MLX90316 Rotary Position Sensor IC Features and Benefits Absolute Rotary Position Sensor IC Simple & Robust Magnetic Design Tria⊗is Hall Technology Programmable Angular Range up to 360 Degrees Programmable Linear Transfer Characteristic Selectable Analog (Ratiometric), PWM, Serial Protocol 12 bit Angular Resolution 10 bit Angular Accuracy 40 bit ID Number Single Die - SO8 Package RoHS Compliant Dual Die (Full Redundant) - TSSOP16 Package RoHS Compliant Applications Absolute Rotary Position Sensor Pedal Position Sensor Throttle Position Sensor Ride Height Position Sensor Steering Wheel Position Sensor Motor-shaft Position Sensor Float-Level Sensor Non-Contacting Potentiometer Ordering Information Part No. Temperature Suffix MLX90316 MLX90316 MLX90316 MLX90316 MLX90316 S (− 20°C to + 85°C) E (− 40°C to + 85°C) K (− 40°C to + 125°C) E (− 40°C to + 85°C) K (− 40°C to + 125°C) Package Code Option code DC [SOIC-8] DC [SOIC-8] DC [SOIC-8] GO [TSSOP-16] GO [TSSOP-16] - 1. Functional Diagram ! µ ', '* '+ Tria is ' "! # $% ( % & !) Figure 1 − Block Diagram 3901090316 Rev. 001 Page 1 of 34 Data Sheet 4 October 05 MLX90316 Rotary Position Sensor IC 2. Description The MLX90316 is a monolithic sensor IC featuring the Tria⊗is Hall technology. Conventional planar Hall technology is only sensitive to the flux density applied orthogonally to the IC surface. The Tria⊗is Hall sensor is also sensitive to the flux density applied parallel to the IC surface. This is obtained through an Integrated Magneto-Concentrator (IMC) which is deposited on the CMOS die (as an additional back-end step). The MLX90316 is only sensitive to the flux density coplanar with the IC surface. This allows the MLX90316 with the correct magnetic circuit to decode the absolute rotary (angular) position from 0 to 360 Degrees. It enables the design of novel generation of non-contacting rotary position sensors that are frequently required for both automotive and industrial applications. In combination with the appropriate signal processing, the magnetic flux density of a small magnet (diametral magnetization) rotating above the IC can be measured in a non-contacting way (Figure 2). The angular information is computed from both vectorial components of the flux density (i.e. BX and BY) MLX90316 produces an output signal proportional to the decoded angle. The output is selectable between Analog, PWM and Serial Protocol. α Figure 2 − Typical application of MLX90316 3901090316 Rev. 001 Page 2 of 34 Data Sheet 4 October 05 MLX90316 Rotary Position Sensor IC TABLE OF CONTENTS FEATURES AND BENEFITS ....................................................................................................................... 1 APPLICATIONS............................................................................................................................................ 1 ORDERING INFORMATION......................................................................................................................... 1 1. FUNCTIONAL DIAGRAM...................................................................................................................... 1 2. DESCRIPTION....................................................................................................................................... 2 3. GLOSSARY OF TERMS − ABBREVIATIONS − ACRONYMS ............................................................ 5 4. PINOUT.................................................................................................................................................. 5 5. ABSOLUTE MAXIMUM RATINGS ....................................................................................................... 6 6. DETAILED DESCRIPTION.................................................................................................................... 6 7. MLX90316 ELECTRICAL SPECIFICATION......................................................................................... 9 8. MLX90316 ISOLATION SPECIFICATION .......................................................................................... 10 9. MLX90316 TIMING SPECIFICATION ................................................................................................. 10 10. MLX90316 ACCURACY SPECIFICATION ......................................................................................... 11 11. MLX90316 MAGNETIC SPECIFICATION .......................................................................................... 12 12. MLX90316 CPU & MEMORY SPECIFICATION ................................................................................. 12 13. MLX90316 END-USER PROGRAMMABLE ITEMS ........................................................................... 13 14. DESCRIPTION OF END-USER PROGRAMMABLE ITEMS.............................................................. 14 14.1. OUTPUT_MODE.........................................................................................................................................14 14.1.1. Analog Output Mode ............................................................................................................................14 14.1.2. PWM Output Mode...............................................................................................................................14 14.1.3. Serial Protocol Output Mode ...............................................................................................................14 14.2. OUTPUT TRANSFERT CHARACTERISTIC .....................................................................................................15 14.2.1. CLOCKWISE Parameter......................................................................................................................15 14.2.2. LNR Parameters ...................................................................................................................................15 14.2.3. CLAMPING Parameters ......................................................................................................................16 14.2.4. DEADZONE Parameter .......................................................................................................................16 14.2.5. FHYST Parameter ................................................................................................................................16 14.3. IDENTIFICATION ........................................................................................................................................16 14.4. SENSOR FRONT-END .................................................................................................................................17 14.4.1. HIGHSPEED Parameter......................................................................................................................17 14.4.2. FILTER Parameter...............................................................................................................................17 14.4.3. AUTO_RG, RGThresL, RGThresH Parameters...................................................................................17 14.5. DIAGNOSTIC ..............................................................................................................................................18 14.5.1. EEHAMHOLE Parameter ....................................................................................................................18 14.5.2. RESONFAULT Parameter ...................................................................................................................18 14.5.3. DACTHRES Parameter........................................................................................................................18 14.5.4. FORCERA75 Parameter ......................................................................................................................18 3901090316 Rev. 001 Page 3 of 34 Data Sheet 4 October 05 MLX90316 Rotary Position Sensor IC 14.6. LOCK.........................................................................................................................................................18 14.6.1. MLXLOCK Parameter .........................................................................................................................18 14.6.2. LOCK Parameter .................................................................................................................................18 15. MLX90316 SELF DIAGNOSTIC.......................................................................................................... 19 16. SERIAL PROTOCOL........................................................................................................................... 21 16.1. INTRODUCTION .........................................................................................................................................21 16.2. SERIAL PROTOCOL MODE ...................................................................................................................21 16.3. MOSI (MASTER OUT SLAVE IN) ...............................................................................................................21 16.4. MISO (MASTER IN SLAVE OUT) ...............................................................................................................21 16.5. /SS (SLAVE SELECT) .................................................................................................................................21 16.6. MASTER START-UP ...................................................................................................................................21 16.7. SLAVE START-UP ......................................................................................................................................21 16.8. TIMING ......................................................................................................................................................22 16.9. SLAVE RESET ............................................................................................................................................23 16.10. FRAME LAYER ..........................................................................................................................................23 16.10.1. Command Device Mechanism ..........................................................................................................23 16.10.2. Data Frame Structure ......................................................................................................................23 16.10.3. Timing ..............................................................................................................................................23 16.10.4. Data Structure ..................................................................................................................................24 16.10.5. Angle Calculation.............................................................................................................................24 16.10.6. Error Handling.................................................................................................................................24 17. RECOMMENDED APPLICATION DIAGRAMS .................................................................................. 25 17.1. 17.2. 17.3. 17.4. ANALOG OUTPUT WIRING WITH THE MLX90316 IN SOIC PACKAGE .......................................................25 ANALOG OUTPUT WIRING WITH THE MLX90316 IN TSSOP PACKAGE ....................................................25 PWM LOW SIDE OUTPUT WIRING ............................................................................................................26 SERIAL PROTOCOL ....................................................................................................................................26 18. STANDARD INFORMATION REGARDING MANUFACTURABILITY OF MELEXIS PRODUCTS WITH DIFFERENT SOLDERING PROCESSES ........................................................................................ 28 19. ESD PRECAUTIONS........................................................................................................................... 28 20. PACKAGE INFORMATION................................................................................................................. 29 20.1. 20.2. 20.3. 20.4. 20.5. 20.6. SOIC8 - PACKAGE DIMENSIONS ...............................................................................................................29 SOIC8 - PINOUT AND MARKING ...............................................................................................................29 SOIC8 - IMC POSITIONNING .....................................................................................................................30 TSSOP16 - PACKAGE DIMENSIONS...........................................................................................................31 TSSOP16 - PINOUT AND MARKING ..........................................................................................................32 TSSOP16 - IMC POSITIONNING ................................................................................................................32 21. DISCLAIMER ....................................................................................................................................... 34 3901090316 Rev. 001 Page 4 of 34 Data Sheet 4 October 05 MLX90316 Rotary Position Sensor IC 3. Glossary of Terms − Abbreviations − Acronyms Gauss (G), Tesla (T): Units for the magnetic flux density − 1 mT = 10 G TC: Temperature Coefficient (in ppm/Deg.C.) NC: Not Connected PWM: Pulse Width Modulation %DC: Duty Cycle of the output signal i.e. TON /(TON + TOFF) ADC: Analog-to-Digital Converter DAC: Digital-to-Analog Converter LSB: Least Significant Bit MSB: Most Significant Bit DNL: Differential Non-Linearity INL: Integral Non-Linearity RISC: Reduced Instruction Set Computer ASP: Analog Signal Processing DSP: Digital Signal Processing ATAN: trigonometric function: arctangent (or inverse tangent) IMC: Integrated Magneto-Concentrator (IMC) CoRDiC: Coordinate Rotation Digital Computer (i.e. iterative rectangular-to-polar transform) EMC: Electro-Magnetic Compatibility 4. Pinout Pin # SOIC-8 TSSOP-16 Analog / PWM Serial Protocol Analog / PWM Serial Protocol 1 Vdd Vdd Vdig_1 Vdig_1 2 Test 0 Test 0 Vss_1 (Ground_1) Vss_1 (Ground_1) 3 Not Used /SS Vdd_1 Vdd_1 4 Not Used SCLK Test0_1 Test 01 5 Out MOSI / MISO Not Used_2 /SS_2 6 Test 1 Test 1 Not Used_2 SCLK_2 7 Vdig Vdig Out_2 MOSI_2 / MISO_2 8 Vss (Ground) Vss (Ground) Test1_2 Test 12 9 Vdig_2 Vdig_2 10 Vss_2 (Ground_2) Vss_2 (Ground_2) 11 Vdd_2 Vdd_2 12 Test0_2 Test 02 13 Not Used_1 /SS_1 14 Not Used_1 SCLK_1 15 Out_1 MOSI_1 / MISO_1 16 Test1_1 Test 11 For optimal EMC behavior, it is recommended to connect the unused pins (Not Used and Test) to the Ground (see section 16). 3901090316 Rev. 001 Page 5 of 34 Data Sheet 4 October 05 MLX90316 Rotary Position Sensor IC 5. Absolute Maximum Ratings Parameter Value Supply Voltage, VDD (overvoltage) + 20 V Reverse Voltage Protection − 10 V Positive Output Voltage + 10 V + 14 V (200 s max − TA = + 25°C) Output Current (IOUT) ± 30 mA Reverse Output Voltage − 0.3 V Reverse Output Current − 50 mA Operating Ambient Temperature Range, TA − 40°C … + 150°C Storage Temperature Range, TS − 40°C … + 150°C Magnetic Flux Density ± 700 mT Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. 6. Detailed Description As described on the block diagram (Figure 1), the magnetic flux density parallel to the IC surface (i.e. B//) is sensed through the Tria⊗is sensor front-end. This front-end consists into two orthogonal pairs (for each of the two directions parallel with the IC surface i.e. X and Y) of conventional planar Hall plates (blue area on Figure 3) and an Integrated Magneto-Concentrator (IMC − yellow disk on Figure 3). Figure 3 − Tria⊗is sensor front-end (4 Hall plates + IMC disk) Both components of the applied flux density B// are measured individually i.e. BX// and BY//. Two orthogonal components (respectively BX⊥ and BY⊥) proportional to the parallel components (respectively BX// and BY//) are induced through the IMC and can be measured by both respective pairs of conventional planar Hall plates as those are sensitive to the flux density applied orthogonally to them and the IC surface. While a magnet (diametrally magnetized) rotates above the IC as described on Figure 2, the sensing stage provides two differential signals in quadrature (sine and cosine − Figures 4 & 5). 3901090316 Rev. 001 Page 6 of 34 Data Sheet 4 October 05 MLX90316 Rotary Position Sensor IC 400 300 BX & BY (G) 200 100 0 -100 -200 -300 -400 0 90 180 270 360 450 Alpha (Degree) 540 BX 630 720 BY Figure 4 − Magnetic Flux Density − BX ∝ cos(α) & BY ∝ sin(α) 2000 1500 VX & VY (mV) 1000 500 0 -500 -1000 -1500 -2000 0 90 180 270 360 450 Alpha (Degree) VX 540 630 720 VY Figure 5 − Tria⊗is sensor front-end − Output signals − VX ∝ BX ∝ cos(α) & VY ∝ BY ∝ sin(α) Those Hall signals are processed through a fully differential analog chain featuring the classic offset cancellation technique (Hall plate quadrature spinning and chopper-stabilized amplifier). The conditioned analog signals are converted through an ADC (configurable − 14 or 15 bits) and provided to a DSP block for further processing. The DSP stage is based on a 16 bit RISC micro-controller whose primary function is the extraction of the angular position from the two raw signals (after so-called front-end compensation steps) through the following operation: α = ATAN 3901090316 Rev. 001 VY VX Page 7 of 34 Data Sheet 4 October 05 MLX90316 Rotary Position Sensor IC The DSP functionality is governed by the micro-code (firmware − F/W) of the micro-controller which is stored into the ROM (mask programmable). In addition to the ″ATAN″ function, the F/W controls the whole analog chain, the output transfer characteristic, the output protocol, the programming/calibration and also the self-diagnostic modes. In the MLX90316, the ″ATAN″ function is computed via a look-up table (i.e. it is not obtained through a CoRDiC algorithm). Due to the fact that the ″ATAN″ operation is performed on the ratio ″VY/VX″, the angular information is intrinsically self-compensated vs. flux density variations (due to airgap change, thermal or ageing effects) affecting both signals. This feature allows therefore an improved thermal accuracy vs. rotary position sensor based on conventional linear Hall sensors. In addition to the improved thermal accuracy, the realized rotary position sensor is capable of measuring a complete revolution (360 Degrees) and the linearity performances are excellent taking into account typical manufacturing tolerances (e.g. relative placement between the Hall IC and the magnet). Once the angular information is computed (over 360 degrees), it is further conditioned (mapped) vs. the target transfer characteristic and it is provided at the output(s) as: • • • an analog output level through a 12 bit DAC followed by a buffer a digital PWM signal with 12 bit depth (programmable frequency 100 Hz … 1 kHz) a digital Serial Protocol (SP − 14 bits computed angular information available) For instance, the analog output can be programmed for offset, gain and clamping to meet any rotary position sensor output transfer characteristic: Vout(α) = ClampLo Vout(α) = Voffset + Gain × α Vout(α) = ClampHi for α ≤ αmin for αmin ≤ α ≤ αmax for α ≥ αmax where Voffset, Gain, ClampLo and ClampHi are the main adjustable parameters for the end-user. The linear part of the transfer curve can be adjusted through either a 2 point or a 3 point calibration depending on the linearity requirement. The calibration parameters are stored in EEPROM featuring a Hamming Error Correction Coding (ECC). The programming steps do not require any dedicated pins. The operation is done using the supply and output nodes of the IC. The programming of the MLX90316 is handled at both engineering lab and production line levels by the Melexis Programming Unit PTC-04 with the dedicated MLX90316 daugtherboard and software tools (DLL − User Interface). 3901090316 Rev. 001 Page 8 of 34 Data Sheet 4 October 05 MLX90316 Rotary Position Sensor IC 7. MLX90316 Electrical Specification DC Operating Parameters at Vdd = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (S, E or K). Parameter Nominal Supply Voltage Supply Current (1) Symbol Test Conditions Vdd Idd Min Typ Max 4.5 5 5.5 Output Short Circuit Current Iout Ishort 10 mA Fast mode# & 16 mA Analog Output mode -8 8 mA PWM Output mode -20 20 mA Vout = 0 V 12 Vout = 5 V 12 15 mA 22 30 mA 4 10 ∞ kΩ 4 5.6 Vout = 14 V (TA = 25°C) Output Load RL Pull-down to Ground (2) Pull-up to 5V (3) Saturation Output Level Diagnostic Output Level Vsat_lo Pull-up load RL > 10 k Vsat_hi Pull-down load RL > 10 k Diag_lo Pull-down load RL > 10 k mA ∞ (4) 3 96 kΩ %Vdd %Vdd 1 Pull-up load RL > 10 k %Vdd 1.5 Pull-down load RL > 10 k 97 Pull-up load RL > 10 k 98 Clamp_lo Programmable 0 100 %Vdd (5) Clamp_hi Programmable 0 100 %Vdd (5) Diag_hi Clamped Output Level V Slow mode# & , , Output Current Units %Vdd (1) For the dual version, the supply current is multiplied by 2 (2) See section 14.1 for details concerning Slow and Fast mode (3) Applicable for output in Analog and PWM (Open-Drain) modes (4) RL < ∞ for output in PWM mode (5) Clamping levels are limited by Vsat_lo and Vsat_hi 3901090316 Rev. 001 Page 9 of 34 Data Sheet 4 October 05 MLX90316 Rotary Position Sensor IC 8. MLX90316 Isolation Specification DC Operating Parameters at Vdd = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (S, E or K). Only valid for the package code GO i.e. dual die version. Parameter Symbol Isolation Resistor Test Conditions Min Between 2 dies – TSSOP package 4 Typ Max Units M 9. MLX90316 Timing Specification DC Operating Parameters at Vdd = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (S, E or K). Parameter Main Clock Frequency Symbol Ck Test Conditions Min MHz Fast mode # & 20 MHz Slow mode # & 600 s 200 s - Fast mode # & Ts Slow mode # &, Filter=5 # & - . 400 Fast mode # &, Filter=0 # & - Watchdog Wd Start-up Cycle Tsu Analog Output Slew Rate PWM Frequency Units 7 - Step Response Time Max Slow mode #-& - Sampling Rate Typ . Slow and Fast mode #-& Cout = 42 nF FPWM 4 ms 600 s 5 ms 15 ms 200 100 V/ms 1000 Hz (6) See section 14.1 for details concerning Slow and Fast mode (7) See section 14.4 for details concerning Filter parameter 3901090316 Rev. 001 Page 10 of 34 Data Sheet 4 October 05 MLX90316 Rotary Position Sensor IC 10. MLX90316 Accuracy Specification DC Operating Parameters at Vdd = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (S, E or K). All the errors expressed in Deg. Can be converted in %Vdd or %dc by using the following relationship: Err (%Vdd) = Err (Deg) × Output Span (%Vdd) / Angular Span (Deg) + Err_DAC + Err_OutBuf Err (%DC) = Err (Deg) × Output Span (%DC) / Angular Span (Deg) Err (Serial Protocol) = Err (Deg) Parameter Symbol ADC Resolution RADC Test Conditions Min Typ Max Units Slow – 15 bits ADC (14 + sign) 0.005 Deg/LSB15 Fast – 14 bits ADC (13 + sign) 0.01 Deg/LSB14 Thermal Offset Drift #1 Thermal Offset Drift at the DSP input (excl. DAC and output stage) -60 +60 LSB15 (9) Thermal Offset Drift #2 Thermal Offset Drift of the DAC and Output Stage - 0.2 + 0.2 %Vdd Only for the Analog Output Analog Output Resolution RDAC 12 bits DAC 0.025 %Vdd/LSB (Theoretical – Noise free) INL -4 DNL 0.05 Output stage Noise Noise pk-pk 1 +4 LSB 2 LSB 0.05 (10) RG = 9, Slow mode, Filter=5 0.03 0.06 Deg RG = 9, Fast mode, Filter=0 0.1 0.2 Deg 0 0.1 % Ratiometry Error -0.1 PWM Output Resolution RPWM % Vdd 12 bits 0.025 %DC/LSB (Theoretical – Jitter free) PWM Jitter(11) Serial Protocol Output Resolution JPWM fPWM = 250 Hz RSP 14 bits – 360 Deg. mapping 0.2 0.022 %DC Deg/LSB (Theoretical – Jitter free) 12 Intrinsic Linearity Error( ) Le 360 Deg -2 2 Deg (9) Thermal Offset Drift #1 yields to max. ± 0.3 Deg. drift for the computed angular information (output of the DSP). (10) The application diagram used is described in the recommended wiring. For detailed information, refer to section filter in application mode. (11) Jitter is defined by ± 3 for 1000 acquisitions. (12) The Intrinsic Linearity Error refers to the IC itself (offset, sensitivity mismatch, orthogonality) taking into account an ideal rotating field. Once associated to a practical magnetic construction and the associated mechanical and magnetic tolerances, the output linearity error increases. However, it can be improved with the 2 point or 3 point end-user calibration that is available on the MLX90316. 3901090316 Rev. 001 Page 11 of 34 Data Sheet 4 October 05 MLX90316 Rotary Position Sensor IC 11. MLX90316 Magnetic Specification DC Operating Parameters at Vdd = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (S, E or K). Parameter Magnetic Flux Density Symbol Test Conditions B Min 20 Typ 50 Magnet Temperature Coefficient TCm -2400 (13) Above 70 mT, the IMC starts saturating yielding to an increase of the linearity error. 12. Max 13 Units 70( ) mT 0 ppm/°C MLX90316 CPU & Memory Specification The DSP is based on a 16 bit RISC / $! Parameter Symbol 01(CPU provides 5 Mips while running at 20 MHz. Test Conditions Min Typ Max Units ROM 10 KB RAM 256 B EEPROM 128 B 3901090316 Rev. 001 Page 12 of 34 Data Sheet 4 October 05 MLX90316 Rotary Position Sensor IC 13. MLX90316 End-User Programmable Items Comments Parameter Output stage Mode PWMPOL1 PWM_Freq CLOCKWISE DP LNR_S0 LNR_A_X LNR_A_Y LNR_A_S LNR_B_X LNR_B_Y LNR_B_S LNR_C_X LNR_C_Y LNR_C_S CLAMP_HIGH CLAMP_LOW DEADZONE FHYST MELEXISID1 MELEXISID2 MELEXISID3 CUSTUMERID1 CUSTUMERID2 CUSTUMERID3 HIGHSPEED FILTER AUTO_RG RGThresL RGThresH EEHAMHOLE RESONFAULT DACTHRES FORCERA75 MLXLOCK LOCK CRC 3901090316 Rev. 001 Define the output stage mode PWM Polarity PWM Frequncy Discontinuity Point Initial Slope AX Coordinate AY Coordinate AS Coordinate BX Coordinate BY Coordinate BS Coordinate CX Coordinate CY Coordinate CS Coordinate Clamping_High Clamping_Low Automatically computed and programmed by the IC Page 13 of 34 # bit 16 1 16 1 15 16 16 16 16 16 16 16 16 16 16 16 16 8 8 16 16 16 8 16 16 1 8 1 4 4 16 1 8 1 1 1 16 Data Sheet 4 October 05 MLX90316 Rotary Position Sensor IC 14. Description of End-User Programmable Items 14.1. Output_Mode The MLX90316 output type is defined by the Ouput_Mode parameter. Parameter Output_Mode Value Analog PWM NMOS Serial Unit 14.1.1. Analog Output Mode The Analog Output Mode is a rail-to-rail and ratiometric output with a push-pull output stage configuration allowed the use of a pull-up or pull-down resistor. 14.1.2. PWM Output Mode When PWM NMOS is selected, the output signal is a PWM modulation. The output stage is an open drain NMOS transistor, to be used with a pull-up resistor (low side). The PWM polarity is selected by the PWMPOL1 parameter: • • PWMPOL1 = 0 for a low level at 100% PWMPOL1 = 1 for a high level at 100% The PWM frequency is selected by the PWM_Freq parameter. Parameter Value PWMPOL1 0 1 PWM_Freq 100 … 1000 Unit Hz 14.1.3. Serial Protocol Output Mode The MLX90316 features a digital Serial Protocol mode. The MLX90316 is considered as a Slave node. See the dedicated Serial Protocol section for a full description (Section 17). 3901090316 Rev. 001 Page 14 of 34 Data Sheet 4 October 05 MLX90316 Rotary Position Sensor IC 14.2. Output Transfert Characteristic Parameter CLOCKWISE Value Unit CCW = 0 CW = 1 DP 0 … 359.9999 Deg. LNR_A_X LNR_B_X LNR_C_X 0 … 359.9999 Deg. LNR_A_Y LNR_B_Y LNR_C_Y 0 … 100 % LNR_S0 LNR_A_S LNR_B_S LNR_C_S 0 … 64 %/Deg. CLAMP_LOW 0 … 100 % CLAMP_HIGH 0 … 100 % DEADZONE FHYST 0 … 359.9999 Deg. 0 … 255 LSB 14.2.1. CLOCKWISE Parameter The CLOCKWISE parameter defines the magnet rotation direction. • • CCW is the defined by the 1-4-5-8 pin order direction for the SOIC8 package and 1-8-9-16 pin order direction for the TSSOP16 package. CW is defined by the reverse direction: 8-5-4-1 pin order direction for the SOIC8 and 16-9-8-1 pin order direction for the TSSOP16 package. Refer to the drawing in the IMC positioning sections (Section 19.3 and 19.6). 14.2.2. LNR Parameters The LNR parameters, together with the clamping values, fully define the relation (the transfer function) between the digital angle and the output signal. The shape of the 90316 transfer function from the digital angle value to the output voltage is described by the drawing below. Six segments can be programmed but the clamping levels are necessarily flat. Two, three, or even five calibration points are then available, reducing the overall non-linearity of the IC by almost an order of magnitude each time. Three or five point calibration will be preferred by customers looking for excellent non-linearity figures. Two-point calibrations will be preferred by customers looking for a cheaper calibration set-up and shorter calibration time. 3901090316 Rev. 001 Page 15 of 34 Data Sheet 4 October 05 MLX90316 Rotary Position Sensor IC 100 % Clamping High CLAMPHIGH C Slope LNR_C_S LNR_C_Y B Slope LNR_B_S LNR_B_Y A Slope LNR_A_S LNR_A_Y Slope LNR_S0 Clamping Low CLAMPLOW 0% LNR_A_X 0 LNR_B_X LNR_C_X 360 (Deg.) 14.2.3. CLAMPING Parameters The clamping levels are two independent values to limit the output voltage range. The CLAMP_LOW parameter adjusts the minimum output voltage level. The CLAMP_HIGH parameter sets the maximum output voltage level. Both parameters have 16 bits of adjustment with a resolution of approximately 0.076 mV. 14.2.4. DEADZONE Parameter The dead zone is defined as the angle window between 0 and 359.9999. When the digital angle lies in this zone, the IC is in fault mode. 14.2.5. FHYST Parameter The FHYST parameter is an hysteresis filter. The output value of the IC is not updated when the digital step is smaller than the programmed FHYST parameter value. The output value is modified when the increment is bigger than the hysteresis. The hysteresis filter reduces therefore the resolution to a level compatible with the internal noise of the IC. The hysteresis must be programmed to a value close to the noise level. 14.3. Identification Parameter Value MELEXSID1 MELEXSID2 MELEXSID3 0 … 65535 0 … 65535 0 … 65535 CUSTUMERID1 CUSTUMERID2 CUSTUMERID3 0 … 255 0 … 65535 0 … 65535 Unit Identification number: 40 bits freely useable by Customer for traceability purpose. 3901090316 Rev. 001 Page 16 of 34 Data Sheet 4 October 05 MLX90316 Rotary Position Sensor IC 14.4. Sensor Front-End Parameter HIGHSPEED FILTER Value Unit 0 = Slow mode 1 = Fast mode 0…5 AUTO_RG 0 = disable 1 = enable RGThresL 0 … 15 RGThresH 0 … 15 14.4.1. HIGHSPEED Parameter The HIGHSPEED parameter defined the main frequency for the DSP. • HIGHSPEED = 0 selects the Slow mode with a 7 MHz master clock. • HIGHSPEED = 1 selects the Fast mode with a 20 MHz master clock. For a better accuracy, the Slow mode must be enable. 14.4.2. FILTER Parameter The MLX90316 includes a programmable low-pass filter controlled with the Filter parameter. 6 values are possible described in the next table. Filter Value Attenuation Speed Response time (dB) Mode (ms) Low High Low High Low High Low High Low High 2.22 0.75 3 1 3.75 1.25 3.75 1.25 4.5 1.5 0 na 1 2.9 2 3.6 3 5 4 6.1 5 7 14.4.3. AUTO_RG, RGThresL, RGThresH Parameters AUTO_RG parameter enables the automatic gain control to optimize the ADC span. RGThresL defines the minimum RG value while RGThresH defines the maximum RG value. When AUTO_RG is enabled, the optimized value for RGThresL is 0. 3901090316 Rev. 001 Page 17 of 34 Data Sheet 4 October 05 MLX90316 Rotary Position Sensor IC 14.5. Diagnostic Parameter Value EEHAMHOLE 0 3131h RESONFAULT 0 1 DACTHRES 0 … 255 FORCERA75 0 1 Unit 14.5.1. EEHAMHOLE Parameter The EEHAMHOLE parameter disables the memory recovery (Hamming code) check when a fault is detected by the CRC when it is equal to 3131h. By default the parameter is set to 0 (enable memory recovery) 14.5.2. RESONFAULT Parameter This RESONFAULT parameter disables the soft reset when a fault is detected by the CPU when the parameter is to 1. By default, the parameter is set to 0. 14.5.3. DACTHRES Parameter The DACTHRES is the high threshold of the DAC monitor. The DAC monitor senses an output DAC voltage for one fixed code. The table hereafter highlights the effect of the DACTHRES on the output Vs supply voltage. 14.5.4. FORCERA75 Parameter This parameter forces the circle radius adjustment to 75% instead of 90% when the parameter is set to 1. By default, the parameter is set to 0. 14.6. Lock Parameter Value MLXLOCK 0 1 LOCK 0 1 Unit 14.6.1. MLXLOCK Parameter MLXLOCK locks all the parameters set by Melexis. 14.6.2. LOCK Parameter LOCK locks all the parameters set by the user. 3901090316 Rev. 001 Page 18 of 34 Data Sheet 4 October 05 MLX90316 Rotary Position Sensor IC 15. MLX90316 Self Diagnostic The MLX90316 provides numerous self-diagnostic features. Those features increase the robustness of the IC functionality as it will prevent the IC to provide erroneous output signal in case of internal or external failure modes (“fail-safe”). ROM CRC Error at start up (64 words including Intelligent Watch Dog - IWD) ROM CRC Error (Operation Background task) RAM Test Fail (Start up) Action CPU Reset # & Effect on Outputs Diagnostic low #'+& Enter Endless Loop: - Progress (watchdog Acknowledge) - Set Outputs in Diagnostic low CPU Reset Immediate Diagnostic low '* Diagnostic low Calibration Data CRC Error (Start-Up) Hamming Code Recovery Hamming Code Recovery Error (Start-Up) Calibration Data CRC Error (Operation - Background) Dead Zone CPU Reset Immediate Diagnostic low CPU Reset Immediate Diagnostic low Set Outputs in Diagnostic low. Normal Operation until the “dead zone” is left. Set Outputs in Diagnostic low Normal mode and CPU Reset If recovery Set Outputs in Diagnostic low Normal mode and CPU Reset If recovery Set Outputs in Diagnostic low Normal mode, and CPU Reset If recovery Set Outputs in Diagnostic low Normal mode, and CPU Reset If recovery Set Outputs in Diagnostic low Normal mode, and CPU Reset If recovery Immediate Diagnostic low ADC Clipping (ADC Output is 0000h or 7FFFh) Radius Overflow ( > 100% ) or Radius Underflow ( < 50 % ) Fine Gain Clipping (FG < 0d or > 63d) Rough Offset Clipping (RO is < 0d or > 127d) Rough Gain Clipping (RG < RGTHRESLOW or RG > RGTHRESHIGH) DAC Monitor (Digital to Analog converter) ADC Monitor (Analog to Digital converter) Set Outputs in Diagnostic low. Normal Mode with immediate recovery without CPU Reset Set Outputs in Diagnostic low. Normal Mode with immediate recovery without CPU Reset Remark All the outputs are already in Diagnostic low - (start-up) All the outputs are already in Diagnostic low** ** (startup) Start-Up Time is increased by 3 ms if successful recovery Immediate recovery if the “dead zone” is left Immediate Diagnostic low Immediate Diagnostic low (50 % - 100 %) No magnet / field too high Immediate Diagnostic low Immediate Diagnostic low Immediate Diagnostic low Immediate Diagnostic low Immediate Diagnostic low ADC Inputs are Shorted MLX90316 Fault Mode continue… 3901090316 Rev. 001 Page 19 of 34 Data Sheet 4 October 05 MLX90316 Rotary Position Sensor IC …MLX90316 Fault Mode Fault Mode Undervoltage Mode Action At Start-Up, wait Until Vdd > 3V. During operation, CPU Reset after 3 ms debouncing Effect on Outputs - Vdd < POR level => Outputs high impedance Remark Firmware Flow Error CPU Reset - POR level < Vdd < 3 V => Outputs in Diagnostic low. Immediate Diagnostic low Read/Write Access out of physical memory Write Access to protected area (IO and RAM Words) Unauthorized entry in “SYSTEM” Mode Vdd > 7 V CPU Reset Immediate Diagnostic low Intelligent Watchdog (Observer) 100% Hardware detection. CPU Reset Immediate Diagnostic low 100% Hardware detection. CPU Reset Immediate Diagnostic low 100% Hardware detection. Set Output High Impedant (Analog) Pull down resistive load => Diag. Low Pull up resistive load => Diag. High#'+& Pull down resistive load => Diag. Low Pull up resistive load => Diag. High Pull down resistive load => Diag. Low Pull up resistive load => Diag. High Pull down resistive load => Diag. Low Pull up resistive load => Diag. High 100% Hardware detection. Vdd > 9.4 V IC is switched off (internal supply) CPU Reset on recovery Broken Vss CPU Reset on recovery Broken Vdd CPU Reset on recovery 100% Hardware detection. 100% Hardware detection. Pull down load < 10 k to meet Diag Lo spec < 2% Vdd 100% Hardware detection. Pull up load to Vpullup> 8 V to meet Diag Hi spec > 96% Vdd #'*& CPU Reset means: 1. Core Reset (same as Power-On-Reset). It induces a typical start up time. 2. Periphery Reset (same as Power-On-Reset) 3. Fault Flag/Status Lost #'+& Refer to Section 7 for the Diagnostic Output Level specifications 3901090316 Rev. 001 Page 20 of 34 Data Sheet 4 October 05 MLX90316 Rotary Position Sensor IC 16. Serial Protocol 16.1. Introduction The MLX90316 features a digital Serial Protocol mode. The MLX90316 is considered as a Slave node. The serial protocol of the MLX90316 is a three wires protocol (/SS, SCLK, MOSI-MISO): • • • /SS pin is a 5 V tolerant digital input SCLK pin is a 5 V tolerant digital input MOSI-MISO pin is a 5 V tolerant open drain digital input/output The basic knowledge of the standard SPI specification is required for the good understanding of the present section. 16.2. SERIAL PROTOCOL Mode • • CPHA = 1 CPOL = 0 even clock changes are used to sample the data active-Hi clock The positive going edge shifts a bit to the Slave’s output stage and the negative going edge samples the bit at the Master’s input stage. 16.3. MOSI (Master Out Slave In) The Master sends a command to the Slave to get the angle information. 16.4. MISO (Master In Slave Out) The MISO of the slave is an open-collector stage. Due to the capacitive load (TBD) a >1 kΩ pull-up is used for the recessive high level (in fast mode). Note that MOSI and MISO use the same physical pin of the MLX90316. 16.5. /SS (Slave Select) The /SS pin enables a frame transfer (if CPHA = 1). It allows a re-synchronisation between Slave and Master in case of communication error. 16.6. Master Start-up /SS, SCLK, MISO can be undefined during the Master start-up as long as the Slave is re-synchronized before the first frame transfer. 16.7. Slave Start-up The slave start-up (after power-up, or an internal failure) takes 16 ms. Within this time /SS and SCLK is ignored by the Slave. The first frame can therefore be sent after 16 ms. MISO is Hi-Z (i.e. Hi-impedant) until the Slave is selected by its /SS input. MLX90316 will cope with any signal from the Master while starting up. 3901090316 Rev. 001 Page 21 of 34 Data Sheet 4 October 05 MLX90316 Rotary Position Sensor IC 16.8. Timing To synchronize communication, the Master deactivates /SS high for at least t5 (1.5 ms). In this case, the Slave will be ready to receive a new frame. The Master can re-synchronize at any time, even in the middle of a byte transfer. Note: Any time shorter than t5 leads to an undefined frame state, because the Slave may or may not have seen /SS inactive. t6 t1 t1 t7 t1 t1 t1 t2 t4 t9 t5 SCLK MOSIMISO /SS Byte 0 Timings Min(15) Byte 1 Byte 2 Byte 3 Max t1 2.3 s / 6.9 s - t2 12.5 s / 37.5 s - t4 2.3 s / 6.9 s - t5 300 s / 1500 s - t5 0 s t6 2.3 s / 6.9 s - t7 15 s / 45 s - t8 0 s t9 - <1 s TStartUp - < 10 ms / 16 ms - - Byte 9 Remarks No capacitive load on MISO. t1 is the minimum clock period for any bits within a byte. t2 the minimum time between any other byte Time between last clock and /SS=high=chip de-selection Minimum /SS = Hi time where it’s guaranteed that a frame resynchronizations will be started. Maximum /SS = Hi time where it’s guaranteed that NO frame resynchronizations will be started. The time t6 defines the minimum time between /SS = Lo and the first clock edge t7 is the minimum time between the StartByte and the Byte0 the minimum time where SS is deactivated between a ID Byte and a StartByte Maximum time between /SS = Hi and MISO Bus High-Impedance Minimum time between reset-inactive and any master signal change (15) Timings shown for oscillator base frequency of 20MHz (Fast Mode) / 7MHz (Slow Mode). 3901090316 Rev. 001 Page 22 of 34 Data Sheet 4 October 05 MLX90316 Rotary Position Sensor IC 16.9. Slave Reset On internal soft failures the Slave resets after 1 second or after an (error) frame is sent. On internal hard failures the Slave resets itself. In that case, the Serial Protocol will not come up. The serial protocol link is enable only after the completion of the first synchronization (the Master deactivates /SS for at least t5). 16.10. Frame Layer 16.10.1. Command Device Mechanism Before each transmission of a data frame, the Master should send a byte AAh to enable a frame transfer. The latch point for the angle measurement is at the last clock of the first data frame byte. Latch point /SS SCLK MOSI A A F F F F F F F F F F F F F F F F F F A A F F F F MISO F F F F D A T A F F F F F F F F F F F F D Timing diagram 16.10.2. Data Frame Structure A data frame consists of 10 bytes: • • • • 2 start bytes (AAh followed by FFh) 2 data bytes (DATA16 – most significant byte first) 2 inverted data bytes (/DATA16 - most significant byte first) 4 all-Hi bytes The Master should send AAh followed by 9 bytes FFh. The Slave will answer with two bytes FFh followed by 4 data bytes and 4 bytes FFh. 16.10.3. Timing There are no timing limits for frames: a frame transmission could be initiated at any time. There is no interframe time defined. 3901090316 Rev. 001 Page 23 of 34 Data Sheet 4 October 05 MLX90316 Rotary Position Sensor IC 16.10.4. Data Structure The DATA16 could be a valid angle, or an error condition. The two meanings are distinguished by the LSB. DATA16: Angle A[13:0] with (Angle Span)/214 Most Significant Byte MSB A13 A12 A11 A10 A9 A8 A7 DATA16: Error MSB E15 Most Significant Byte E14 E13 E12 E11 BIT E0 E1 E2 E3 E4 NAME 0 1 F_ADCMONITOR F_ADCSATURA F_RGTOOLOW E5 E6 E7 F_MAGTOOLOW F_MAGTOOHIGH F_RGTOOHIGH E8 E9 E10 E11 E12 E13 E14 E15 F_FGCLAMP F_ROCLAMP F_MT7V F_DACMONITOR - E10 E9 LSB A6 LSB E8 MSB A5 Less Significant Byte A4 MSB E7 A3 A2 A1 A0 0 LSB 1 E1 LSB E0 Less Significant Byte E6 E5 E4 E3 E2 ADC Failure ADC Saturation (Electrical failure or field too strong) Analog Gain Below Trimmed Threshold (Likely reason : field too weak) Magnetic Field Too Weak Magnetic Field Too Strong Analog Gain Above Trimmed Threshold (Likely reason : field too strong) Never occurring in serial protocol Analog Chain Rough Offset Compensation : Clipping Device Supply VDD Greater than 7V Never occurring in serial protocol 16.10.5. Angle Calculation All communication timing is independent (asynchronous) of the angle data processing. The angle is calculated continuously by the Slave: • • Slow Mode: every 1.5 ms at most. Fast Mode: every 350 s at most. The last angle calculated is hold to be read by the Master at any time. Only valid angles are transferred by the Slave, because any internal failure of the Slave will lead to a soft reset. 16.10.6. Error Handling In case of any errors listed in section 16.10.4, the Serial protocol will be initialized and the error condition can be read by the master. The slave will perform a soft reset once the error frame is sent. In case of any other errors (ROM CRC error, EEPROM CRC error, RAM check error, intelligent watchdog error…) the Slave’s serial protocol is not initialized. The MOSI/MISO pin will stay Hi-impedant (no error frame are sent). 3901090316 Rev. 001 Page 24 of 34 Data Sheet 4 October 05 MLX90316 Rotary Position Sensor IC 17. Recommended Application Diagrams 17.1. Analog Output Wiring with the MLX90316 in SOIC Package ECU 5V Vdd 8 1 C1 100nF Vdd GND Vss MLX90316 Test 1 C2 100nF Vdig Test 2 NotUsed Out1 C3 100nF Output 5 4 NotUsed ADC R1 10K C4 4.7nF Recommended wiring for the MLX90316 in SOIC8 package. 17.2. Analog Output Wiring with the MLX90316 in TSSOP Package ECU VDD1 Vdd1 GND1 GND1 GND1 Vdig1 Vss1 C3 100nF 16 1 C1 100nF C2 100nF C7 4.7nF R1 10K Output1 Out1 Vdd1 C4 100nF MLX90316 Vdd2 GND2 Vdd2 Vss2 Vdig2 C6 100nF ADC 9 8 Out2 VDD2 GND2 GND2 C5 100nF Output2 R2 10K C8 4.7nF Recommended wiring for the MLX90316 in TSSOP16 package (dual die). 3901090316 Rev. 001 Page 25 of 34 Data Sheet 4 October 05 MLX90316 Rotary Position Sensor IC 17.3. PWM Low Side Output Wiring ECU 5V Vdd 8 1 C1 100nF Vdd GND Vss MLX90316 Test 1 C2 100nF Vdig Test 2 NotUsed PWM TIMER C3 4.7nF R1 1K Output 5 4 NotUsed 5V PWM C4 4.7nF Recommended wiring for a PWM Low Side Output configuration. 17.4. Serial Protocol 1K 3.3V/5V SPI MASTER 90316 MOSI SCLK /SS OUT1 Connector if needed MISO SPI SLAVE INTERFACE CPU MOSI MISO OUT2 OUT3 SCLK /SS MLX9031 − Single Die − Serial Protocol Mode 3901090316 Rev. 001 Page 26 of 34 Data Sheet 4 October 05 MLX90316 Rotary Position Sensor IC 1K 3.3V 5V SPI MASTER 90316 #1 LINE OUT1 Connector MISO MOSI SCLK1 /SS1 SCLK2 /SS2 SPI SLAVE INTERFACE CPU MOSI MISO SCLK1 OUT2 /SS1 OUT3 SCLK /SS SCLK2 /SS2 90316 #2 OUT1 SPI SLAVE INTERFACE CPU MOSI MISO OUT2 OUT3 SCLK /SS MLX90316 Dual Die − Serial Protocol Mode (Dual Slave) 3901090316 Rev. 001 Page 27 of 34 Data Sheet 4 October 05 MLX90316 Rotary Position Sensor IC 18. Standard information regarding manufacturability of Melexis products with different soldering processes Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level according to following test methods: Reflow Soldering SMD’s (Surface Mount Devices) • • • IPC/JEDEC J-STD-020 Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices (classification reflow profiles according to table 5-2) EIA/JEDEC JESD22-A113 Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing (reflow profiles according to table 2) Melexis Working Instruction 341901308 Wave Soldering SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices) • • • EN60749-20 Resistance of plastic- encapsulated SMD’s to combined effect of moisture and soldering heat EIA/JEDEC JESD22-B106 and EN60749-15 Resistance to soldering temperature for through-hole mounted devices Melexis Working Instruction 341901309 Iron Soldering THD’s (Through Hole Devices) • • EN60749-15 Resistance to soldering temperature for through-hole mounted devices Melexis Working Instruction 341901309 Solderability SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices) • • EIA/JEDEC JESD22-B102 and EN60749-21 Solderability Melexis Working Instruction 3304312 For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc) additional classification and qualification tests have to be agreed upon with Melexis. The application of Wave Soldering for SMD’s is allowed only after consulting Melexis regarding assurance of adhesive strength between device and board. For more information on the lead free topic please see quality page at our website: http://www.melexis.com/quality.asp 19. ESD Precautions Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). Always observe Electro Static Discharge control procedures whenever handling semiconductor products. 3901090316 Rev. 001 Page 28 of 34 Data Sheet 4 October 05 MLX90316 Rotary Position Sensor IC 20. Package Information 20.1. SOIC8 - Package Dimensions 1.27 TYP NOTES: 3.81 5.84 3.99** 6.20** 4.80 4.98* All dimensions are in millimeters (anlges in degrees). * Dimension does not include mold flash, protrusions or gate burrs (shall not exceed 0.15 per side). ** Dimension does not include interleads flash or protrusion (shall not exceed 0.25 per side). *** Dimension does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm total in excess of the dimension at maximum material condition. Dambar cannot be located on the lower radius of the foot. 1.40 1.55 1.55 1.73 0.35 0.49*** 0.19 0.25 0° 8° 0.127 0.250 0.41 0.89 8 Out MOSI/MISO Test 1 Vdig Vss 20.2. SOIC8 - Pinout and Marking Marking : Part Number MLX90316 (5 digits) Die Version (1 digit) 5 90316 90316B 123456 YYWW B 123456 YY Lot number (6 digits) WW Week Date code (2 digits) Year Date code (2 digits) 3901090316 Rev. 001 SCLK /SS Test 0 4 Vdd 1 Page 29 of 34 Data Sheet 4 October 05 MLX90316 Rotary Position Sensor IC 20.3. SOIC8 - IMC Positionning CW 8 7 6 5 CCW COS 1.25 1.65 1 2 3 0.46 +/- 0.06 4 1.96 2.26 SIN Angle detection MLX90316 SOIC8 0 Deg. N 6 S 1 7 2 3 5 8 7 4 1 2 2 3 5 S 3 4 270 Deg. 5 8 7 6 5 4 1 2 N3 4 S 3901090316 Rev. 001 6 N 1 7 S 180 Deg. 8 6 N 8 90 Deg. Page 30 of 34 Data Sheet 4 October 05 MLX90316 Rotary Position Sensor IC 20.4. TSSOP16 - Package Dimensions 0.65 TYP 12O TYP 0.20 TYP 0.09 MIN 1.0 DIA 4.30 4.50** 6.4 TYP 0.09 MIN 1.0 12O TYP 1.0 0.50 0.75 0O 8O 1.0 TYP 0.85 0.95 4.90 5.10* 1.1 MAX 0.19 0.30*** 0.09 0.20 0.05 0.15 NOTES: All dimensions are in millimeters (anlges in degrees). * Dimension does not include mold flash, protrusions or gate burrs (shall not exceed 0.15 per side). ** Dimension does not include interleads flash or protrusion (shall not exceed 0.25 per side). *** Dimension does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm total in excess of the dimension at maximum material condition. Dambar cannot be located on the lower radius of the foot. 3901090316 Rev. 001 Page 31 of 34 Data Sheet 4 October 05 MLX90316 Rotary Position Sensor IC 20.5. TSSOP16 - Pinout and Marking 16 1 Vdig_1 Vdd_1 Test0_1 NotUsed_2 Test1_1 Out_1/MOSI/MISO_1 90316B 123456 YYWW Vss_1 NotUsed_1 NotUsed_1 Test0_2 Out_2/MOSI/MISO_2 Test1_2 Vss_2 Vdig_2 9 Vdd_2 8 NotUsed_2 Marking : Part Number MLX90316 (5 digits) Die Version (1 digit) 90316 B 123456 YY Lot number (6 digits) WW Week Date code (2 digits) Year Date code (2 digits) 20.6. TSSOP16 - IMC Positionning CW COS 2 16 9 Die 1 Die 2 SIN 2 SIN 1 0.30 +/- 0.06 CCW 1.95 2.45 1 8 1.84 2.04 COS 1 2.76 2.96 3901090316 Rev. 001 Page 32 of 34 Data Sheet 4 October 05 MLX90316 Rotary Position Sensor IC Angle detection MLX90316 TSSOP16 90 Deg. 180 Deg. 9 Die 2 Die 1 S 1 8 180 Deg. 0 Deg. 16 90 Deg. Die 2 9 Die 1 S S 3901090316 Rev. 001 8 16 N 1 Die 2 1 270 Deg. 9 Die 1 9 N N Die 1 16 S 16 270 Deg. 8 1 Page 33 of 34 Die 2 N 0 Deg. 8 Data Sheet 4 October 05 MLX90316 Rotary Position Sensor IC 21. Disclaimer Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. Melexis reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with Melexis for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by Melexis for each application. The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of Melexis’ rendering of technical or other services. © 2005 Melexis NV. All rights reserved. For the latest version of this document, go to our website at www.melexis.com Or for additional information contact Melexis Direct: Europe, Africa, Asia: America: Phone: +32 1367 0495 Phone: +1 603 223 2362 E-mail: [email protected] E-mail: [email protected] ISO/TS 16949 and ISO14001 Certified 3901090316 Rev. 001 Page 34 of 34 Data Sheet 4 October 05