PD - 95398 IRG4PC50FPbF Fast Speed IGBT INSULATED GATE BIPOLAR TRANSISTOR Features C Optimized for medium operating frequencies ( 1-5 kHz in hard switching, >20 kHz in resonant mode). Generation 4 IGBT design provides tighter parameter distribution and higher efficiency than Generation 3 Industry standard TO-247AC package Lead-Free VCES = 600V VCE(on) typ. = 1.45V G @VGE = 15V, IC = 39A E n-channel Benefits Generation 4 IGBT's offer highest efficiency available IGBT's optimized for specified application conditions Designed to be a "drop-in" replacement for equivalent industry-standard Generation 3 IR IGBT's TO-247AC Absolute Maximum Ratings VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM VGE EARV PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Parameter Max. Units Collector-to-Emitter Breakdown Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Gate-to-Emitter Voltage Reverse Voltage Avalanche Energy Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 screw. 600 70 39 280 280 ± 20 20 200 78 -55 to + 150 V A V mJ W 300 (0.063 in. (1.6mm from case ) 10 lbfin (1.1Nm) °C Thermal Resistance Parameter RθJC RθCS RθJA Wt www.irf.com Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient, typical socket mount Weight Typ. Max. 0.24 6 (0.21) 0.64 40 Units °C/W g (oz) 1 6/16/04 IRG4PC50FPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 600 Emitter-to-Collector Breakdown Voltage 18 ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage 0.62 1.45 VCE(ON) Collector-to-Emitter Saturation Voltage 1.79 1.53 VGE(th) Gate Threshold Voltage 3.0 ∆VGE(th)/∆TJ Temperature Coeff. of Threshold Voltage -14 gfe Forward Transconductance 21 30 ICES Zero Gate Voltage Collector Current IGES Gate-to-Emitter Leakage Current V(BR)CES V(BR)ECS Max. Units Conditions V VGE = 0V, IC = 250µA V VGE = 0V, IC = 1.0A V/°C VGE = 0V, IC = 1.0mA VGE = 15V 1.6 IC = 39A IC = 70A See Fig.2, 5 V IC = 39A , TJ = 150°C 6.0 VCE = VGE, IC = 250µA mV/°C VCE = VGE, IC = 250µA S VCE = 100V, IC = 39A 250 VGE = 0V, VCE = 600V µA 2.0 VGE = 0V, VCE = 10V, TJ = 25°C 2000 VGE = 0V, VCE = 600V, TJ = 150°C ±100 n A VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. Typ. 190 28 65 31 25 240 130 0.37 2.1 2.47 28 24 390 230 5.0 13 4100 250 49 Max. Units Conditions 290 IC = 39A 42 nC VCC = 400V See Fig. 8 97 VGE = 15V TJ = 25°C ns 350 IC = 39A, VCC = 480V 190 VGE = 15V, RG = 5.0Ω Energy losses include "tail" mJ See Fig. 10, 11, 13, 14 3.0 TJ = 150°C, IC = 39A, VCC = 480V ns VGE = 15V, RG = 5.0Ω Energy losses include "tail" mJ See Fig. 13, 14 nH Measured 5mm from package VGE = 0V pF VCC = 30V See Fig. 7 = 1.0MHz Notes: Repetitive rating; VGE = 20V, pulse width limited by max. junction temperature. ( See fig. 13b ) VCC = 80%(VCES), VGE = 20V, L = 10µH, RG = 5.0Ω, (See fig. 13a) Pulse width ≤ 80µs; duty factor ≤ 0.1%. Pulse width 5.0µs, single shot. Repetitive rating; pulse width limited by maximum junction temperature. 2 www.irf.com IRG4PC50FPbF 100 For both: 80 Load Current (A) Triangular wave: Duty cycle: 50% TJ = 125°C Tsink = 90°C Gate drive as specified Power Dissipation = 40W Clamp voltage: 80% of rated 60 Square wave: 60% of rated voltage 40 20 Ideal diodes A 0 0.1 1 10 100 f, Frequency (kHz) Fig. 1 - Typical Load Current vs. Frequency (For square wave, I=IRMS of fundamental; for triangular wave, I=IPK) 1000 100 TJ = 150°C 10 TJ = 25°C VGE = 15V 20µs PULSE WIDTHA 1 0.1 1 10 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com IC , Collector-to-Emitter Current (A) IC , Collector-to-Emitter Current (A) 1000 100 TJ = 150°C TJ = 25°C 10 VCC = 50V 5µs PULSE WIDTH A 1 5 6 7 8 9 10 11 12 VGE , Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 IRG4PC50FPbF VGE = 15V 60 50 40 30 20 10 2.5 VCE , Collector-to-Emitter Voltage (V) Maximum DC Collector Current (A) 70 0 25 50 75 100 125 V GE = 15V 80µs PULSE WIDTH I C = 78A 2.0 IC = 39A 1.5 I C = 20A A 1.0 150 -60 TC , Case Temperature (°C) -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature (°C) Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Collector-to-Emitter Voltage vs. Junction Temperature Thermal Response (Z thJC ) 1 D = 0.50 0.20 0.1 0.10 PDM 0.05 0.02 SINGLE PULSE (THERMAL RESPONSE) 0.01 0.01 0.00001 t 1 t2 Notes: 1. Duty factor D = t / t 1 2 2. Peak TJ = PDM x Z thJC + TC 0.0001 0.001 0.01 0.1 1 10 t 1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4PC50FPbF VGE = 0V f = 1 MHz Cies = Cge + Cgc + Cce 20 SHORTED VGE , Gate-to-Emitter Voltage (V) 8000 C, Capacitance (pF) Cres = Cce Coes = Cce + Cgc 6000 Cies 4000 Coes 2000 Cres A 0 1 10 VCE = 400V I C = 39A 16 12 8 4 A 0 100 0 40 VCE, Collector-to-Emitter Voltage (V) Total Switching Losses (mJ) 3.6 100 = 480V = 15V = 25°C = 39A 3.4 3.2 3.0 2.8 2.6 A 2.4 0 10 20 30 40 R G , Gate Resistance 50 ( Ω) Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 160 200 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage Total Switching Losses (mJ) VCC VGE TJ IC 120 Qg , Total Gate Charge (nC) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 3.8 80 60 RG = 5.0 Ω VGE = 15V VCC = 480V 10 IC = 78A IC = 39A IC = 20A 1 A 0.1 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature (°C) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4PC50FPbF RG TJ VCC VGE 10 1000 = 5.0 Ω = 150°C = 480V = 15V I C , Collector-to-Emitter Current (A) Total Switching Losses (mJ) 12 8 6 4 2 A 0 0 20 40 60 I C , Collector-to-Emitter Current (A) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current 6 80 VGE = 20V GE TJ = 125°C SAFE OPERATING AREA 100 10 1 1 10 100 1000 VCE , Collector-to-Emitter Voltage (V) Fig. 12 - Turn-Off SOA www.irf.com IRG4PC50FPbF L D.U.T. VC * 50V RL = 0 - 480V 1000V c 480V 4 X IC@ 25°C 480µF 960V d * Driver same type as D.U.T.; Vc = 80% of Vce(max) * Note: Due to the 50V power supply, pulse width and inductor will increase to obtain rated Id. Fig. 13b - Pulsed Collector Fig. 13a - Clamped Inductive Current Test Circuit Load Test Circuit IC L Driver* D.U.T. VC Test Circuit 50V 1000V c Fig. 14a - Switching Loss d e * Driver same type as D.U.T., VC = 480V c d 90% e VC 10% 90% Fig. 14b - Switching Loss t d(off) 10% I C 5% Waveforms tf tr t d(on) t=5µs E on E off E ts = (Eon +Eoff ) www.irf.com 7 IRG4PC50FPbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information EXAMPLE: T HIS IS AN IRFPE30 WIT H ASSEMBLY LOT CODE 5657 ASSEMBLED ON WW 35, 2000 IN THE AS SEMBLY LINE "H" Note: "P" in assembly line position indicates "Lead-Free" INT ERNATIONAL RECT IFIER LOGO ASSEMBLY LOT CODE PART NUMBER IRFPE30 56 035H 57 DAT E CODE YEAR 0 = 2000 WEEK 35 LINE H IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 6/04 8 www.irf.com Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/