PD - 95447A
IRG4BC40FPbF
Fast Speed IGBT
INSULATED GATE BIPOLAR TRANSISTOR
Features
C
Fast: optimized for medium operating
frequencies ( 1-5 kHz in hard switching, >20
kHz in resonant mode).
Generation 4 IGBT design provides tighter
parameter distribution and higher efficiency than
Generation 3
Industry standard TO-220AB package
Lead-Free
VCES = 600V
VCE(on) typ. = 1.50V
G
@VGE = 15V, IC = 27A
E
n-channel
Benefits
Generation 4 IGBTs offer highest efficiency available
IGBTs optimized for specified application conditions
Designed to be a "drop-in" replacement for equivalent
industry-standard Generation 3 IR IGBTs
TO-220AB
Absolute Maximum Ratings
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
VGE
EARV
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Parameter
Max.
Units
Collector-to-Emitter Breakdown Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current
Clamped Inductive Load Current
Gate-to-Emitter Voltage
Reverse Voltage Avalanche Energy
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torque, 6-32 or M3 screw.
600
49
27
196
196
± 20
15
160
65
-55 to + 150
V
A
V
mJ
W
300 (0.063 in. (1.6mm from case )
10 lbfin (1.1Nm)
°C
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
Wt
www.irf.com
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient, typical socket mount
Weight
Typ.
Max.
0.50
2.0 (0.07)
0.77
80
Units
°C/W
g (oz)
1
02/15/10
IRG4BC40FPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ.
Collector-to-Emitter Breakdown Voltage
600
Emitter-to-Collector Breakdown Voltage 18
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage
0.70
1.50
VCE(ON)
Collector-to-Emitter Saturation Voltage
1.85
1.56
VGE(th)
Gate Threshold Voltage
3.0
∆V GE(th)/∆TJ Temperature Coeff. of Threshold Voltage
-12
gfe
Forward Transconductance
9.2
12
ICES
Zero Gate Voltage Collector Current
IGES
Gate-to-Emitter Leakage Current
V(BR)CES
V(BR)ECS
Max. Units
Conditions
V
VGE = 0V, IC = 250µA
V
VGE = 0V, IC = 1.0A
V/°C VGE = 0V, IC = 1.0mA
VGE = 15V
1.7
IC = 27A
IC = 49A
See Fig.2, 5
V
IC = 27A , TJ = 150°C
6.0
VCE = VGE, IC = 250µA
mV/°C VCE = VGE, IC = 250µA
S
VCE = 100V, IC = 27A
250
VGE = 0V, VCE = 600V
µA
2.0
VGE = 0V, VCE = 10V, TJ = 25°C
1000
VGE = 0V, VCE = 600V, TJ = 150°C
±100 n A VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
td(on)
tr
td(off)
tf
Ets
LE
Cies
Coes
Cres
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Min.
Typ.
100
15
35
26
18
240
170
0.37
1.81
2.18
25
21
380
310
3.9
7.5
2200
140
29
Max. Units
Conditions
150
IC = 27A
23
nC
VCC = 400V
See Fig. 8
53
VGE = 15V
TJ = 25°C
ns
360
IC = 27A, VCC = 480V
250
VGE = 15V, RG = 10Ω
Energy losses include "tail"
mJ
See Fig. 10, 11, 13, 14
2.8
TJ = 150°C,
IC = 27A, VCC = 480V
ns
VGE = 15V, RG = 10Ω
Energy losses include "tail"
mJ
See Fig. 13, 14
nH
Measured 5mm from package
VGE = 0V
pF
VCC = 30V
See Fig. 7
= 1.0MHz
Notes:
Repetitive rating; VGE = 20V, pulse width limited by
max. junction temperature. ( See fig. 13b )
VCC = 80%(VCES), VGE = 20V, L = 10µH, RG = 10Ω,
(See fig. 13a)
Pulse width ≤ 80µs; duty factor ≤ 0.1%.
Pulse width 5.0µs, single shot.
Repetitive rating; pulse width limited by maximum
junction temperature.
2
www.irf.com
IRG4BC40FPbF
60
For both:
50
Load Current ( A )
Triangular wave:
Duty cycle: 50%
TJ = 125°C
Tsink = 90°C
Gate drive as specified
I
Clamp voltage:
80% of rated
Power Dissipation = 28W
40
Square wave:
30
60% of rated
voltage
20
I
10
Ideal diodes
A
0
0.1
1
10
100
f, Frequency (kHz)
Fig. 1 - Typical Load Current vs. Frequency
(For square wave, I=IRMS of fundamental; for triangular wave, I=IPK)
(A)
IC , Collector-to-Emitter Current
TJ = 25°C
100
TJ = 150°C
10
VGE = 15V
20µs PULSE WIDTH A
1
1
10
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
IC , Collector-to-Emitter Current (A)
1000
1000
100
TJ = 150°C
TJ = 25°C
10
V CC = 50V
5µs PULSE WIDTH A
1
5
6
7
8
9
10
11
12
VGE, Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
3
IRG4BC40FPbF
2.5
V GE = 15V
VCE , Collector-to-Emitter Voltage (V)
Maximum DC Collector Current (A)
50
40
30
20
10
0
25
50
75
100
125
IC = 54A
2.0
I C = 27A
1.5
I C = 14A
A
1.0
150
-60
TC , Case Temperature (°C)
Fig. 4 - Maximum Collector Current vs. Case
Temperature
VGE = 15V
80µs PULSE WIDTH
-40
-20
0
20
40
60
80
100 120 140 160
TJ , Junction Temperature (°C)
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Thermal Response (Z thJC )
1
D = 0.50
0.20
0.1
0.10
PDM
0.05
0.02
t
SINGLE PULSE
(THERMAL RESPONSE)
Notes:
1. Duty factor D = t / t
1 2
0.01
0.01
0.00001
1
t2
2. Peak TJ = PDM x Z thJC + T C
0.0001
0.001
0.01
0.1
1
10
t 1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4BC40FPbF
VGE = 0V
f = 1 MHz
Cies = Cge + Cgc + Cce
20
Cres = Cce
Coes = Cce + Cgc
3000
Cies
2000
Coes
1000
Cres
A
0
1
VCE = 400V
IC = 27A
SHORTED
VGE , Gate-to-Emitter Voltage (V)
C , Capacitance ( pF)
4000
10
16
12
8
4
A
0
0
100
20
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
Total Switching Losses (mJ)
Total Switchig Losses (mJ)
2.20
A
2.10
20
30
40
50
R G , Gate Resistance (Ω)
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
www.irf.com
120
IC = 54A
2.30
10
100
10
2.40
0
80
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
V CC = 480V
V GE = 15V
T J = 25°C
I C = 27A
2.50
60
Qg , Total Gate Charge (nC)
VCE, Collector-to-Emitter Voltage (V)
2.60
40
60
I C = 27A
I C = 14A
1
R G = 10Ω
V GE = 15V
V CC = 480V
0.1
-60
-40
-20
0
20
40
60
80
A
100 120 140 160
TJ , Junction Temperature (°C)
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
IRG4BC40FPbF
RG
TJ
VCC
VGE
Total Switching Losses (mJ)
8
1000
= 10Ω
= 150°C
= 480V
= 15V
I C , Collector-to-Emitter Current (A)
10
6
4
2
A
0
0
10
20
30
40
50
IC , Collector-to-Emitter Current (A)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
6
60
VGE
= 20V
GE
TJ = 125°C
100
SAFE OPERATING AREA
10
1
1
10
100
1000
VCE , Collector-to-Emitter Voltage (V)
Fig. 12 - Turn-Off SOA
www.irf.com
IRG4BC40FPbF
RL = VCC
ICM
L
D.U.T.
VC *
50V
1000V
0 - VCC
c
480µF
d
* Driver same type as D.U.T.; Vc = 80% of Vce(max)
* Note: Due to the 50V power supply, pulse width and inductor
will increase to obtain rated Id.
Pulsed Collector Current
Test Circuit
Fig. 13b - Pulsed Collector
Fig. 13a - Clamped Inductive
Current Test Circuit
Load Test Circuit
IC
L
Driver*
D.U.T.
VC
Test Circuit
50V
1000V
c
Fig. 14a - Switching Loss
d
e
* Driver same type
as D.U.T., VC = 480V
c
d
90%
e
VC
10%
90%
Fig. 14b - Switching Loss
t d(off)
10%
I C 5%
Waveforms
tf
tr
t d(on)
t=5µs
E on
E off
E ts = (Eon +Eoff )
www.irf.com
7
IRG4BC40FPbF
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))
TO-220AB Part Marking Information
(;$03/( 7+,6,6$1,5)
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(&
Note: "P" in assembly line
position indicates "Lead-Free"
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
'$7(&2'(
<($5 :((.
/,1(&
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.02/2010
8
www.irf.com