MLX90316 Rotary Position Sensor IC Features and Benefits Absolute Rotary Position Sensor IC Simple & Robust Magnetic Design Tria⊗is™ Hall Technology Programmable Angular Range up to 360 Degrees Programmable Linear Transfer Characteristic Selectable Analog (Ratiometric), PWM, Serial Protocol 12 bit Angular Resolution - 10 bit Angular Thermal Accuracy 40 bit ID Number Single Die – SO8 Package RoHS Compliant Dual Die (Full Redundant) – TSSOP16 Package RoHS Compliant Applications Absolute Rotary Position Sensor Pedal Position Sensor Throttle Position Sensor Ride Height Position Sensor Steering Wheel Position Sensor Motor-shaft Position Sensor Float-Level Sensor Non-Contacting Potentiometer Ordering Information1 Part No. MLX90316 MLX90316 MLX90316 MLX90316 MLX90316 MLX90316 MLX90316 MLX90316 MLX90316 MLX90316 MLX90316 MLX90316 MLX90316 MLX90316 MLX90316 MLX90316 MLX90316 MLX90316 Temperature Suffix S (− 20°C to + 85°C) E (− 40°C to + 85°C) K (− 40°C to + 125°C) L (− 40°C to + 150°C) S (− 20°C to + 85°C) E (− 40°C to + 85°C) K (− 40°C to + 125°C) L (− 40°C to + 150°C) E (− 40°C to + 85°C) K (− 40°C to + 125°C) L (− 40°C to + 150°C) E (− 40°C to + 85°C) K (− 40°C to + 125°C) L (− 40°C to + 150°C) K (− 40°C to + 125°C) K (− 40°C to + 125°C) K (− 40°C to + 125°C) K (− 40°C to + 125°C) Package Code DC [SOIC-8] DC [SOIC-8] DC [SOIC-8] DC [SOIC-8] GO [TSSOP-16] GO [TSSOP-16] GO [TSSOP-16] GO [TSSOP-16] DC [SOIC-8] DC [SOIC-8] DC [SOIC-8] GO [TSSOP-16] GO [TSSOP-16] GO [TSSOP-16] DC [SOIC-8] GO [TSSOP-16] DC [SOIC-8] GO [TSSOP-16] Option code -2 -2 -2 -2 -2 -2 -2 -2 SPI3 SPI3 SPI3 SPI3 SPI3 SPI3 PPA4 PPA4 PPD5 PPD5 Example: MLX90316KDC-PPA Fully end-user programmable version through the Melexis Programming Unit PTC-04 3 SPI Version pre-programmed and locked for 360deg rotary position application in SPI mode (High Speed). The standard version can also be programmed in SPI but the application diagram described in section 17.4.3 is recommended. 4 Pre-Programmed Analog – 360deg angular span for an analog output between 0.5V and 4.5V, Low Speed Mode (Locked) 5 Pre-Programmed PWM – 360deg angular span, 10-90% at 1 kHz, High Speed Mode (Locked) 1 2 3901090316 Rev. 003 Page 1 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 1. Functional Diagram DSP A Vy Rev.Pol. & OverVolt. D μC D 12 MUX G -1 5 Vx 14 Tria9is™ 3V3 Reg VDD x1 A OUT (Analog/PWM) ROM - F/W RAM EEP ROM SWITCH OUT VSS Figure 1 - Block Diagram (Analog & PWM) DSP A Rev.Pol. μC 5 MUX Vy G -1 Vx 14 Tria9is™ 3V3 Reg D VDD /SS SERIAL PROTOCOL SCLK MOSI/MISO ROM - F/W RAM EEP ROM VSS Figure 2 - Block Diagram (Serial Protocol) 3901090316 Rev. 003 Page 2 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 2. Description The MLX90316 is a monolithic sensor IC featuring the Tria⊗is™ Hall technology. Conventional planar Hall technology is only sensitive to the flux density applied orthogonally to the IC surface. The Tria⊗is™ Hall sensor is also sensitive to the flux density applied parallel to the IC surface. This is obtained through an Integrated Magneto-Concentrator (IMC®) which is deposited on the CMOS die (as an additional back-end step). The MLX90316 is only sensitive to the flux density coplanar with the IC surface. This allows the MLX90316 with the correct magnetic circuit to decode the absolute rotary (angular) position from 0 to 360 Degrees. It enables the design of novel generation of non-contacting rotary position sensors that are frequently required for both automotive and industrial applications. In combination with the appropriate signal processing, the magnetic flux density of a small magnet (diametral magnetization) rotating above the IC can be measured in a non-contacting way (Figure 3). The angular information is computed from both vectorial components of the flux density (i.e. BX and BY). MLX90316 produces an output signal proportional to the decoded angle. The output is selectable between Analog, PWM and Serial Protocol. α Figure 3 - Typical application of MLX90316 3901090316 Rev. 003 Page 3 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC TABLE of CONTENTS FEATURES AND BENEFITS ....................................................................................................................... 1 APPLICATIONS............................................................................................................................................ 1 ORDERING INFORMATION......................................................................................................................... 1 1. FUNCTIONAL DIAGRAM...................................................................................................................... 2 2. DESCRIPTION....................................................................................................................................... 3 3. GLOSSARY OF TERMS − ABBREVIATIONS − ACRONYMS ............................................................ 6 4. PINOUT.................................................................................................................................................. 6 5. ABSOLUTE MAXIMUM RATINGS ....................................................................................................... 7 6. DETAILED DESCRIPTION.................................................................................................................... 7 7. MLX90316 ELECTRICAL SPECIFICATION....................................................................................... 10 8. MLX90316 ISOLATION SPECIFICATION .......................................................................................... 12 9. MLX90316 TIMING SPECIFICATION ................................................................................................. 12 10. MLX90316 ACCURACY SPECIFICATION ......................................................................................... 13 11. MLX90316 MAGNETIC SPECIFICATION .......................................................................................... 14 12. MLX90316 CPU & MEMORY SPECIFICATION ................................................................................. 14 13. MLX90316 END-USER PROGRAMMABLE ITEMS ........................................................................... 15 14. DESCRIPTION OF END-USER PROGRAMMABLE ITEMS.............................................................. 16 14.1. OUTPUT MODE ..........................................................................................................................................16 14.1.1. Analog Output Mode ............................................................................................................................16 14.1.2. PWM Output Mode...............................................................................................................................16 14.1.3. Serial Protocol Output Mode ...............................................................................................................16 14.1.4. Switch Out ............................................................................................................................................17 14.2. OUTPUT TRANSFER CHARACTERISTIC.......................................................................................................18 14.2.1. CLOCKWISE Parameter......................................................................................................................18 14.2.2. Discontinuity Point (or Zero Degree Point).........................................................................................18 14.2.3. LNR Parameters ...................................................................................................................................19 14.2.4. CLAMPING Parameters ......................................................................................................................19 14.2.5. DEADZONE Parameter .......................................................................................................................19 14.3. IDENTIFICATION ........................................................................................................................................19 14.4. SENSOR FRONT-END .................................................................................................................................20 14.4.1. HIGHSPEED Parameter......................................................................................................................20 14.4.2. ARGC, AUTO_RG, RoughGain Parameters ........................................................................................20 14.4.3. RGThresL, RGThresH Parameters ......................................................................................................21 14.5. FILTER ....................................................................................................................................................21 14.5.1. Hysteresis Filter ...................................................................................................................................21 14.5.2. FIR Filters ............................................................................................................................................21 14.5.3. IIR Filters .............................................................................................................................................23 3901090316 Rev. 003 Page 4 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 14.6. PROGRAMMABLE DIAGNOSTIC SETTINGS .................................................................................................24 14.6.1. RESONFAULT Parameter ...................................................................................................................24 14.6.2. EEHAMHOLE Parameter ....................................................................................................................24 14.7. LOCK.........................................................................................................................................................24 14.7.1. MLXLOCK Parameter .........................................................................................................................24 14.7.2. LOCK Parameter .................................................................................................................................24 15. MLX90316 SELF DIAGNOSTIC.......................................................................................................... 25 16. SERIAL PROTOCOL........................................................................................................................... 27 16.1. INTRODUCTION .........................................................................................................................................27 16.2. SERIAL PROTOCOL MODE ...................................................................................................................27 16.3. MOSI (MASTER OUT SLAVE IN) ...............................................................................................................27 16.4. MISO (MASTER IN SLAVE OUT) ...............................................................................................................27 16.5. /SS (SLAVE SELECT) .................................................................................................................................27 16.6. MASTER START-UP ...................................................................................................................................27 16.7. SLAVE START-UP ......................................................................................................................................27 16.8. TIMING ......................................................................................................................................................28 16.9. SLAVE RESET ............................................................................................................................................29 16.10. FRAME LAYER ..........................................................................................................................................29 16.10.1. Command Device Mechanism ..........................................................................................................29 16.10.2. Data Frame Structure ......................................................................................................................29 16.10.3. Timing ..............................................................................................................................................29 16.10.4. Data Structure ..................................................................................................................................30 16.10.5. Angle Calculation.............................................................................................................................30 16.10.6. Error Handling.................................................................................................................................30 17. RECOMMENDED APPLICATION DIAGRAMS .................................................................................. 31 17.1. ANALOG OUTPUT WIRING WITH THE MLX90316 IN SOIC PACKAGE .......................................................31 17.2. ANALOG OUTPUT WIRING WITH THE MLX90316 IN TSSOP PACKAGE ....................................................31 17.3. PWM LOW SIDE OUTPUT WIRING ............................................................................................................32 17.4. SERIAL PROTOCOL ....................................................................................................................................32 17.4.1. SPI Version – Single Die ......................................................................................................................32 17.4.2. SPI Version – Dual Die ........................................................................................................................33 17.4.3. Non SPI Version (Standard Version)....................................................................................................34 18. STANDARD INFORMATION REGARDING MANUFACTURABILITY OF MELEXIS PRODUCTS WITH DIFFERENT SOLDERING PROCESSES ........................................................................................ 35 19. ESD PRECAUTIONS........................................................................................................................... 35 20. PACKAGE INFORMATION................................................................................................................. 36 20.1. 20.2. 20.3. 20.4. 20.5. 20.6. SOIC8 - PACKAGE DIMENSIONS ...............................................................................................................36 SOIC8 - PINOUT AND MARKING ...............................................................................................................36 SOIC8 - IMC POSITIONNING .....................................................................................................................37 TSSOP16 - PACKAGE DIMENSIONS...........................................................................................................38 TSSOP16 - PINOUT AND MARKING ..........................................................................................................39 TSSOP16 - IMC POSITIONNING ................................................................................................................39 21. DISCLAIMER ....................................................................................................................................... 41 3901090316 Rev. 003 Page 5 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 3. Glossary of Terms − Abbreviations − Acronyms ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ Gauss (G), Tesla (T): Units for the magnetic flux density − 1 mT = 10 G TC: Temperature Coefficient (in ppm/Deg.C.) NC: Not Connected PWM: Pulse Width Modulation %DC: Duty Cycle of the output signal i.e. TON /(TON + TOFF) ADC: Analog-to-Digital Converter DAC: Digital-to-Analog Converter LSB: Least Significant Bit MSB: Most Significant Bit DNL: Differential Non-Linearity INL: Integral Non-Linearity RISC: Reduced Instruction Set Computer ASP: Analog Signal Processing DSP: Digital Signal Processing ATAN: trigonometric function: arctangent (or inverse tangent) IMC: Integrated Magneto-Concentrator (IMC®) CoRDiC: Coordinate Rotation Digital Computer (i.e. iterative rectangular-to-polar transform) EMC: Electro-Magnetic Compatibility 4. Pinout Pin # SOIC-8 TSSOP-16 Analog / PWM Serial Protocol Analog / PWM Serial Protocol 1 VDD VDD VDIG1 VDIG1 2 Test 0 Test 0 VSS1 (Ground1) VSS1 (Ground1) 3 Switch Out /SS VDD1 VDD1 4 Not Used SCLK Test 01 Test 01 5 Out MOSI / MISO Switch Out2 /SS2 6 Test 1 Test 1 Not Used2 SCLK2 7 VDIG VDIG Out2 MOSI2 / MISO2 8 VSS (Ground) VSS (Ground) Test 12 Test 12 9 VDIG2 VDIG2 10 VSS2 (Ground2) VSS2 (Ground2) 11 VDD2 VDD2 12 Test 02 Test 02 13 Switch Out1 /SS1 14 Not Used1 SCLK1 15 Out1 MOSI1 / MISO1 16 Test 11 Test 11 For optimal EMC behavior, it is recommended to connect the unused pins (Not Used and Test) to the Ground (see section 17). 3901090316 Rev. 003 Page 6 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 5. Absolute Maximum Ratings Parameter Value Supply Voltage, VDD (overvoltage) + 20 V Reverse Voltage Protection − 10 V Positive Output Voltage – Standard Version + 10 V (Analog or PWM) + 14 V (200 s max − TA = + 25°C) Positive Output Voltage – SPI Version VDD + 0.3V Positive Output Voltage (Switch Out) + 10 V + 14 V (200 s max − TA = + 25°C) Output Current (IOUT) ± 30 mA Reverse Output Voltage − 0.3 V Reverse Output Current − 50 mA Operating Ambient Temperature Range, TA − 40°C … + 150°C Storage Temperature Range, TS − 40°C … + 150°C Magnetic Flux Density ± 700 mT Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolutemaximum-rated conditions for extended periods may affect device reliability. 6. Detailed Description As described on the block diagram (Figure 1 and Figure 2), the magnetic flux density parallel to the IC surface (i.e. B//) is sensed through the Tria⊗is™ sensor front-end. This front-end consists into two orthogonal pairs (for each of the two directions parallel with the IC surface i.e. X and Y) of conventional planar Hall plates (blue area on Figure 4) and an Integrated Magneto-Concentrator (IMC® yellow disk on Figure 4). Hall Plates Figure 4 - Tria⊗is™ sensor front-end (4 Hall plates + IMC® disk) 3901090316 Rev. 003 Page 7 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC Both components of the applied flux density B// are measured individually i.e. BX// and BY//. Two orthogonal components (respectively BX⊥ and BY⊥) proportional to the parallel components (respectively BX// and BY//) are induced through the IMC and can be measured by both respective pairs of conventional planar Hall plates as those are sensitive to the flux density applied orthogonally to them and the IC surface. While a magnet (diametrically magnetized) rotates above the IC as described on Figure 3, the sensing stage provides two differential signals in quadrature (sine and cosine − Figure 5 and Figure 6) 400 300 BX & BY (G) 200 100 0 -100 -200 -300 -400 0 90 180 270 360 450 Alpha (Degree) 540 BX 630 720 BY Figure 5 – Magnetic Flux Density – BX ∝ cos(α) & BY ∝ sin(α) 2000 1500 VX & VY (mV) 1000 500 0 -500 -1000 -1500 -2000 0 90 180 270 360 450 Alpha (Degree) VX 540 630 720 VY Figure 6 – Tria⊗is™ sensor front-end − Output signals − VX ∝ BX ∝ cos(α) & VY ∝ BY ∝ sin(α) 3901090316 Rev. 003 Page 8 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC Those Hall signals are processed through a fully differential analog chain featuring the classic offset cancellation technique (Hall plate quadrature spinning and chopper-stabilized amplifier). The conditioned analog signals are converted through an ADC (configurable − 14 or 15 bits) and provided to a DSP block for further processing. The DSP stage is based on a 16 bit RISC micro-controller whose primary function is the extraction of the angular position from the two raw signals (after so-called front-end compensation steps) through the following operation: ⎛ VY ⎞ ⎟⎟ ⎝ VX ⎠ α = ATAN ⎜⎜ The DSP functionality is governed by the micro-code (firmware − F/W) of the micro-controller which is stored into the ROM (mask programmable). In addition to the ″ATAN″ function, the F/W controls the whole analog chain, the output transfer characteristic, the output protocol, the programming/calibration and also the self-diagnostic modes. In the MLX90316, the ″ATAN″ function is computed via a look-up table (i.e. it is not obtained through a CoRDiC algorithm). Due to the fact that the ″ATAN″ operation is performed on the ratio ″VY/VX″, the angular information is intrinsically self-compensated vs. flux density variations (due to airgap change, thermal or ageing effects) affecting both signals. This feature allows therefore an improved thermal accuracy vs. rotary position sensor based on conventional linear Hall sensors. In addition to the improved thermal accuracy, the realized rotary position sensor is capable of measuring a complete revolution (360 Degrees) and the linearity performances are excellent taking into account typical manufacturing tolerances (e.g. relative placement between the Hall IC and the magnet). Once the angular information is computed (over 360 degrees), it is further conditioned (mapped) vs. the target transfer characteristic and it is provided at the output(s) as: • • • an analog output level through a 12 bit DAC followed by a buffer a digital PWM signal with 12 bit depth (programmable frequency 100 Hz … 1 kHz) a digital Serial Protocol (SP − 14 bits computed angular information available) For instance, the analog output can be programmed for offset, gain and clamping to meet any rotary position sensor output transfer characteristic: Vout(α) = ClampLo Vout(α) = Voffset + Gain × α Vout(α) = ClampHi for α ≤ αmin for αmin ≤ α ≤ αmax for α ≥ αmax where Voffset, Gain, ClampLo and ClampHi are the main adjustable parameters for the end-user. The linear part of the transfer curve can be adjusted through either a 2 point or a 3 point calibration depending on the linearity requirement. A digital output is also available and used as a programmable angular switch. The calibration parameters are stored in EEPROM featuring a Hamming Error Correction Coding (ECC). The programming steps do not require any dedicated pins. The operation is done using the supply and output nodes of the IC. The programming of the MLX90316 is handled at both engineering lab and production line levels by the Melexis Programming Unit PTC-04 with the dedicated MLX90316 daughterboard and software tools (DLL − User Interface). 3901090316 Rev. 003 Page 9 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 7. MLX90316 Electrical Specification DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (S, E, K or L). Parameter Nominal Supply Voltage Supply Current(6) POR Level Symbol VDD Idd VDD POR Output Current Iout Output Short Circuit Current Ishort Output Load Analog Saturation Output Level Digital Saturation Output Level RL Diag_hi BVSSPD (Broken Track Diagnostic) (10) BVSSPU BVDDPD BVDDPU Units 4.5 V Slow 8.5 11 mA Fast mode(7) 13.5 16 mA 2.7 3 V Supply Under Voltage 2 Analog Output mode -8 8 mA PWM Output mode -20 20 mA Vout = 0 V 12 15 mA Vout = 5 V 12 15 mA Vout = 14 V (TA = 25°C) 24 45 mA Pull-down to Ground 1 10 ∞(9) kΩ Pull-up to 5V(8) 1 10 ∞(9) kΩ 3 %VDD Pull-down load RL ≥ 10 kΩ Active Diagnostic Output Level Max 5.5 Vsat_hi Diag_lo Typ 5 Pull-up load RL ≥ 10 kΩ VsatD_lo Min mode(7) Vsat_lo VsatD_hi Passive Diagnostic Output Level Test Conditions 96 %VDD Pull-up Low Side RL ≥ 10 kΩ 1.5 Push-Pull (IOUT = -20mV) Push-Pull (IOUT = 20mV) 97 %VDD 1 Pull-down load RL ≥ 10 kΩ 1.5 Pull-up load RL ≥ 10 kΩ Pull-down load RL ≥ 10 kΩ 97 Pull-up load RL ≥ 10 kΩ 98 4(10) Pull-down load RL ≤ 10 kΩ Pull-up load RL ≥ 1kΩ Broken VDD(11) & Pull-down load RL ≥ 1kΩ Broken VDD & Pull-up load to 5V 99 %VDD %VDD Broken VSS(11) & Broken VSS(11) & %VDD 100 0 %VDD %VDD 1 No Broken Track diagnostic %VDD %VDD MLX 90316 Electrical Specification continues… 6 For the dual version, the supply current is multiplied by 2 section 14.4.1 for details concerning Slow and Fast mode 8 Applicable for output in Analog and PWM (Open-Drain) modes 9 RL < ∞ for output in PWM mode 10 For detailed information, see also section 15 11 Not Valid for the SPI Version 7 See 3901090316 Rev. 003 Page 10 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC …MLX 90316 Electrical Specification Clamped Output Level Switch Out(13) Clamp_lo Programmable 0 100 %VDD(12) Clamp_hi Programmable 0 100 %VDD(12) Sw_lo Pull-up Load 1.5k to 5V 0.55 1.1 V Sw_hi Pull-up Load 1.5k to 5V 3.65 4.35 V As an illustration of the previous table, the MLX90316 fits the typical classification of the output span described on the Figure 7. 100 % 90 % 96 % 92 % 88 % Diagnostic Band (High) Clamping High 80 % Output Level 70 % 60 % 50 % Linear Range 40 % 30 % 20 % 10 % 0% 12 % 8% 4% Clamping Low Diagnostic Band (Low) Figure 7 - Output Span Classification 12 Clamping 13 levels need to be considered vs the saturation of the output stage (see Vsat_lo and Vsat_hi) See section 14.1.4 for the application diagram 3901090316 Rev. 003 Page 11 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 8. MLX90316 Isolation Specification DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (S, E, K or L). Only valid for the package code GO i.e. dual die version. Parameter Symbol Isolation Resistance Test Conditions Between 2 dies Min Typ Max 4 Units MΩ 9. MLX90316 Timing Specification DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (S, E, K or L). Parameter Main Clock Frequency Symbol Ck Sampling Rate Step Response Time Watchdog Start-up Cycle Ts Wd Tsu Analog Output Slew Rate PWM Frequency Digital Output Rise Time Digital Output Fall Time 14 See 15 See FPWM Test Conditions Min Typ Max Units Slow mode(14) 7 MHz Fast mode(14) 20 MHz Slow mode(15) 600 μs Fast mode(15) 200 μs Slow mode(14), Filter=5(15) Fast mode(14), Filter=0(15) 400 See Section 15 Slow and Fast mode(14) COUT = 42 nF 200 COUT = 100 nF 100 PWM Output Enabled 100 4 ms 600 μs 5 ms 15 ms V/ms 1000 Hz Mode 5 – 10nF, RL = 10 kΩ 120 μs Mode 7 – 10nF, RL = 10 kΩ 2.2 μs Mode 5 – 10nF, RL = 10 kΩ 1.8 μs Mode 7 – 10nF, RL = 10 kΩ 1.9 μs section 14.4.1 for details concerning Slow and Fast mode section 14.5 for details concerning Filter parameter 3901090316 Rev. 003 Page 12 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 10. MLX90316 Accuracy Specification DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (S, E, K or L). Parameter ADC Resolution on the raw signals sine and cosine Symbol RADC Test Conditions Typ Max Units Slow Mode(16) 15 bits Mode(16) 14 bits Fast Thermal Offset Drift #1(17) Min Thermal Offset Drift at the DSP input (excl. DAC and output stage) Temperature suffix S, E and K -60 +60 LSB15 Temperature suffix L -90 +90 LSB15 Temperature suffix S, E and K - 0.3 + 0.3 %VDD Temperature suffix L - 0.4 + 0.4 %VDD Temperature suffix S, E and K - 0.3 + 0.3 % Temperature suffix L - 0.5 + 0.5 % -1 1 Deg Thermal Offset Drift #2 Thermal Offset Drift of the DAC (to be considered only for the analog output mode) and Output Stage Thermal Drift of Sensitivity Mismatch(18) Intrinsic Linearity Error(19) Le Analog Output Resolution RDAC TA = 25°C 12 bits DAC 0.025 %VDD/LSB (Theoretical – Noise free) INL -4 DNL 0.05 1 +4 LSB 2 LSB Output stage Noise Clamped Output 0.05 Noise pk-pk(20) RG = 9, Slow mode, Filter=5 0.03 0.06 Deg RG = 9, Fast mode, Filter=0 0.1 0.2 Deg 0 0.1 %VDD Ratiometry Error PWM Output Resolution -0.1 RPWM 12 bits %VDD 0.025 %DC/LSB (Theoretical – Jitter free) PWM Jitter(21) JPWM RG = 6, FPWM = 250 Hz – 800Hz Serial Protocol Output Resolution RSP 14 bits – 360 Deg. mapping 0.2 0.022 %DC Deg/LSB (Theoretical – Jitter free) 15 bits corresponds to 14 bits + sign and 14 bits corresponds to 13 bits + sign. After angular calculation, this corresponds to 0.005Deg/LSB15 in Low Speed Mode and 0.01Deg/LSB14 in High Speed. 17 For instance, Thermal Offset Drift #1 equal ± 60LSB15 yields to max. ± 0.3 Deg. angular error for the computed angular information (output of the DSP). See Front End Application Note for more details. This is only valid if automatic gain is set (See Section 14.4.2) 18 For instance, Thermal Drift of Sensitivity Mismatch equal ± 0.4% yields to max. ± 0.1 Deg. angular error for the computed angular information (output of the DSP). See Front End Application Note for more details. 19 The Intrinsic Linearity Error refers to the IC itself (offset, sensitivity mismatch, orthogonality) taking into account an ideal rotating field. Once associated to a practical magnetic construction and the associated mechanical and magnetic tolerances, the output linearity error increases. However, it can be improved with the multi point end-user calibration that is available on the MLX90316. 20 The application diagram used is described in the recommended wiring. For detailed information, refer to section Filter in application mode (Section 14.5). 21 Jitter is defined by ± 3 σ for 1000 successive acquisitions and the slope of the transfer curve is 100%DC/360 Deg. 16 3901090316 Rev. 003 Page 13 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 11. MLX90316 Magnetic Specification DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (S, E, K or L). Parameter Magnetic Flux Density Magnet Temperature Coefficient 12. Symbol Test Conditions Min Typ Max Units B 20 50 70(23) mT TCm -2400 0 ppm/°C MLX90316 CPU & Memory Specification The DSP is based on a 16 bit RISC µController. This CPU provides 5 Mips while running at 20 MHz. Parameter 23 Symbol Test Conditions Min Typ Max Units ROM 10 kB RAM 256 B EEPROM 128 B Above 70 mT, the IMC starts saturating yielding to an increase of the linearity error. 3901090316 Rev. 003 Page 14 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 13. MLX90316 End-User Programmable Items Parameter Output Mode PWMPOL1 PWM_Freq CLOCKWISE DP LNR_S0 LNR_A_X LNR_A_Y LNR_A_S LNR_B_X LNR_B_Y LNR_B_S LNR_C_X LNR_C_Y LNR_C_S CLAMP_HIGH CLAMP_LOW KD KDHYST DEADZONE FHYST MELEXISID1 MELEXISID2 MELEXISID3 CUSTUMERID1 CUSTUMERID2 CUSTUMERID3 HIGHSPEED FSWAP FILTER FILTER A1 FILTER A2 ARGC AUTO_RG RoughGain RGThresL RGThresH EEHAMHOLE RESONFAULT MLXLOCK LOCK 3901090316 Rev. 003 Default Values Comments Define the output stage mode PWM Polarity PWM Frequency Discontinuity Point Initial Slope AX Coordinate AY Coordinate AS Coordinate BX Coordinate BY Coordinate BS Coordinate CX Coordinate CY Coordinate CS Coordinate Clamping High Clamping Low Switch Out Hysteresis on the Switch Out Filter coefficient A1 for FILTER=6 Filter coefficient A2 for FILTER=6 Auto Gain at Start Up Automatic Rough Gain Selection - SPI PPA PPD 4 N/A 4 7 0 N/A N/A 1 1000h N/A N/A 1kHz 0 0 0 1 0h 0h 0h 0h 0h N/A N/A N/A 8000h 0 0 0 0h 0% 10% 10% 0h 100%/360d 80%/360d 80%/360d FFFFh FFFFh FFFFh FFFFh FFFFh FFFFh FFFFh FFFFh 0h N/A N/A N/A FFFFh FFFFh FFFFh FFFFh FFFFh FFFFh FFFFh FFFFh 0h N/A N/A N/A 8% 0% 10% 10% 8% 100% 90% 90% FFFFh FFFFh FFFFh FFFFh 0 N/A N/A N/A 0 0 0 0 4 0 0 0 MLX MLX MLX MLX MLX MLX MLX MLX MLX MLX MLX MLX 1 1 1 1 6 19 16 20 MLX MLX MLX MLX 0 1 0 1 1 1 0 1 5 0 2 5 6600h N/A N/A N/A 2A00h N/A N/A N/A 0 1 1 1 0 1 1 1 9 0 3 0 0 0 0 0 15 15 15 15 3131h 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 Page 15 of 41 # bit 3 1 16 1 15 16 16 16 16 16 16 16 16 16 16 16 16 16 8 8 8 16 16 16 8 16 16 1 1 8 16 16 1 1 8 4 4 16 2 1 1 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 14. Description of End-User Programmable Items 14.1. Output Mode The MLX90316 output type is defined by the Output Mode parameter. Parameter Value Analog Output Mode 2, 4 Analog Rail-to-Rail 5 Low Side (NMOS) 7 Push-Pull PWM Output Mode N/A Serial Description Low Side (NMOS) 14.1.1. Analog Output Mode The Analog Output Mode is a rail-to-rail and ratiometric output with a push-pull output stage configuration allows the use of a pull-up or pull-down resistor. 14.1.2. PWM Output Mode If one of the PWM Output modes is selected, the output signal is a digital signal with Pulse Width Modulation (PWM). In mode 5, the output stage is an open drain NMOS transistor (low side), to be used with a pull-up resistor to VDD. In mode 7, the output stage is a push-pull stage for which Melexis recommends the use of a pull-up resistor to VDD. The PWM polarity is selected by the PWMPOL1 parameter: • • PWMPOL1 = 0 for a low level at 100% PWMPOL1 = 1 for a high level at 100% The PWM frequency is selected by the PWM_Freq parameter. PWM Frequency Code Oscillator Mode Pulse-Width Modulation Frequency (Hz) 100 200 500 1000 Low Speed 35000 17500 7000 3500 High Speed - 50000 20000 10000 For instance, in Low Speed Mode, set PWM_Freq = 7000 (decimal) to set the PWM frequency at 500Hz. 14.1.3. Serial Protocol Output Mode The MLX90316 features a digital Serial Protocol mode. The MLX90316 is considered as a Slave node. See the dedicated Serial Protocol section for a full description (Section 16). 3901090316 Rev. 003 Page 16 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 14.1.4. Switch Out Parameter Value Unit KD 0…359.9999 deg KDHYST 0 … 1.4 deg The switch is activated (Sw_lo) when the digital angle is greater than the value stored in the KD parameter. This angle refers to the internal angular reference linked to the parameter DP and not to the absolute physical 0° angle. The KDHYST defines the hysteresis amplitude around the Switch point. The switch is actually activated if the digital angle is greater than KD+KDHYST. It is deactivated if the digital angle is less than KD-KDHYST. The mandatory application diagram to use this feature is depicted in the Figure 8. See section 7 for the electrical characteristic. If the Switch feature is not used in the application, the output pin needs to be connected to the ground. 5V MLX90316 1k5 SWITCH OUT to uC I/O Port 100 nF 6kΩ 125 Ω 175 Ω ECU Figure 8 – Application Diagram for the Switch Out 3901090316 Rev. 003 Page 17 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 14.2. Output Transfer Characteristic Parameter Value Unit 0 Æ CCW CLOCKWISE 1 Æ CW DP LNR_A_X LNR_B_X LNR_C_X LNR_A_Y LNR_B_Y LNR_C_Y LNR_S0 LNR_A_S LNR_B_S LNR_C_S 0 … 359.9999 deg 0 … 359.9999 deg 0 … 100 % 0 … 17 %/deg -17 … 0 … 17 %/deg CLAMP_LOW 0 … 100 % CLAMP_HIGH 0 … 100 % DEADZONE 0 … 359.9999 deg 14.2.1. CLOCKWISE Parameter The CLOCKWISE parameter defines the magnet rotation direction. • • CCW is the defined by the 1-4-5-8 pin order direction for the SOIC8 package and 1-8-9-16 pin order direction for the TSSOP16 package. CW is defined by the reverse direction: 8-5-4-1 pin order direction for the SOIC8 and 16-9-8-1 pin order direction for the TSSOP16 package. Refer to the drawing in the IMC positioning sections (Section 20.3 and 20.6). 14.2.2. Discontinuity Point (or Zero Degree Point) The Discontinuity Point defines the 0° point on the circle. The discontinuity point places the origin at any location of the trigonometric circle. The DP is used as reference for all the angular measurements. 360° 0° The placement of the discontinuity point (0 point) is programmable. Figure 9 - Discontinuity Point Positioning 3901090316 Rev. 003 Page 18 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 14.2.3. LNR Parameters The LNR parameters, together with the clamping values, fully define the relation (the transfer function) between the digital angle and the output signal. The shape of the MLX90316 transfer function from the digital angle value to the output voltage is described by the drawing below. Six segments can be programmed but the clamping levels are necessarily flat. Two, three, or even five calibration points are then available, reducing the overall non-linearity of the IC by almost an order of magnitude each time. Three or five point calibration will be preferred by customers looking for excellent non-linearity figures. Two-point calibrations will be preferred by customers looking for a cheaper calibration set-up and shorter calibration time. 100 % Clamping High CLAMPHIGH C Slope LNR_C_S LNR_C_Y B Slope LNR_B_S LNR_B_Y A Slope LNR_A_S LNR_A_Y Slope LNR_S0 Clamping Low CLAMPLOW 0% 0 LNR_A_X LNR_B_X LNR_C_X 360 (Deg.) 14.2.4. CLAMPING Parameters The clamping levels are two independent values to limit the output voltage range. The CLAMP_LOW parameter adjusts the minimum output voltage level. The CLAMP_HIGH parameter sets the maximum output voltage level. Both parameters have 16 bits of adjustment. In analog mode, the resolution will be limited by the D/A converter (12 bits) to 0.024%VDD. In PWM mode, the resolution will be 0.024%DC. In SPI mode, the resolution is 14bits or 0.022deg over 360deg. 14.2.5. DEADZONE Parameter The dead zone is defined as the angle window between 0 and 359.9999. When the digital angle lies in this zone, the IC is in fault mode (RESONFAULT must be set to “1” – See 14.6.1). 14.3. Identification Parameter Value Unit 0 … 65535 MELEXSID1 MELEXSID2 0 … 65535 MELEXSID3 0 … 65535 0 … 255 CUSTUMERID1 CUSTUMERID2 0 … 65535 CUSTUMERID3 0 … 65535 Identification number: 40 bits freely useable by Customer for traceability purpose. 3901090316 Rev. 003 Page 19 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 14.4. Sensor Front-End Parameter HIGHSPEED ARGC AUTO_RG Value 0 = Slow mode 1 = Fast mode 0 = disable 1 = enable 0 = disable 1 = enable RoughGain 0 … 15 RGThresL 0 … 15 RGThresH 0 … 15 Unit 14.4.1. HIGHSPEED Parameter The HIGHSPEED parameter defines the main frequency for the DSP. • HIGHSPEED = 0 selects the Slow mode with a 7 MHz master clock. • HIGHSPEED = 1 selects the Fast mode with a 20 MHz master clock. For better noise performance, the Slow Mode must be enabled. 14.4.2. ARGC, AUTO_RG, RoughGain Parameters AUTO_RG and ARGC parameters enable the automatic gain control (AGC) of the analog chain. The AGC loop is based on (VX)²+ (VY)² = (Amplitude)² = (Radius)² and it targets an amplitude of 90% of the ADC input span. At Start-Up phase, the gain stored in the parameter RoughGain is always used. Depending of the AUTO_RG and ARGC settings, the AGC regulation acts as follow: • If ARGC is set, the regulation proceeds by jump to reach the target gain. Note that this regulation is only valid if the starting gain does not saturate the ADC. Melexis recommendation is to use RoughGain ≤ 3 if ARGC=1. • If ARGC is “0” and AUTO_RG is set to “1”, the regulation adapts every cycle by one gain code the current gain to reach the 90% ADC span target. Note that if the value of RoughGain is too far from the actual gain, the chip will enter the normal operating mode (after the Start-Up phase) with an incorrect gain which will cause the device to go in diagnostic low (field too low/field too high – See section 15). • If ARGC and AUTO_RG are “0”, the AGC regulation is off and the gain used is the value stored in the parameter RoughGain. Melexis does not advise the use of this mode. The parameter AUTO_RG activates the automatic regulation during normal operation of the device as background task. Melexis strongly recommend to set ARGC = “1”, AUTO_RG = “1” and RoughGain ≤ 3 for all types of application. If the magnetic specifications of the application are well known and under control, the appropriate RoughGain can also be programmed with ARGC set to “0” and AUTO_RG to “1”. Please note that the angular errors listed in the section 10 are only valid if the AUTO_RG is activated. AUTO_RG avoids also the saturation of the analog chain and the associated linearity error. The current gain (RG) can be read out with the PTC-04 and gives a rough indication of the applied magnetic flux density (Amplitude). 3901090316 Rev. 003 Page 20 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 14.4.3. RGThresL, RGThresH Parameters RGThresL & RGThresH define the boundaries within the gain setting (Rough Gain) is allowed to vary. Outside this range, the output is set in diagnostic low. 14.5. FILTER Parameter Value Unit FHYST 0 … 11 ; step 0.04 deg FILTER 0… 6 0 1 FSWAP The MLX90316 includes 3 types of filters: • Hysteresis Filter: programmable by the FHYST parameter • Low Pass FIR Filters controlled with the Filter parameter • Low Pass IIR Filter controlled with the Filter parameter and the coefficients FILTER A1 and FILTER A2 Note: if the parameter FSWAP is set to “1”, the filtering is active on the digital angle. If set to “0”, the filtering is active on the output transfer function. 14.5.1. Hysteresis Filter The FHYST parameter is a hysteresis filter. The output value of the IC is not updated when the digital step is smaller than the programmed FHYST parameter value. The output value is modified when the increment is bigger than the hysteresis. The hysteresis filter reduces therefore the resolution to a level compatible with the internal noise of the IC. The hysteresis must be programmed to a value close to the noise level. Please note that for the programmable version, the FHYST parameter is set to 4 by default. If you do not wish this feature, please set it to “0”. 14.5.2. FIR Filters The MLX90316 features 6 FIR filter modes controlled with Filter = 0…5. The transfer function is described below: yn = j ∑a i =0 3901090316 Rev. 003 j 1 ∑a x i =0 i n −i i Page 21 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC The characteristics of the filters no 0 to 5 is given in the Table 1. Filter No (j) Type Coefficients a0… a5 Title 90% Response Time 99% Response Time Efficiency RMS (dB) Efficiency P2P (dB) 0 Disable N/A No Filter 1 1 0 0 1 2 3 4 Finite Impulse Response 110000 121000 133100 111100 Extra Light Light 2 3 4 4 2 3 4 4 2.9 4.0 4.7 5.6 2.9 3.6 5.0 6.1 5 122210 5 5 6.2 7.0 Table 1 - FIR Filters Selection Table FIR and HYST Filters : Step response Comparative Plot 40000 x(n) fir(n) [0..65535] Scale 38000 hyst(n) 36000 34000 32000 30000 0 5 10 15 Milliseconds 20 25 30 FIR and HYST Filter : Gaussian white noise response 40200 x(n) 40150 fir(n) hyst(n) [0..65535] Scale 40100 40050 40000 39950 39900 39850 39800 0 50 100 150 Milliseconds Figure 10 - Step Response and Noise Response for FIR (No 3) and FHYST=10 3901090316 Rev. 003 Page 22 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 14.5.3. IIR Filters The IIR Filter is enabled with Filter = 6. The diagram of the IIR Filter implemented in the MLX90316 is given in Figure 11. Only the parameter A1 and A2 are configurable (See Table 2). b0 = 1 x(n) y(n) Z-1 Z-1 -a1 b1 = 2 Z-1 Z-1 b2 = 1 -a2 Figure 11 - IIR Diagram Filter No Type Title 90% Response Time Efficiency RMS (dB) Efficiency P2P (dB) Coefficient A1 Coefficient A2 2nd 11 9.9 12.9 26112 10752 16 11.4 14.6 28160 12288 6 Order Infinite Impulse Response (IIR) Medium & Strong 26 40 52 13.6 15.3 16.2 17.1 18.8 20 29120 30208 31296 12992 13952 14976 100 >20 >20 31784 15412 Table 2 - IIR Filter Selection Table The Figure 12 shows the response of the filter to a Gaussian noise with default coefficient A1 and A2. IIR Filter - Gaussian White Noise Response 40200 [0…65535] Scale 40150 x(n) 40100 y(n) 40050 40000 39950 39900 39850 39800 0 50 100 150 Time Figure 12 - Noise Response for the IIR Filter 3901090316 Rev. 003 Page 23 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 14.6. Programmable Diagnostic Settings Parameter Value 0 1 0 3131h RESONFAULT EEHAMHOLE Unit 14.6.1. RESONFAULT Parameter This RESONFAULT parameter disables the soft reset when a fault is detected by the CPU when the parameter is set to 1. By default, the parameter is set to “0” but it is recommended to set it to “1” to activate the self diagnostic modes (See section 15). Note that in the User Interface (MLX90316UI), the RESONFAULT is split in two bits: • DRESONFAULT: disable the reset in case of a fault. • DOUTINFAULT: disable output in diagnostic low in case of fault. 14.6.2. EEHAMHOLE Parameter The EEHAMHOLE parameter disables the memory recovery (Hamming code) check when a fault is detected by the CRC when it is equal to 3131h. By default the parameter is set to 0 (enable memory recovery). 14.7. Lock Parameter Value 0 1 0 1 MLXLOCK LOCK Unit 14.7.1. MLXLOCK Parameter MLXLOCK locks all the parameters set by Melexis. 14.7.2. LOCK Parameter LOCK locks all the parameters set by the user. Once the lock is enabled, it is not possible to change the EEPROM values anymore. Note that the lock bit should be set by the solver function “MemLock”. 3901090316 Rev. 003 Page 24 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 15. MLX90316 Self Diagnostic The MLX90316 provides numerous self-diagnostic features. Those features increase the robustness of the IC functionality as it will prevent the IC to provide erroneous output signal in case of internal or external failure modes (“fail-safe”). Action ROM CRC Error at start up (64 words including Intelligent Watch Dog - IWD) ROM CRC Error (Operation Background task) RAM Test Fail (Start up) Effect on Outputs Diagnostic low(25) CPU Reset (24) Enter Endless Loop: - Progress (watchdog Acknowledge) - Set Outputs in Diagnostic low CPU Reset Immediate Diagnostic low Diagnostic low Calibration Data CRC Error (Start-Up) Hamming Code Recovery Hamming Code Recovery Error (Start-Up) Calibration Data CRC Error (Operation - Background) Dead Zone CPU Reset Immediate Diagnostic low CPU Reset Immediate Diagnostic low Set Outputs in Diagnostic low. Normal Operation until the “dead zone” is left. Set Outputs in Diagnostic low Normal mode and CPU Reset If recovery Set Outputs in Diagnostic low Normal mode and CPU Reset If recovery Set Outputs in Diagnostic low Normal mode, and CPU Reset If recovery Set Outputs in Diagnostic low Normal mode, and CPU Reset If recovery Set Outputs in Diagnostic low Normal mode, and CPU Reset If recovery Immediate Diagnostic low ADC Clipping (ADC Output is 0000h or 7FFFh) Radius Overflow ( > 100% ) or Radius Underflow ( < 50 % ) Fine Gain Clipping (FG < 0d or > 63d) Rough Offset Clipping (RO is < 0d or > 127d) Rough Gain Clipping (RG < RGTHRESLOW or RG > RGTHRESHIGH) DAC Monitor (Digital to Analog converter) Set Outputs in Diagnostic low. Normal Mode with immediate recovery without CPU Reset MLX90316 Fault Mode continues… 24 All the outputs are already in Diagnostic low (start-up) Start-Up Time is increased by 3 ms if successful recovery See 14.6.2 Immediate recovery if the “dead zone” is left Immediate Diagnostic low Immediate Diagnostic low (50 % - 100 %) No magnet / field too high See also 14.4.2 Immediate Diagnostic low Immediate Diagnostic low Immediate Diagnostic low See also 14.4.2 Immediate Diagnostic low CPU reset means 1. 2. 3. 4. 25 Remark All the outputs are already in Diagnostic low - (start-up) Core Reset (same as Power-On-Reset). It induces a typical start up time. Periphery Reset (same as Power-On-Reset) Fault Flag/Status Lost The reset can be disabled by clearing the RESONFAULT bit (See 14.6.1) Refer to section 7 for the Diagnostic Output Level specifications 3901090316 Rev. 003 Page 25 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC …MLX90316 Fault Mode Fault Mode ADC Monitor (Analog to Digital Converter) Undervoltage Mode Action Set Outputs in Diagnostic low. Normal Mode with immediate recovery without CPU Reset Effect on Outputs Immediate Diagnostic low At Start-Up, wait Until VDD > 3V. - VDD < POR level => Outputs high impedance During operation, CPU Reset after 3 ms debouncing Remark ADC Inputs are Shorted Firmware Flow Error CPU Reset - POR level < VDD < 3 V => Outputs in Diagnostic low. Immediate Diagnostic low Read/Write Access out of physical memory Write Access to protected area (IO and RAM Words) Unauthorized entry in “SYSTEM” Mode VDD > 7 V CPU Reset Immediate Diagnostic low Intelligent Watchdog (Observer) 100% Hardware detection CPU Reset Immediate Diagnostic low 100% Hardware detection CPU Reset Immediate Diagnostic low 100% Hardware detection Set Output High Impedance (Analog) 100% Hardware detection VDD > 9.4 V IC is switched off (internal supply) CPU Reset on recovery Broken VSS(26) CPU Reset on recovery Pull down resistive load => Diag. Low Pull up resistive load => Diag. High(25) Pull down resistive load => Diag. Low Pull up resistive load => Diag. High Pull down resistive load => Diag. Low Pull up resistive load => Diag. High Broken VDD(26) CPU Reset on recovery 26 Pull down resistive load => Diag. Low Pull up resistive load => Diag. High 100% Hardware detection 100% Hardware detection. Pull down load ≤ 10 kΩ to meet Diag Low spec: - < 2% VDD (temperature suffix S and E) - < 4% VDD ( temperature suffix K) - contact Melexis for temperature suffix L No valid diagnostic for VPULLUP = VDD. Pull up load (≤ 10kΩ) to VPULLUP > 8 V to meet Diag Hi spec > 96% Vdd. Not Valid for SPI Version 3901090316 Rev. 003 Page 26 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 16. Serial Protocol 16.1. Introduction The MLX90316 features a digital Serial Protocol mode. The MLX90316 is considered as a Slave node. The serial protocol of the MLX90316 is a three wires protocol (/SS, SCLK, MOSI-MISO): • • • /SS pin is a 5 V tolerant digital input SCLK pin is a 5 V tolerant digital input MOSI-MISO pin is a 5 V tolerant open drain digital input/output The basic knowledge of the standard SPI specification is required for the good understanding of the present section. 16.2. SERIAL PROTOCOL Mode • • CPHA = 1 Æ CPOL = 0 Æ even clock changes are used to sample the data active-Hi clock The positive going edge shifts a bit to the Slave’s output stage and the negative going edge samples the bit at the Master’s input stage. 16.3. MOSI (Master Out Slave In) The Master sends a command to the Slave to get the angle information. 16.4. MISO (Master In Slave Out) The MISO of the slave is an open-collector stage. Due to the capacitive load (TBD) a >1 kΩ pull-up is used for the recessive high level (in fast mode). Note that MOSI and MISO use the same physical pin of the MLX90316. 16.5. /SS (Slave Select) The /SS pin enables a frame transfer (if CPHA = 1). It allows a re-synchronization between Slave and Master in case of communication error. 16.6. Master Start-Up /SS, SCLK, MISO can be undefined during the Master start-up as long as the Slave is re-synchronized before the first frame transfer. 16.7. Slave Start-Up The slave start-up (after power-up or an internal failure) takes 16 ms. Within this time /SS and SCLK is ignored by the Slave. The first frame can therefore be sent after 16 ms. MISO is Hi-Z (i.e. Hi-Impedance) until the Slave is selected by its /SS input. MLX90316 will cope with any signal from the Master while starting up. 3901090316 Rev. 003 Page 27 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 16.8. Timing To synchronize communication, the Master deactivates /SS high for at least t5 (1.5 ms). In this case, the Slave will be ready to receive a new frame. The Master can re-synchronize at any time, even in the middle of a byte transfer. Note: Any time shorter than t5 leads to an undefined frame state, because the Slave may or may not have seen /SS inactive. t6 t1 t1 t7 t1 t1 t1 t4 t2 t9 t5 SCLK MOSI/ MISO /SS 2 Startbytes Timings 27 Min(27) Byte 0 Byte 1 Max t1 2.3 μs / 6.9 μs - t2 12.5 μs / 37.5 μs - t4 2.3 μs / 6.9 μs - t5 300 μs / 1500 μs - t5 0μs t6 2.3 μs / 6.9 μs - t7 15 μs / 45 μs - t9 - <1 μs TStartUp - < 10 ms / 16 ms - Byte 2 Byte 7 Remarks No capacitive load on MISO. t1 is the minimum clock period for any bits within a byte. t2 the minimum time between any other byte Time between last clock and /SS=high=chip de-selection Minimum /SS = Hi time where it’s guaranteed that a frame resynchronizations will be started. Maximum /SS = Hi time where it’s guaranteed that NO frame resynchronizations will be started. The time t6 defines the minimum time between /SS = Lo and the first clock edge t7 is the minimum time between the StartByte and the Byte0 Maximum time between /SS = Hi and MISO Bus High-Impedance Minimum time between reset-inactive and any master signal change Timings shown for oscillator base frequency of 20MHz (Fast Mode) / 7 MHz (Slow Mode) 3901090316 Rev. 003 Page 28 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 16.9. Slave Reset On internal soft failures the Slave resets after 1 second or after an (error) frame is sent. On internal hard failures the Slave resets itself. In that case, the Serial Protocol will not come up. The serial protocol link is enabled only after the completion of the first synchronization (the Master deactivates /SS for at least t5). 16.10. Frame Layer 16.10.1. Command Device Mechanism Before each transmission of a data frame, the Master should send a byte AAh to enable a frame transfer. The latch point for the angle measurement is at the last clock before the first data frame byte. Latch point /SS SCLK MOSI A A F F F F F F F F F F F F F F F F F F A A F F F F MISO F F F F D A T A F F F F F F F F F F F F D Timing diagram 16.10.2. Data Frame Structure A data frame consists of 10 bytes: • • • • 2 start bytes (AAh followed by FFh) 2 data bytes (DATA16 – most significant byte first) 2 inverted data bytes (/DATA16 - most significant byte first) 4 all-Hi bytes The Master should send AAh (55h in case of inverting transistor) followed by 9 bytes FFh. The Slave will answer with two bytes FFh followed by 4 data bytes and 4 bytes FFh. 16.10.3. Timing There are no timing limits for frames: a frame transmission could be initiated at any time. There is no interframe time defined. 3901090316 Rev. 003 Page 29 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 16.10.4. Data Structure The DATA16 could be a valid angle, or an error condition. The two meanings are distinguished by the LSB. DATA16: Angle A[13:0] with (Angle Span)/214 Most Significant Byte MSB A13 A12 A11 A10 A9 A8 Less Significant Byte A7 LSB A6 MSB A5 A4 A3 A2 A1 A0 0 LSB 1 E1 LSB E0 DATA16: Error Most Significant Byte MSB E15 E14 E13 E12 E11 BIT E0 E1 E2 E3 E4 NAME 0 1 F_ADCMONITOR F_ADCSATURA F_RGTOOLOW E5 E6 E7 F_MAGTOOLOW F_MAGTOOHIGH F_RGTOOHIGH E8 E9 E10 E11 E12 E13 E14 E15 F_FGCLAMP F_ROCLAMP F_MT7V F_DACMONITOR - E10 Less Significant Byte E9 LSB E8 MSB E7 E6 E5 E4 E3 E2 ADC Failure ADC Saturation (Electrical failure or field too strong) Analog Gain Below Trimmed Threshold (Likely reason : field too weak) Magnetic Field Too Weak Magnetic Field Too Strong Analog Gain Above Trimmed Threshold (Likely reason : field too strong) Never occurring in serial protocol Analog Chain Rough Offset Compensation : Clipping Device Supply VDD Greater than 7V Never occurring in serial protocol 16.10.5. Angle Calculation All communication timing is independent (asynchronous) of the angle data processing. The angle is calculated continuously by the Slave: • • Slow Mode: every 1.5 ms at most. Fast Mode: every 350 μs at most. The last angle calculated is hold to be read by the Master at any time. Only valid angles are transferred by the Slave, because any internal failure of the Slave will lead to a soft reset. 16.10.6. Error Handling In case of any errors listed in section 16.10.4, the Serial protocol will be initialized and the error condition can be read by the master. The slave will perform a soft reset once the error frame is sent. In case of any other errors (ROM CRC error, EEPROM CRC error, RAM check error, intelligent watchdog error…) the Slave’s serial protocol is not initialized. The MOSI/MISO pin will stay Hi-impedant (no error frames are sent). 3901090316 Rev. 003 Page 30 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 17. Recommended Application Diagrams 17.1. Analog Output Wiring with the MLX90316 in SOIC Package ECU 5V Vdd 8 1 C1 100nF Vdd GND Vss MLX90316 Test 1 C2 100nF Vdig Switch Out Test 2 ADC C3 100nF 5 4 Output Out1 NotUsed R1 10K C4 4.7nF Figure 13 – Recommended wiring for the MLX90316 in SOIC8 package(28). 17.2. Analog Output Wiring with the MLX90316 in TSSOP Package ECU VDD1 Vdd1 GND1 GND1 GND1 C3 100nF 16 1 C1 100nF C2 100nF Vdig1 Vss1 C7 4.7nF R1 10K Output1 Out1 Vdd1 C4 100nF MLX90316 Vdd2 Out2 VDD2 Vdd2 GND2 Vss2 ADC 9 8 Vdig2 GND2 C5 100nF C6 100nF GND2 R2 10K C8 4.7nF Output2 Figure 14 – Recommended wiring for the MLX90316 in TSSOP16 package (dual die). 28 See section 14.1.4 if the Switch Output feature is used. 3901090316 Rev. 003 Page 31 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 17.3. PWM Low Side Output Wiring ECU 5V Vdd 8 1 Vdd C1 100nF GND Vss MLX90316 Test 1 C2 100nF Vdig Switch Out Test 2 C3 4.7nF 5 4 R1 1K Output PWM NotUsed TIMER 5V C4 4.7nF Figure 15 – Recommended wiring for a PWM Low Side Output configuration(29). 17.4. Serial Protocol Generic schematics for single slave and dual slave applications are described. 17.4.1. SPI Version – Single Die SPI Master GND 8 1 Vdd 5V C1 100nF Vdd Vss MLX90316 Test 0 _SS _SS MOSI Test 1 SCLK MOSI 5 MISO /SS 4 SCLK SCLK C2 100nF Vdig MOSI R2 1K 3.3V/5V Figure 16 – MLX90316 SPI Version – Single Die – Application Diagram 29 See section 14.1.4 if the Switch Output feature is used. 3901090316 Rev. 003 Page 32 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 17.4.2. SPI Version – Dual Die SPI Master C1 100nF GND 8 1 Vdd 5V Vdd Vss C2 100nF MLX90316 Test 0 Test 1 SCLK MOSI 5 MISO /SS 4 SCLK1 SCLK1 MOSI #1 _SS1 _SS1 Vdig MOSI R2 1K 3.3V/5V C1 100nF _SS2 8 1 SCLK2 Vdd Vss C2 100nF MLX90316 Test 0 #2 _SS2 /SS Test 1 SCLK MOSI 5 4 SCLK2 Vdig Figure 17 – MLX90316 SPI Version – Dual Die – Application Diagram 3901090316 Rev. 003 Page 33 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 17.4.3. Non SPI Version (Standard Version) SPI Master 8 1 Vdd 5V Vdd _SS _SS SCLK C1 100nF GND Vss Test 0 R4 R5 Vdig /SS Test 1 SCLK MOSI MOSI 5 4 MISO C2 100nF MLX90316 R3 R1 MOSI R2 3.3V/5V Figure 18 – MLX90316 − Single Die − Serial Protocol Mode μCtrl Pull-up 90316 Supply Supply Supply R1 (Ω) R2 (Ω) R3 (Ω) R4 (Ω) (V) (V) (V) 5V μCtrl w/o O.D. w/o 3.3V 5V 5V 5V 100 1000 20,000 1000 5V μCtrl w/o O.D. w/ 3.3V 5V 3.3V 5V 150 1000 N/A 1000 3.3V μCtrl w/o O.D. (30) 3.3V 3.3V 5V 150 1000 N/A N/A 5V μCtrl w/ O.D. w/o 3.3V (31) 5V 5V 5V 100 1000 20,000 1000 3.3V μCtrl w/ O.D. 3.3V 3.3V 5V 150 1000 N/A N/A Table 3 - Resistor Values for Common Specific Applications Application Type 30 31 R5 (Ω) MOS Type 20,000 20,000 N/A 20,000 N/A BS170 BS170 BS170 N/A N/A μCtrl w/ O.D. : Micro-controller with open-drain capability (for instance NEC V850ES series) μCtrl w/o O.D. : Micro-controller without open-drain capability (like TI TMS320 series or ATMEL AVR ) 3901090316 Rev. 003 Page 34 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 18. Standard information regarding manufacturability of Melexis products with different soldering processes Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level according to following test methods: Reflow Soldering SMD’s (Surface Mount Devices) • • • IPC/JEDEC J-STD-020 Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices (Classification reflow profiles according to table 5-2) EIA/JEDEC JESD22-A113 Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing (Reflow profiles according to table 2) Melexis Working Instruction 341901308 Wave Soldering SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices) • • • EN60749-20 Resistance of plastic- encapsulated SMD’s to combined effect of moisture and soldering heat EIA/JEDEC JESD22-B106 and EN60749-15 Resistance to soldering temperature for through-hole mounted devices Melexis Working Instruction 341901309 Iron Soldering THD’s (Through Hole Devices) • • EN60749-15 Resistance to soldering temperature for through-hole mounted devices Melexis Working Instruction 341901309 Solderability SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices) • • EIA/JEDEC JESD22-B102 and EN60749-21 Solderability Melexis Working Instruction 3304312 For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc) additional classification and qualification tests have to be agreed upon with Melexis. The application of Wave Soldering for SMD’s is allowed only after consulting Melexis regarding assurance of adhesive strength between device and board. For more information on the lead free topic please see quality page at our website: http://www.melexis.com/quality.aspx 19. ESD Precautions Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). Always observe Electro Static Discharge control procedures whenever handling semiconductor products. 3901090316 Rev. 003 Page 35 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 20. Package Information 20.1. SOIC8 - Package Dimensions 1.27 TYP NOTES: 3.81 3.99** 4.80 4.98* 5.80 6.20** All dimensions are in millimeters (anlges in degrees). * Dimension does not include mold flash, protrusions or gate burrs (shall not exceed 0.15 per side). ** Dimension does not include interleads flash or protrusion (shall not exceed 0.25 per side). *** Dimension does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm total in excess of the dimension at maximum material condition. Dambar cannot be located on the lower radius of the foot. 1.37 1.57 1.52 1.72 0.19 0.25 0° 8° 0.100 0.250 0.36 0.46*** 0.41 1.27 8 Out MOSI/MISO Test 1 Vdig Vss 20.2. SOIC8 - Pinout and Marking Marking : Part Number MLX90316 (3 digits) Die Version (3 digits) 5 316 316BxG 123456 TOP SPI Version Lot number (6 digits) WW SCLK \SS Switch Test 0 YY Standard Week Date code (2 digits) Year Date code (2 digits) 4 Vdd 3901090316 Rev. 003 BDG 123456 Bottom 1 BCG Page 36 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 20.3. SOIC8 - IMC Positionning CW 8 7 6 5 CCW COS 1.25 1.65 1 2 3 0.46 +/- 0.06 4 1.96 2.26 SIN Angle detection MLX90316 SOIC8 ~ 0 Deg.* S 1 2 6 5 8 7 4 1 2 N 7 3 2 3 5 S3 4 ~ 270 Deg.* 5 8 7 6 5 4 1 2 N3 4 S 6 N 1 7 S ~ 180 Deg.* 8 6 N 8 ~ 90 Deg.* * No absolute reference for the angular information. The MLX90316 is an absolute angular position sensor but the linearity error (Le – See Section 10) does not include the error linked to the absolute reference 0 Deg (which can be fixed in the application through the discontinuity point – See 14.2.2). 3901090316 Rev. 003 Page 37 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 20.4. TSSOP16 - Package Dimensions 0.65 TYP 12O TYP 0.20 TYP 0.09 MIN 1.0 DIA 4.30 4.50** 6.4 TYP 0.09 MIN 1.0 12O TYP 0.50 0.75 0O 8O 1.0 1.0 TYP 0.85 0.95 4.90 5.10* 1.1 MAX 0.19 0.30*** 0.09 0.20 0.05 0.15 NOTES: All dimensions are in millimeters (anlges in degrees). * Dimension does not include mold flash, protrusions or gate burrs (shall not exceed 0.15 per side). ** Dimension does not include interleads flash or protrusion (shall not exceed 0.25 per side). *** Dimension does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm total in excess of the dimension at maximum material condition. Dambar cannot be located on the lower radius of the foot. 3901090316 Rev. 003 Page 38 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 20.5. TSSOP16 - Pinout and Marking 16 1 Vdig_1 Test1_1 Vss_1 Out_1/MOSI/MISO_1 Vdd_1 SCLK_1 316BxG 123456 Test0_1 _SS_2/Switch_2 SCLK_2 Test0_2 Vdd_2 9 8 Out_2/MOSI/MISO_2 Test1_2 _SS_1/ Switch_1 Marking : Vss_2 Vdig_2 Part Number MLX90316 (3 digits) Die Version (3 digits) 316 Top BCG Standard BDG SPI Version 123456 Bottom YY Lot number (6 digits) WW Week Date code (2 digits) Year Date code (2 digits) 20.6. TSSOP16 - IMC Positionning CW COS 2 16 9 Die 1 Die 2 SIN 2 SIN 1 0.30 +/- 0.06 CCW 1.95 2.45 1 8 1.84 2.04 COS 1 2.76 2.96 3901090316 Rev. 003 Page 39 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC Angle detection MLX90316 TSSOP16 ~ 180 Deg.* 16 9 16 Die 2 1 8 ~ 180 Deg.* ~ 0 Deg.* 16 1 8 ~ 270 Deg.* ~ 90 Deg.* 9 16 Die 2 9 Die 1 S S N 1 Die 2 S Die 1 S Die 1 9 N N Die 1 ~ 90 Deg.* ~ 270 Deg.* 8 1 Die 2 N ~ 0 Deg.* 8 * No absolute reference for the angular information. The MLX90316 is an absolute angular position sensor but the linearity error (Le – See Section 10) does not include the error linked to the absolute reference 0 Deg (which can be fixed in the application through the discontinuity point – See 14.2.2). 3901090316 Rev. 003 Page 40 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 21. Disclaimer Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. Melexis reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with Melexis for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by Melexis for each application. The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of Melexis’ rendering of technical or other services. © 2007 Melexis N.V. All rights reserved. For the latest version of this document, go to our website at www.melexis.com Or for additional information contact Melexis Direct: Europe, Africa, Asia: America: Phone: +32 1367 0495 E-mail: [email protected] Phone: +1 603 223 2362 E-mail: [email protected] ISO/TS 16949 and ISO14001 Certified 3901090316 Rev. 003 Page 41 of 41 Data Sheet April 07