PD - 95175A
IRG4BC40SPbF
Standard Speed IGBT
INSULATED GATE BIPOLAR TRANSISTOR
Features
C
Standard: optimized for minimum saturation
voltage and low operating frequencies ( < 1kHz)
Generation 4 IGBT design provides tighter
parameter distribution and higher efficiency than
Generation 3
Industry standard TO-220AB package
Lead-Free
VCES = 600V
VCE(on) typ. = 1.32V
G
@VGE = 15V, IC = 31A
E
n-channel
Benefits
Generation 4 IGBTs offer highest efficiency available
IGBTs optimized for specified application conditions
Designed to be a "drop-in" replacement for equivalent
industry-standard Generation 3 IR IGBTs
TO-220AB
Absolute Maximum Ratings
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
VGE
EARV
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Parameter
Max.
Units
Collector-to-Emitter Breakdown Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current
Clamped Inductive Load Current
Gate-to-Emitter Voltage
Reverse Voltage Avalanche Energy
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torque, 6-32 or M3 screw.
600
60
30
120
120
± 20
15
160
65
-55 to + 150
V
A
V
mJ
W
300 (0.063 in. (1.6mm from case )
10 lbfin (1.1Nm)
°C
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
Wt
www.irf.com
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient, typical socket mount
Weight
Typ.
Max.
0.50
2.0 (0.07)
0.77
80
Units
°C/W
g (oz)
1
02/17/10
IRG4BC40SPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ.
Collector-to-Emitter Breakdown Voltage
600
Emitter-to-Collector Breakdown Voltage 18
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage
0.75
1.32
VCE(ON)
Collector-to-Emitter Saturation Voltage
1.68
1.32
VGE(th)
Gate Threshold Voltage
3.0
∆VGE(th)/∆TJ Temperature Coeff. of Threshold Voltage
-9.3
gfe
Forward Transconductance
12
21
ICES
Zero Gate Voltage Collector Current
IGES
Gate-to-Emitter Leakage Current
V(BR)CES
V(BR)ECS
Max. Units
Conditions
V
VGE = 0V, IC = 250µA
V
VGE = 0V, IC = 1.0A
V/°C VGE = 0V, IC = 1.0mA
VGE = 15V
1.5
IC = 31A
IC = 60A
See Fig.2, 5
V
IC = 31A , TJ = 150°C
6.0
VCE = VGE, IC = 250µA
mV/°C VCE = VGE, IC = 250µA
S
VCE = 100V, IC = 31A
250
VGE = 0V, VCE = 600V
µA
2.0
VGE = 0V, VCE = 10V, TJ = 25°C
1000
VGE = 0V, VCE = 600V, TJ = 150°C
±100 n A VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
td(on)
tr
td(off)
tf
E ts
LE
Cies
Coes
Cres
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Min.
Typ.
100
14
34
22
18
650
380
0.45
6.5
6.95
23
21
1000
940
12
7.5
2200
140
26
Max. Units
Conditions
150
IC = 31A
21
nC
VCC = 400V
See Fig. 8
51
VGE = 15V
TJ = 25°C
ns
980
IC = 31A, VCC = 480V
570
VGE = 15V, RG = 10Ω
Energy losses include "tail"
mJ
See Fig. 10, 11, 13, 14
9.9
TJ = 150°C,
IC = 31A, VCC = 480V
ns
VGE = 15V, RG = 10Ω
Energy losses include "tail"
mJ See Fig. 13, 14
nH
Measured 5mm from package
VGE = 0V
pF
VCC = 30V
See Fig. 7
= 1.0MHz
Notes:
Repetitive rating; VGE = 20V, pulse width limited by
max. junction temperature. ( See fig. 13b )
VCC = 80%(VCES), VGE = 20V, L = 10µH, RG = 10Ω,
Pulse width ≤ 80µs; duty factor ≤ 0.1%.
Pulse width 5.0µs, single shot.
(See fig. 13a)
Repetitive rating; pulse width limited by maximum
junction temperature.
2
www.irf.com
IRG4BC40SPbF
70
For both:
60
50
Load Current ( A )
Triangular wave:
Duty cycle: 50%
TJ = 125°C
Tsink = 90°C
Gate drive as specified
I
Clamp voltage:
80% of rated
Power Dissipation = 28W
40
Square wave:
60% of rated
voltage
30
I
20
Ideal diodes
10
A
0
0.1
1
10
100
f, Frequency (kHz)
Fig. 1 - Typical Load Current vs. Frequency
(For square wave, I=IRMS of fundamental; for triangular wave, I=IPK)
IC , Collector-to-Emitter Current (A)
100
TJ = 25°C
10
TJ = 150°C
V GE = 15V
20µs PULSE WIDTH A
1
0.1
1
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
10
IC , Collector-to-Emitter Current (A)
1000
1000
100
TJ = 150°C
TJ = 25°C
10
V CC = 50V
5µs PULSE WIDTH A
1
5
6
7
8
9
10
VGE, Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
3
IRG4BC40SPbF
2.0
V GE = 15V
VCE , Collector-to-Emitter Voltage (V)
Maximum DC Collector Current (A)
60
50
40
30
20
10
A
0
25
50
75
100
125
VGE = 15V
80µs PULSE WIDTH
I C = 62A
1.5
I C = 31A
I C = 16A
A
1.0
-60
150
TC , Case Temperature (°C)
-40
-20
0
20
40
60
80
100 120 140 160
TJ , Junction Temperature (°C)
Fig. 4 - Maximum Collector Current vs. Case
Temperature
Fig. 5 - Collector-to-Emitter Voltage vs.
Junction Temperature
Thermal Response (Z thJC )
1
D = 0.50
0.20
0.1
0.10
PDM
0.05
0.02
t
SINGLE PULSE
(THERMAL RESPONSE)
Notes:
1. Duty factor D = t / t
1 2
0.01
0.01
0.00001
1
t2
2. Peak TJ = PDM x Z thJC + T C
0.0001
0.001
0.01
0.1
1
10
t 1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4BC40SPbF
20
V GE = 0V,
f = 1MHz
C ies = C ge + C gc , Cce SHORTED
C res = C gc
C oes = C ce + C gc
VGE , Gate-to-Emitter Voltage (V)
C, Capacitance (pF)
4000
3000
Cies
2000
Coes
1000
Cres
A
0
1
10
VCE = 400V
I C = 31A
16
12
8
4
A
0
100
0
20
VCE, Collector-to-Emitter Voltage (V)
7.7
100
= 480V
= 15V
= 25°C
= 31A
7.6
7.5
7.4
A
7.3
0
10
20
30
40
50
60
R G , Gate Resistance (Ω)
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
www.irf.com
80
100
120
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
Total Switching Losses (mJ)
Total Switching Losses (mJ)
VCC
VGE
TJ
IC
60
Qg , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
7.8
40
RG = 10Ω
V GE = 15V
V CC = 480V
I C = 62A
I C = 31A
10
I C = 16A
A
1
-60
-40
-20
0
20
40
60
80
100 120 140 160
TJ , Junction Temperature (°C)
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
IRG4BC40SPbF
RG
TJ
VCC
VGE
1000
= 10 Ω
= 150°C
= 480V
= 15V
I C , Collector-to-Emitter Current (A)
Total Switching Losses (mJ)
30
20
10
A
0
0
10
20
30
40
50
60
I C , Collector-to-Emitter Current (A)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
6
70
VGE
= 20V
GE
TJ = 125°C
100
SAFE OPERATING AREA
10
1
1
10
100
1000
VCE , Collector-to-Emitter Voltage (V)
Fig. 12 - Turn-Off SOA
www.irf.com
IRG4BC40SPbF
RL = VCC
ICM
L
D.U.T.
VC *
50V
0 - VCC
1000V
c
480µF
d
* Driver same type as D.U.T.; Vc = 80% of Vce(max)
* Note: Due to the 50V power supply, pulse width and inductor
will increase to obtain rated Id.
Pulsed Collector Current
Test Circuit
Fig. 13b - Pulsed Collector
Fig. 13a - Clamped Inductive
Current Test Circuit
Load Test Circuit
IC
L
Driver*
D.U.T.
VC
Test Circuit
50V
1000V
c
Fig. 14a - Switching Loss
d
e
* Driver same type
as D.U.T., VC = 480V
c
d
90%
e
VC
10%
90%
Fig. 14b - Switching Loss
t d(off)
10%
I C 5%
Waveforms
tf
tr
t d(on)
t=5µs
E on
E off
E ts = (Eon +Eoff )
www.irf.com
7
IRG4BC40SPbF
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))
TO-220AB Part Marking Information
(;$03/( 7+,6,6$1,5)
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(&
Note: "P" in assembly line
position indicates "Lead-Free"
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
'$7(&2'(
<($5 :((.
/,1(&
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 02/2010
8
www.irf.com