MLX90324 “Under-the-Hood” Triaxis Rotary Position feat. SENT Protocol Features and Benefits Absolute Rotary Position Sensor IC Simple & Robust Magnetic Design Tria⊗is™ Hall Technology Programmable Angular Range up to 360 Degrees Programmable Linear Transfer Characteristic (up to 16 points) Selectable SENT (SAE-J2716) Protocol, Analog (Ratiometric), PWM 12 bit Angular Resolution - 10 bit Angular Thermal Accuracy 48 bit ID Number Single Die – SO8 Package RoHS Compliant Dual Die (Full Redundant) – TSSOP16 Package RoHS Compliant Applications Absolute Rotary Position Sensor Throttle Position Sensor EMS Actuator (EGR, Manifold…) Non-Contacting Potentiometer Ordering Information1 Part No. MLX90324 MLX90324 50°C) Temperature Suffix Package Code L (-40°C to 150°C) DC [SOIC-8] L (-40°C to 150°C) GO [TSSOP-16] GO [TSSOP-16] Die Rev. DBO DBO PPS Packing2 Reel Reel Option code STANDARD3 STANDARD3 1. Functional Diagram 3V3 Reg DSP MUX Vy G A D μC D 12 Vx 14 -1 5 Tria 9 is ™ A Rev.Pol. & OverVolt. V DD x1 O UT (Analog/PWM/SENT) ROM - F/W RAM EEP ROM S WITCH O UT V SS Figure 1 - Block Diagram (Analog, PWM & SENT) Example: MLX90324LDC-DBO-STANDARD-Reel For engineering purpose, a limited number of samples can also be ordered in tubes. In this case, the value “Reel” in the field “Packing” must be replaced by “Tube”. 3 Fully end-user programmable version through the Melexis Programming Unit PTC-04 1 2 3901090324 Rev. 001 Page 1 of 40 Data Sheet Dec 08 MLX90324 “Under-the-Hood” Triaxis Rotary Position feat. SENT Protocol 2. Description The MLX90324 is a monolithic sensor IC featuring the Tria⊗is™ Hall technology. Conventional planar Hall technology is only sensitive to the flux density applied orthogonally to the IC surface. The Tria⊗is™ Hall sensor is also sensitive to the flux density applied parallel to the IC surface. This is obtained through an Integrated Magneto-Concentrator (IMC®) which is deposited on the CMOS die (as an additional back-end step). The MLX90324 is only sensitive to the flux density coplanar with the IC surface. This allows the MLX90324 with the correct magnetic circuit to decode the absolute rotary (angular) position from 0 to 360 Degrees. It enables the design of novel generation of non-contacting rotary position sensors that are frequently required for both automotive and industrial applications. In combination with the appropriate signal processing, the magnetic flux density of a small magnet (diametral magnetization) rotating above the IC can be measured in a non-contacting way (Figure 2). The angular information is computed from both vectorial components of the flux density (i.e. BX and BY). MLX90324 produces an output signal proportional to the decoded angle. The output is selectable between Analog, PWM and SENT (SAE-J2716) Protocol. α Figure 2 - Typical application of MLX90324 The MLX90324 is similar to the MLX90316 in many ways but it is targeted for “Under-the-Hood” applications and the associated harsh hi-temperature environment. Amongst others, the hi-temperature performances and the SENT feature confirm this devotion. 3901090324 Rev. 001 Page 2 of 40 Data Sheet Dec 08 MLX90324 “Under-the-Hood” Triaxis Rotary Position feat. SENT Protocol TABLE of CONTENTS FEATURES AND BENEFITS ....................................................................................................................... 1 APPLICATIONS............................................................................................................................................ 1 ORDERING INFORMATION......................................................................................................................... 1 1. FUNCTIONAL DIAGRAM...................................................................................................................... 1 2. DESCRIPTION....................................................................................................................................... 2 3. GLOSSARY OF TERMS − ABBREVIATIONS − ACRONYMS ............................................................ 5 4. PINOUT.................................................................................................................................................. 5 5. ABSOLUTE MAXIMUM RATINGS ....................................................................................................... 6 6. DETAILED DESCRIPTION.................................................................................................................... 6 7. MLX90324 ELECTRICAL SPECIFICATION......................................................................................... 9 8. MLX90324 ISOLATION SPECIFICATION .......................................................................................... 11 9. MLX90324 TIMING SPECIFICATION ................................................................................................. 11 10. MLX90324 ACCURACY SPECIFICATION ......................................................................................... 12 11. MLX90324 MAGNETIC SPECIFICATION .......................................................................................... 13 12. MLX90324 CPU & MEMORY SPECIFICATION ................................................................................. 13 13. MLX90324 END-USER PROGRAMMABLE ITEMS ........................................................................... 14 14. DESCRIPTION OF END-USER PROGRAMMABLE ITEMS.............................................................. 15 14.1. OUTPUT MODE ..........................................................................................................................................15 14.1.1. Analog Output Mode ............................................................................................................................15 14.1.2. PWM Output Mode...............................................................................................................................15 14.1.3. SENT Output Mode ..............................................................................................................................16 14.1.4. Switch Out ............................................................................................................................................16 14.2. OUTPUT TRANSFER CHARACTERISTIC.......................................................................................................17 14.2.1. CLOCKWISE Parameter......................................................................................................................17 14.2.2. Discontinuity Point (or Zero Degree Point).........................................................................................18 14.2.3. 3-Point LNR Parameters ......................................................................................................................18 14.2.4. 16-Point LNR Parameters ....................................................................................................................19 14.2.5. CLAMPING Parameters ......................................................................................................................19 14.2.6. DEADZONE Parameter .......................................................................................................................19 14.3. IDENTIFICATION ........................................................................................................................................20 14.4. SENSOR FRONT-END .................................................................................................................................20 14.4.1. HIGHSPEED Parameter......................................................................................................................20 14.4.2. AGC and Virtual Gain Parameters ......................................................................................................20 14.4.3. GAINMIN and GAINMAX Parameters ................................................................................................21 14.5. FILTER ....................................................................................................................................................21 14.5.1. Hysteresis Filter ...................................................................................................................................21 14.5.2. FIR Filters ............................................................................................................................................21 3901090324 Rev. 001 Page 3 of 40 Data Sheet Dec 08 MLX90324 “Under-the-Hood” Triaxis Rotary Position feat. SENT Protocol 14.5.3. IIR Filters .............................................................................................................................................23 14.6. PROGRAMMABLE DIAGNOSTIC SETTINGS .................................................................................................24 14.6.1. RESONFAULT Parameter ...................................................................................................................24 14.6.2. EEHAMHOLE Parameter ....................................................................................................................24 14.7. LOCK.........................................................................................................................................................24 14.7.1. MLXLOCK Parameter .........................................................................................................................24 14.7.2. LOCK Parameter .................................................................................................................................24 15. MLX90324 SELF DIAGNOSTIC.......................................................................................................... 25 16. SENT (SAE-J2716) PROTOCOL ........................................................................................................ 27 16.1. 16.2. 16.3. 16.4. INTRODUCTION .........................................................................................................................................27 SENT PROTOCOL DEFINITION ..................................................................................................................27 SENT PROTOCOL IMPLEMENTATION ........................................................................................................30 USE OF THE MLX90324 SENT FEATURE..................................................................................................30 17. RECOMMENDED APPLICATION DIAGRAMS .................................................................................. 31 17.1. 17.2. 17.3. 17.4. 17.5. ANALOG OUTPUT WIRING WITH THE MLX90324 IN SOIC PACKAGE .......................................................31 ANALOG OUTPUT WIRING WITH THE MLX90324 IN TSSOP PACKAGE ....................................................32 PWM LOW SIDE OUTPUT WIRING ............................................................................................................32 SENT OUTPUT WIRING WITH THE MLX90324 IN SOIC-8 PACKAGE ........................................................33 SENT OUTPUT WIRING WITH THE MLX90324 IN TSSOP-16 PACKAGE ...................................................33 18. STANDARD INFORMATION REGARDING MANUFACTURABILITY OF MELEXIS PRODUCTS WITH DIFFERENT SOLDERING PROCESSES ........................................................................................ 34 19. ESD PRECAUTIONS........................................................................................................................... 34 20. PACKAGE INFORMATION................................................................................................................. 35 20.1. 20.2. 20.3. 20.4. 20.5. 20.6. SOIC8 - PACKAGE DIMENSIONS ...............................................................................................................35 SOIC8 - PINOUT AND MARKING ...............................................................................................................35 SOIC8 - IMC POSITIONNING .....................................................................................................................36 TSSOP16 - PACKAGE DIMENSIONS...........................................................................................................37 TSSOP16 - PINOUT AND MARKING ..........................................................................................................38 TSSOP16 - IMC POSITIONNING ................................................................................................................38 21. DISCLAIMER ....................................................................................................................................... 40 3901090324 Rev. 001 Page 4 of 40 Data Sheet Dec 08 MLX90324 “Under-the-Hood” Triaxis Rotary Position feat. SENT Protocol 3. Glossary of Terms − Abbreviations − Acronyms ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ Gauss (G), Tesla (T): Units for the magnetic flux density − 1 mT = 10 G TC: Temperature Coefficient (in ppm/Deg.C.) NC: Not Connected PWM: Pulse Width Modulation SENT: Single Edge Nibble Transmission (Protocol – SAE-J2716) Nibble: 4 bits Byte: 8 bits (= 2 nibbles) Word: 16 bits (= 2 bytes = 4 nibbles) %DC: Duty Cycle of the output signal i.e. TON /(TON + TOFF) ADC: Analog-to-Digital Converter DAC: Digital-to-Analog Converter LSB: Least Significant Bit MSB: Most Significant Bit DNL: Differential Non-Linearity INL: Integral Non-Linearity RISC: Reduced Instruction Set Computer ASP: Analog Signal Processing DSP: Digital Signal Processing ATAN: trigonometric function: arctangent (or inverse tangent) IMC: Integrated Magneto-Concentrator (IMC®) CoRDiC: Coordinate Rotation Digital Computer (i.e. iterative rectangular-to-polar transform) EMC: Electro-Magnetic Compatibility 4. Pinout SOIC-8 TSSOP-16 Analog / PWM / SENT Analog / PWM / SENT 1 VDD VDIG1 2 Test 0 VSS1 (Ground1) 3 Switch Out VDD1 4 Not Used Test 01 5 Out Switch Out2 6 Test 1 Not Used2 7 VDIG Out2 8 VSS (Ground) Test 12 Pin # 9 VDIG2 10 VSS2 (Ground2) 11 VDD2 12 Test 02 13 Switch Out1 14 Not Used1 15 Out1 16 Test 11 For optimal EMC behavior, it is recommended to connect the unused pins (Not Used and Test) to the Ground (see section 16.1). 3901090324 Rev. 001 Page 5 of 40 Data Sheet Dec 08 MLX90324 “Under-the-Hood” Triaxis Rotary Position feat. SENT Protocol 5. Absolute Maximum Ratings Parameter Value Supply Voltage, VDD (overvoltage) + 20 V Reverse Voltage Protection − 10 V Positive Output Voltage + 10 V + 14 V (200 s max − TA = + 25°C) Positive Output Voltage (Switch Out) + 10 V + 14 V (200 s max − TA = + 25°C) Output Current (IOUT) ± 30 mA Reverse Output Voltage − 0.3 V Reverse Output Current − 50 mA Operating Ambient Temperature Range, TA − 40°C … + 150°C Storage Temperature Range, TS − 40°C … + 150°C Magnetic Flux Density ± 700 mT Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolutemaximum-rated conditions for extended periods may affect device reliability. 6. Detailed Description As described on the block diagram (Figure 1 and Figure 2), the magnetic flux density parallel to the IC surface (i.e. B//) is sensed through the Tria⊗is™ sensor front-end. This front-end consists into two orthogonal pairs (for each of the two directions parallel with the IC surface i.e. X and Y) of conventional planar Hall plates (blue area on Figure 3) and an Integrated Magneto-Concentrator (IMC® yellow disk on Figure 3). Hall Plates Figure 3 - Tria⊗is™ sensor front-end (4 Hall plates + IMC® disk) 3901090324 Rev. 001 Page 6 of 40 Data Sheet Dec 08 MLX90324 “Under-the-Hood” Triaxis Rotary Position feat. SENT Protocol Both components of the applied flux density B// are measured individually i.e. BX// and BY//. Two orthogonal components (respectively BX⊥ and BY⊥) proportional to the parallel components (respectively BX// and BY//) are induced through the IMC and can be measured by both respective pairs of conventional planar Hall plates as those are sensitive to the flux density applied orthogonally to them and the IC surface. While a magnet (diametrically magnetized) rotates above the IC as described on Figure 2, the sensing stage provides two differential signals in quadrature (sine and cosine − Figure 4 and Figure 5) 400 300 BX & BY (G) 200 100 0 -100 -200 -300 -400 0 90 180 270 360 450 Alpha (Degree) 540 BX 630 720 BY Figure 4 – Magnetic Flux Density – BX ∝ cos(α) & BY ∝ sin(α) 2000 1500 VX & VY (mV) 1000 500 0 -500 -1000 -1500 -2000 0 90 180 270 360 450 Alpha (Degree) VX 540 630 720 VY Figure 5 – Tria⊗is™ sensor front-end − Output signals − VX ∝ BX ∝ cos(α) & VY ∝ BY ∝ sin(α) 3901090324 Rev. 001 Page 7 of 40 Data Sheet Dec 08 MLX90324 “Under-the-Hood” Triaxis Rotary Position feat. SENT Protocol Those Hall signals are processed through a fully differential analog chain featuring the classic offset cancellation technique (Hall plate quadrature spinning and chopper-stabilized amplifier). The conditioned analog signals are converted through an ADC (configurable − 14 or 15 bits) and provided to a DSP block for further processing. The DSP stage is based on a 16 bit RISC micro-controller whose primary function is the extraction of the angular position from the two raw signals (after so-called front-end compensation steps) through the following operation: ⎛ VY ⎞ ⎟⎟ ⎝ VX ⎠ α = ATAN ⎜⎜ The DSP functionality is governed by the micro-code (firmware − F/W) of the micro-controller which is stored into the ROM (mask programmable). In addition to the ″ATAN″ function, the F/W controls the whole analog chain, the output transfer characteristic, the output protocol, the programming/calibration and also the self-diagnostic modes. In the MLX90324, the ″ATAN″ function is computed via a look-up table (i.e. it is not obtained through a CoRDiC algorithm). Due to the fact that the ″ATAN″ operation is performed on the ratio ″VY/VX″, the angular information is intrinsically self-compensated vs. flux density variations (due to airgap change, thermal or ageing effects) affecting both signals. This feature allows therefore an improved thermal accuracy vs. rotary position sensor based on conventional linear Hall sensors. In addition to the improved thermal accuracy, the realized rotary position sensor is capable of measuring a complete revolution (360 Degrees) and the linearity performances are excellent taking into account typical manufacturing tolerances (e.g. relative placement between the Hall IC and the magnet). Once the angular information is computed (over 360 degrees), it is further conditioned (mapped) vs. the target transfer characteristic and it is provided at the output(s) as: • • • an analog output level through a 12 bit DAC followed by a buffer a digital PWM signal with 12 bit depth (programmable frequency 100 Hz … 1 kHz) a digital SENT Protocol Telegram For instance, the analog output can be programmed for offset, gain and clamping to meet any rotary position sensor output transfer characteristic: Vout(α) = ClampLo Vout(α) = Voffset + Gain × α Vout(α) = ClampHi for α ≤ αmin for αmin ≤ α ≤ αmax for α ≥ αmax where Voffset, Gain, ClampLo and ClampHi are the main adjustable parameters for the end-user. The linear part of the transfer curve can be adjusted through either a 2 point or a 3 point calibration depending on the linearity requirement. A digital output is also available and used as a programmable angular switch. The calibration parameters are stored in EEPROM featuring a Hamming Error Correction Coding (ECC). The programming steps do not require any dedicated pins. The operation is done using the supply and output nodes of the IC. The programming of the MLX90324 is handled at both engineering lab and production line levels by the Melexis Programming Unit PTC-04 with the dedicated MLX90316/90324 daughterboard and software tools (DLL − User Interface). 3901090324 Rev. 001 Page 8 of 40 Data Sheet Dec 08 MLX90324 “Under-the-Hood” Triaxis Rotary Position feat. SENT Protocol 7. MLX90324 Electrical Specification DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (L). Parameter Nominal Supply Voltage Symbol Test Conditions VDD Slow Supply Current(4) Idd Min Typ Max Units 4.5 5 5.5 V 7 10 mA 10.5 13 mA 12.5 15 mA 2.7 3 V mode(5) Medium mode(5) Fast mode(5) POR Level VDD POR Output Current Iout Output Short Circuit Current Ishort Output Load Analog Saturation Output Level Digital Saturation Output Level RL 8 mA -20 20 mA Vout = 0 V 12 15 mA Vout = 5 V 12 15 mA Vout = 14 V (TA = 25°C) 24 45 mA Pull-down to Ground 1 10 ∞(7) kΩ Pull-up to 5V(6) 1 10 ∞(7) kΩ 3 %VDD Vsat_hi Pull-down load RL ≥ 10 kΩ Diag_lo Active Diagnostic Output Level Diag_hi BVSSPD (Broken Track Diagnostic) (8) -8 PWM, SENT Output mode Pull-up load RL ≥ 10 kΩ VsatD_lo BVSSPU BVDDPD BVDDPU 2 Analog Output mode Vsat_lo VsatD_hi Passive Diagnostic Output Level Supply Under Voltage 96 %VDD Pull-up Low Side RL ≥ 10 kΩ 1.5 Push-Pull (IOUT = -20mV) Push-Pull (IOUT = 20mV) 97 %VDD 1 Pull-down load RL ≥ 10 kΩ 1.5 Pull-up load RL ≥ 10 kΩ Pull-down load RL ≥ 10 kΩ 97 Pull-up load RL ≥ 10 kΩ 98 4 Pull-down load RL ≤ 10 kΩ Pull-up load RL ≥ 1kΩ 99 Broken VDD& Broken VDD & Pull-up load RL ≤ 10kΩ to 5V 100 0 Pull-down load RL ≥ 1kΩ 96 %VDD %VDD Broken VSS & Broken VSS & %VDD %VDD %VDD 1 %VDD %VDD MLX 90324 Electrical Specification continues… 4 For the dual version, the supply current is multiplied by 2 section 14.4.1 for details concerning Slow and Fast mode 6 Applicable for output in Analog, PWM and SENT (Open-Drain) modes 7 RL < ∞ for output in PWM mode 8 For detailed information, see also section 15 5 See 3901090324 Rev. 001 Page 9 of 40 Data Sheet Dec 08 MLX90324 “Under-the-Hood” Triaxis Rotary Position feat. SENT Protocol …MLX 90324 Electrical Specification Clamped Output Level Switch Out(10) Clamp_lo Programmable 0 100 %VDD(9) Clamp_hi Programmable 0 100 %VDD(9) Sw_lo Pull-up Load 1.5k to 5V 0.55 1.1 V Sw_hi Pull-up Load 1.5k to 5V 3.65 4.35 V As an illustration of the previous table, the MLX90324 fits the typical classification of the output span described on the Figure 6. 100 % 90 % 96 % 92 % 88 % Diagnostic Band (High) Clamping High 80 % Output Level 70 % 60 % 50 % Linear Range 40 % 30 % 20 % 10 % 0% 12 % 8% 4% Clamping Low Diagnostic Band (Low) Figure 6 - Output Span Classification 9 Clamping 10 levels need to be considered vs the saturation of the output stage (see Vsat_lo and Vsat_hi) See section 14.1.4 for the application diagram 3901090324 Rev. 001 Page 10 of 40 Data Sheet Dec 08 MLX90324 “Under-the-Hood” Triaxis Rotary Position feat. SENT Protocol 8. MLX90324 Isolation Specification DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (L). Only valid for the package code GO i.e. dual die version. Parameter Symbol Isolation Resistance Test Conditions Between 2 dies Min Typ Max 4 Units MΩ 9. MLX90324 Timing Specification DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (L). Parameter Main Clock Frequency Symbol Ck Test Conditions Slow mode(11) Medium Sampling Rate Min mode(11) Units 5.5 MHz 10 MHz Fast 16 MHz Slow mode(11) 600 μs 400 μs 330 μs mode(11) Fast mode(11) Ts Max mode(11) Medium Step Response Time Typ Slow mode(11), Filter=5(12) Medium mode(11), Filter=0(12) Fast mode(11), Filter=0(12) 660 4 ms 1200 μs 1000 μs Watchdog Wd See Section 15 5 ms Start-up Cycle Tsu Slow, Medium and Fast mode(11) 15 ms Analog Output Slew Rate PWM Frequency Digital Output Rise Time Digital Output Fall Time COUT = 40 - 100 nF FPWM Falling Edge 9 V/ms Rising Edge 18 V/ms PWM Output Enabled 100 1000 Hz Mode 5 – 10nF, RL = 5.6 kΩ 120 μs Mode 6 – 10nF, RL = 5.6 kΩ 2.6 μs Mode 7 – 10nF, RL = 5.6 kΩ 2.6 μs Mode 5 – 10nF, RL = 5.6 kΩ 800 ns Mode 6 – 10nF, RL = 5.6 kΩ 120 μs Mode 7 – 10nF, RL = 5.6 kΩ 820 ns 11 See 12 section 14.4.1 for details concerning Slow, Medium and Fast mode See section 14.5 for details concerning Filter parameter 3901090324 Rev. 001 Page 11 of 40 Data Sheet Dec 08 MLX90324 “Under-the-Hood” Triaxis Rotary Position feat. SENT Protocol 10. MLX90324 Accuracy Specification DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (L). Parameter ADC Resolution on the raw signals sine and cosine Symbol RADC Test Conditions Slow Mode(13) Medium Fast Thermal Offset Drift #1(14) Min Mode(13) Mode(13) Thermal Offset Drift at the DSP Typ Max Units 15 bits 14 bits 14 bits -60 +60 LSB15 - 0.4 + 0.4 %VDD - 0.5 + 0.5 % -1 1 Deg input (excl. DAC and output stage) Thermal Offset Drift #2 Thermal Offset Drift of the DAC (to be considered only for the analog output mode) and Output Stage Thermal Drift of Sensitivity Mismatch(15) Intrinsic Linearity Error(16) Le Analog Output Resolution RDAC TA = 25°C 12 bits DAC 0.025 %VDD/LSB (Theoretical – Noise free) Output stage Noise Noise pk-pk(17) INL -4 DNL 0.05 2 LSB 0.05 VG = 9, Slow mode, Filter=5 0.03 0.06 Deg VG = 9, Fast mode, Filter=0 0.1 0.2 Deg 0 0.1 %VDD -0.1 RPWM LSB Clamped Output Ratiometry Error PWM Output Resolution 1 +4 12 bits %VDD 0.025 %DC/LSB (Theoretical – Jitter free) PWM Jitter(18) JPWM VG = 6, FPWM = 250 Hz – 800Hz 0.2 %DC 15 bits corresponds to 14 bits + sign and 14 bits corresponds to 13 bits + sign. After angular calculation, this corresponds to 0.005Deg/LSB15 in Low Speed Mode and 0.01Deg/LSB14 in High Speed. 14 For instance, Thermal Offset Drift #1 equal ± 60LSB15 yields to max. ± 0.3 Deg. angular error for the computed angular information (output of the DSP). See Front End Application Note for more details. This is only valid if automatic gain is set (See Section 14.4.2) 15 For instance, Thermal Drift of Sensitivity Mismatch equal ± 0.4% yields to max. ± 0.1 Deg. angular error for the computed angular information (output of the DSP). See Front End Application Note for more details. 16 The Intrinsic Linearity Error refers to the IC itself (offset, sensitivity mismatch, orthogonality) taking into account an ideal rotating field. Once associated to a practical magnetic construction and the associated mechanical and magnetic tolerances, the output linearity error increases. However, it can be improved with the multi point end-user calibration that is available on the MLX90324. 17 The application diagram used is described in the recommended wiring. For detailed information, refer to section Filter in application mode (Section 14.5). 18 Jitter is defined by ± 3 σ for 1000 successive acquisitions and the slope of the transfer curve is 100%DC/360 Deg. 13 3901090324 Rev. 001 Page 12 of 40 Data Sheet Dec 08 MLX90324 “Under-the-Hood” Triaxis Rotary Position feat. SENT Protocol 11. MLX90324 Magnetic Specification DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (L). Parameter Magnetic Flux Density Magnet Temperature Coefficient 12. Symbol Test Conditions Min Typ Max Units B 20 50 70(19) mT TCm -2400 0 ppm/°C MLX90324 CPU & Memory Specification The DSP is based on a 16 bit RISC µController. This CPU provides 2.5 Mips while running at 10 MHz. Parameter 19 Symbol Test Conditions Min Typ Max Units ROM 10 kB RAM 256 B EEPROM 128 B Above 70 mT, the IMC starts saturating yielding to an increase of the linearity error. 3901090324 Rev. 001 Page 13 of 40 Data Sheet Dec 08 MLX90324 “Under-the-Hood” Triaxis Rotary Position feat. SENT Protocol 13. MLX90324 End-User Programmable Items 3901090324 Rev. 001 Parameter Comments Output Mode PWMPOL1 PWM_Freq CLOCKWISE DP 16POINTS LNR_S0 LNR_A_X LNR_A_Y LNR_A_S LNR_B_X LNR_B_Y LNR_B_S LNR_C_X LNR_C_Y LNR_C_S LNR_Y0 LNR_Y1 … LNR_Y16 CLAMP_HIGH CLAMP_LOW KD KDHYST DEADZONE FHYST MELEXISID1 MELEXISID2 MELEXISID3 CUSTUMERID1 CUSTUMERID2 CUSTUMERID3 HIGHSPEED MEDIUMSPEED ROLLCNT FSWAP FILTER AGC GAINMIN GAINMAX EEHAMHOLE RESONFAULT SENT MLXLOCK LOCK Define the output stage mode PWM Polarity PWM Frequency Discontinuity Point Selection of correction method 3 or 16 pts Initial Slope AX Coordinate AY Coordinate AS Coordinate BX Coordinate BY Coordinate BS Coordinate CX Coordinate CY Coordinate CS Coordinate 16pts – Y-coordinate point 0 16pts – Y-coordinate point 1 … 16pts – Y-coordinate point 16 Clamping High Clamping Low Switch Out Hysteresis on the Switch Out Rolling Counter (SENT) Automatic Gain Selection Page 14 of 40 Default Values 2 0 1000h 0 0h 0 0h 8000h 0h 0h FFFFh FFFFh 0h FFFFh FFFFh 0h N/A N/A … N/A 8% 8% FFFFh 0 0 4 MLX MLX MLX 1 17 MLX 0 0 0 0 5 0 0 41 3131h 0 0 19h 0 # bit 3 1 16 1 15 1 16 16 16 16 16 16 16 16 16 16 16 16 … 16 16 16 16 8 8 8 16 16 16 8 16 16 1 1 1 1 8 1 4 4 16 2 1 1 1 Data Sheet Dec 08 MLX90324 “Under-the-Hood” Triaxis Rotary Position feat. SENT Protocol 14. Description of End-User Programmable Items 14.1. Output Mode The MLX90324 output type is defined by the Output Mode parameter. Parameter Value Description Analog Output Mode 2 Analog Rail-to-Rail 5 Low Side (NMOS) 6 High Side (PMOS) 7 Push-Pull N/A Push-Pull PWM Output Mode SENT Output Mode 14.1.1. Analog Output Mode The Analog Output Mode is a rail-to-rail and ratiometric output with a push-pull output stage configuration allows the use of a pull-up or pull-down resistor. 14.1.2. PWM Output Mode If one of the PWM Output modes is selected, the output signal is a digital signal with Pulse Width Modulation (PWM). In mode 5, the output stage is an open drain NMOS transistor (low side), to be used with a pull-up resistor to VDD. In mode 6, the output stage is an open drain PMOS transistor (high side), to be used with a pull-down resistor. In mode 7, the output stage is a push-pull stage. The PWM polarity is selected by the PWMPOL1 parameter: • • PWMPOL1 = 0 for a low level at 100% PWMPOL1 = 1 for a high level at 100% The PWM frequency is selected by the PWM_Freq parameter. PWM Frequency Code Oscillator Mode Pulse-Width Modulation Frequency (Hz) 100 200 500 1000 Low Speed 27500 13750 6875 3435 Medium Speed 50000 25000 10000 5000 High Speed - 40000 16000 8000 For instance, in Low Speed Mode, set PWM_Freq = 6875 (decimal) to set the PWM frequency at 500Hz. 3901090324 Rev. 001 Page 15 of 40 Data Sheet Dec 08 MLX90324 “Under-the-Hood” Triaxis Rotary Position feat. SENT Protocol 14.1.3. SENT Output Mode The MLX90324 features a digital SENT (SAE-J2716) Protocol Mode. The rolling counter can be enabled/disabled by the ROLLCNT bit: • ROLLCNT = 0 to enable the rolling counter • ROLLCNT = 1 to disable the rolling counter See the dedicated SENT Protocol section for a full description (Section 16). 14.1.4. Switch Out Parameter Value Unit KD 0…359.9999 deg KDHYST 0 … 1.4 deg The switch is activated (Sw_lo) when the digital angle is greater than the value stored in the KD parameter. This angle refers to the internal angular reference linked to the parameter DP and not to the absolute physical 0° angle. The KDHYST defines the hysteresis amplitude around the Switch point. The switch is actually activated if the digital angle is greater than KD+KDHYST. It is deactivated if the digital angle is less than KD-KDHYST. The mandatory application diagram to use this feature is depicted in the Figure 7. See section 7 for the electrical characteristic. If the Switch feature is not used in the application, the output pin needs to be connected to the ground. 5V MLX90324 1k5 SWITCH OUT to uC I/O Port 100 nF 6kΩ 50 Ω 250 Ω ECU Figure 7 – Application Diagram for the Switch Out 3901090324 Rev. 001 Page 16 of 40 Data Sheet Dec 08 MLX90324 “Under-the-Hood” Triaxis Rotary Position feat. SENT Protocol 14.2. Output Transfer Characteristic There are 2 different possibilities to define the transfer function (LNR): • With 3 points (defined on X and Y coordinates) and 4 slopes • With 16 points equidistant where only Y coordinates are defined. Parameter LNR type CLOCKWISE Both DP LNR_A_X LNR_B_X LNR_C_X LNR_A_Y LNR_B_Y LNR_C_Y Both 0 … 359.9999 deg Only 3 pts 0 … 359.9999 deg Only 3 pts 0 … 100 % Only 3 pts 0 … 17 %/deg Only 3 pts -17 … 0 … 17 %/deg Only 16 pts 0 …100 % CLAMP_LOW Both 0 … 100 % CLAMP_HIGH Both 0 … 100 % LNR_S0 LNR_A_S LNR_B_S Value Unit 0 Æ CCW 1 Æ CW LNR_C_S LNR_Y0 LNR_Y1 … LNR_Y16 14.2.1. CLOCKWISE Parameter The CLOCKWISE parameter defines the magnet rotation direction. • • CCW is the defined by the 1-4-5-8 pin order direction for the SOIC8 package and 1-8-9-16 pin order direction for the TSSOP16 package. CW is defined by the reverse direction: 8-5-4-1 pin order direction for the SOIC8 and 16-9-8-1 pin order direction for the TSSOP16 package. Refer to the drawing in the IMC positioning sections (Section 20.3 and 20.6). 3901090324 Rev. 001 Page 17 of 40 Data Sheet Dec 08 MLX90324 “Under-the-Hood” Triaxis Rotary Position feat. SENT Protocol 14.2.2. Discontinuity Point (or Zero Degree Point) The Discontinuity Point defines the 0° point on the circle. The discontinuity point places the origin at any location of the trigonometric circle. The DP is used as reference for all the angular measurements. 360° 0° The placement of the discontinuity point (0 point) is programmable. Figure 8 - Discontinuity Point Positioning 14.2.3. 3-Point LNR Parameters The LNR parameters, together with the clamping values, fully define the relation (the transfer function) between the digital angle and the output signal. The shape of the MLX90324 transfer function from the digital angle value to the output voltage is described by the drawing below. Six segments can be programmed but the clamping levels are necessarily flat. Two, three, or even five calibration points are then available, reducing the overall non-linearity of the IC by almost an order of magnitude each time. Three or five point calibration will be preferred by customers looking for excellent non-linearity figures. Two-point calibrations will be preferred by customers looking for a cheaper calibration set-up and shorter calibration time. 100 % Clamping High CLAMPHIGH C Slope LNR_C_S LNR_C_Y B Slope LNR_B_S LNR_B_Y A Slope LNR_A_S LNR_A_Y Slope LNR_S0 Clamping Low CLAMPLOW 0% 0 3901090324 Rev. 001 LNR_A_X LNR_B_X Page 18 of 40 LNR_C_X 360 (Deg.) Data Sheet Dec 08 MLX90324 “Under-the-Hood” Triaxis Rotary Position feat. SENT Protocol 14.2.4. 16-Point LNR Parameters The LNR parameters, together with the clamping values, fully define the relation (the transfer function) between the digital angle and the output signal. The shape of the MLX90324 transfer function from the digital angle value to the output voltage is described by the drawing below. 100% LNR_Y16 CLAMPHIGH LNR_Y15 LNR_Y14 LNR_Y2 LNR_Y1 CLAMPLOW LNR_Y0 0% Δx Δx Δx Δx Δx Δx 360 Deg Figure 9 – 16-Point Calibration 14.2.5. CLAMPING Parameters The clamping levels are two independent values to limit the output voltage range. The CLAMP_LOW parameter adjusts the minimum output voltage level. The CLAMP_HIGH parameter sets the maximum output voltage level. Both parameters have 16 bits of adjustment with a resolution of approximately 0.076 mV. 14.2.6. DEADZONE Parameter The dead zone is defined as the angle window between 0 and 359.9999. When the digital angle lies in this zone, the IC is in fault mode (RESONFAULT must be set to “1” – See 14.6.1). 3901090324 Rev. 001 Page 19 of 40 Data Sheet Dec 08 MLX90324 “Under-the-Hood” Triaxis Rotary Position feat. SENT Protocol 14.3. Identification Parameter MELEXSID1 MELEXSID2 MELEXSID3 CUSTUMERID1 CUSTUMERID2 CUSTUMERID3 Value 0 … 65535 0 … 65535 0 … 65535 0 … 65535 0 … 65535 0 … 65535 Unit Identification number: 40 bits freely useable by Customer for traceability purpose. 14.4. Sensor Front-End Parameter Value HIGHSPEED 0 = Slow mode 1 = Fast mode MEDIUMSPEED 0 = Slow mode 1 = Medium mode AGC 0 = disable 1 = enable VirtualGain 0 … 41 GAINMIN 0 … 41 GAINMAX 0 … 41 Unit 14.4.1. HIGHSPEED Parameter The HIGHSPEED and MEDIUMSPEED parameters define the main frequency for the DSP. • HIGHSPEED = 0, MEDIUMSPEED = 0 select the Slow mode with a 5.5 MHz master clock. • HIGHSPEED = 0, MEDIUMSPEED = 1 select the Medium mode with a 10 MHz master clock. • HIGHSPEED = 1, MEDIUMSPEED = 0 select the Fast mode with a 16 MHz master clock. For better noise performance, the Slow Mode must be enabled. 14.4.2. AGC and Virtual Gain Parameters The AGC parameter enables the automatic gain control of the analog chain. The AGC loop is based on (VX)²+ (VY)² = (Amplitude)² = (Radius)² and it targets an amplitude of 90% of the ADC input span. If AGC is “0”, the gain stored in the parameter GAINMIN is used. Melexis strongly recommends to use AGC = 1. Please note that the angular errors listed in the section 10 are only valid if the AGC is activated. AGC avoids also the saturation of the analog chain and the associated linearity error. The current gain (VG) can be read out with the PTC-04 and gives a rough indication of the applied magnetic flux density (Amplitude). 3901090324 Rev. 001 Page 20 of 40 Data Sheet Dec 08 MLX90324 “Under-the-Hood” Triaxis Rotary Position feat. SENT Protocol 14.4.3. GAINMIN and GAINMAX Parameters GAINMIN & GAINMAX define the boundaries within the gain setting (Virtual Gain) is allowed to vary. Outside this range, the output is set in diagnostic low. 14.5. FILTER Parameter Value Unit FHYST 0 … 11 deg FILTER 0… 6 0 1 FSWAP The MLX90324 includes 3 types of filters: • Hysteresis Filter: programmable by the FHYST parameter • Low Pass FIR Filters controlled with the Filter parameter • Low Pass IIR Filter Note: if the parameter FSWAP is set to “1”, the filtering is active on the digital angle. If set to “0”, the filtering is active on the output transfer function. 14.5.1. Hysteresis Filter The FHYST parameter is a hysteresis filter. The output value of the IC is not updated when the digital step is smaller than the programmed FHYST parameter value. The output value is modified when the increment is bigger than the hysteresis. The hysteresis filter reduces therefore the resolution to a level compatible with the internal noise of the IC. The hysteresis must be programmed to a value close to the noise level. Please note that for the programmable version, the FHYST parameter is set to 4 by default. If you do not wish this feature, please set it to “0”. 14.5.2. FIR Filters The MLX90324 features 6 FIR filter modes controlled with Filter = 0…5. The transfer function is described below: yn = j 1 j ∑a i =0 ∑a x i =0 i n −i i The characteristics of the filters no 0 to 5 is given in the Table 1. 3901090324 Rev. 001 Page 21 of 40 Data Sheet Dec 08 MLX90324 “Under-the-Hood” Triaxis Rotary Position feat. SENT Protocol Filter No (j) Type Coefficients a0… a5 Title 90% Response Time 99% Response Time Efficiency RMS (dB) Efficiency P2P (dB) 0 Disable N/A No Filter 1 1 0 0 1 2 3 4 Finite Impulse Response 110000 121000 133100 111100 Extra Light Light 2 3 4 4 2 3 4 4 2.9 4.0 4.7 5.6 2.9 3.6 5.0 6.1 5 122210 5 5 6.2 7.0 Table 1 - FIR Filters Selection Table FIR and HYST Filters : Step response Comparative Plot 40000 x(n) fir(n) hyst(n) [0..65535] Scale 38000 36000 34000 32000 30000 0 5 10 15 Milliseconds 20 25 30 FIR and HYST Filter : Gaussian white noise response [0..65535] Scale 40200 40150 x(n) fir(n) 40100 hyst(n) 40050 40000 39950 39900 39850 39800 0 50 100 150 Milliseconds Figure 10 - Step Response and Noise Response for FIR (No 3) and FHYST=10 3901090324 Rev. 001 Page 22 of 40 Data Sheet Dec 08 MLX90324 “Under-the-Hood” Triaxis Rotary Position feat. SENT Protocol 14.5.3. IIR Filters The IIR Filter is enabled with Filter = 6. The diagram of the IIR Filter implemented in the MLX90324 is given in Figure 11. b0 = 1 x(n) y(n) Z-1 Z-1 -a1 b1 = 2 Z-1 Z-1 b2 = 1 -a2 Figure 11 - IIR Diagram Filter No Type Title 90% Response Time Efficiency RMS (dB) Efficiency P2P (dB) Coefficient A1 Coefficient A2 2nd 6 Order Infinite Impulse Response (IIR) Medium 11 9.9 12.9 26112 10752 Table 2 - IIR Filter The Figure 12 shows the response of the filter to a Gaussian noise. IIR Filter - Gaussian White Noise Response 40200 [0…65535] Scale 40150 x(n) 40100 y(n) 40050 40000 39950 39900 39850 39800 0 50 100 150 Time Figure 12 - Noise Response for the IIR Filter 3901090324 Rev. 001 Page 23 of 40 Data Sheet Dec 08 MLX90324 “Under-the-Hood” Triaxis Rotary Position feat. SENT Protocol 14.6. Programmable Diagnostic Settings Parameter Value 0 1 0 3131h RESONFAULT EEHAMHOLE Unit 14.6.1. RESONFAULT Parameter This RESONFAULT parameter enables the soft reset when a fault is detected by the CPU when the parameter is set to 1. By default, the parameter is set to “0” but it is recommended to set it to “1” to activate the self diagnostic modes (See section 15). Note that in the User Interface (MLX90324UI), the RESONFAULT is split in two bits: • DRESONFAULT: disable the reset in case of a fault. • DOUTINFAULT: disable output in diagnostic low in case of fault. 14.6.2. EEHAMHOLE Parameter The EEHAMHOLE parameter disables the memory recovery (Hamming code) check when a fault is detected by the CRC when it is equal to 3131h. By default the parameter is set to 0 (enable memory recovery). 14.7. Lock Parameter Value 0 1 0 1 MLXLOCK LOCK Unit 14.7.1. MLXLOCK Parameter MLXLOCK locks all the parameters set by Melexis. 14.7.2. LOCK Parameter LOCK locks all the parameters set by the user. Once the lock is enabled, it is not possible to change the EEPROM values anymore. Note that the lock bit should be set by the solver function “MemLock”. 3901090324 Rev. 001 Page 24 of 40 Data Sheet Dec 08 MLX90324 “Under-the-Hood” Triaxis Rotary Position feat. SENT Protocol 15. MLX90324 Self Diagnostic The MLX90324 provides numerous self-diagnostic features. Those features increase the robustness of the IC functionality as it will prevent the IC to provide erroneous output signal in case of internal or external failure modes (“fail-safe”). Action ROM CRC Error at start up (64 words including Intelligent Watch Dog - IWD) ROM CRC Error (Operation Background task) RAM Test Fail (Start up) Effect on Outputs Diagnostic low(21) CPU Reset (20) Enter Endless Loop: - Progress (watchdog Acknowledge) - Set Outputs in Diagnostic low CPU Reset Immediate Diagnostic low Diagnostic low Calibration Data CRC Error (Start-Up) Hamming Code Recovery Hamming Code Recovery Error (Start-Up) Calibration Data CRC Error (Operation - Background) Dead Zone CPU Reset Immediate Diagnostic low CPU Reset Immediate Diagnostic low Set Outputs in Diagnostic low. Normal Operation until the “dead zone” is left. ADC Clipping Set Outputs in Diagnostic low (ADC Output is 0000h or Normal mode and CPU Reset If 7FFFh) recovery Radius Overflow ( > 100% ) or Set Outputs in Diagnostic low Radius Underflow Normal mode and CPU Reset If ( < 40 % ) recovery Gain Too Low (The current Set Outputs in Diagnostic low gain code is strictly less than Normal mode, and CPU Reset If GAINMIN) recovery Gain Too High (The current Set Outputs in Diagnostic low gain code is strictly greater Normal mode, and CPU Reset If than GAINMAX) recovery Redundant Temperature Set Outputs in Diagnostic low Sensor Mismatch Normal mode, and CPU Reset If recovery DAC Monitor (Digital to Analog Set Outputs in Diagnostic low. converter) Normal Mode with immediate recovery without CPU Reset MLX90324 Fault Mode continues… 20 Immediate Diagnostic low All the outputs are already in Diagnostic low (start-up) Start-Up Time is increased by 3 ms if successful recovery See 14.6.2 Immediate recovery if the “dead zone” is left Immediate Diagnostic low Immediate Diagnostic low (40 % - 100 %) No magnet / field too high See also 14.4.2 Immediate Diagnostic low Immediate Diagnostic low Immediate Diagnostic low Immediate Diagnostic low CPU reset means 1. 2. 3. 4. 21 Remark All the outputs are already in Diagnostic low - (start-up) Core Reset (same as Power-On-Reset). It induces a typical start up time. Periphery Reset (same as Power-On-Reset) Fault Flag/Status Lost The reset can be disabled by clearing the RESONFAULT bit (See 14.6.1) Refer to section 7 for the Diagnostic Output Level specifications 3901090324 Rev. 001 Page 25 of 40 Data Sheet Dec 08 MLX90324 “Under-the-Hood” Triaxis Rotary Position feat. SENT Protocol …MLX90324 Fault Mode Fault Mode ADC Monitor (Analog to Digital Converter) Undervoltage Mode Action Set Outputs in Diagnostic low. Normal Mode with immediate recovery without CPU Reset At Start-Up, wait Until VDD > 3V. During operation, CPU Reset after 3 ms debouncing Effect on Outputs Immediate Diagnostic low Remark ADC Inputs are Shorted - VDD < POR level => Outputs high impedance Firmware Flow Error CPU Reset - POR level < VDD < 3 V => Outputs in Diagnostic low. Immediate Diagnostic low Read/Write Access out of physical memory Write Access to protected area (IO and RAM Words) Unauthorized entry in “SYSTEM” Mode VDD > 7 V CPU Reset Immediate Diagnostic low Intelligent Watchdog (Observer) 100% Hardware detection CPU Reset Immediate Diagnostic low 100% Hardware detection CPU Reset Immediate Diagnostic low 100% Hardware detection Set Output High Impedance (Analog) 100% Hardware detection VDD > 9.4 V IC is switched off (internal supply) CPU Reset on recovery Broken VSS CPU Reset on recovery Pull down resistive load => Diag. Low Pull up resistive load => Diag. High(21) Pull down resistive load => Diag. Low Pull up resistive load => Diag. High Pull down resistive load => Diag. Low Broken VDD CPU Reset on recovery Pull up resistive load => Diag. High Pull down resistive load => Diag. Low Pull up resistive load => Diag. High 3901090324 Rev. 001 Page 26 of 40 100% Hardware detection Pull down load (≤ 10kΩ) to VSS to meet Diag Lo spec < 4% VDD. Trivial Trivial Pull up load (≤ 10kΩ) to VPULLUP ≥ VDD to meet Diag Hi spec > 96% VDD. Data Sheet Dec 08 MLX90324 “Under-the-Hood” Triaxis Rotary Position feat. SENT Protocol 16. SENT (SAE-J2716) Protocol 16.1. Introduction The MLX90324 features an output mode reporting the angular information and other diagnostic information (e.g. CRC) into a SENT telegram compliant with the approved SAE-J2716 Surface Vehicle Information Report. SENT stands for Single Edge Nibble Transmission as the SENT telegram consists into the transmission of 8 Nibbles (1 nibble = 4 bits) in a row, each nibble being coded in a PWM (Pulse Width Modulation) way with reference to the falling edge. The Single Edge Nibble Transmission encoding scheme is intended for use in applications where high resolution sensor data needs to be communicated from a sensor to an Electronic Control Unit (ECU). It is intended as a replacement for the lower resolution methods of 10 bit A/D’s and PWM. SENT is a point-to-point (i.e. it is not a data bus) unidirectional communications scheme from sensor (transmitting device) to controller (receiving device) which does not include a coordination signal from the controller/receiving device. The sensor signal is transmitted as a series of pulses with data measured as falling to falling edge times. Transmission occurs independently of any action of the receiver module, i.e. the transmission does not require a synchronization signal from the receiver module. 16.2. SENT Protocol Definition The encoding scheme consists of a sequence of pulses which is repeatedly sent by the transmitting module. The time granularity of the transmission is defined as the Clock Tick which is specified as follows: 3 µs ≤ Clock Tick ≤ 10 µs Each nibble is defined in a PWM way: • • the output is first driven LOW (falling edge) for 5 Clock Ticks, then driven HIGH for 7 Clock Ticks + n × Clock Ticks where n is the decimal value of the nibble. For a nibble value of 0 (minimum), the output is driven LOW for 5 Clock Ticks then driven HIGH for 7 Clock Ticks. Total period for the shortest nibble (n = 0) is therefore 12 Clock Ticks. See Figure 13. For a nibble value of 15 (maximum), the output is driven LOW for 5 Clock Ticks then driven HIGH for 22 Clock Ticks. Total period for the longest nibble (n = 15) is therefore 27 Clock Ticks. See Figure 14. 3901090324 Rev. 001 Page 27 of 40 Data Sheet Dec 08 MLX90324 “Under-the-Hood” Triaxis Rotary Position feat. SENT Protocol Output Level Nibble Value = 0d = 0000b 5 Clock Ticks 7 Clock Ticks 5 Clock Ticks High Low 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Time (Clock Ticks) Falling Edges Figure 13 – Timing Diagram for Nibble Value = 0d Output Level Nibble Value = 15d = 1111b 5 Clock Ticks 22 Clock Ticks 5 Clock Ticks High Low 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Time (Clock Ticks) Falling Edges Figure 14 – Timing Diagram for Nibble Value = 15d Nibble Value Decimal (n) Binary 0d 0000b 1d 0001b 2d 0010b 3d 0011b 4d 0100b 5d 0101b 6d 0110b 7d 0111b 8d 1000b 9d 1001b 10d 1010b 11d 1011b 12d 1100b 13d 1101b 14d 1110b 15d 1111b 3901090324 Rev. 001 Output LOW (# Clock Ticks) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 Page 28 of 40 Output HIGH (# Clock Ticks) 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Nibble Period (# Clock Ticks) 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Data Sheet Dec 08 MLX90324 “Under-the-Hood” Triaxis Rotary Position feat. SENT Protocol The transmission itself consists of the following sequence: • • • • “Calibration/Synchronization” pulse period 56 Clock Ticks One "Status and Communication” nibble pulse (Nibble #1) A sequence of six “Data” nibble pulses (Nibble #2 … #7) One “Checksum” (CRC) nibble pulse (Nibble #8) Figure 15 shows a single message transmission for which Nibble #1 = 0d Nibble #2 = 15d Nibble #3 = 0d Nibble #4 = 8d Nibble #5 = 15d Nibble #6 = 0d Nibble #7 = 8d Nibble #8 = 12d (for example purpose – please note that this nibble may not necessarily match the CRC definition) Nibble #3 Nibble #4 Nibble #5 Nibble #6 Nibble #7 Nibble #8 0 15 0 8 15 0 8 12 Synchronization Pulse Nibble #2 56 Ticks Nibble #1 Synchronization Pulse Output Level • • • • • • • • High 5 Ticks 51 Ticks Low 310 300 290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Time (Clock Ticks) Figure 15 – Single SENT Message Transmission The transmission delay of one message depends on the content of the nibbles but the minimum and maximum boundaries are 152 Clock Ticks (456 µs if Clock Tick = 3 µs) and 272 Clock Ticks (816 µs if Clock Tick = 3 µs). The “Calibration/Synchronization” pulse period is measured by the receiver in order to calculate the actual duration of the Clock Tick. In this way, the frequency variations of the main oscillator at the transmitter (i.e. the sensor) can be compensated. The allowable frequency variation is ± 20%. The “Status and Communication” nibble is used to transmit internal status or diagnostic information. The content varies according to the SENT implementation (see Section 16.3 for the implemented SENT version of MLX90324). The “Checksum” nibble contains a 4 bit CRC of the Data nibbles only. The “Status and Communication Nibble” is not included in the CRC calculation. The CRC is calculated using polynomial x4 + x3 + x2 + 1 with seed value of 0101. 3901090324 Rev. 001 Page 29 of 40 Data Sheet Dec 08 MLX90324 “Under-the-Hood” Triaxis Rotary Position feat. SENT Protocol 16.3. SENT Protocol Implementation The MLX90324 implements the Single Secure Sensors format described in the Appendix (Section A.3) of SAE-J2716 definition. The Clock Tick is specified at 3 µs. The angular information (12 bits) is spread over 3 data nibbles. A 8-bit rolling counter 0 to 255 with rollover back to 0 is included in 2 data nibbles. The last data nibble is derived from the 1st data nibble including the MSBs (Most Significant Bits) of the computed angle. • Nibble #1 = “Status” Nibble o o When the sensor is determined to be faulted, Bit 0 of the Status Nibble is set to 1 otherwise bit set to 0 Bit 1, Bit 2 and Bit 3 are set to 0. • Nibble #2 = Angular Information – MSN (Most Significant Nibble) • Nibble #3 = Angular Information – MidN (Middle Nibble) • Nibble #4 = Angular Information – LSN (Least Significant Nibble) • Nibble #5 = 8 bit rolling counter – MSN (Most Significant Nibble) • Nibble #6 = 8 bit rolling counter – LSN (Least Significant Nibble) • Nibble #7 = Inverted copy of Nibble #2 (15 – Nibble #2 value) • Nibble #8 = “Checksum” Nibble The rolling counter can be disabled (to match the “single sensor” format of the Appendix A.4 of the SAEJ2716): in this case, Nibble #5 and Nibble #6 are set to 0. See in the End-User programmable item to see how to disable it (Section 14.1.3) 16.4. Use of the MLX90324 SENT Feature In order to enable the SENT output reporting mode, specific parameters (stored in EEPROM) of the MLX90324 needs to be programmed. While using the Melexis programming tools, the whole operation is actually controlled through a single item as described on Section 14.1.3. The SAE-J2716 recommends a generic application diagram for both the transmitter and the receiver in order to pass the EMC norms, especially the emissions (e.g. radiated emission, conducted emission) requirements. This recommended circuitry applied to the MLX90324LDC (single die – SOIC-8) is shown at the Section 17.4 and MLX90324LGO (dual die – TSSOP-16) is shown at the Section 17.5. 3901090324 Rev. 001 Page 30 of 40 Data Sheet Dec 08 MLX90324 “Under-the-Hood” Triaxis Rotary Position feat. SENT Protocol 17. Recommended Application Diagrams 17.1. Analog Output Wiring with the MLX90324 in SOIC Package ECU 5V Vdd 8 1 C1 100nF GND Vss Vdd MLX90324 Test 1 Switch Out C2 100nF Vdig Test 2 5 4 NotUsed Out1 ADC C3 100nF Output R1 10K C4 4.7nF Figure 16 – Recommended wiring for the MLX90324 in SOIC8 package(22). 22 See section 14.1.4 if the Switch Output feature is used. 3901090324 Rev. 001 Page 31 of 40 Data Sheet Dec 08 MLX90324 “Under-the-Hood” Triaxis Rotary Position feat. SENT Protocol 17.2. Analog Output Wiring with the MLX90324 in TSSOP Package ECU VDD1 Vdd1 GND1 GND1 GND1 C3 100nF 16 1 C1 100nF C2 100nF Vdig1 Vss1 C7 4.7nF R1 10K Output1 Out1 Vdd1 C4 100nF MLX90324 Vdd2 GND2 Vdd2 Vss2 Out2 VDD2 ADC 9 8 Vdig2 GND2 C5 100nF C6 100nF C8 4.7nF R2 10K GND2 Output2 Figure 17 – Recommended wiring for the MLX90324 in TSSOP16 package (dual die). 17.3. PWM Low Side Output Wiring ECU 5V Vdd 8 1 Vdd C1 100nF GND Vss MLX90324 Test 1 Switch Out C2 100nF Vdig Test 2 5 4 NotUsed Out1 5V C3 4.7nF Output PWM Timer R1 1K C4 4.7nF Figure 18 – Recommended wiring for a PWM Low Side Output configuration(23). 23 See section 14.1.4 if the Switch Output feature is used. 3901090324 Rev. 001 Page 32 of 40 Data Sheet Dec 08 MLX90324 “Under-the-Hood” Triaxis Rotary Position feat. SENT Protocol 17.4. SENT Output Wiring with the MLX90324 in SOIC-8 package Receiver 5V Transmitter C1 100nF 8 1 Vdd Vdd GND Vss MLX90324 Test 1 C2 100nF Vdig Switch Out Test 2 Out1 Timer 5V R2 120Ω 5 4 NotUsed C3 2nF SENT R3 120Ω R1 10kΩ Output C4 6nF Figure 19 – Recommended Application Diagram for the Transmitter & Receiver 17.5. SENT Output Wiring with the MLX90324 in TSSOP-16 package Receiver VDD 1 Transmitter GND1 GND1 C3 2nF 1 6 1 C1 100nF C2 100nF Vdd1 GND1 Vdig1 Vss1 R5 120Ω Out1 Vdd1 C4 100nF MLX90324 Vss2 Vdig2 GND2 5V R1 10K VDD 2 Timer 9 8 C6 2nF SENT Vdd2 GND2 Vdd2 Out2 Output1 R4 120Ω C7 6nF GND2 C5 100nF R6 120Ω Output2 SENT R3 120Ω C8 6nF R2 10K 5V Figure 20 – Recommended Application Diagram for the Transmitter & Receiver in TSSOP package 3901090324 Rev. 001 Page 33 of 40 Data Sheet Dec 08 MLX90324 “Under-the-Hood” Triaxis Rotary Position feat. SENT Protocol 18. Standard information regarding manufacturability of Melexis products with different soldering processes Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level according to following test methods: Reflow Soldering SMD’s (Surface Mount Devices) • • • IPC/JEDEC J-STD-020 Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices (Classification reflow profiles according to table 5-2) EIA/JEDEC JESD22-A113 Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing (Reflow profiles according to table 2) Melexis Working Instruction 341901308 Wave Soldering SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices) • • • EN60749-20 Resistance of plastic- encapsulated SMD’s to combined effect of moisture and soldering heat EIA/JEDEC JESD22-B106 and EN60749-15 Resistance to soldering temperature for through-hole mounted devices Melexis Working Instruction 341901309 Iron Soldering THD’s (Through Hole Devices) • • EN60749-15 Resistance to soldering temperature for through-hole mounted devices Melexis Working Instruction 341901309 Solderability SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices) • • EIA/JEDEC JESD22-B102 and EN60749-21 Solderability Melexis Working Instruction 3304312 For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc) additional classification and qualification tests have to be agreed upon with Melexis. The application of Wave Soldering for SMD’s is allowed only after consulting Melexis regarding assurance of adhesive strength between device and board. For more information on the lead free topic please see quality page at our website: http://www.melexis.com/quality.aspx 19. ESD Precautions Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). Always observe Electro Static Discharge control procedures whenever handling semiconductor products. 3901090324 Rev. 001 Page 34 of 40 Data Sheet Dec 08 MLX90324 “Under-the-Hood” Triaxis Rotary Position feat. SENT Protocol 20. Package Information 20.1. SOIC8 - Package Dimensions 1.27 TYP NOTES: 3.81 3.99** 4.80 4.98* 5.80 6.20** All dimensions are in millimeters (anlges in degrees). * Dimension does not include mold flash, protrusions or gate burrs (shall not exceed 0.15 per side). ** Dimension does not include interleads flash or protrusion (shall not exceed 0.25 per side). *** Dimension does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm total in excess of the dimension at maximum material condition. Dambar cannot be located on the lower radius of the foot. 1.37 1.57 1.52 1.72 0.19 0.25 0° 8° 0.100 0.250 0.36 0.46*** 0.41 1.27 8 Out Test 1 Vdig Vss 20.2. SOIC8 - Pinout and Marking Marking : Part Number MLX90324 (3 digits) Die Version (3 digits) 5 324 324Dxx 123456 123456 Bottom 3901090324 Rev. 001 WW NotUsed Switch Test 0 YY Lot number (6 digits) Week Date code (2 digits) Year Date code (2 digits) 4 Vdd 1 Dxx TOP Page 35 of 40 Data Sheet Dec 08 MLX90324 “Under-the-Hood” Triaxis Rotary Position feat. SENT Protocol 20.3. SOIC8 - IMC Positionning CW 8 7 6 5 CCW COS 1.25 1.65 1 2 3 0.46 +/- 0.06 4 1.96 2.26 SIN Angle detection MLX90324 SOIC8 ~ 0 Deg.* S 1 2 6 5 8 7 4 1 2 N 7 3 2 3 5 S3 4 ~ 270 Deg.* 5 8 7 6 5 4 1 2 N3 4 S 6 N 1 7 S ~ 180 Deg.* 8 6 N 8 ~ 90 Deg.* * No absolute reference for the angular information. The MLX90324 is an absolute angular position sensor but the linearity error (Le – See Section 10) does not include the error linked to the absolute reference 0 Deg (which can be fixed in the application through the discontinuity point – See 14.2.2). 3901090324 Rev. 001 Page 36 of 40 Data Sheet Dec 08 MLX90324 “Under-the-Hood” Triaxis Rotary Position feat. SENT Protocol 20.4. TSSOP16 - Package Dimensions 0.65 TYP 12O TYP 0.20 TYP 0.09 MIN 1.0 DIA 4.30 4.50** 6.4 TYP 0.09 MIN 1.0 12O TYP 0.50 0.75 0O 8O 1.0 1.0 TYP 0.85 0.95 4.90 5.10* 1.1 MAX 0.19 0.30*** 0.09 0.20 0.05 0.15 NOTES: All dimensions are in millimeters (anlges in degrees). * Dimension does not include mold flash, protrusions or gate burrs (shall not exceed 0.15 per side). ** Dimension does not include interleads flash or protrusion (shall not exceed 0.25 per side). *** Dimension does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm total in excess of the dimension at maximum material condition. Dambar cannot be located on the lower radius of the foot. 3901090324 Rev. 001 Page 37 of 40 Data Sheet Dec 08 MLX90324 “Under-the-Hood” Triaxis Rotary Position feat. SENT Protocol 20.5. TSSOP16 - Pinout and Marking 16 1 Vdig_1 Test1_1 Out_1 Vdd_1 NotUsed Test0_1 Switch_1 324Dxx 123456 Vss_1 Switch_2 NotUsed Vdd_2 Marking : Vss_2 Vdig_2 9 8 Out_2 Test1_2 Test0_2 Part Number MLX90324 (3 digits) Die Version (3 digits) 324 Dxx Top 123456 Bottom YY Lot number (6 digits) WW Week Date code (2 digits) Year Date code (2 digits) 20.6. TSSOP16 - IMC Positionning CW COS 2 16 9 Die 1 Die 2 SIN 2 SIN 1 0.30 +/- 0.06 CCW 1.95 2.45 1 8 1.84 2.04 COS 1 2.76 2.96 3901090324 Rev. 001 Page 38 of 40 Data Sheet Dec 08 MLX90324 “Under-the-Hood” Triaxis Rotary Position feat. SENT Protocol Angle detection MLX90324 TSSOP16 ~ 180 Deg.* 16 9 16 Die 2 1 8 ~ 180 Deg.* ~ 0 Deg.* 16 1 8 ~ 270 Deg.* ~ 90 Deg.* 9 16 Die 2 9 Die 1 S S N 1 Die 2 S Die 1 S Die 1 9 N N Die 1 ~ 90 Deg.* ~ 270 Deg.* 8 1 Die 2 N ~ 0 Deg.* 8 * No absolute reference for the angular information. The MLX90324 is an absolute angular position sensor but the linearity error (Le – See Section 10) does not include the error linked to the absolute reference 0 Deg (which can be fixed in the application through the discontinuity point – See 14.2.2). 3901090324 Rev. 001 Page 39 of 40 Data Sheet Dec 08 MLX90324 “Under-the-Hood” Triaxis Rotary Position feat. SENT Protocol 21. Disclaimer Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. Melexis reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with Melexis for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by Melexis for each application. The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of Melexis’ rendering of technical or other services. © 2008 Melexis N.V. All rights reserved. For the latest version of this document, go to our website at www.melexis.com Or for additional information contact Melexis Direct: Europe, Africa, Asia: America: Phone: +32 1367 0495 E-mail: [email protected] Phone: +1 603 223 2362 E-mail: [email protected] ISO/TS 16949 and ISO14001 Certified 3901090324 Rev. 001 Page 40 of 40 Data Sheet Dec 08