIN 3901090333 Rev. 001 Page 40 of 43 Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor 20.4. TSSOP16 - Package Dimensions 0.65 TYP 12O TYP 0.20 TYP 0.09 MIN 1.0 DIA 4.30 4.50** 6.4 TYP 0.09 MIN 1.0 12O TYP 0.50 0.75 0O 8O 1.0 1.0 TYP 0.85 0.95 4.90 5.10* 1.1 MAX 0.19 0.30*** 0.09 0.20 0.05 0.15 NOTES: All dimensions are in millimeters (anlges in degrees). * Dimension does not include mold flash, protrusions or gate burrs (shall not exceed 0.15 per side). ** Dimension does not include interleads flash or protrusion (shall not exceed 0.25 per side). *** Dimension does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm total in excess of the dimension at maximum material condition. Dambar cannot be located on the lower radius of the foot. 3901090333 Rev. 001 Page 41 of 43 Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor 20.5. TSSOP16 - Pinout and Marking 16 1 Vdig_1 Test1_1 Vss_1 Out1_1/MOSI/MISO_1 Vdd_1 Out2_1/SCLK_1 _SS_1 333Bxx 123456 Test0_1 _SS_2 Out2_2/SCLK_2 Vdd_2 9 8 Out1_2/MOSI/MISO_2 Test1_2 Test0_2 Marking : Vss_2 Vdig_2 Part Number MLX90316 (3 digits) Die Version (3 digits) Bxx 333 Top 123456 Bottom YY Lot number (6 digits) WW Week Date code (2 digits) Year Date code (2 digits) 20.6. TSSOP16 - IMC Positionning CW COS 2 16 9 Die 1 Die 2 SIN 2 SIN 1 0.30 +/- 0.06 CCW 1.95 2.45 1 8 1.84 2.04 COS 1 2.76 2.96 3901090333 Rev. 001 Page 42 of 43 Data Sheet Jan 08 MLX90333 Tria⊗is™ 3D-Joystick Position Sensor 21. Disclaimer Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. Melexis reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with Melexis for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by Melexis for each application. The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of Melexis’ rendering of technical or other services. © 2008 Melexis N.V. All rights reserved. For the latest version of this document, go to our website at www.melexis.com Or for additional information contact Melexis Direct: Europe, Africa, Asia: America: Phone: +32 1367 0495 E-mail: [email protected] Phone: +1 603 223 2362 E-mail: [email protected] ISO/TS 16949 and ISO14001 Certified 3901090333 Rev. 001 Page 43 of 43 Data Sheet Jan 08