PD - 95175A IRG4BC40SPbF Standard Speed IGBT INSULATED GATE BIPOLAR TRANSISTOR Features C Standard: optimized for minimum saturation voltage and low operating frequencies ( < 1kHz) Generation 4 IGBT design provides tighter parameter distribution and higher efficiency than Generation 3 Industry standard TO-220AB package Lead-Free VCES = 600V VCE(on) typ. = 1.32V G @VGE = 15V, IC = 31A E n-channel Benefits Generation 4 IGBTs offer highest efficiency available IGBTs optimized for specified application conditions Designed to be a "drop-in" replacement for equivalent industry-standard Generation 3 IR IGBTs TO-220AB Absolute Maximum Ratings VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM VGE EARV PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Parameter Max. Units Collector-to-Emitter Breakdown Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Gate-to-Emitter Voltage Reverse Voltage Avalanche Energy Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 screw. 600 60 30 120 120 ± 20 15 160 65 -55 to + 150 V A V mJ W 300 (0.063 in. (1.6mm from case ) 10 lbfin (1.1Nm) °C Thermal Resistance Parameter RθJC RθCS RθJA Wt www.irf.com Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient, typical socket mount Weight Typ. Max. 0.50 2.0 (0.07) 0.77 80 Units °C/W g (oz) 1 02/17/10 IRG4BC40SPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 600 Emitter-to-Collector Breakdown Voltage 18 ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage 0.75 1.32 VCE(ON) Collector-to-Emitter Saturation Voltage 1.68 1.32 VGE(th) Gate Threshold Voltage 3.0 ∆VGE(th)/∆TJ Temperature Coeff. of Threshold Voltage -9.3 gfe Forward Transconductance 12 21 ICES Zero Gate Voltage Collector Current IGES Gate-to-Emitter Leakage Current V(BR)CES V(BR)ECS Max. Units Conditions V VGE = 0V, IC = 250µA V VGE = 0V, IC = 1.0A V/°C VGE = 0V, IC = 1.0mA VGE = 15V 1.5 IC = 31A IC = 60A See Fig.2, 5 V IC = 31A , TJ = 150°C 6.0 VCE = VGE, IC = 250µA mV/°C VCE = VGE, IC = 250µA S VCE = 100V, IC = 31A 250 VGE = 0V, VCE = 600V µA 2.0 VGE = 0V, VCE = 10V, TJ = 25°C 1000 VGE = 0V, VCE = 600V, TJ = 150°C ±100 n A VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf E ts LE Cies Coes Cres Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. Typ. 100 14 34 22 18 650 380 0.45 6.5 6.95 23 21 1000 940 12 7.5 2200 140 26 Max. Units Conditions 150 IC = 31A 21 nC VCC = 400V See Fig. 8 51 VGE = 15V TJ = 25°C ns 980 IC = 31A, VCC = 480V 570 VGE = 15V, RG = 10Ω Energy losses include "tail" mJ See Fig. 10, 11, 13, 14 9.9 TJ = 150°C, IC = 31A, VCC = 480V ns VGE = 15V, RG = 10Ω Energy losses include "tail" mJ See Fig. 13, 14 nH Measured 5mm from package VGE = 0V pF VCC = 30V See Fig. 7 = 1.0MHz Notes: Repetitive rating; VGE = 20V, pulse width limited by max. junction temperature. ( See fig. 13b ) VCC = 80%(VCES), VGE = 20V, L = 10µH, RG = 10Ω, Pulse width ≤ 80µs; duty factor ≤ 0.1%. Pulse width 5.0µs, single shot. (See fig. 13a) Repetitive rating; pulse width limited by maximum junction temperature. 2 www.irf.com IRG4BC40SPbF 70 For both: 60 50 Load Current ( A ) Triangular wave: Duty cycle: 50% TJ = 125°C Tsink = 90°C Gate drive as specified I Clamp voltage: 80% of rated Power Dissipation = 28W 40 Square wave: 60% of rated voltage 30 I 20 Ideal diodes 10 A 0 0.1 1 10 100 f, Frequency (kHz) Fig. 1 - Typical Load Current vs. Frequency (For square wave, I=IRMS of fundamental; for triangular wave, I=IPK) IC , Collector-to-Emitter Current (A) 100 TJ = 25°C 10 TJ = 150°C V GE = 15V 20µs PULSE WIDTH A 1 0.1 1 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com 10 IC , Collector-to-Emitter Current (A) 1000 1000 100 TJ = 150°C TJ = 25°C 10 V CC = 50V 5µs PULSE WIDTH A 1 5 6 7 8 9 10 VGE, Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 IRG4BC40SPbF 2.0 V GE = 15V VCE , Collector-to-Emitter Voltage (V) Maximum DC Collector Current (A) 60 50 40 30 20 10 A 0 25 50 75 100 125 VGE = 15V 80µs PULSE WIDTH I C = 62A 1.5 I C = 31A I C = 16A A 1.0 -60 150 TC , Case Temperature (°C) -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature (°C) Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Collector-to-Emitter Voltage vs. Junction Temperature Thermal Response (Z thJC ) 1 D = 0.50 0.20 0.1 0.10 PDM 0.05 0.02 t SINGLE PULSE (THERMAL RESPONSE) Notes: 1. Duty factor D = t / t 1 2 0.01 0.01 0.00001 1 t2 2. Peak TJ = PDM x Z thJC + T C 0.0001 0.001 0.01 0.1 1 10 t 1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4BC40SPbF 20 V GE = 0V, f = 1MHz C ies = C ge + C gc , Cce SHORTED C res = C gc C oes = C ce + C gc VGE , Gate-to-Emitter Voltage (V) C, Capacitance (pF) 4000 3000 Cies 2000 Coes 1000 Cres A 0 1 10 VCE = 400V I C = 31A 16 12 8 4 A 0 100 0 20 VCE, Collector-to-Emitter Voltage (V) 7.7 100 = 480V = 15V = 25°C = 31A 7.6 7.5 7.4 A 7.3 0 10 20 30 40 50 60 R G , Gate Resistance (Ω) Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 80 100 120 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage Total Switching Losses (mJ) Total Switching Losses (mJ) VCC VGE TJ IC 60 Qg , Total Gate Charge (nC) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 7.8 40 RG = 10Ω V GE = 15V V CC = 480V I C = 62A I C = 31A 10 I C = 16A A 1 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature (°C) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4BC40SPbF RG TJ VCC VGE 1000 = 10 Ω = 150°C = 480V = 15V I C , Collector-to-Emitter Current (A) Total Switching Losses (mJ) 30 20 10 A 0 0 10 20 30 40 50 60 I C , Collector-to-Emitter Current (A) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current 6 70 VGE = 20V GE TJ = 125°C 100 SAFE OPERATING AREA 10 1 1 10 100 1000 VCE , Collector-to-Emitter Voltage (V) Fig. 12 - Turn-Off SOA www.irf.com IRG4BC40SPbF RL = VCC ICM L D.U.T. VC * 50V 0 - VCC 1000V c 480µF d * Driver same type as D.U.T.; Vc = 80% of Vce(max) * Note: Due to the 50V power supply, pulse width and inductor will increase to obtain rated Id. Pulsed Collector Current Test Circuit Fig. 13b - Pulsed Collector Fig. 13a - Clamped Inductive Current Test Circuit Load Test Circuit IC L Driver* D.U.T. VC Test Circuit 50V 1000V c Fig. 14a - Switching Loss d e * Driver same type as D.U.T., VC = 480V c d 90% e VC 10% 90% Fig. 14b - Switching Loss t d(off) 10% I C 5% Waveforms tf tr t d(on) t=5µs E on E off E ts = (Eon +Eoff ) www.irf.com 7 IRG4BC40SPbF TO-220AB Package Outline (Dimensions are shown in millimeters (inches)) TO-220AB Part Marking Information (;$03/( 7+,6,6$1,5) /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(& Note: "P" in assembly line position indicates "Lead-Free" ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 3$57180%(5 '$7(&2'( <($5 :((. /,1(& Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 02/2010 8 www.irf.com