MLX90324 DataSheet DownloadLink 5591

MLX90324
“Under-the-Hood” Triaxis Rotary Position
feat. SENT Protocol
Features and Benefits
Absolute Rotary Position Sensor IC
Simple & Robust Magnetic Design
Tria⊗is™ Hall Technology
Programmable Angular Range up to 360 Degrees
Programmable Linear Transfer Characteristic (up to 16 points)
Selectable SENT (SAE-J2716) Protocol, Analog (Ratiometric), PWM
12 bit Angular Resolution - 10 bit Angular Thermal Accuracy
48 bit ID Number
Single Die – SO8 Package RoHS Compliant
Dual Die (Full Redundant) – TSSOP16 Package RoHS Compliant
Applications
Absolute Rotary Position Sensor
Throttle Position Sensor
EMS Actuator (EGR, Manifold…)
Non-Contacting Potentiometer
Ordering Information1
Part No.
MLX90324
MLX90324
50°C)
Temperature Suffix
Package Code
L (-40°C to 150°C)
DC [SOIC-8]
L (-40°C to 150°C)
GO [TSSOP-16]
GO [TSSOP-16]
Die Rev.
DBO
DBO
PPS
Packing2
Reel
Reel
Option code
STANDARD3
STANDARD3
1. Functional Diagram
3V3
Reg
DSP
MUX
Vy
G
A
D
μC
D
12
Vx
14
-1
5
Tria 9 is ™
A
Rev.Pol.
&
OverVolt.
V DD
x1
O UT
(Analog/PWM/SENT)
ROM - F/W
RAM
EEP
ROM
S WITCH O UT
V SS
Figure 1 - Block Diagram (Analog, PWM & SENT)
Example: MLX90324LDC-DBO-STANDARD-Reel
For engineering purpose, a limited number of samples can also be ordered in tubes. In this case, the value “Reel” in the field
“Packing” must be replaced by “Tube”.
3
Fully end-user programmable version through the Melexis Programming Unit PTC-04
1
2
3901090324
Rev. 001
Page 1 of 40
Data Sheet
Dec 08
MLX90324
“Under-the-Hood” Triaxis Rotary Position
feat. SENT Protocol
2. Description
The MLX90324 is a monolithic sensor IC featuring the Tria⊗is™ Hall technology. Conventional planar Hall
technology is only sensitive to the flux density applied orthogonally to the IC surface. The Tria⊗is™ Hall
sensor is also sensitive to the flux density applied parallel to the IC surface. This is obtained through an
Integrated Magneto-Concentrator (IMC®) which is deposited on the CMOS die (as an additional back-end
step).
The MLX90324 is only sensitive to the flux density coplanar with the IC surface. This allows the
MLX90324 with the correct magnetic circuit to decode the absolute rotary (angular) position from 0 to 360
Degrees. It enables the design of novel generation of non-contacting rotary position sensors that are
frequently required for both automotive and industrial applications.
In combination with the appropriate signal processing, the magnetic flux density of a small magnet
(diametral magnetization) rotating above the IC can be measured in a non-contacting way (Figure 2). The
angular information is computed from both vectorial components of the flux density (i.e. BX and BY).
MLX90324 produces an output signal proportional to the decoded angle. The output is selectable between
Analog, PWM and SENT (SAE-J2716) Protocol.
α
Figure 2 - Typical application of MLX90324
The MLX90324 is similar to the MLX90316 in many ways but it is targeted for “Under-the-Hood”
applications and the associated harsh hi-temperature environment. Amongst others, the hi-temperature
performances and the SENT feature confirm this devotion.
3901090324
Rev. 001
Page 2 of 40
Data Sheet
Dec 08
MLX90324
“Under-the-Hood” Triaxis Rotary Position
feat. SENT Protocol
TABLE of CONTENTS
FEATURES AND BENEFITS ....................................................................................................................... 1
APPLICATIONS............................................................................................................................................ 1
ORDERING INFORMATION......................................................................................................................... 1
1.
FUNCTIONAL DIAGRAM...................................................................................................................... 1
2.
DESCRIPTION....................................................................................................................................... 2
3.
GLOSSARY OF TERMS − ABBREVIATIONS − ACRONYMS ............................................................ 5
4.
PINOUT.................................................................................................................................................. 5
5.
ABSOLUTE MAXIMUM RATINGS ....................................................................................................... 6
6.
DETAILED DESCRIPTION.................................................................................................................... 6
7.
MLX90324 ELECTRICAL SPECIFICATION......................................................................................... 9
8.
MLX90324 ISOLATION SPECIFICATION .......................................................................................... 11
9.
MLX90324 TIMING SPECIFICATION ................................................................................................. 11
10. MLX90324 ACCURACY SPECIFICATION ......................................................................................... 12
11. MLX90324 MAGNETIC SPECIFICATION .......................................................................................... 13
12. MLX90324 CPU & MEMORY SPECIFICATION ................................................................................. 13
13. MLX90324 END-USER PROGRAMMABLE ITEMS ........................................................................... 14
14. DESCRIPTION OF END-USER PROGRAMMABLE ITEMS.............................................................. 15
14.1.
OUTPUT MODE ..........................................................................................................................................15
14.1.1. Analog Output Mode ............................................................................................................................15
14.1.2. PWM Output Mode...............................................................................................................................15
14.1.3. SENT Output Mode ..............................................................................................................................16
14.1.4. Switch Out ............................................................................................................................................16
14.2.
OUTPUT TRANSFER CHARACTERISTIC.......................................................................................................17
14.2.1. CLOCKWISE Parameter......................................................................................................................17
14.2.2. Discontinuity Point (or Zero Degree Point).........................................................................................18
14.2.3. 3-Point LNR Parameters ......................................................................................................................18
14.2.4. 16-Point LNR Parameters ....................................................................................................................19
14.2.5. CLAMPING Parameters ......................................................................................................................19
14.2.6. DEADZONE Parameter .......................................................................................................................19
14.3.
IDENTIFICATION ........................................................................................................................................20
14.4.
SENSOR FRONT-END .................................................................................................................................20
14.4.1. HIGHSPEED Parameter......................................................................................................................20
14.4.2. AGC and Virtual Gain Parameters ......................................................................................................20
14.4.3. GAINMIN and GAINMAX Parameters ................................................................................................21
14.5.
FILTER ....................................................................................................................................................21
14.5.1. Hysteresis Filter ...................................................................................................................................21
14.5.2. FIR Filters ............................................................................................................................................21
3901090324
Rev. 001
Page 3 of 40
Data Sheet
Dec 08
MLX90324
“Under-the-Hood” Triaxis Rotary Position
feat. SENT Protocol
14.5.3. IIR Filters .............................................................................................................................................23
14.6.
PROGRAMMABLE DIAGNOSTIC SETTINGS .................................................................................................24
14.6.1. RESONFAULT Parameter ...................................................................................................................24
14.6.2. EEHAMHOLE Parameter ....................................................................................................................24
14.7.
LOCK.........................................................................................................................................................24
14.7.1. MLXLOCK Parameter .........................................................................................................................24
14.7.2. LOCK Parameter .................................................................................................................................24
15. MLX90324 SELF DIAGNOSTIC.......................................................................................................... 25
16. SENT (SAE-J2716) PROTOCOL ........................................................................................................ 27
16.1.
16.2.
16.3.
16.4.
INTRODUCTION .........................................................................................................................................27
SENT PROTOCOL DEFINITION ..................................................................................................................27
SENT PROTOCOL IMPLEMENTATION ........................................................................................................30
USE OF THE MLX90324 SENT FEATURE..................................................................................................30
17. RECOMMENDED APPLICATION DIAGRAMS .................................................................................. 31
17.1.
17.2.
17.3.
17.4.
17.5.
ANALOG OUTPUT WIRING WITH THE MLX90324 IN SOIC PACKAGE .......................................................31
ANALOG OUTPUT WIRING WITH THE MLX90324 IN TSSOP PACKAGE ....................................................32
PWM LOW SIDE OUTPUT WIRING ............................................................................................................32
SENT OUTPUT WIRING WITH THE MLX90324 IN SOIC-8 PACKAGE ........................................................33
SENT OUTPUT WIRING WITH THE MLX90324 IN TSSOP-16 PACKAGE ...................................................33
18. STANDARD INFORMATION REGARDING MANUFACTURABILITY OF MELEXIS PRODUCTS
WITH DIFFERENT SOLDERING PROCESSES ........................................................................................ 34
19. ESD PRECAUTIONS........................................................................................................................... 34
20. PACKAGE INFORMATION................................................................................................................. 35
20.1.
20.2.
20.3.
20.4.
20.5.
20.6.
SOIC8 - PACKAGE DIMENSIONS ...............................................................................................................35
SOIC8 - PINOUT AND MARKING ...............................................................................................................35
SOIC8 - IMC POSITIONNING .....................................................................................................................36
TSSOP16 - PACKAGE DIMENSIONS...........................................................................................................37
TSSOP16 - PINOUT AND MARKING ..........................................................................................................38
TSSOP16 - IMC POSITIONNING ................................................................................................................38
21. DISCLAIMER ....................................................................................................................................... 40
3901090324
Rev. 001
Page 4 of 40
Data Sheet
Dec 08
MLX90324
“Under-the-Hood” Triaxis Rotary Position
feat. SENT Protocol
3. Glossary of Terms − Abbreviations − Acronyms
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
Gauss (G), Tesla (T): Units for the magnetic flux density − 1 mT = 10 G
TC: Temperature Coefficient (in ppm/Deg.C.)
NC: Not Connected
PWM: Pulse Width Modulation
SENT: Single Edge Nibble Transmission (Protocol – SAE-J2716)
Nibble: 4 bits
Byte: 8 bits (= 2 nibbles)
Word: 16 bits (= 2 bytes = 4 nibbles)
%DC: Duty Cycle of the output signal i.e. TON /(TON + TOFF)
ADC: Analog-to-Digital Converter
DAC: Digital-to-Analog Converter
LSB: Least Significant Bit
MSB: Most Significant Bit
DNL: Differential Non-Linearity
INL: Integral Non-Linearity
RISC: Reduced Instruction Set Computer
ASP: Analog Signal Processing
DSP: Digital Signal Processing
ATAN: trigonometric function: arctangent (or inverse tangent)
IMC: Integrated Magneto-Concentrator (IMC®)
CoRDiC: Coordinate Rotation Digital Computer (i.e. iterative rectangular-to-polar transform)
EMC: Electro-Magnetic Compatibility
4. Pinout
SOIC-8
TSSOP-16
Analog / PWM / SENT
Analog / PWM / SENT
1
VDD
VDIG1
2
Test 0
VSS1 (Ground1)
3
Switch Out
VDD1
4
Not Used
Test 01
5
Out
Switch Out2
6
Test 1
Not Used2
7
VDIG
Out2
8
VSS (Ground)
Test 12
Pin #
9
VDIG2
10
VSS2 (Ground2)
11
VDD2
12
Test 02
13
Switch Out1
14
Not Used1
15
Out1
16
Test 11
For optimal EMC behavior, it is recommended to connect the unused pins (Not Used and Test) to the
Ground (see section 16.1).
3901090324
Rev. 001
Page 5 of 40
Data Sheet
Dec 08
MLX90324
“Under-the-Hood” Triaxis Rotary Position
feat. SENT Protocol
5. Absolute Maximum Ratings
Parameter
Value
Supply Voltage, VDD (overvoltage)
+ 20 V
Reverse Voltage Protection
− 10 V
Positive Output Voltage
+ 10 V
+ 14 V (200 s max − TA = + 25°C)
Positive Output Voltage (Switch Out)
+ 10 V
+ 14 V (200 s max − TA = + 25°C)
Output Current (IOUT)
± 30 mA
Reverse Output Voltage
− 0.3 V
Reverse Output Current
− 50 mA
Operating Ambient Temperature Range, TA
− 40°C … + 150°C
Storage Temperature Range, TS
− 40°C … + 150°C
Magnetic Flux Density
± 700 mT
Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolutemaximum-rated conditions for extended periods may affect device reliability.
6. Detailed Description
As described on the block diagram (Figure 1 and Figure 2), the magnetic flux density parallel to the IC
surface (i.e. B//) is sensed through the Tria⊗is™ sensor front-end. This front-end consists into two
orthogonal pairs (for each of the two directions parallel with the IC surface i.e. X and Y) of conventional
planar Hall plates (blue area on Figure 3) and an Integrated Magneto-Concentrator (IMC® yellow disk on
Figure 3).
Hall Plates
Figure 3 - Tria⊗is™ sensor front-end (4 Hall plates + IMC® disk)
3901090324
Rev. 001
Page 6 of 40
Data Sheet
Dec 08
MLX90324
“Under-the-Hood” Triaxis Rotary Position
feat. SENT Protocol
Both components of the applied flux density B// are measured individually i.e. BX// and BY//. Two orthogonal
components (respectively BX⊥ and BY⊥) proportional to the parallel components (respectively BX// and BY//)
are induced through the IMC and can be measured by both respective pairs of conventional planar Hall
plates as those are sensitive to the flux density applied orthogonally to them and the IC surface.
While a magnet (diametrically magnetized) rotates above the IC as described on Figure 2, the sensing
stage provides two differential signals in quadrature (sine and cosine − Figure 4 and Figure 5)
400
300
BX & BY (G)
200
100
0
-100
-200
-300
-400
0
90
180
270
360
450
Alpha (Degree)
540
BX
630
720
BY
Figure 4 – Magnetic Flux Density – BX ∝ cos(α) & BY ∝ sin(α)
2000
1500
VX & VY (mV)
1000
500
0
-500
-1000
-1500
-2000
0
90
180
270
360
450
Alpha (Degree)
VX
540
630
720
VY
Figure 5 – Tria⊗is™ sensor front-end − Output signals − VX ∝ BX ∝ cos(α) & VY ∝ BY ∝ sin(α)
3901090324
Rev. 001
Page 7 of 40
Data Sheet
Dec 08
MLX90324
“Under-the-Hood” Triaxis Rotary Position
feat. SENT Protocol
Those Hall signals are processed through a fully differential analog chain featuring the classic offset
cancellation technique (Hall plate quadrature spinning and chopper-stabilized amplifier).
The conditioned analog signals are converted through an ADC (configurable − 14 or 15 bits) and provided
to a DSP block for further processing. The DSP stage is based on a 16 bit RISC micro-controller whose
primary function is the extraction of the angular position from the two raw signals (after so-called front-end
compensation steps) through the following operation:
⎛ VY ⎞
⎟⎟
⎝ VX ⎠
α = ATAN ⎜⎜
The DSP functionality is governed by the micro-code (firmware − F/W) of the micro-controller which is
stored into the ROM (mask programmable). In addition to the ″ATAN″ function, the F/W controls the whole
analog chain, the output transfer characteristic, the output protocol, the programming/calibration and also
the self-diagnostic modes.
In the MLX90324, the ″ATAN″ function is computed via a look-up table (i.e. it is not obtained through a
CoRDiC algorithm).
Due to the fact that the ″ATAN″ operation is performed on the ratio ″VY/VX″, the angular information is
intrinsically self-compensated vs. flux density variations (due to airgap change, thermal or ageing effects)
affecting both signals. This feature allows therefore an improved thermal accuracy vs. rotary position
sensor based on conventional linear Hall sensors.
In addition to the improved thermal accuracy, the realized rotary position sensor is capable of measuring a
complete revolution (360 Degrees) and the linearity performances are excellent taking into account typical
manufacturing tolerances (e.g. relative placement between the Hall IC and the magnet).
Once the angular information is computed (over 360 degrees), it is further conditioned (mapped) vs. the
target transfer characteristic and it is provided at the output(s) as:
•
•
•
an analog output level through a 12 bit DAC followed by a buffer
a digital PWM signal with 12 bit depth (programmable frequency 100 Hz … 1 kHz)
a digital SENT Protocol Telegram
For instance, the analog output can be programmed for offset, gain and clamping to meet any rotary
position sensor output transfer characteristic:
Vout(α) = ClampLo
Vout(α) = Voffset + Gain × α
Vout(α) = ClampHi
for α ≤ αmin
for αmin ≤ α ≤ αmax
for α ≥ αmax
where Voffset, Gain, ClampLo and ClampHi are the main adjustable parameters for the end-user.
The linear part of the transfer curve can be adjusted through either a 2 point or a 3 point calibration
depending on the linearity requirement.
A digital output is also available and used as a programmable angular switch.
The calibration parameters are stored in EEPROM featuring a Hamming Error Correction Coding (ECC).
The programming steps do not require any dedicated pins. The operation is done using the supply and
output nodes of the IC. The programming of the MLX90324 is handled at both engineering lab and
production line levels by the Melexis Programming Unit PTC-04 with the dedicated MLX90316/90324
daughterboard and software tools (DLL − User Interface).
3901090324
Rev. 001
Page 8 of 40
Data Sheet
Dec 08
MLX90324
“Under-the-Hood” Triaxis Rotary Position
feat. SENT Protocol
7. MLX90324 Electrical Specification
DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the
Temperature suffix (L).
Parameter
Nominal Supply Voltage
Symbol
Test Conditions
VDD
Slow
Supply
Current(4)
Idd
Min
Typ
Max
Units
4.5
5
5.5
V
7
10
mA
10.5
13
mA
12.5
15
mA
2.7
3
V
mode(5)
Medium
mode(5)
Fast mode(5)
POR Level
VDD POR
Output Current
Iout
Output Short Circuit Current
Ishort
Output Load
Analog Saturation Output Level
Digital Saturation Output Level
RL
8
mA
-20
20
mA
Vout = 0 V
12
15
mA
Vout = 5 V
12
15
mA
Vout = 14 V (TA = 25°C)
24
45
mA
Pull-down to Ground
1
10
∞(7)
kΩ
Pull-up to 5V(6)
1
10
∞(7)
kΩ
3
%VDD
Vsat_hi
Pull-down load RL ≥ 10 kΩ
Diag_lo
Active Diagnostic Output Level
Diag_hi
BVSSPD
(Broken Track Diagnostic) (8)
-8
PWM, SENT Output mode
Pull-up load RL ≥ 10 kΩ
VsatD_lo
BVSSPU
BVDDPD
BVDDPU
2
Analog Output mode
Vsat_lo
VsatD_hi
Passive Diagnostic Output Level
Supply Under Voltage
96
%VDD
Pull-up Low Side RL ≥ 10 kΩ
1.5
Push-Pull (IOUT = -20mV)
Push-Pull (IOUT = 20mV)
97
%VDD
1
Pull-down load RL ≥ 10 kΩ
1.5
Pull-up load RL ≥ 10 kΩ
Pull-down load RL ≥ 10 kΩ
97
Pull-up load RL ≥ 10 kΩ
98
4
Pull-down load RL ≤ 10 kΩ
Pull-up load RL ≥ 1kΩ
99
Broken VDD&
Broken VDD &
Pull-up load RL ≤ 10kΩ to 5V
100
0
Pull-down load RL ≥ 1kΩ
96
%VDD
%VDD
Broken VSS &
Broken VSS &
%VDD
%VDD
%VDD
1
%VDD
%VDD
MLX 90324 Electrical Specification continues…
4 For
the dual version, the supply current is multiplied by 2
section 14.4.1 for details concerning Slow and Fast mode
6 Applicable for output in Analog, PWM and SENT (Open-Drain) modes
7
RL < ∞ for output in PWM mode
8 For detailed information, see also section 15
5 See
3901090324
Rev. 001
Page 9 of 40
Data Sheet
Dec 08
MLX90324
“Under-the-Hood” Triaxis Rotary Position
feat. SENT Protocol
…MLX 90324 Electrical Specification
Clamped Output Level
Switch Out(10)
Clamp_lo
Programmable
0
100
%VDD(9)
Clamp_hi
Programmable
0
100
%VDD(9)
Sw_lo
Pull-up Load 1.5k to 5V
0.55
1.1
V
Sw_hi
Pull-up Load 1.5k to 5V
3.65
4.35
V
As an illustration of the previous table, the MLX90324 fits the typical classification of the output span
described on the Figure 6.
100 %
90 %
96 %
92 %
88 %
Diagnostic Band (High)
Clamping High
80 %
Output Level
70 %
60 %
50 %
Linear Range
40 %
30 %
20 %
10 %
0%
12 %
8%
4%
Clamping Low
Diagnostic Band (Low)
Figure 6 - Output Span Classification
9 Clamping
10
levels need to be considered vs the saturation of the output stage (see Vsat_lo and Vsat_hi)
See section 14.1.4 for the application diagram
3901090324
Rev. 001
Page 10 of 40
Data Sheet
Dec 08
MLX90324
“Under-the-Hood” Triaxis Rotary Position
feat. SENT Protocol
8. MLX90324 Isolation Specification
DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the
Temperature suffix (L). Only valid for the package code GO i.e. dual die version.
Parameter
Symbol
Isolation Resistance
Test Conditions
Between 2 dies
Min
Typ
Max
4
Units
MΩ
9. MLX90324 Timing Specification
DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the
Temperature suffix (L).
Parameter
Main Clock Frequency
Symbol
Ck
Test Conditions
Slow mode(11)
Medium
Sampling Rate
Min
mode(11)
Units
5.5
MHz
10
MHz
Fast
16
MHz
Slow
mode(11)
600
μs
400
μs
330
μs
mode(11)
Fast mode(11)
Ts
Max
mode(11)
Medium
Step Response Time
Typ
Slow mode(11), Filter=5(12)
Medium mode(11), Filter=0(12)
Fast mode(11), Filter=0(12)
660
4
ms
1200
μs
1000
μs
Watchdog
Wd
See Section 15
5
ms
Start-up Cycle
Tsu
Slow, Medium and Fast mode(11)
15
ms
Analog Output Slew Rate
PWM Frequency
Digital Output Rise Time
Digital Output Fall Time
COUT = 40 - 100 nF
FPWM
Falling Edge
9
V/ms
Rising Edge
18
V/ms
PWM Output Enabled
100
1000
Hz
Mode 5 – 10nF, RL = 5.6 kΩ
120
μs
Mode 6 – 10nF, RL = 5.6 kΩ
2.6
μs
Mode 7 – 10nF, RL = 5.6 kΩ
2.6
μs
Mode 5 – 10nF, RL = 5.6 kΩ
800
ns
Mode 6 – 10nF, RL = 5.6 kΩ
120
μs
Mode 7 – 10nF, RL = 5.6 kΩ
820
ns
11 See
12
section 14.4.1 for details concerning Slow, Medium and Fast mode
See section 14.5 for details concerning Filter parameter
3901090324
Rev. 001
Page 11 of 40
Data Sheet
Dec 08
MLX90324
“Under-the-Hood” Triaxis Rotary Position
feat. SENT Protocol
10.
MLX90324 Accuracy Specification
DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the
Temperature suffix (L).
Parameter
ADC Resolution on the raw
signals sine and cosine
Symbol
RADC
Test Conditions
Slow Mode(13)
Medium
Fast
Thermal Offset Drift
#1(14)
Min
Mode(13)
Mode(13)
Thermal Offset Drift at the DSP
Typ
Max
Units
15
bits
14
bits
14
bits
-60
+60
LSB15
- 0.4
+ 0.4
%VDD
- 0.5
+ 0.5
%
-1
1
Deg
input (excl. DAC and output stage)
Thermal Offset Drift #2
Thermal Offset Drift of the DAC
(to be considered only for the
analog output mode)
and Output Stage
Thermal Drift of Sensitivity
Mismatch(15)
Intrinsic Linearity Error(16)
Le
Analog Output Resolution
RDAC
TA = 25°C
12 bits DAC
0.025
%VDD/LSB
(Theoretical – Noise free)
Output stage Noise
Noise
pk-pk(17)
INL
-4
DNL
0.05
2
LSB
0.05
VG = 9, Slow mode, Filter=5
0.03
0.06
Deg
VG = 9, Fast mode, Filter=0
0.1
0.2
Deg
0
0.1
%VDD
-0.1
RPWM
LSB
Clamped Output
Ratiometry Error
PWM Output Resolution
1
+4
12 bits
%VDD
0.025
%DC/LSB
(Theoretical – Jitter free)
PWM Jitter(18)
JPWM
VG = 6, FPWM = 250 Hz – 800Hz
0.2
%DC
15 bits corresponds to 14 bits + sign and 14 bits corresponds to 13 bits + sign. After angular calculation, this corresponds to
0.005Deg/LSB15 in Low Speed Mode and 0.01Deg/LSB14 in High Speed.
14 For instance, Thermal Offset Drift #1 equal ± 60LSB15 yields to max. ± 0.3 Deg. angular error for the computed angular
information (output of the DSP). See Front End Application Note for more details. This is only valid if automatic gain is set (See
Section 14.4.2)
15 For instance, Thermal Drift of Sensitivity Mismatch equal ± 0.4% yields to max. ± 0.1 Deg. angular error for the computed
angular information (output of the DSP). See Front End Application Note for more details.
16 The Intrinsic Linearity Error refers to the IC itself (offset, sensitivity mismatch, orthogonality) taking into account an ideal
rotating field. Once associated to a practical magnetic construction and the associated mechanical and magnetic tolerances, the
output linearity error increases. However, it can be improved with the multi point end-user calibration that is available on the
MLX90324.
17 The application diagram used is described in the recommended wiring. For detailed information, refer to section Filter in
application mode (Section 14.5).
18 Jitter is defined by ± 3 σ for 1000 successive acquisitions and the slope of the transfer curve is 100%DC/360 Deg.
13
3901090324
Rev. 001
Page 12 of 40
Data Sheet
Dec 08
MLX90324
“Under-the-Hood” Triaxis Rotary Position
feat. SENT Protocol
11.
MLX90324 Magnetic Specification
DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the
Temperature suffix (L).
Parameter
Magnetic Flux Density
Magnet Temperature Coefficient
12.
Symbol
Test Conditions
Min
Typ
Max
Units
B
20
50
70(19)
mT
TCm
-2400
0
ppm/°C
MLX90324 CPU & Memory Specification
The DSP is based on a 16 bit RISC µController. This CPU provides 2.5 Mips while running at 10 MHz.
Parameter
19
Symbol
Test Conditions
Min
Typ
Max
Units
ROM
10
kB
RAM
256
B
EEPROM
128
B
Above 70 mT, the IMC starts saturating yielding to an increase of the linearity error.
3901090324
Rev. 001
Page 13 of 40
Data Sheet
Dec 08
MLX90324
“Under-the-Hood” Triaxis Rotary Position
feat. SENT Protocol
13.
MLX90324 End-User Programmable Items
3901090324
Rev. 001
Parameter
Comments
Output Mode
PWMPOL1
PWM_Freq
CLOCKWISE
DP
16POINTS
LNR_S0
LNR_A_X
LNR_A_Y
LNR_A_S
LNR_B_X
LNR_B_Y
LNR_B_S
LNR_C_X
LNR_C_Y
LNR_C_S
LNR_Y0
LNR_Y1
…
LNR_Y16
CLAMP_HIGH
CLAMP_LOW
KD
KDHYST
DEADZONE
FHYST
MELEXISID1
MELEXISID2
MELEXISID3
CUSTUMERID1
CUSTUMERID2
CUSTUMERID3
HIGHSPEED
MEDIUMSPEED
ROLLCNT
FSWAP
FILTER
AGC
GAINMIN
GAINMAX
EEHAMHOLE
RESONFAULT
SENT
MLXLOCK
LOCK
Define the output stage mode
PWM Polarity
PWM Frequency
Discontinuity Point
Selection of correction method 3 or 16 pts
Initial Slope
AX Coordinate
AY Coordinate
AS Coordinate
BX Coordinate
BY Coordinate
BS Coordinate
CX Coordinate
CY Coordinate
CS Coordinate
16pts – Y-coordinate point 0
16pts – Y-coordinate point 1
…
16pts – Y-coordinate point 16
Clamping High
Clamping Low
Switch Out
Hysteresis on the Switch Out
Rolling Counter (SENT)
Automatic Gain Selection
Page 14 of 40
Default Values
2
0
1000h
0
0h
0
0h
8000h
0h
0h
FFFFh
FFFFh
0h
FFFFh
FFFFh
0h
N/A
N/A
…
N/A
8%
8%
FFFFh
0
0
4
MLX
MLX
MLX
1
17
MLX
0
0
0
0
5
0
0
41
3131h
0
0
19h
0
# bit
3
1
16
1
15
1
16
16
16
16
16
16
16
16
16
16
16
16
…
16
16
16
16
8
8
8
16
16
16
8
16
16
1
1
1
1
8
1
4
4
16
2
1
1
1
Data Sheet
Dec 08
MLX90324
“Under-the-Hood” Triaxis Rotary Position
feat. SENT Protocol
14.
Description of End-User Programmable Items
14.1. Output Mode
The MLX90324 output type is defined by the Output Mode parameter.
Parameter
Value
Description
Analog Output Mode
2
Analog Rail-to-Rail
5
Low Side (NMOS)
6
High Side (PMOS)
7
Push-Pull
N/A
Push-Pull
PWM Output Mode
SENT Output Mode
14.1.1. Analog Output Mode
The Analog Output Mode is a rail-to-rail and ratiometric output with a push-pull output stage configuration
allows the use of a pull-up or pull-down resistor.
14.1.2. PWM Output Mode
If one of the PWM Output modes is selected, the output signal is a digital signal with Pulse Width
Modulation (PWM).
In mode 5, the output stage is an open drain NMOS transistor (low side), to be used with a pull-up resistor
to VDD.
In mode 6, the output stage is an open drain PMOS transistor (high side), to be used with a pull-down
resistor.
In mode 7, the output stage is a push-pull stage.
The PWM polarity is selected by the PWMPOL1 parameter:
•
•
PWMPOL1 = 0 for a low level at 100%
PWMPOL1 = 1 for a high level at 100%
The PWM frequency is selected by the PWM_Freq parameter.
PWM Frequency Code
Oscillator Mode
Pulse-Width Modulation Frequency (Hz)
100
200
500
1000
Low Speed
27500
13750
6875
3435
Medium Speed
50000
25000
10000
5000
High Speed
-
40000
16000
8000
For instance, in Low Speed Mode, set PWM_Freq = 6875 (decimal) to set the PWM frequency at 500Hz.
3901090324
Rev. 001
Page 15 of 40
Data Sheet
Dec 08
MLX90324
“Under-the-Hood” Triaxis Rotary Position
feat. SENT Protocol
14.1.3. SENT Output Mode
The MLX90324 features a digital SENT (SAE-J2716) Protocol Mode. The rolling counter can be
enabled/disabled by the ROLLCNT bit:
• ROLLCNT = 0 to enable the rolling counter
• ROLLCNT = 1 to disable the rolling counter
See the dedicated SENT Protocol section for a full description (Section 16).
14.1.4. Switch Out
Parameter
Value
Unit
KD
0…359.9999
deg
KDHYST
0 … 1.4
deg
The switch is activated (Sw_lo) when the digital angle is greater than the value stored in the KD
parameter. This angle refers to the internal angular reference linked to the parameter DP and not to the
absolute physical 0° angle.
The KDHYST defines the hysteresis amplitude around the Switch point. The switch is actually activated if
the digital angle is greater than KD+KDHYST. It is deactivated if the digital angle is less than
KD-KDHYST.
The mandatory application diagram to use this feature is depicted in the Figure 7. See section 7 for the
electrical characteristic.
If the Switch feature is not used in the application, the output pin needs to be connected to the ground.
5V
MLX90324
1k5
SWITCH
OUT
to uC
I/O
Port
100 nF
6kΩ
50 Ω
250 Ω
ECU
Figure 7 – Application Diagram for the Switch Out
3901090324
Rev. 001
Page 16 of 40
Data Sheet
Dec 08
MLX90324
“Under-the-Hood” Triaxis Rotary Position
feat. SENT Protocol
14.2. Output Transfer Characteristic
There are 2 different possibilities to define the transfer function (LNR):
• With 3 points (defined on X and Y coordinates) and 4 slopes
• With 16 points equidistant where only Y coordinates are defined.
Parameter
LNR type
CLOCKWISE
Both
DP
LNR_A_X
LNR_B_X
LNR_C_X
LNR_A_Y
LNR_B_Y
LNR_C_Y
Both
0 … 359.9999
deg
Only 3 pts
0 … 359.9999
deg
Only 3 pts
0 … 100
%
Only 3 pts
0 … 17
%/deg
Only 3 pts
-17 … 0 … 17
%/deg
Only 16 pts
0 …100
%
CLAMP_LOW
Both
0 … 100
%
CLAMP_HIGH
Both
0 … 100
%
LNR_S0
LNR_A_S
LNR_B_S
Value
Unit
0 Æ CCW
1 Æ CW
LNR_C_S
LNR_Y0
LNR_Y1
…
LNR_Y16
14.2.1. CLOCKWISE Parameter
The CLOCKWISE parameter defines the magnet rotation direction.
•
•
CCW is the defined by the 1-4-5-8 pin order direction for the SOIC8 package and 1-8-9-16 pin
order direction for the TSSOP16 package.
CW is defined by the reverse direction: 8-5-4-1 pin order direction for the SOIC8 and 16-9-8-1 pin
order direction for the TSSOP16 package.
Refer to the drawing in the IMC positioning sections (Section 20.3 and 20.6).
3901090324
Rev. 001
Page 17 of 40
Data Sheet
Dec 08
MLX90324
“Under-the-Hood” Triaxis Rotary Position
feat. SENT Protocol
14.2.2. Discontinuity Point (or Zero Degree Point)
The Discontinuity Point defines the 0° point on the circle. The discontinuity point places the origin at any
location of the trigonometric circle. The DP is used as reference for all the angular measurements.
360°
0°
The placement of the discontinuity
point (0 point) is programmable.
Figure 8 - Discontinuity Point Positioning
14.2.3. 3-Point LNR Parameters
The LNR parameters, together with the clamping values, fully define the relation (the transfer function)
between the digital angle and the output signal.
The shape of the MLX90324 transfer function from the digital angle value to the output voltage is
described by the drawing below. Six segments can be programmed but the clamping levels are
necessarily flat.
Two, three, or even five calibration points are then available, reducing the overall non-linearity of the IC by
almost an order of magnitude each time. Three or five point calibration will be preferred by customers
looking for excellent non-linearity figures. Two-point calibrations will be preferred by customers looking for
a cheaper calibration set-up and shorter calibration time.
100 %
Clamping High
CLAMPHIGH
C
Slope LNR_C_S
LNR_C_Y
B
Slope LNR_B_S
LNR_B_Y
A
Slope LNR_A_S
LNR_A_Y
Slope LNR_S0
Clamping Low
CLAMPLOW
0%
0
3901090324
Rev. 001
LNR_A_X
LNR_B_X
Page 18 of 40
LNR_C_X
360
(Deg.)
Data Sheet
Dec 08
MLX90324
“Under-the-Hood” Triaxis Rotary Position
feat. SENT Protocol
14.2.4. 16-Point LNR Parameters
The LNR parameters, together with the clamping values, fully define the relation (the transfer function)
between the digital angle and the output signal.
The shape of the MLX90324 transfer function from the digital angle value to the output voltage is
described by the drawing below.
100%
LNR_Y16
CLAMPHIGH
LNR_Y15
LNR_Y14
LNR_Y2
LNR_Y1
CLAMPLOW
LNR_Y0
0%
Δx
Δx
Δx
Δx
Δx
Δx
360 Deg
Figure 9 – 16-Point Calibration
14.2.5. CLAMPING Parameters
The clamping levels are two independent values to limit the output voltage range. The CLAMP_LOW
parameter adjusts the minimum output voltage level. The CLAMP_HIGH parameter sets the maximum
output voltage level. Both parameters have 16 bits of adjustment with a resolution of approximately 0.076
mV.
14.2.6. DEADZONE Parameter
The dead zone is defined as the angle window between 0 and 359.9999.
When the digital angle lies in this zone, the IC is in fault mode (RESONFAULT must be set to “1” – See
14.6.1).
3901090324
Rev. 001
Page 19 of 40
Data Sheet
Dec 08
MLX90324
“Under-the-Hood” Triaxis Rotary Position
feat. SENT Protocol
14.3. Identification
Parameter
MELEXSID1
MELEXSID2
MELEXSID3
CUSTUMERID1
CUSTUMERID2
CUSTUMERID3
Value
0 … 65535
0 … 65535
0 … 65535
0 … 65535
0 … 65535
0 … 65535
Unit
Identification number: 40 bits freely useable by Customer for traceability purpose.
14.4. Sensor Front-End
Parameter
Value
HIGHSPEED
0 = Slow mode
1 = Fast mode
MEDIUMSPEED
0 = Slow mode
1 = Medium mode
AGC
0 = disable
1 = enable
VirtualGain
0 … 41
GAINMIN
0 … 41
GAINMAX
0 … 41
Unit
14.4.1. HIGHSPEED Parameter
The HIGHSPEED and MEDIUMSPEED parameters define the main frequency for the DSP.
• HIGHSPEED = 0, MEDIUMSPEED = 0 select the Slow mode with a 5.5 MHz master clock.
• HIGHSPEED = 0, MEDIUMSPEED = 1 select the Medium mode with a 10 MHz master clock.
• HIGHSPEED = 1, MEDIUMSPEED = 0 select the Fast mode with a 16 MHz master clock.
For better noise performance, the Slow Mode must be enabled.
14.4.2. AGC and Virtual Gain Parameters
The AGC parameter enables the automatic gain control of the analog chain. The AGC loop is based on
(VX)²+ (VY)² = (Amplitude)² = (Radius)²
and it targets an amplitude of 90% of the ADC input span.
If AGC is “0”, the gain stored in the parameter GAINMIN is used.
Melexis strongly recommends to use AGC = 1.
Please note that the angular errors listed in the section 10 are only valid if the AGC is activated. AGC
avoids also the saturation of the analog chain and the associated linearity error.
The current gain (VG) can be read out with the PTC-04 and gives a rough indication of the applied
magnetic flux density (Amplitude).
3901090324
Rev. 001
Page 20 of 40
Data Sheet
Dec 08
MLX90324
“Under-the-Hood” Triaxis Rotary Position
feat. SENT Protocol
14.4.3. GAINMIN and GAINMAX Parameters
GAINMIN & GAINMAX define the boundaries within the gain setting (Virtual Gain) is allowed to vary.
Outside this range, the output is set in diagnostic low.
14.5. FILTER
Parameter
Value
Unit
FHYST
0 … 11
deg
FILTER
0… 6
0
1
FSWAP
The MLX90324 includes 3 types of filters:
• Hysteresis Filter: programmable by the FHYST parameter
• Low Pass FIR Filters controlled with the Filter parameter
• Low Pass IIR Filter
Note: if the parameter FSWAP is set to “1”, the filtering is active on the digital angle. If set to “0”, the
filtering is active on the output transfer function.
14.5.1. Hysteresis Filter
The FHYST parameter is a hysteresis filter. The output value of the IC is not updated when the digital step
is smaller than the programmed FHYST parameter value. The output value is modified when the
increment is bigger than the hysteresis. The hysteresis filter reduces therefore the resolution to a level
compatible with the internal noise of the IC. The hysteresis must be programmed to a value close to the
noise level.
Please note that for the programmable version, the FHYST parameter is set to 4 by default. If you do not
wish this feature, please set it to “0”.
14.5.2. FIR Filters
The MLX90324 features 6 FIR filter modes controlled with Filter = 0…5. The transfer function is described
below:
yn =
j
1
j
∑a
i =0
∑a x
i =0
i n −i
i
The characteristics of the filters no 0 to 5 is given in the Table 1.
3901090324
Rev. 001
Page 21 of 40
Data Sheet
Dec 08
MLX90324
“Under-the-Hood” Triaxis Rotary Position
feat. SENT Protocol
Filter No (j)
Type
Coefficients a0… a5
Title
90% Response Time
99% Response Time
Efficiency RMS (dB)
Efficiency P2P (dB)
0
Disable
N/A
No Filter
1
1
0
0
1
2
3
4
Finite Impulse Response
110000
121000
133100
111100
Extra Light
Light
2
3
4
4
2
3
4
4
2.9
4.0
4.7
5.6
2.9
3.6
5.0
6.1
5
122210
5
5
6.2
7.0
Table 1 - FIR Filters Selection Table
FIR and HYST Filters : Step response Comparative Plot
40000
x(n)
fir(n)
hyst(n)
[0..65535] Scale
38000
36000
34000
32000
30000
0
5
10
15
Milliseconds
20
25
30
FIR and HYST Filter : Gaussian white noise response
[0..65535] Scale
40200
40150
x(n)
fir(n)
40100
hyst(n)
40050
40000
39950
39900
39850
39800
0
50
100
150
Milliseconds
Figure 10 - Step Response and Noise Response for FIR (No 3) and FHYST=10
3901090324
Rev. 001
Page 22 of 40
Data Sheet
Dec 08
MLX90324
“Under-the-Hood” Triaxis Rotary Position
feat. SENT Protocol
14.5.3. IIR Filters
The IIR Filter is enabled with Filter = 6. The diagram of the IIR Filter implemented in the MLX90324 is
given in Figure 11.
b0 = 1
x(n)
y(n)
Z-1
Z-1
-a1
b1 = 2
Z-1
Z-1
b2 = 1
-a2
Figure 11 - IIR Diagram
Filter No
Type
Title
90% Response Time
Efficiency RMS (dB)
Efficiency P2P (dB)
Coefficient A1
Coefficient A2
2nd
6
Order Infinite Impulse Response (IIR)
Medium
11
9.9
12.9
26112
10752
Table 2 - IIR Filter
The Figure 12 shows the response of the filter to a Gaussian noise.
IIR Filter - Gaussian White Noise Response
40200
[0…65535] Scale
40150
x(n)
40100
y(n)
40050
40000
39950
39900
39850
39800
0
50
100
150
Time
Figure 12 - Noise Response for the IIR Filter
3901090324
Rev. 001
Page 23 of 40
Data Sheet
Dec 08
MLX90324
“Under-the-Hood” Triaxis Rotary Position
feat. SENT Protocol
14.6. Programmable Diagnostic Settings
Parameter
Value
0
1
0
3131h
RESONFAULT
EEHAMHOLE
Unit
14.6.1. RESONFAULT Parameter
This RESONFAULT parameter enables the soft reset when a fault is detected by the CPU when the
parameter is set to 1. By default, the parameter is set to “0” but it is recommended to set it to “1” to
activate the self diagnostic modes (See section 15).
Note that in the User Interface (MLX90324UI), the RESONFAULT is split in two bits:
• DRESONFAULT: disable the reset in case of a fault.
• DOUTINFAULT: disable output in diagnostic low in case of fault.
14.6.2. EEHAMHOLE Parameter
The EEHAMHOLE parameter disables the memory recovery (Hamming code) check when a fault is
detected by the CRC when it is equal to 3131h. By default the parameter is set to 0 (enable memory
recovery).
14.7. Lock
Parameter
Value
0
1
0
1
MLXLOCK
LOCK
Unit
14.7.1. MLXLOCK Parameter
MLXLOCK locks all the parameters set by Melexis.
14.7.2. LOCK Parameter
LOCK locks all the parameters set by the user. Once the lock is enabled, it is not possible to change the
EEPROM values anymore.
Note that the lock bit should be set by the solver function “MemLock”.
3901090324
Rev. 001
Page 24 of 40
Data Sheet
Dec 08
MLX90324
“Under-the-Hood” Triaxis Rotary Position
feat. SENT Protocol
15.
MLX90324 Self Diagnostic
The MLX90324 provides numerous self-diagnostic features. Those features increase the robustness of the IC
functionality as it will prevent the IC to provide erroneous output signal in case of internal or external failure
modes (“fail-safe”).
Action
ROM CRC Error at start up
(64 words including Intelligent
Watch Dog - IWD)
ROM CRC Error (Operation Background task)
RAM Test Fail (Start up)
Effect on Outputs
Diagnostic low(21)
CPU Reset (20)
Enter Endless Loop:
- Progress (watchdog
Acknowledge)
- Set Outputs in Diagnostic low
CPU Reset
Immediate Diagnostic low
Diagnostic low
Calibration Data CRC Error
(Start-Up)
Hamming Code Recovery
Hamming Code Recovery Error
(Start-Up)
Calibration Data CRC Error
(Operation - Background)
Dead Zone
CPU Reset
Immediate Diagnostic low
CPU Reset
Immediate Diagnostic low
Set Outputs in Diagnostic low.
Normal Operation until the “dead
zone” is left.
ADC Clipping
Set Outputs in Diagnostic low
(ADC Output is 0000h or
Normal mode and CPU Reset If
7FFFh)
recovery
Radius Overflow ( > 100% ) or
Set Outputs in Diagnostic low
Radius Underflow
Normal mode and CPU Reset If
( < 40 % )
recovery
Gain Too Low (The current
Set Outputs in Diagnostic low
gain code is strictly less than
Normal mode, and CPU Reset If
GAINMIN)
recovery
Gain Too High (The current
Set Outputs in Diagnostic low
gain code is strictly greater
Normal mode, and CPU Reset If
than GAINMAX)
recovery
Redundant Temperature
Set Outputs in Diagnostic low
Sensor Mismatch
Normal mode, and CPU Reset If
recovery
DAC Monitor (Digital to Analog Set Outputs in Diagnostic low.
converter)
Normal Mode with immediate
recovery without CPU Reset
MLX90324 Fault Mode continues…
20
Immediate Diagnostic low
All the outputs are already
in Diagnostic low (start-up)
Start-Up Time is increased
by 3 ms if successful
recovery
See 14.6.2
Immediate recovery if the
“dead zone” is left
Immediate Diagnostic low
Immediate Diagnostic low
(40 % - 100 %)
No magnet / field too high
See also 14.4.2
Immediate Diagnostic low
Immediate Diagnostic low
Immediate Diagnostic low
Immediate Diagnostic low
CPU reset means
1.
2.
3.
4.
21
Remark
All the outputs are already
in Diagnostic low - (start-up)
Core Reset (same as Power-On-Reset). It induces a typical start up time.
Periphery Reset (same as Power-On-Reset)
Fault Flag/Status Lost
The reset can be disabled by clearing the RESONFAULT bit (See 14.6.1)
Refer to section 7 for the Diagnostic Output Level specifications
3901090324
Rev. 001
Page 25 of 40
Data Sheet
Dec 08
MLX90324
“Under-the-Hood” Triaxis Rotary Position
feat. SENT Protocol
…MLX90324 Fault Mode
Fault Mode
ADC Monitor (Analog to Digital
Converter)
Undervoltage Mode
Action
Set Outputs in Diagnostic low.
Normal Mode with immediate
recovery without CPU Reset
At Start-Up, wait Until VDD > 3V.
During operation, CPU Reset after
3 ms debouncing
Effect on Outputs
Immediate Diagnostic low
Remark
ADC Inputs are Shorted
- VDD < POR level =>
Outputs high impedance
Firmware Flow Error
CPU Reset
- POR level < VDD < 3 V =>
Outputs in Diagnostic low.
Immediate Diagnostic low
Read/Write Access out of
physical memory
Write Access to protected area
(IO and RAM Words)
Unauthorized entry in
“SYSTEM” Mode
VDD > 7 V
CPU Reset
Immediate Diagnostic low
Intelligent Watchdog
(Observer)
100% Hardware detection
CPU Reset
Immediate Diagnostic low
100% Hardware detection
CPU Reset
Immediate Diagnostic low
100% Hardware detection
Set Output High Impedance
(Analog)
100% Hardware detection
VDD > 9.4 V
IC is switched off (internal supply)
CPU Reset on recovery
Broken VSS
CPU Reset on recovery
Pull down resistive load =>
Diag. Low
Pull up resistive load =>
Diag. High(21)
Pull down resistive load =>
Diag. Low
Pull up resistive load =>
Diag. High
Pull down resistive load =>
Diag. Low
Broken VDD
CPU Reset on recovery
Pull up resistive load =>
Diag. High
Pull down resistive load =>
Diag. Low
Pull up resistive load =>
Diag. High
3901090324
Rev. 001
Page 26 of 40
100% Hardware detection
Pull down load (≤ 10kΩ) to
VSS to meet Diag Lo spec <
4% VDD.
Trivial
Trivial
Pull up load (≤ 10kΩ) to
VPULLUP ≥ VDD to meet
Diag Hi spec > 96% VDD.
Data Sheet
Dec 08
MLX90324
“Under-the-Hood” Triaxis Rotary Position
feat. SENT Protocol
16.
SENT (SAE-J2716) Protocol
16.1. Introduction
The MLX90324 features an output mode reporting the angular information and other diagnostic
information (e.g. CRC) into a SENT telegram compliant with the approved SAE-J2716 Surface Vehicle
Information Report.
SENT stands for Single Edge Nibble Transmission as the SENT telegram consists into the transmission of
8 Nibbles (1 nibble = 4 bits) in a row, each nibble being coded in a PWM (Pulse Width Modulation) way
with reference to the falling edge.
The Single Edge Nibble Transmission encoding scheme is intended for use in applications where high
resolution sensor data needs to be communicated from a sensor to an Electronic Control Unit (ECU). It is
intended as a replacement for the lower resolution methods of 10 bit A/D’s and PWM.
SENT is a point-to-point (i.e. it is not a data bus) unidirectional communications scheme from sensor
(transmitting device) to controller (receiving device) which does not include a coordination signal from the
controller/receiving device. The sensor signal is transmitted as a series of pulses with data measured as
falling to falling edge times. Transmission occurs independently of any action of the receiver module, i.e.
the transmission does not require a synchronization signal from the receiver module.
16.2. SENT Protocol Definition
The encoding scheme consists of a sequence of pulses which is repeatedly sent by the transmitting
module.
The time granularity of the transmission is defined as the Clock Tick which is specified as follows:
3 µs ≤ Clock Tick ≤ 10 µs
Each nibble is defined in a PWM way:
•
•
the output is first driven LOW (falling edge) for 5 Clock Ticks,
then driven HIGH for 7 Clock Ticks + n × Clock Ticks where n is the decimal value of the nibble.
For a nibble value of 0 (minimum), the output is driven LOW for 5 Clock Ticks then driven HIGH for 7
Clock Ticks. Total period for the shortest nibble (n = 0) is therefore 12 Clock Ticks. See Figure 13.
For a nibble value of 15 (maximum), the output is driven LOW for 5 Clock Ticks then driven HIGH for 22
Clock Ticks. Total period for the longest nibble (n = 15) is therefore 27 Clock Ticks. See Figure 14.
3901090324
Rev. 001
Page 27 of 40
Data Sheet
Dec 08
MLX90324
“Under-the-Hood” Triaxis Rotary Position
feat. SENT Protocol
Output Level
Nibble Value = 0d = 0000b
5 Clock Ticks
7 Clock Ticks
5 Clock Ticks
High
Low
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
Time (Clock Ticks)
Falling Edges
Figure 13 – Timing Diagram for Nibble Value = 0d
Output Level
Nibble Value = 15d = 1111b
5 Clock Ticks
22 Clock Ticks
5 Clock Ticks
High
Low
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
Time (Clock Ticks)
Falling Edges
Figure 14 – Timing Diagram for Nibble Value = 15d
Nibble Value
Decimal (n)
Binary
0d
0000b
1d
0001b
2d
0010b
3d
0011b
4d
0100b
5d
0101b
6d
0110b
7d
0111b
8d
1000b
9d
1001b
10d
1010b
11d
1011b
12d
1100b
13d
1101b
14d
1110b
15d
1111b
3901090324
Rev. 001
Output LOW
(# Clock Ticks)
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
Page 28 of 40
Output HIGH
(# Clock Ticks)
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
Nibble Period
(# Clock Ticks)
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
Data Sheet
Dec 08
MLX90324
“Under-the-Hood” Triaxis Rotary Position
feat. SENT Protocol
The transmission itself consists of the following sequence:
•
•
•
•
“Calibration/Synchronization” pulse period 56 Clock Ticks
One "Status and Communication” nibble pulse (Nibble #1)
A sequence of six “Data” nibble pulses (Nibble #2 … #7)
One “Checksum” (CRC) nibble pulse (Nibble #8)
Figure 15 shows a single message transmission for which
Nibble #1 = 0d
Nibble #2 = 15d
Nibble #3 = 0d
Nibble #4 = 8d
Nibble #5 = 15d
Nibble #6 = 0d
Nibble #7 = 8d
Nibble #8 = 12d (for example purpose – please note that this nibble may not necessarily match the
CRC definition)
Nibble #3
Nibble #4
Nibble #5
Nibble #6
Nibble #7
Nibble #8
0
15
0
8
15
0
8
12
Synchronization
Pulse
Nibble #2
56 Ticks
Nibble #1
Synchronization
Pulse
Output Level
•
•
•
•
•
•
•
•
High
5 Ticks
51 Ticks
Low
310
300
290
280
270
260
250
240
230
220
210
200
190
180
170
160
150
140
130
120
110
100
90
80
70
60
50
40
30
20
10
0
Time (Clock Ticks)
Figure 15 – Single SENT Message Transmission
The transmission delay of one message depends on the content of the nibbles but the minimum and
maximum boundaries are 152 Clock Ticks (456 µs if Clock Tick = 3 µs) and 272 Clock Ticks (816 µs if
Clock Tick = 3 µs).
The “Calibration/Synchronization” pulse period is measured by the receiver in order to calculate the actual
duration of the Clock Tick. In this way, the frequency variations of the main oscillator at the transmitter (i.e.
the sensor) can be compensated. The allowable frequency variation is ± 20%.
The “Status and Communication” nibble is used to transmit internal status or diagnostic information. The
content varies according to the SENT implementation (see Section 16.3 for the implemented SENT
version of MLX90324).
The “Checksum” nibble contains a 4 bit CRC of the Data nibbles only. The “Status and Communication
Nibble” is not included in the CRC calculation. The CRC is calculated using polynomial x4 + x3 + x2 + 1
with seed value of 0101.
3901090324
Rev. 001
Page 29 of 40
Data Sheet
Dec 08
MLX90324
“Under-the-Hood” Triaxis Rotary Position
feat. SENT Protocol
16.3. SENT Protocol Implementation
The MLX90324 implements the Single Secure Sensors format described in the Appendix (Section A.3) of
SAE-J2716 definition.
The Clock Tick is specified at 3 µs.
The angular information (12 bits) is spread over 3 data nibbles. A 8-bit rolling counter 0 to 255 with
rollover back to 0 is included in 2 data nibbles. The last data nibble is derived from the 1st data nibble
including the MSBs (Most Significant Bits) of the computed angle.
•
Nibble #1 = “Status” Nibble
o
o
When the sensor is determined to be faulted, Bit 0 of the Status Nibble is set to 1
otherwise bit set to 0
Bit 1, Bit 2 and Bit 3 are set to 0.
•
Nibble #2 = Angular Information – MSN (Most Significant Nibble)
•
Nibble #3 = Angular Information – MidN (Middle Nibble)
•
Nibble #4 = Angular Information – LSN (Least Significant Nibble)
•
Nibble #5 = 8 bit rolling counter – MSN (Most Significant Nibble)
•
Nibble #6 = 8 bit rolling counter – LSN (Least Significant Nibble)
•
Nibble #7 = Inverted copy of Nibble #2 (15 – Nibble #2 value)
•
Nibble #8 = “Checksum” Nibble
The rolling counter can be disabled (to match the “single sensor” format of the Appendix A.4 of the SAEJ2716): in this case, Nibble #5 and Nibble #6 are set to 0. See in the End-User programmable item to see
how to disable it (Section 14.1.3)
16.4. Use of the MLX90324 SENT Feature
In order to enable the SENT output reporting mode, specific parameters (stored in EEPROM) of the
MLX90324 needs to be programmed. While using the Melexis programming tools, the whole operation is
actually controlled through a single item as described on Section 14.1.3.
The SAE-J2716 recommends a generic application diagram for both the transmitter and the receiver in
order to pass the EMC norms, especially the emissions (e.g. radiated emission, conducted emission)
requirements.
This recommended circuitry applied to the MLX90324LDC (single die – SOIC-8) is shown at the Section
17.4 and MLX90324LGO (dual die – TSSOP-16) is shown at the Section 17.5.
3901090324
Rev. 001
Page 30 of 40
Data Sheet
Dec 08
MLX90324
“Under-the-Hood” Triaxis Rotary Position
feat. SENT Protocol
17.
Recommended Application Diagrams
17.1. Analog Output Wiring with the MLX90324 in SOIC Package
ECU
5V
Vdd
8
1
C1
100nF
GND
Vss
Vdd
MLX90324
Test 1
Switch Out
C2
100nF
Vdig
Test 2
5
4
NotUsed
Out1
ADC
C3
100nF
Output
R1
10K
C4
4.7nF
Figure 16 – Recommended wiring for the MLX90324 in SOIC8 package(22).
22
See section 14.1.4 if the Switch Output feature is used.
3901090324
Rev. 001
Page 31 of 40
Data Sheet
Dec 08
MLX90324
“Under-the-Hood” Triaxis Rotary Position
feat. SENT Protocol
17.2. Analog Output Wiring with the MLX90324 in TSSOP Package
ECU
VDD1
Vdd1
GND1
GND1
GND1
C3
100nF
16
1
C1
100nF
C2
100nF
Vdig1
Vss1
C7
4.7nF
R1
10K
Output1
Out1
Vdd1
C4
100nF
MLX90324
Vdd2
GND2
Vdd2
Vss2
Out2
VDD2
ADC
9
8
Vdig2
GND2
C5
100nF
C6
100nF
C8
4.7nF
R2
10K
GND2
Output2
Figure 17 – Recommended wiring for the MLX90324 in TSSOP16 package (dual die).
17.3. PWM Low Side Output Wiring
ECU
5V
Vdd
8
1
Vdd
C1
100nF
GND
Vss
MLX90324
Test 1
Switch Out
C2
100nF
Vdig
Test 2
5
4
NotUsed
Out1
5V
C3
4.7nF
Output
PWM
Timer
R1
1K
C4
4.7nF
Figure 18 – Recommended wiring for a PWM Low Side Output configuration(23).
23
See section 14.1.4 if the Switch Output feature is used.
3901090324
Rev. 001
Page 32 of 40
Data Sheet
Dec 08
MLX90324
“Under-the-Hood” Triaxis Rotary Position
feat. SENT Protocol
17.4. SENT Output Wiring with the MLX90324 in SOIC-8 package
Receiver
5V
Transmitter
C1
100nF
8
1
Vdd
Vdd
GND
Vss
MLX90324
Test 1
C2
100nF
Vdig
Switch Out
Test 2
Out1
Timer
5V
R2
120Ω
5
4
NotUsed
C3
2nF
SENT
R3
120Ω
R1
10kΩ
Output
C4
6nF
Figure 19 – Recommended Application Diagram for the Transmitter & Receiver
17.5. SENT Output Wiring with the MLX90324 in TSSOP-16 package
Receiver
VDD
1
Transmitter
GND1
GND1
C3
2nF
1
6
1
C1
100nF
C2
100nF
Vdd1
GND1
Vdig1
Vss1
R5
120Ω
Out1
Vdd1
C4
100nF
MLX90324
Vss2
Vdig2
GND2
5V
R1
10K
VDD
2
Timer
9
8
C6
2nF
SENT
Vdd2
GND2
Vdd2
Out2
Output1
R4
120Ω
C7
6nF
GND2
C5
100nF
R6
120Ω
Output2
SENT
R3
120Ω
C8
6nF
R2
10K
5V
Figure 20 – Recommended Application Diagram for the Transmitter & Receiver in TSSOP package
3901090324
Rev. 001
Page 33 of 40
Data Sheet
Dec 08
MLX90324
“Under-the-Hood” Triaxis Rotary Position
feat. SENT Protocol
18. Standard information regarding manufacturability of Melexis
products with different soldering processes
Our products are classified and qualified regarding soldering technology, solderability and moisture
sensitivity level according to following test methods:
Reflow Soldering SMD’s (Surface Mount Devices)
•
•
•
IPC/JEDEC J-STD-020
Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices
(Classification reflow profiles according to table 5-2)
EIA/JEDEC JESD22-A113
Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing
(Reflow profiles according to table 2)
Melexis Working Instruction 341901308
Wave Soldering SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)
•
•
•
EN60749-20
Resistance of plastic- encapsulated SMD’s to combined effect of moisture and soldering heat
EIA/JEDEC JESD22-B106 and EN60749-15
Resistance to soldering temperature for through-hole mounted devices
Melexis Working Instruction 341901309
Iron Soldering THD’s (Through Hole Devices)
•
•
EN60749-15
Resistance to soldering temperature for through-hole mounted devices
Melexis Working Instruction 341901309
Solderability SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)
•
•
EIA/JEDEC JESD22-B102 and EN60749-21
Solderability
Melexis Working Instruction 3304312
For all soldering technologies deviating from above mentioned standard conditions (regarding peak
temperature, temperature gradient, temperature profile etc) additional classification and qualification tests
have to be agreed upon with Melexis.
The application of Wave Soldering for SMD’s is allowed only after consulting Melexis regarding assurance
of adhesive strength between device and board.
For more information on the lead free topic please see quality page at our website:
http://www.melexis.com/quality.aspx
19.
ESD Precautions
Electronic semiconductor products are sensitive to Electro Static Discharge (ESD).
Always observe Electro Static Discharge control procedures whenever handling semiconductor products.
3901090324
Rev. 001
Page 34 of 40
Data Sheet
Dec 08
MLX90324
“Under-the-Hood” Triaxis Rotary Position
feat. SENT Protocol
20.
Package Information
20.1. SOIC8 - Package Dimensions
1.27 TYP
NOTES:
3.81
3.99**
4.80
4.98*
5.80
6.20**
All dimensions are in millimeters (anlges in degrees).
* Dimension does not include mold flash, protrusions or
gate burrs (shall not exceed 0.15 per side).
** Dimension does not include interleads flash or protrusion
(shall not exceed 0.25 per side).
*** Dimension does not include dambar protrusion.
Allowable dambar protrusion shall be 0.08 mm total in
excess of the dimension at maximum material condition.
Dambar cannot be located on the lower radius of the foot.
1.37
1.57
1.52
1.72
0.19
0.25
0°
8°
0.100
0.250
0.36
0.46***
0.41
1.27
8
Out
Test 1
Vdig
Vss
20.2. SOIC8 - Pinout and Marking
Marking :
Part Number MLX90324 (3 digits)
Die Version (3 digits)
5
324
324Dxx
123456
123456
Bottom
3901090324
Rev. 001
WW
NotUsed
Switch
Test 0
YY
Lot number (6 digits)
Week Date code (2 digits)
Year Date code (2 digits)
4
Vdd
1
Dxx
TOP
Page 35 of 40
Data Sheet
Dec 08
MLX90324
“Under-the-Hood” Triaxis Rotary Position
feat. SENT Protocol
20.3. SOIC8 - IMC Positionning
CW
8
7
6
5
CCW
COS
1.25
1.65
1
2
3
0.46 +/- 0.06
4
1.96
2.26
SIN
Angle detection MLX90324 SOIC8
~ 0 Deg.*
S
1
2
6
5
8
7
4
1
2
N
7
3
2
3
5
S3
4
~ 270 Deg.*
5
8
7
6
5
4
1
2
N3
4
S
6
N
1
7
S
~ 180 Deg.*
8
6
N
8
~ 90 Deg.*
* No absolute reference for the angular information.
The MLX90324 is an absolute angular position sensor but the linearity error (Le – See Section 10) does
not include the error linked to the absolute reference 0 Deg (which can be fixed in the application through
the discontinuity point – See 14.2.2).
3901090324
Rev. 001
Page 36 of 40
Data Sheet
Dec 08
MLX90324
“Under-the-Hood” Triaxis Rotary Position
feat. SENT Protocol
20.4. TSSOP16 - Package Dimensions
0.65 TYP
12O TYP
0.20 TYP
0.09 MIN
1.0 DIA
4.30
4.50**
6.4 TYP
0.09 MIN
1.0
12O TYP
0.50
0.75
0O
8O
1.0
1.0 TYP
0.85
0.95
4.90
5.10*
1.1 MAX
0.19
0.30***
0.09
0.20
0.05
0.15
NOTES:
All dimensions are in millimeters (anlges in degrees).
* Dimension does not include mold flash, protrusions or gate burrs (shall not exceed 0.15 per side).
** Dimension does not include interleads flash or protrusion (shall not exceed 0.25 per side).
*** Dimension does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm total in excess of the dimension at
maximum material condition. Dambar cannot be located on the lower radius of the foot.
3901090324
Rev. 001
Page 37 of 40
Data Sheet
Dec 08
MLX90324
“Under-the-Hood” Triaxis Rotary Position
feat. SENT Protocol
20.5. TSSOP16 - Pinout and Marking
16
1
Vdig_1
Test1_1
Out_1
Vdd_1
NotUsed
Test0_1
Switch_1
324Dxx
123456
Vss_1
Switch_2
NotUsed
Vdd_2
Marking :
Vss_2
Vdig_2
9
8
Out_2
Test1_2
Test0_2
Part Number MLX90324 (3 digits)
Die Version (3 digits)
324
Dxx
Top
123456
Bottom
YY
Lot number (6 digits)
WW
Week Date code (2 digits)
Year Date code (2 digits)
20.6. TSSOP16 - IMC Positionning
CW
COS 2
16
9
Die 1
Die 2
SIN 2
SIN 1
0.30 +/- 0.06
CCW
1.95
2.45
1
8
1.84
2.04
COS 1
2.76
2.96
3901090324
Rev. 001
Page 38 of 40
Data Sheet
Dec 08
MLX90324
“Under-the-Hood” Triaxis Rotary Position
feat. SENT Protocol
Angle detection MLX90324 TSSOP16
~ 180 Deg.*
16
9
16
Die 2
1
8
~ 180 Deg.* ~ 0 Deg.*
16
1
8
~ 270 Deg.* ~ 90 Deg.*
9
16
Die 2
9
Die 1
S
S
N
1
Die 2
S
Die 1
S
Die 1
9
N
N
Die 1
~ 90 Deg.* ~ 270 Deg.*
8
1
Die 2
N
~ 0 Deg.*
8
* No absolute reference for the angular information.
The MLX90324 is an absolute angular position sensor but the linearity error (Le – See Section 10) does
not include the error linked to the absolute reference 0 Deg (which can be fixed in the application through
the discontinuity point – See 14.2.2).
3901090324
Rev. 001
Page 39 of 40
Data Sheet
Dec 08
MLX90324
“Under-the-Hood” Triaxis Rotary Position
feat. SENT Protocol
21.
Disclaimer
Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in
its Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the
information set forth herein or regarding the freedom of the described devices from patent infringement.
Melexis reserves the right to change specifications and prices at any time and without notice. Therefore,
prior to designing this product into a system, it is necessary to check with Melexis for current information.
This product is intended for use in normal commercial applications. Applications requiring extended
temperature range, unusual environmental requirements, or high reliability applications, such as military,
medical life-support or life-sustaining equipment are specifically not recommended without additional
processing by Melexis for each application.
The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not
be liable to recipient or any third party for any damages, including but not limited to personal injury,
property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or
consequential damages, of any kind, in connection with or arising out of the furnishing, performance or
use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow
out of Melexis’ rendering of technical or other services.
© 2008 Melexis N.V. All rights reserved.
For the latest version of this document, go to our website at
www.melexis.com
Or for additional information contact Melexis Direct:
Europe, Africa, Asia:
America:
Phone: +32 1367 0495
E-mail: [email protected]
Phone: +1 603 223 2362
E-mail: [email protected]
ISO/TS 16949 and ISO14001 Certified
3901090324
Rev. 001
Page 40 of 40
Data Sheet
Dec 08