Freescale Semiconductor Data Sheet: Technical Data K10 Sub-Family Document Number K10P144M120SF3 Rev. 6, 09/2015 K10P144M120SF3 Supports the following: MK10FX512VLQ12, MK10FN1M0VLQ12, MK10FX512VMD12, MK10FN1M0VMD12 Key features • Operating Characteristics – Voltage range: 1.71 to 3.6 V – Flash write voltage range: 1.71 to 3.6 V – Temperature range (ambient): -40 to 105°C • Performance – Up to 120 MHz ARM® Cortex®-M4 core with DSP instructions delivering 1.25 Dhrystone MIPS per MHz • Memories and memory interfaces – Up to 1024 KB program flash memory on nonFlexMemory devices – Up to 512 KB program flash memory on FlexMemory devices – Up to 512 KB FlexNVM on FlexMemory devices – 16 KB FlexRAM on FlexMemory devices – Up to 128 KB RAM – Serial programming interface (EzPort) – FlexBus external bus interface – NAND flash controller interface • Clocks – 3 to 32 MHz crystal oscillator – 32 kHz crystal oscillator – Multi-purpose clock generator • System peripherals – Multiple low-power modes to provide power optimization based on application requirements – Memory protection unit with multi-master protection – 32-channel DMA controller, supporting up to 128 request sources – External watchdog monitor – Software watchdog – Low-leakage wakeup unit • Security and integrity modules – Hardware CRC module to support fast cyclic redundancy checks – 128-bit unique identification (ID) number per chip • Human-machine interface – Low-power hardware touch sensor interface (TSI) – General-purpose input/output • Analog modules – Four 16-bit SAR ADCs – Programmable gain amplifier (PGA) (up to x64) integrated into each ADC – Two 12-bit DACs – Four analog comparators (CMP) containing a 6bit DAC and programmable reference input – Voltage reference • Timers – Programmable delay block – Two 8-channel motor control/general purpose/PWM timers – Two 2-channel quadrature decoder/general purpose timers – Periodic interrupt timers – 16-bit low-power timer – Carrier modulator transmitter – Real-time clock • Communication interfaces – Two Controller Area Network (CAN) modules – Three SPI modules – Two I2C modules – Six UART modules – Secure Digital Host Controller (SDHC) – Two I2S modules Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its products. © 2012–2015 Freescale Semiconductor, Inc. Table of Contents 1 Ordering parts........................................................................... 3 6.1.1 Debug trace timing specifications......................... 21 1.1 Determining valid orderable parts......................................3 6.1.2 JTAG electricals.................................................... 22 2 Part identification...................................................................... 3 6.2 System modules................................................................ 25 2.1 Description.........................................................................3 6.3 Clock modules................................................................... 25 2.2 Format............................................................................... 3 6.3.1 MCG specifications............................................... 25 2.3 Fields................................................................................. 3 6.3.2 Oscillator electrical specifications......................... 27 2.4 Example............................................................................ 4 6.3.3 32 kHz oscillator electrical characteristics.............29 3 Terminology and guidelines...................................................... 4 6.4 Memories and memory interfaces..................................... 30 3.1 Definitions..........................................................................4 6.4.1 Flash (FTFE) electrical specifications................... 30 3.2 Examples...........................................................................4 6.4.2 EzPort switching specifications............................. 34 3.3 Typical-value conditions.................................................... 5 6.4.3 NFC specifications................................................ 35 3.4 Relationship between ratings and operating 6.4.4 Flexbus switching specifications........................... 38 requirements......................................................................5 6.5 Security and integrity modules.......................................... 41 3.5 Guidelines for ratings and operating requirements............6 6.6 Analog............................................................................... 41 4 Ratings...................................................................................... 6 6.6.1 ADC electrical specifications.................................41 4.1 Thermal handling ratings................................................... 6 6.6.2 CMP and 6-bit DAC electrical specifications.........49 4.2 Moisture handling ratings.................................................. 7 6.6.3 12-bit DAC electrical characteristics..................... 51 4.3 ESD handling ratings.........................................................7 6.6.4 Voltage reference electrical specifications............ 54 4.4 Voltage and current operating ratings............................... 7 6.7 Timers................................................................................55 5 General..................................................................................... 7 6.8 Communication interfaces................................................. 55 5.1 AC electrical characteristics.............................................. 8 6.8.1 CAN switching specifications................................ 55 5.2 Nonswitching electrical specifications............................... 8 6.8.2 DSPI switching specifications (limited voltage 5.2.1 Voltage and current operating requirements.........8 5.2.2 LVD and POR operating requirements................. 9 6.8.3 DSPI switching specifications (full voltage range).57 5.2.3 Voltage and current operating behaviors.............. 10 6.8.4 Inter-Integrated Circuit Interface (I2C) timing........59 5.2.4 Power mode transition operating behaviors..........12 6.8.5 UART switching specifications.............................. 60 5.2.5 Power consumption operating behaviors.............. 13 6.8.6 SDHC specifications............................................. 60 5.2.6 EMC radiated emissions operating behaviors.......16 6.8.7 I2S/SAI switching specifications............................61 5.2.7 Designing with radiated emissions in mind........... 17 5.2.8 Capacitance attributes.......................................... 17 5.3 Switching specifications.....................................................17 range)....................................................................56 6.9 Human-machine interfaces (HMI)......................................68 6.9.1 TSI electrical specifications...................................68 7 Dimensions............................................................................... 69 5.3.1 Device clock specifications................................... 17 7.1 Obtaining package dimensions......................................... 69 5.3.2 General switching specifications........................... 18 8 Pinout........................................................................................ 69 5.4 Thermal specifications.......................................................19 8.1 Pins with active pull control after reset.............................. 69 5.4.1 Thermal operating requirements........................... 19 8.2 K10 Signal Multiplexing and Pin Assignments.................. 70 5.4.2 Thermal attributes................................................. 20 8.3 K10 pinouts....................................................................... 76 6 Peripheral operating requirements and behaviors.................... 21 9 Revision History........................................................................ 78 6.1 Core modules.................................................................... 21 K10 Sub-Family, Rev.6, 09/2015. 2 Freescale Semiconductor, Inc. Ordering parts 1 Ordering parts 1.1 Determining valid orderable parts Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to freescale.com and perform a part number search for the following device numbers: PK10 and MK10 2 Part identification 2.1 Description Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received. 2.2 Format Part numbers for this device have the following format: Q K## A M FFF T PP CC N 2.3 Fields This table lists the possible values for each field in the part number (not all combinations are valid): Field Description Values Q Qualification status • M = Fully qualified, general market flow • P = Prequalification K## Kinetis family • K10 A Key attribute • F = Cortex-M4 w/ DSP and FPU M Flash memory type • N = Program flash only • X = Program flash and FlexMemory FFF Program flash memory size • 512 = 512 KB • 1M0 = 1 MB Table continues on the next page... K10 Sub-Family, Rev.6, 09/2015. Freescale Semiconductor, Inc. 3 Terminology and guidelines Field Description Values T Temperature range (°C) • V = –40 to 105 • C = –40 to 85 PP Package identifier • LQ = 144 LQFP (20 mm x 20 mm) • MD = 144 MAPBGA (13 mm x 13 mm) CC Maximum CPU frequency (MHz) • 12 = 120 MHz N Packaging type • R = Tape and reel • (Blank) = Trays 2.4 Example This is an example part number: MK10FN1M0VLQ12 3 Terminology and guidelines 3.1 Definitions Key terms are defined in the following table: Term Rating Definition A minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure: • Operating ratings apply during operation of the chip. • Handling ratings apply when the chip is not powered. NOTE: The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings. Operating requirement A specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip Operating behavior A specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions Typical value A specified value for a technical characteristic that: • Lies within the range of values specified by the operating behavior • Is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions NOTE: Typical values are provided as design guidelines and are neither tested nor guaranteed. K10 Sub-Family, Rev.6, 09/2015. 4 Freescale Semiconductor, Inc. Terminology and guidelines 3.2 Examples EX A M PL E Operating rating: EX AM PL E Operating requirement: EX AM PL E Operating behavior that includes a typical value: 3.3 Typical-value conditions Typical values assume you meet the following conditions (or other conditions as specified): Symbol Description Value Unit TA Ambient temperature 25 °C VDD 3.3 V supply voltage 3.3 V K10 Sub-Family, Rev.6, 09/2015. Freescale Semiconductor, Inc. 5 Ratings 3.4 Relationship between ratings and operating requirements e Op ing rat r ( ng ati n. mi ) ing rat e Op e re ir qu ) in. t (m n me ing rat e Op e ir qu re t (m n me ax .) ing rat e Op (m ng ati .) ax r Fatal range Degraded operating range Normal operating range Degraded operating range Fatal range Expected permanent failure - No permanent failure - Possible decreased life - Possible incorrect operation - No permanent failure - Correct operation - No permanent failure - Possible decreased life - Possible incorrect operation Expected permanent failure –∞ ∞ Operating (power on) ng dli n Ha n.) mi g( in rat ma g( ng dli n Ha in rat x.) Fatal range Handling range Fatal range Expected permanent failure No permanent failure Expected permanent failure –∞ ∞ Handling (power off) 3.5 Guidelines for ratings and operating requirements Follow these guidelines for ratings and operating requirements: • Never exceed any of the chip’s ratings. • During normal operation, don’t exceed any of the chip’s operating requirements. • If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible. 4 Ratings 4.1 Thermal handling ratings Symbol Description Min. Max. Unit Notes TSTG Storage temperature –55 150 °C 1 TSDR Solder temperature, lead-free — 260 °C 2 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life. 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. K10 Sub-Family, Rev.6, 09/2015. 6 Freescale Semiconductor, Inc. General 4.2 Moisture handling ratings Symbol MSL Description Moisture sensitivity level Min. Max. Unit Notes — 3 — 1 1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 4.3 ESD handling ratings Symbol Description Min. Max. Unit Notes VHBM Electrostatic discharge voltage, human body model -2000 +2000 V 1 VCDM Electrostatic discharge voltage, charged-device model -500 +500 V 2 Latch-up current at ambient temperature of 105°C -100 +100 mA 3 ILAT 1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM). 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components. 3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test. 4.4 Voltage and current operating ratings Symbol Description Min. Max. Unit VDD Digital supply voltage1 –0.3 3.8 V IDD Digital supply current — 300 mA VDIO Digital input voltage (except RESET, EXTAL0/XTAL0, and EXTAL1/XTAL1) 2 –0.3 5.5 V VAIO Analog3, RESET, EXTAL0/XTAL0, and EXTAL1/XTAL1 input voltage –0.3 VDD + 0.3 V Maximum current single pin limit (applies to all digital pins) –25 25 mA VDD – 0.3 VDD + 0.3 V –0.3 3.8 V ID VDDA Analog supply voltage VBAT RTC battery supply voltage 1. It applies for all port pins. 2. It covers digital pins. 3. Analog pins are defined as pins that do not have an associated general purpose I/O port function. 5 General K10 Sub-Family, Rev.6, 09/2015. Freescale Semiconductor, Inc. 7 General 5.1 AC electrical characteristics Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure. Input Signal High Low VIH 80% 50% 20% Midpoint1 VIL Fall Time Rise Time The midpoint is VIL + (VIH - VIL) / 2 Figure 1. Input signal measurement reference All digital I/O switching characteristics assume: 1. output pins • have CL=30pF loads, • are configured for fast slew rate (PORTx_PCRn[SRE]=0), and • are configured for high drive strength (PORTx_PCRn[DSE]=1) 2. input pins • have their passive filter disabled (PORTx_PCRn[PFE]=0) 5.2 Nonswitching electrical specifications 5.2.1 Voltage and current operating requirements Table 1. Voltage and current operating requirements Symbol Description Min. Max. Unit VDD Supply voltage 1.71 3.6 V VDDA Analog supply voltage 1.71 3.6 V VDD – VDDA VDD-to-VDDA differential voltage –0.1 0.1 V VSS – VSSA VSS-to-VSSA differential voltage –0.1 0.1 V 1.71 3.6 V 0.7 × VDD — V VBAT VIH RTC battery supply voltage Notes Input high voltage (digital pins) Table continues on the next page... K10 Sub-Family, Rev.6, 09/2015. 8 Freescale Semiconductor, Inc. General Table 1. Voltage and current operating requirements (continued) Symbol Description Min. Max. Unit 0.75 × VDD — V • 2.7 V ≤ VDD ≤ 3.6 V — 0.35 × VDD V • 1.7 V ≤ VDD ≤ 2.7 V — 0.3 × VDD V VHYS Input hysteresis (digital pins) 0.06 × VDD — V IICDIO Digital pin negative DC injection current — single pin -5 — mA • 2.7 V ≤ VDD ≤ 3.6 V Notes • 1.7 V ≤ VDD ≤ 2.7 V VIL Input low voltage (digital pins) 1 • VIN < VSS-0.3V IICAIO Analog2, EXTAL0/XTAL0, and EXTAL1/ XTAL1 pin DC injection current — single pin • VIN < VSS-0.3V (Negative current injection) • VIN > VDD+0.3V (Positive current injection) IICcont Contiguous pin DC injection current — regional limit, includes sum of negative injection currents or sum of positive injection currents of 16 contiguous pins • Negative current injection 3 mA -5 — — +5 -25 — — +25 mA • Positive current injection VODPU Open drain pullup voltage level VDD VDD V VRAM VDD voltage required to retain RAM 1.2 — V VPOR_VBAT — V VRFVBAT VBAT voltage required to retain the VBAT register file 4 1. All 5 V tolerant digital I/O pins are internally clamped to VSS through an ESD protection diode. There is no diode connection to VDD. If VIN is less than VDIO_MIN, a current limiting resistor is required. If VIN greater than VDIO_MIN (=VSS-0.3V) is observed, then there is no need to provide current limiting resistors at the pads. The negative DC injection current limiting resistor is calculated as R=(VDIO_MIN-VIN)/|IICDIO|. 2. Analog pins are defined as pins that do not have an associated general purpose I/O port function. Additionally, EXTAL and XTAL are analog pins. 3. All analog pins are internally clamped to VSS and VDD through ESD protection diodes. If VIN is less than VAIO_MIN or greater than VAIO_MAX, a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(VAIO_MIN-VIN)/|IICAIO|. The positive injection current limiting resistor is calculated as R=(VIN-VAIO_MAX)/|IICAIO|. Select the larger of these two calculated resistances if the pin is exposed to positive and negative injection currents. 4. Open drain outputs must be pulled to VDD. K10 Sub-Family, Rev.6, 09/2015. Freescale Semiconductor, Inc. 9 General 5.2.2 LVD and POR operating requirements Table 2. LVD and POR operating requirements Symbol Description Min. Typ. Max. Unit VPOR Falling VDD POR detect voltage 0.8 1.1 1.5 V VLVDH Falling low-voltage detect threshold — high range (LVDV=01) 2.48 2.56 2.64 V 2.62 2.70 2.78 V 2.72 2.80 2.88 V 2.82 2.90 2.98 V 2.92 3.00 3.08 V — ±80 — mV 1.54 1.60 1.66 V 1.74 1.80 1.86 V 1.84 1.90 1.96 V 1.94 2.00 2.06 V 2.04 2.10 2.16 V — ±60 — mV VLVW1H VLVW2H VLVW3H VLVW4H Low-voltage warning thresholds — high range • Level 1 falling (LVWV=00) • Level 2 falling (LVWV=01) • Level 3 falling (LVWV=10) Low-voltage inhibit reset/recover hysteresis — high range VLVDL Falling low-voltage detect threshold — low range (LVDV=00) VLVW2L VLVW3L VLVW4L VHYSL 1 • Level 4 falling (LVWV=11) VHYSH VLVW1L Notes Low-voltage warning thresholds — low range • Level 1 falling (LVWV=00) • Level 2 falling (LVWV=01) • Level 3 falling (LVWV=10) 1 • Level 4 falling (LVWV=11) Low-voltage inhibit reset/recover hysteresis — low range VBG Bandgap voltage reference 0.97 1.00 1.03 V tLPO Internal low power oscillator period 900 1000 1100 μs factory trimmed 1. Rising thresholds are falling threshold + hysteresis voltage Table 3. VBAT power operating requirements Symbol Description VPOR_VBAT Falling VBAT supply POR detect voltage Min. Typ. Max. Unit 0.8 1.1 1.5 V Notes 5.2.3 Voltage and current operating behaviors Table 4. Voltage and current operating behaviors Symbol VOH Description Min. Typ. • 2.7 V ≤ VDD ≤ 3.6 V, IOH = -9mA VDD – 0.5 — • 1.71 V ≤ VDD ≤ 2.7 V, IOH = -3mA VDD – 0.5 — Output high voltage — high drive strength Max. Unit Notes — — V V Table continues on the next page... K10 Sub-Family, Rev.6, 09/2015. 10 Freescale Semiconductor, Inc. General Table 4. Voltage and current operating behaviors (continued) Symbol Description Min. Typ. • 2.7 V ≤ VDD ≤ 3.6 V, IOH = -2mA VDD – 0.5 — • 1.71 V ≤ VDD ≤ 2.7 V, IOH = -0.6mA VDD – 0.5 — Output high current total for all ports — — 100 mA Output high current total for fast digital ports — — 100 mA 0.5 V 0.5 V 0.5 V 0.5 V Output high voltage — low drive strength IOHT IOHT_io60 VOL IOLT_io60 IINA Unit Notes — Output low voltage — high drive strength — V V — • 2.7 V ≤ VDD ≤ 3.6 V, IOL = 10 mA — • 1.71 V ≤ VDD ≤ 2.7 V, IOL = 5 mA — — Output low voltage — low drive strength IOLT Max. — • 2.7 V ≤ VDD ≤ 3.6 V, IOL = 2 mA — • 1.71 V ≤ VDD ≤ 2.7 V, IOL = 1 mA — — Output low current total for all ports — — 100 mA Output low current total for fast digital ports — — 100 mA 1, 2 Input leakage current, analog pins and digital pins configured as analog inputs • VSS ≤ VIN ≤ VDD • All pins except EXTAL32, XTAL32, EXTAL, XTAL • EXTAL (PTA18) and XTAL (PTA19) • EXTAL32, XTAL32 IIND — 0.002 0.5 μA — 0.004 1.5 μA — 0.075 10 μA Input leakage current, digital pins 2, 3 • VSS ≤ VIN ≤ VIL • All digital pins — 0.002 0.5 μA — 0.002 0.5 μA — 0.004 1 μA • VIN = VDD • All digital pins except PTD7 • PTD7 IIND 2, 3, Input leakage current, digital pins 4 • VIL < VIN < VDD IIND • VDD = 3.6 V — 18 26 μA • VDD = 3.0 V — 12 19 μA • VDD = 2.5 V — 8 13 μA • VDD = 1.7 V — 3 6 μA Input leakage current, digital pins • VDD < VIN < 5.5 V ZIND 2, 3 — 1 50 μA 2, Input impedance examples, digital pins — — 48 5 kΩ Table continues on the next page... K10 Sub-Family, Rev.6, 09/2015. Freescale Semiconductor, Inc. 11 General Table 4. Voltage and current operating behaviors (continued) Symbol Description Min. Typ. Max. Unit • VDD = 3.6 V — — 55 kΩ • VDD = 3.0 V — — 57 kΩ • VDD = 2.5 V — — 85 kΩ Notes • VDD = 1.7 V RPU Internal pullup resistors 20 — 50 kΩ 6 RPD Internal pulldown resistors 20 — 50 kΩ 7 1. 2. 3. 4. 5. Analog pins are defined as pins that do not have an associated general purpose I/O port function. Digital pins have an associated GPIO port function and have 5V tolerant inputs, except EXTAL and XTAL. Internal pull-up/pull-down resistors disabled. Characterized, not tested in production. Examples calculated using VIL relation, VDD, and max IIND: ZIND=VIL/IIND. This is the impedance needed to pull a high signal to a level below VIL due to leakage when VIL < VIN < VDD. These examples assume signal source low = 0 V. See Figure 2. 6. Measured at VDD supply voltage = VDD min and Vinput = VSS 7. Measured at VDD supply voltage = VDD min and Vinput = VDD Figure 2. 5 V Tolerant Input IIND Parameter 5.2.4 Power mode transition operating behaviors All specifications except tPOR, and VLLSx→RUN recovery times in the following table assume this clock configuration: • • • • • CPU and system clocks = 100 MHz Bus clock = 50 MHz FlexBus clock = 50 MHz Flash clock = 25 MHz MCG mode: FEI K10 Sub-Family, Rev.6, 09/2015. 12 Freescale Semiconductor, Inc. General Table 5. Power mode transition operating behaviors Symbol tPOR Description Min. Max. After a POR event, amount of time from the point VDD reaches 1.71 V to execution of the first instruction across the operating temperature range of the chip. Unit Notes 1 • VDD slew rate ≥ 5.7 kV/s • VDD slew rate < 5.7 kV/s • VLLS1 → RUN • VLLS2 → RUN • VLLS3 → RUN • LLS → RUN • VLPS → RUN • STOP → RUN μs — 300 — 1.7 V / (VDD slew rate) — 160 μs — 114 μs — 114 μs — 5.0 μs — 5 μs — 4.8 μs 1. Normal boot (FTFE_FOPT[LPBOOT]=1) 5.2.5 Power consumption operating behaviors Table 6. Power consumption operating behaviors Symbol IDDA IDD_RUN IDD_RUN Description Analog supply current Min. Typ. Max. Unit Notes — — See note mA 1 Run mode current — all peripheral clocks disabled, code executing from flash 2 • @ 1.8V — 49.28 73.85 mA • @ 3.0V — 49.08 73.93 mA Run mode current — all peripheral clocks enabled, code executing from flash 3 • @ 1.8V — 74.43 99.97 mA • @ 3.0V — 74.28 100.41 mA IDD_WAIT Wait mode high frequency current at 3.0 V — all peripheral clocks disabled — 34.67 58.5 mA 2 IDD_WAIT Wait mode reduced frequency current at 3.0 V — all peripheral clocks disabled — 18.03 41.91 mA 4 IDD_STOP Stop mode current at 3.0 V — 1.25 1.62 mA — 2.93 4.39 mA • @ –40 to 25°C Table continues on the next page... K10 Sub-Family, Rev.6, 09/2015. Freescale Semiconductor, Inc. 13 General Table 6. Power consumption operating behaviors (continued) Symbol Description • @ 70°C Min. Typ. Max. Unit — 7.08 10.74 mA Notes • @ 105°C IDD_VLPR Very-low-power run mode current at 3.0 V — all peripheral clocks disabled — 1.03 4.48 mA 5 IDD_VLPR Very-low-power run mode current at 3.0 V — all peripheral clocks enabled — 1.58 4.96 mA 5 IDD_VLPW Very-low-power wait mode current at 3.0 V — 0.64 4.29 mA 5 IDD_VLPS Very-low-power stop mode current at 3.0 V • @ –40 to 25°C — 0.22 0.38 mA • @ 70°C — 0.78 1.33 mA • @ 105°C — 2.18 3.56 mA • @ –40 to 25°C — 0.22 0.37 mA • @ 70°C — 0.78 1.33 mA • @ 105°C — 2.16 3.52 mA • @ –40 to 25°C — 4.09 5.58 μA • @ 70°C — 20.98 28.93 μA • @ 105°C — 84.95 111.15 μA • @ –40 to 25°C — 2.68 4.22 μA • @ 70°C — 8.8 10.74 μA • @ 105°C — 37.28 43.61 μA • @ –40 to 25°C — 2.46 4.02 μA • @ 70°C — 7.04 8.99 μA • @ 105°C — 30.68 37.04 μA IDD_LLS IDD_VLLS3 IDD_VLLS2 IDD_VLLS1 IDD_VBAT Low leakage stop mode current at 3.0 V Very low-leakage stop mode 3 current at 3.0 V Very low-leakage stop mode 2 current at 3.0 V Very low-leakage stop mode 1 current at 3.0 V Average current when CPU is not accessing RTC registers at 3.0 V 6 • @ –40 to 25°C — 0.89 1.10 μA • @ 70°C — 1.28 1.85 μA • @ 105°C — 3.10 4.30 μA 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current. 2. 120 MHz core and system clock, 60 MHz bus, 30 MHz FlexBus clock, and 20 MHz flash clock. MCG configured for PEE mode. All peripheral clocks disabled. 3. 120 MHz core and system clock, 60 MHz bus, 30 MHz FlexBus clock, and 20 MHz flash clock. MCG configured for PEE mode. All peripheral clocks enabled, but peripherals are not in active operation. 4. 25 MHz core and system clock, 25 MHz bus clock, and 12.5 MHz FlexBus and flash clock. MCG configured for FEI mode. K10 Sub-Family, Rev.6, 09/2015. 14 Freescale Semiconductor, Inc. General 5. 4 MHz core, system, 2 MHz FlexBus, and 2 MHz bus clock and 0.5 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. 6. Includes 32kHz oscillator current and RTC operation. 5.2.5.1 Diagram: Typical IDD_RUN operating behavior The following data was measured under these conditions: • MCG in FBE mode for 50 MHz and lower frequencies. MCG in FEE mode at greater than 50 MHz frequencies. MCG in PEE mode at greater than 100 MHz frequencies. • No GPIOs toggled • Code execution from flash with cache enabled • For the ALLOFF curve, all peripheral clocks are disabled except FTFE Figure 3. Run mode supply current vs. core frequency K10 Sub-Family, Rev.6, 09/2015. Freescale Semiconductor, Inc. 15 General Figure 4. VLPR mode supply current vs. core frequency 5.2.6 EMC radiated emissions operating behaviors Table 7. EMC radiated emissions operating behaviors for 256MAPBGA Symbol Description Frequency band (MHz) Typ. Unit Notes 1, 2, 3 VRE1 Radiated emissions voltage, band 1 0.15–50 21 dBμV VRE2 Radiated emissions voltage, band 2 50–150 24 dBμV VRE3 Radiated emissions voltage, band 3 150–500 29 dBμV VRE4 Radiated emissions voltage, band 4 500–1000 28 dBμV 1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range. 2. VDD = 3.3 V, TA = 25 °C, fOSC = 12 MHz (crystal), fSYS = 72 MHz, fBUS = 72 MHz 3. Determined according to IEC Standard JESD78, IC Latch-Up Test K10 Sub-Family, Rev.6, 09/2015. 16 Freescale Semiconductor, Inc. General 5.2.7 Designing with radiated emissions in mind To find application notes that provide guidance on designing your system to minimize interference from radiated emissions: 1. Go to www.freescale.com. 2. Perform a keyword search for “EMC design.” 5.2.8 Capacitance attributes Table 8. Capacitance attributes Symbol Description Min. Max. Unit CIN_A Input capacitance: analog pins — 7 pF CIN_D Input capacitance: digital pins — 7 pF Input capacitance: fast digital pins — 9 pF CIN_D_io60 5.3 Switching specifications 5.3.1 Device clock specifications Table 9. Device clock specifications Symbol Description Min. Max. Unit Notes Normal run mode fSYS System and core clock — 120 MHz fBUS Bus clock — 60 MHz FlexBus clock — 50 MHz fFLASH Flash clock — 25 MHz fLPTMR LPTMR clock — 25 MHz FB_CLK VLPR mode1 fSYS System and core clock — 4 MHz fBUS Bus clock — 4 MHz FlexBus clock — 4 MHz fFLASH Flash clock — 0.5 MHz fLPTMR LPTMR clock — 4 MHz FB_CLK 1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module. K10 Sub-Family, Rev.6, 09/2015. Freescale Semiconductor, Inc. 17 General 5.3.2 General switching specifications These general purpose specifications apply to all pins configured for: • GPIO signaling • Other peripheral module signaling not explicitly stated elsewhere Table 10. General switching specifications Symbol Description Min. Max. Unit Notes GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path 1.5 — Bus clock cycles 1, 2 GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) — Asynchronous path 100 — ns 3 GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) — Asynchronous path 16 — ns 3 External reset pulse width (digital glitch filter disabled) 100 — ns 3 2 — Bus clock cycles Mode select (EZP_CS) hold time after reset deassertion Port rise and fall time (high drive strength) 4 • Slew disabled • 1.71 ≤ VDD ≤ 2.7V — 14 ns • 2.7 ≤ VDD ≤ 3.6V — 8 ns • 1.71 ≤ VDD ≤ 2.7V — 36 ns • 2.7 ≤ VDD ≤ 3.6V — 24 ns • Slew enabled Port rise and fall time (low drive strength) 5 • Slew disabled • 1.71 ≤ VDD ≤ 2.7V — 14 ns • 2.7 ≤ VDD ≤ 3.6V — 8 ns • 1.71 ≤ VDD ≤ 2.7V — 36 ns • 2.7 ≤ VDD ≤ 3.6V — 24 ns • Slew enabled tio50 6 Port rise and fall time (high drive strength) • Slew disabled • 1.71 ≤ VDD ≤ 2.7V — 7 ns — • 2.7 ≤ VDD ≤ 3.6V — 3 ns — • 1.71 ≤ VDD ≤ 2.7V — 28 ns — • 2.7 ≤ VDD ≤ 3.6V — 14 ns — • Slew enabled tio50 Port rise and fall time (low drive strength) 7 • Slew disabled Table continues on the next page... K10 Sub-Family, Rev.6, 09/2015. 18 Freescale Semiconductor, Inc. General Table 10. General switching specifications (continued) Symbol Description Min. Max. Unit Notes • 1.71 ≤ VDD ≤ 2.7V — 18 ns — • 2.7 ≤ VDD ≤ 3.6V — 9 ns — • 1.71 ≤ VDD ≤ 2.7V — 48 ns — • 2.7 ≤ VDD ≤ 3.6V — 24 ns — • Slew enabled tio60 6 Port rise and fall time (high drive strength) • Slew disabled • 1.71 ≤ VDD ≤ 2.7V — 6 ns — • 2.7 ≤ VDD ≤ 3.6V — 3 ns — • 1.71 ≤ VDD ≤ 2.7V — 28 ns — • 2.7 ≤ VDD ≤ 3.6V — 14 ns — • Slew enabled tio60 7 Port rise and fall time (low drive strength) • Slew disabled • 1.71 ≤ VDD ≤ 2.7V — 18 ns — • 2.7 ≤ VDD ≤ 3.6V — 6 ns — • 1.71 ≤ VDD ≤ 2.7V — 48 ns — • 2.7 ≤ VDD ≤ 3.6V — 24 ns — • Slew enabled 1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can be recognized in that case. 2. The greater synchronous and asynchronous timing must be met. 3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and VLLSx modes. 4. 75 pF load 5. 15 pF load 6. 25 pF load 7. 15 pF load 5.4 Thermal specifications 5.4.1 Thermal operating requirements Table 11. Thermal operating requirements Symbol TJ TA Description Min. Max. Unit Die junction temperature –40 125 °C –40 105 °C Ambient temperature1 K10 Sub-Family, Rev.6, 09/2015. Freescale Semiconductor, Inc. 19 General 1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed maximum TJ. The simplest method to determine TJ is: TJ = TA + RθJA x chip power dissipation 5.4.2 Thermal attributes Board type Symbol Description 144 LQFP 144 MAPBGA Unit Notes Single-layer (1s) RθJA Thermal 45 resistance, junction to ambient (natural convection) 50 °C/W 1, 2 Four-layer (2s2p) RθJA Thermal 36 resistance, junction to ambient (natural convection) 30 °C/W 1,2, 3 Single-layer (1s) RθJMA Thermal 36 resistance, junction to ambient (200 ft./ min. air speed) 41 °C/W 1,3 Four-layer (2s2p) RθJMA Thermal 30 resistance, junction to ambient (200 ft./ min. air speed) 27 °C/W 1,3 — RθJB Thermal resistance, junction to board 24 17 °C/W 4 — RθJC Thermal resistance, junction to case 9 10 °C/W 5 — ΨJT Thermal 2 characterization parameter, junction to package top outside center (natural convection) 2 °C/W 6 NOTES: 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. 2. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air) with the single layer board horizontal. Board meets JESD51-9 specification. K10 Sub-Family, Rev.6, 09/2015. 20 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 3. Determined according to JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air) with the board horizontal. 4. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board. Board temperature is measured on the top surface of the board near the package. 5. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate. 6. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air). 6 Peripheral operating requirements and behaviors 6.1 Core modules 6.1.1 Debug trace timing specifications Table 12. Debug trace operating behaviors Symbol Description Min. Max. Unit Tcyc Clock period Frequency dependent MHz Twl Low pulse width 2 — ns Twh High pulse width 2 — ns Tr Clock and data rise time — 3 ns Tf Clock and data fall time — 3 ns Ts Data setup 3 — ns Th Data hold 2 — ns TRACECLK Tr Tf Twh Twl Tcyc Figure 5. TRACE_CLKOUT specifications K10 Sub-Family, Rev.6, 09/2015. Freescale Semiconductor, Inc. 21 Peripheral operating requirements and behaviors TRACE_CLKOUT Ts Th Ts Th TRACE_D[3:0] Figure 6. Trace data specifications 6.1.2 JTAG electricals Table 13. JTAG limited voltage range electricals Symbol J1 Description Min. Max. Unit Operating voltage 2.7 3.6 V TCLK frequency of operation MHz • Boundary Scan 0 10 • JTAG and CJTAG 0 25 • Serial Wire Debug 0 50 1/J1 — ns • Boundary Scan 50 — ns • JTAG and CJTAG 20 — ns • Serial Wire Debug 10 — ns J4 TCLK rise and fall times — 3 ns J5 Boundary scan input data setup time to TCLK rise 20 — ns J6 Boundary scan input data hold time after TCLK rise 2.4 — ns J7 TCLK low to boundary scan output data valid — 25 ns J8 TCLK low to boundary scan output high-Z — 25 ns J2 TCLK cycle period J3 TCLK clock pulse width J9 TMS, TDI input data setup time to TCLK rise 8 — ns J10 TMS, TDI input data hold time after TCLK rise 1 — ns J11 TCLK low to TDO data valid — 17 ns J12 TCLK low to TDO high-Z — 17 ns J13 TRST assert time 100 — ns J14 TRST setup time (negation) to TCLK high 8 — ns Table 14. JTAG full voltage range electricals Symbol J1 Description Min. Max. Unit Operating voltage 1.71 3.6 V TCLK frequency of operation MHz Table continues on the next page... K10 Sub-Family, Rev.6, 09/2015. 22 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 14. JTAG full voltage range electricals (continued) Symbol Description Min. Max. • Boundary Scan 0 10 • JTAG and CJTAG 0 20 • Serial Wire Debug 0 40 1/J1 — ns • Boundary Scan 50 — ns • JTAG and CJTAG 25 — ns • Serial Wire Debug 12.5 — ns J2 TCLK cycle period J3 TCLK clock pulse width Unit J4 TCLK rise and fall times — 3 ns J5 Boundary scan input data setup time to TCLK rise 20 — ns J6 Boundary scan input data hold time after TCLK rise 2.4 — ns J7 TCLK low to boundary scan output data valid — 25 ns J8 TCLK low to boundary scan output high-Z — 25 ns J9 TMS, TDI input data setup time to TCLK rise 8 — ns J10 TMS, TDI input data hold time after TCLK rise 1.4 — ns J11 TCLK low to TDO data valid — 22.1 ns J12 TCLK low to TDO high-Z — 22.1 ns J13 TRST assert time 100 — ns J14 TRST setup time (negation) to TCLK high 8 — ns J2 J3 J3 TCLK (input) J4 J4 Figure 7. Test clock input timing K10 Sub-Family, Rev.6, 09/2015. Freescale Semiconductor, Inc. 23 Peripheral operating requirements and behaviors TCLK J5 Data inputs J6 Input data valid J7 Data outputs Output data valid J8 Data outputs J7 Data outputs Output data valid Figure 8. Boundary scan (JTAG) timing TCLK J9 TDI/TMS J10 Input data valid J11 TDO Output data valid J12 TDO J11 TDO Output data valid Figure 9. Test Access Port timing K10 Sub-Family, Rev.6, 09/2015. 24 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors TCLK J14 J13 TRST Figure 10. TRST timing 6.2 System modules There are no specifications necessary for the device's system modules. 6.3 Clock modules 6.3.1 MCG specifications Table 15. MCG specifications Symbol Description Min. Typ. Max. Unit — 32.768 — kHz 31.25 — 39.0625 kHz Δfdco_res_t Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM and SCFTRIM — ± 0.3 ± 0.6 %fdco 1 Δfdco_res_t Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM only — ± 0.2 ± 0.5 %fdco 1 Total deviation of trimmed average DCO output frequency over fixed voltage and temperature range of 0–70°C — ± 4.5 — %fdco 1 fintf_ft Internal reference frequency (fast clock) — factory trimmed at nominal VDD and 25°C — 4 — MHz fintf_t Internal reference frequency (fast clock) — user trimmed at nominal VDD and 25 °C 3 — 5 MHz fints_ft Internal reference frequency (slow clock) — factory trimmed at nominal VDD and 25 °C fints_t Internal reference frequency (slow clock) — user trimmed Δfdco_t floc_low Loss of external clock minimum frequency — RANGE = 00 (3/5) x fints_t — — kHz floc_high Loss of external clock minimum frequency — RANGE = 01, 10, or 11 (16/5) x fints_t — — kHz 31.25 — 39.0625 kHz Notes FLL ffll_ref FLL reference frequency range Table continues on the next page... K10 Sub-Family, Rev.6, 09/2015. Freescale Semiconductor, Inc. 25 Peripheral operating requirements and behaviors Table 15. MCG specifications (continued) Symbol fdco Description DCO output frequency range Low range (DRS=00) Min. Typ. Max. Unit Notes 20 20.97 25 MHz 2, 3 40 41.94 50 MHz 60 62.91 75 MHz 80 83.89 100 MHz — 23.99 — MHz — 47.97 — MHz — 71.99 — MHz — 95.98 — MHz — 180 — — 150 — — — 1 ms 8 — 16 MHz 640 × ffll_ref Mid range (DRS=01) 1280 × ffll_ref Mid-high range (DRS=10) 1920 × ffll_ref High range (DRS=11) 2560 × ffll_ref fdco_t_DMX32 DCO output frequency Low range (DRS=00) 4, 5 732 × ffll_ref Mid range (DRS=01) 1464 × ffll_ref Mid-high range (DRS=10) 2197 × ffll_ref High range (DRS=11) 2929 × ffll_ref Jcyc_fll FLL period jitter • fVCO = 48 MHz • fVCO = 98 MHz tfll_acquire FLL target frequency acquisition time ps 6 PLL0,1 fpll_ref PLL reference frequency range fvcoclk_2x VCO output frequency fvcoclk PLL output frequency fvcoclk_90 Ipll PLL0 operating current • VCO @ 184 MHz (fosc_hi_1 = 32 MHz, fpll_ref = 8 MHz, VDIV multiplier = 23) Ipll PLL0 operating current • VCO @ 360 MHz (fosc_hi_1 = 32 MHz, fpll_ref = 8 MHz, VDIV multiplier = 45) Ipll PLL1 operating current • VCO @ 184 MHz (fosc_hi_1 = 32 MHz, fpll_ref = 8 MHz, VDIV multiplier = 23) Ipll PLL1 operating current • VCO @ 360 MHz (fosc_hi_1 = 32 MHz, fpll_ref = 8 MHz, VDIV multiplier = 45) Lock detector detection time Jcyc_pll PLL period jitter (RMS) — 90 PLL quadrature output frequency tpll_lock — 180 — 90 360 180 180 MHz MHz MHz — 2.8 — mA — 4.7 — mA — 2.3 — mA — 3.6 — mA — — 100 × 10-6 + 1075(1/ fpll_ref) s 7 7 7 8 9 Table continues on the next page... K10 Sub-Family, Rev.6, 09/2015. 26 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 15. MCG specifications (continued) Symbol Jacc_pll Description Min. Typ. Max. Unit • fvco = 180 MHz — 100 — ps • fvco = 360 MHz — 75 — ps PLL accumulated jitter over 1µs (RMS) Notes 10 • fvco = 180 MHz — 600 — ps • fvco = 360 MHz — 300 — ps 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode). 2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0. 3. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation (Δfdco_t) over voltage and temperature should be considered. 4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1. 5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device. 6. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 7. Excludes any oscillator currents that are also consuming power while PLL is in operation. 8. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 9. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary. 10. Accumulated jitter depends on VCO frequency and VDIV. 6.3.2 Oscillator electrical specifications 6.3.2.1 Oscillator DC electrical specifications Table 16. Oscillator DC electrical specifications Symbol Description Min. Typ. Max. Unit VDD Supply voltage 1.71 — 3.6 V IDDOSC IDDOSC Supply current — low-power mode (HGO=0) 1 • 32 kHz — 500 — nA • 4 MHz — 200 — μA • 8 MHz (RANGE=01) — 300 — μA • 16 MHz — 950 — μA • 24 MHz — 1.2 — mA • 32 MHz — 1.5 — mA Supply current — high-gain mode (HGO=1) • 32 kHz Notes 1 — 25 — μA — 400 — μA Table continues on the next page... K10 Sub-Family, Rev.6, 09/2015. Freescale Semiconductor, Inc. 27 Peripheral operating requirements and behaviors Table 16. Oscillator DC electrical specifications (continued) Symbol Description Min. Typ. Max. Unit • 4 MHz — 500 — μA • 8 MHz (RANGE=01) — 2.5 — mA • 16 MHz — 3 — mA • 24 MHz — 4 — mA Notes • 32 MHz Cx EXTAL load capacitance — — — 2, 3 Cy XTAL load capacitance — — — 2, 3 RF Feedback resistor — low-frequency, low-power mode (HGO=0) — — — MΩ Feedback resistor — low-frequency, high-gain mode (HGO=1) — 10 — MΩ Feedback resistor — high-frequency, low-power mode (HGO=0) — — — MΩ Feedback resistor — high-frequency, high-gain mode (HGO=1) — 1 — MΩ Series resistor — low-frequency, low-power mode (HGO=0) — — — kΩ Series resistor — low-frequency, high-gain mode (HGO=1) — 200 — kΩ Series resistor — high-frequency, low-power mode (HGO=0) — — — kΩ — 0 — kΩ Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0) — 0.6 — V Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1) — VDD — V Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0) — 0.6 — V Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1) — VDD — V RS 2, 4 Series resistor — high-frequency, high-gain mode (HGO=1) 5 Vpp 1. 2. 3. 4. 5. VDD=3.3 V, Temperature =25 °C See crystal or resonator manufacturer's recommendation Cx and Cy can be provided by using either integrated capacitors or external components. When low-power mode is selected, RF is integrated and must not be attached externally. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other device. K10 Sub-Family, Rev.6, 09/2015. 28 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 6.3.2.2 Symbol Oscillator frequency specifications Table 17. Oscillator frequency specifications Description Min. Typ. Max. Unit fosc_lo Oscillator crystal or resonator frequency — lowfrequency mode (MCG_C2[RANGE]=00) 32 — 40 kHz fosc_hi_1 Oscillator crystal or resonator frequency — highfrequency mode (low range) (MCG_C2[RANGE]=01) 3 — 8 MHz fosc_hi_2 Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x) 8 — 32 MHz fec_extal Input clock frequency (external clock mode) — — 60 MHz tdc_extal Input clock duty cycle (external clock mode) 40 50 60 % Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0) — 1000 — ms Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1) — 500 — ms Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0) — 0.6 — ms Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1) — 1 — ms tcst Notes 1 2, 3 4, 5 1. Frequencies less than 8 MHz are not in the PLL range. 2. Other frequency limits may apply when external clock is being used as a reference for the FLL 3. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency. 4. Proper PC board layout procedures must be followed to achieve specifications. 5. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set. NOTE The 32 kHz oscillator works in low power mode by default and cannot be moved into high power/gain mode. 6.3.3 32 kHz oscillator electrical characteristics 6.3.3.1 32 kHz oscillator DC electrical specifications Table 18. 32kHz oscillator DC electrical specifications Symbol Description Min. Typ. Max. Unit VBAT Supply voltage 1.71 — 3.6 V Internal feedback resistor — 100 — MΩ Cpara Parasitical capacitance of EXTAL32 and XTAL32 — 5 7 pF Vpp1 Peak-to-peak amplitude of oscillation — 0.6 — V RF K10 Sub-Family, Rev.6, 09/2015. Freescale Semiconductor, Inc. 29 Peripheral operating requirements and behaviors 1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to required oscillator components and must not be connected to any other devices. 6.3.3.2 Symbol fosc_lo tstart 32 kHz oscillator frequency specifications Table 19. 32 kHz oscillator frequency specifications Description Min. Typ. Max. Unit Oscillator crystal — 32.768 — kHz Crystal start-up time — 1000 — ms 1 700 — VBAT mV 2, 3 vec_extal32 Externally provided input clock amplitude Notes 1. Proper PC board layout procedures must be followed to achieve specifications. 2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The oscillator remains enabled and XTAL32 must be left unconnected. 3. The parameter specified is a peak-to-peak value and VIH and VIL specifications do not apply. The voltage of the applied clock must be within the range of VSS to VBAT. 6.4 Memories and memory interfaces 6.4.1 Flash (FTFE) electrical specifications This section describes the electrical characteristics of the FTFE module. 6.4.1.1 Flash timing specifications — program and erase The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead. Table 20. NVM program/erase timing specifications Symbol Description Min. Typ. Max. Unit thvpgm8 thversscr Notes Program Phrase high-voltage time — 7.5 18 μs Erase Flash Sector high-voltage time — 13 113 ms 1 thversblk128k Erase Flash Block high-voltage time for 128 KB — 104 1808 ms 1 thversblk256k Erase Flash Block high-voltage time for 256 KB — 208 3616 ms 1 Unit Notes 1. Maximum time based on expectations at cycling end-of-life. 6.4.1.2 Symbol Flash timing specifications — commands Table 21. Flash command timing specifications Description Min. Typ. Max. Read 1s Block execution time Table continues on the next page... K10 Sub-Family, Rev.6, 09/2015. 30 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 21. Flash command timing specifications (continued) Symbol Description Min. Typ. Max. Unit trd1blk128k • 128 KB data flash — — 0.5 ms trd1blk256k • 256 KB program flash — — 1.0 ms Notes 256 KB data flash trd1sec4k Read 1s Section execution time (4 KB flash) — — 100 μs 1 tpgmchk Program Check execution time — — 80 μs 1 trdrsrc Read Resource execution time — — 40 μs 1 tpgm8 Program Phrase execution time — 70 150 μs Erase Flash Block execution time 2 tersblk128k • 128 KB data flash — 110 925 ms tersblk256k • 256 KB program flash — 220 1850 ms Erase Flash Sector execution time — 15 115 ms Program Section execution time (4KB flash) — 20 — ms 256 KB data flash tersscr tpgmsec4k 2 Read 1s All Blocks execution time trd1allx • FlexNVM devices — — 3.4 ms trd1alln • Program flash only devices — — 3.4 ms Read Once execution time — — 30 μs Program Once execution time — 70 — μs tersall Erase All Blocks execution time — 650 5600 ms 2 tvfykey Verify Backdoor Access Key execution time — — 30 μs 1 trdonce tpgmonce 1 Swap Control execution time tswapx01 • control code 0x01 — 200 — μs tswapx02 • control code 0x02 — 70 150 μs tswapx04 • control code 0x04 — 70 150 μs tswapx08 • control code 0x08 — — 30 μs Program Partition for EEPROM execution time tpgmpart64k • 64 KB EEPROM backup — 235 — ms tpgmpart256k • 256 KB EEPROM backup — 240 — ms • Control Code 0xFF — 205 — μs tsetram64k • 64 KB EEPROM backup — 1.6 2.5 ms tsetram128k • 128 KB EEPROM backup — 2.7 3.8 ms tsetram256k • 256 KB EEPROM backup — 4.8 6.2 ms — 140 225 μs — 400 1700 μs Set FlexRAM Function execution time: tsetramff t eewr8bers Byte-write to erased FlexRAM location execution time 3 Byte-write to FlexRAM execution time: teewr8b64k Table continues on the next page... K10 Sub-Family, Rev.6, 09/2015. Freescale Semiconductor, Inc. 31 Peripheral operating requirements and behaviors Table 21. Flash command timing specifications (continued) Symbol Description Min. Typ. Max. Unit teewr8b128k • 64 KB EEPROM backup — 450 1800 μs teewr8b256k • 128 KB EEPROM backup — 525 2000 μs — 140 225 μs Notes • 256 KB EEPROM backup t eewr16bers 16-bit write to erased FlexRAM location execution time 16-bit write to FlexRAM execution time: teewr16b64k • 64 KB EEPROM backup — 400 1700 μs teewr16b128k • 128 KB EEPROM backup — 450 1800 μs teewr16b256k • 256 KB EEPROM backup — 525 2000 μs — 180 275 μs teewr32bers 32-bit write to erased FlexRAM location execution time 32-bit write to FlexRAM execution time: teewr32b64k • 64 KB EEPROM backup — 475 1850 μs teewr32b128k • 128 KB EEPROM backup — 525 2000 μs teewr32b256k • 256 KB EEPROM backup — 600 2200 μs 1. Assumes 25MHz or greater flash clock frequency. 2. Maximum times for erase parameters based on expectations at cycling end-of-life. 3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased. 6.4.1.3 Flash high voltage current behaviors Table 22. Flash high voltage current behaviors Symbol Description IDD_PGM IDD_ERS 6.4.1.4 Symbol Min. Typ. Max. Unit Average current adder during high voltage flash programming operation — 3.5 7.5 mA Average current adder during high voltage flash erase operation — 1.5 4.0 mA Reliability specifications Table 23. NVM reliability specifications Description Min. Typ.1 Max. Unit 50 — years Notes Program Flash tnvmretp10k Data retention after up to 10 K cycles 5 Table continues on the next page... K10 Sub-Family, Rev.6, 09/2015. 32 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 23. NVM reliability specifications (continued) Min. Typ.1 Max. Unit 20 100 — years 10 K 50 K — cycles tnvmretd10k Data retention after up to 10 K cycles 5 50 — years tnvmretd1k Data retention after up to 1 K cycles 20 100 — years nnvmcycd Cycling endurance 10 K 50 K — cycles 50 — years 20 100 — years 20 K 50 K — cycles Symbol Description tnvmretp1k Data retention after up to 1 K cycles nnvmcycp Cycling endurance Notes 2 Data Flash 2 FlexRAM as EEPROM tnvmretee100 Data retention up to 100% of write endurance tnvmretee10 Data retention up to 10% of write endurance nnvmcycee Cycling endurance for EEPROM backup 5 Write endurance 2 3 nnvmwree16 • EEPROM backup to FlexRAM ratio = 16 70 K 175 K — writes nnvmwree128 • EEPROM backup to FlexRAM ratio = 128 630 K 1.6 M — writes nnvmwree512 • EEPROM backup to FlexRAM ratio = 512 2.5 M 6.4 M — writes nnvmwree2k • EEPROM backup to FlexRAM ratio = 2,048 10 M 25 M — writes 1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619. 2. Cycling endurance represents number of program/erase cycles at -40°C ≤ Tj ≤ 125°C. 3. Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cycling endurance of the FlexNVM and the allocated EEPROM backup per subsystem. Minimum and typical values assume all 16bit or 32-bit writes to FlexRAM; all 8-bit writes result in 50% less endurance. 6.4.1.5 Write endurance to FlexRAM for EEPROM When the FlexNVM partition code is not set to full data flash, the EEPROM data set size can be set to any of several non-zero values. The bytes not assigned to data flash via the FlexNVM partition code are used by the FTFE to obtain an effective endurance increase for the EEPROM data. The built-in EEPROM record management system raises the number of program/erase cycles that can be attained prior to device wear-out by cycling the EEPROM data through a larger EEPROM NVM storage space. While different partitions of the FlexNVM are available, the intention is that a single choice for the FlexNVM partition code and EEPROM data set size is used throughout the entire lifetime of a given application. The EEPROM endurance equation and graph shown below assume that only one configuration is ever used. Writes_subsystem = EEPROM – 2 × EEESPLIT × EEESIZE EEESPLIT × EEESIZE × Write_efficiency × n nvmcycee K10 Sub-Family, Rev.6, 09/2015. Freescale Semiconductor, Inc. 33 Peripheral operating requirements and behaviors where • Writes_subsystem — minimum number of writes to each FlexRAM location for subsystem (each subsystem can have different endurance) • EEPROM — allocated FlexNVM for each EEPROM subsystem based on DEPART; entered with the Program Partition command • EEESPLIT — FlexRAM split factor for subsystem; entered with the Program Partition command • EEESIZE — allocated FlexRAM based on DEPART; entered with the Program Partition command • Write_efficiency — • 0.25 for 8-bit writes to FlexRAM • 0.50 for 16-bit or 32-bit writes to FlexRAM • nnvmcycee — EEPROM-backup cycling endurance Figure 11. EEPROM backup writes to FlexRAM K10 Sub-Family, Rev.6, 09/2015. 34 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 6.4.2 EzPort switching specifications Table 24. EzPort switching specifications Num Description Min. Max. Unit Operating voltage 1.71 3.6 V EP1 EZP_CK frequency of operation (all commands except READ) — fSYS/2 MHz EP1a EZP_CK frequency of operation (READ command) — fSYS/8 MHz EP2 EZP_CS negation to next EZP_CS assertion 2 x tEZP_CK — ns EP3 EZP_CS input valid to EZP_CK high (setup) 5 — ns EP4 EZP_CK high to EZP_CS input invalid (hold) 5 — ns EP5 EZP_D input valid to EZP_CK high (setup) 2 — ns EP6 EZP_CK high to EZP_D input invalid (hold) 5 — ns EP7 EZP_CK low to EZP_Q output valid — 16 ns EP8 EZP_CK low to EZP_Q output invalid (hold) 0 — ns EP9 EZP_CS negation to EZP_Q tri-state — 12 ns EZP_CK EP3 EP2 EP4 EZP_CS EP9 EP7 EP8 EZP_Q (output) EP5 EP6 EZP_D (input) Figure 12. EzPort Timing Diagram 6.4.3 NFC specifications The NAND flash controller (NFC) implements the interface to standard NAND flash memory devices. This section describes the timing parameters of the NFC. In the following table: K10 Sub-Family, Rev.6, 09/2015. Freescale Semiconductor, Inc. 35 Peripheral operating requirements and behaviors • TH is the flash clock high time and • TL is flash clock low time, which are defined as: T NFC = T L + T H = T input clock SCALER The SCALER value is derived from the fractional divider specified in the SIM's CLKDIV4 register: SCALER = SIM_CLKDIV4[NFCFRAC] + 1 SIM_CLKDIV4[NFCDIV] + 1 In case the reciprocal of SCALER is an integer, the duty cycle of NFC clock is 50%, means TH = TL. In case the reciprocal of SCALER is not an integer: T L = (1 + SCALER / 2) x T H = (1 – SCALER / 2) x T NFC 2 T NFC 2 For example, if SCALER is 0.2, then TH = TL = TNFC/2. TNFC TH TL However, if SCALER is 0.667, then TL = 2/3 x TNFC and TH = 1/3 x TNFC. TNFC TH TL NOTE The reciprocal of SCALER must be a multiple of 0.5. For example, 1, 1.5, 2, 2.5, etc. Table 25. NFC specifications Num Description Min. Max. Unit tCLS NFC_CLE setup time 2TH + TL – 1 — ns tCLH NFC_CLE hold time TH + TL – 1 — ns tCS NFC_CEn setup time 2TH + TL – 1 — ns tCH NFC_CEn hold time TH + TL — ns Table continues on the next page... K10 Sub-Family, Rev.6, 09/2015. 36 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 25. NFC specifications (continued) Num Description Min. Max. Unit tWP NFC_WP pulse width TL – 1 — ns tALS NFC_ALE setup time 2TH + TL — ns tALH NFC_ALE hold time TH + TL — ns tDS Data setup time TL – 1 — ns tDH Data hold time TH – 1 — ns tWC Write cycle time TH + TL – 1 — ns tWH NFC_WE hold time TH – 1 — ns tRR Ready to NFC_RE low 4TH + 3TL + 90 — ns tRP NFC_RE pulse width TL + 1 — ns tRC Read cycle time TL + TH – 1 — ns tREH NFC_RE high hold time TH – 1 — ns tIS Data input setup time 11 — ns NFC_CLE tCLS tCLH NFC_CEn tCS tWP tCH NFC_WE tDS tDH NFC_IOn Figure 13. Command latch cycle timing NFC_ALE tALS tALH NFC_CEn tCS tWP tCH NFC_WE tDS NFC_IOn tDH address Figure 14. Address latch cycle timing K10 Sub-Family, Rev.6, 09/2015. Freescale Semiconductor, Inc. 37 Peripheral operating requirements and behaviors tCS tCH tWC NFC_CEn tWP tWH tDS tDH NFC_WE NFC_IOn data data data Figure 15. Write data latch cycle timing tCH tRC NFC_CEn tREH tRP NFC_RE tIS NFC_IOn data data data tRR NFC_RB Figure 16. Read data latch cycle timing in non-fast mode tCH tRC NFC_CEn tRP tREH NFC_RE tIS NFC_IOn data data data tRR NFC_RB Figure 17. Read data latch cycle timing in fast mode 6.4.4 Flexbus switching specifications All processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency or an integer divider of that frequency. K10 Sub-Family, Rev.6, 09/2015. 38 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Flexbus output clock (FB_CLK). All other timing relationships can be derived from these values. Table 26. Flexbus limited voltage range switching specifications Num Description Min. Max. Unit Notes Operating voltage 2.7 3.6 V Frequency of operation — FB_CLK MHz FB1 Clock period 20 — ns FB2 Address, data, and control output valid — 11.5 ns 1 FB3 Address, data, and control output hold 0.5 — ns 1 FB4 Data and FB_TA input setup 8.5 — ns 2 FB5 Data and FB_TA input hold 0.5 — ns 2 1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS. 2. Specification is valid for all FB_AD[31:0] and FB_TA. Table 27. Flexbus full voltage range switching specifications Num Description Min. Max. Unit Operating voltage 1.71 3.6 V Frequency of operation Notes — FB_CLK MHz 1/FB_CLK — ns Address, data, and control output valid — 13.5 ns 1 FB3 Address, data, and control output hold 0 — ns 1 FB4 Data and FB_TA input setup 13.7 — ns 2 FB5 Data and FB_TA input hold 0.5 — ns 2 FB1 Clock period FB2 1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS. 2. Specification is valid for all FB_AD[31:0] and FB_TA. K10 Sub-Family, Rev.6, 09/2015. Freescale Semiconductor, Inc. 39 Peripheral operating requirements and behaviors FB1 FB_CLK FB3 FB5 FB_A[Y] Address FB4 FB2 FB_D[X] Address Data FB_RW FB_TS FB_ALE AA=1 FB_CSn AA=0 FB_OEn FB4 FB_BEn FB5 AA=1 FB_TA FB_TSIZ[1:0] AA=0 TSIZ Figure 18. FlexBus read timing diagram K10 Sub-Family, Rev.6, 09/2015. 40 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors FB1 FB_CLK FB2 FB3 FB_A[Y] FB_D[X] Address Address Data FB_RW FB_TS FB_ALE AA=1 FB_CSn AA=0 FB_OEn FB4 FB_BEn FB5 AA=1 FB_TA FB_TSIZ[1:0] AA=0 TSIZ Figure 19. FlexBus write timing diagram 6.5 Security and integrity modules There are no specifications necessary for the device's security and integrity modules. 6.6 Analog K10 Sub-Family, Rev.6, 09/2015. Freescale Semiconductor, Inc. 41 Peripheral operating requirements and behaviors 6.6.1 ADC electrical specifications The 16-bit accuracy specifications listed in Table 28 and Table 29 are achievable on the differential pins ADCx_DP0, ADCx_DM0. The ADCx_DP2 and ADCx_DM2 ADC inputs are connected to the PGA outputs and are not direct device pins. Accuracy specifications for these pins are defined in Table 30 and Table 31. All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications. 6.6.1.1 16-bit ADC operating conditions Table 28. 16-bit ADC operating conditions Symbol Description Conditions Min. Typ.1 Max. Unit VDDA Supply voltage Absolute 1.71 — 3.6 V ΔVDDA Supply voltage Delta to VDD (VDD – VDDA) -100 0 +100 mV 2 ΔVSSA Ground voltage Delta to VSS (VSS – VSSA) -100 0 +100 mV 2 VREFH ADC reference voltage high 1.13 VDDA VDDA V VREFL ADC reference voltage low VSSA VSSA VSSA V VADIN Input voltage • 16-bit differential mode VREFL — 31/32 × VREFH V • All other modes VREFL — • 16-bit mode — 8 10 • 8-bit / 10-bit / 12-bit modes — 4 5 — 2 5 CADIN RADIN RAS Input capacitance Input series resistance Notes VREFH pF kΩ Analog source resistance (external) 13-bit / 12-bit modes fADCK < 4 MHz — — 5 kΩ fADCK ADC conversion clock frequency ≤ 13-bit mode 1.0 — 18.0 MHz 4 fADCK ADC conversion clock frequency 16-bit mode 2.0 — 12.0 MHz 4 Crate ADC conversion rate ≤ 13-bit modes No ADC hardware averaging 3 5 20.000 — 818.330 ksps Continuous conversions enabled, subsequent conversion time Crate ADC conversion rate 16-bit mode 5 No ADC hardware averaging 37.037 — 461.467 ksps K10 Sub-Family, Rev.6, 09/2015. 42 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 28. 16-bit ADC operating conditions Symbol Description Conditions Min. Typ.1 Max. Unit Notes Continuous conversions enabled, subsequent conversion time 1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production. 2. DC potential difference. 3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The RAS/CAS time constant should be kept to < 1 ns. 4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear. 5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool. SIMPLIFIED INPUT PIN EQUIVALENT CIRCUIT ZADIN SIMPLIFIED CHANNEL SELECT CIRCUIT Pad leakage due to input protection ZAS RAS ADC SAR ENGINE RADIN VADIN CAS VAS RADIN INPUT PIN RADIN INPUT PIN RADIN INPUT PIN CADIN Figure 20. ADC input impedance equivalency diagram 6.6.1.2 16-bit ADC electrical characteristics Table 29. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) Symbol Description Conditions1 Min. Typ.2 Max. Unit Notes 0.215 — 1.7 mA 3 • ADLPC = 1, ADHSC = 0 1.2 2.4 3.9 MHz • ADLPC = 1, ADHSC = 1 2.4 4.0 6.1 MHz tADACK = 1/ fADACK IDDA_ADC Supply current fADACK ADC asynchronous clock source Table continues on the next page... K10 Sub-Family, Rev.6, 09/2015. Freescale Semiconductor, Inc. 43 Peripheral operating requirements and behaviors Table 29. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued) Symbol Description Sample Time TUE DNL INL EFS EQ ENOB Conditions1 Min. Typ.2 Max. Unit • ADLPC = 0, ADHSC = 0 3.0 5.2 7.3 MHz • ADLPC = 0, ADHSC = 1 4.4 6.2 9.5 MHz LSB4 5 LSB4 5 LSB4 5 LSB4 VADIN = VDDA5 See Reference Manual chapter for sample times Total unadjusted error • 12-bit modes — ±4 ±6.8 • <12-bit modes — ±1.4 ±2.1 Differential nonlinearity • 12-bit modes — ±0.7 –1.1 to +1.9 • <12-bit modes — ±0.2 • 12-bit modes — ±1.0 • <12-bit modes — ±0.5 • 12-bit modes — –4 –5.4 • <12-bit modes — –1.4 –1.8 • 16-bit modes — –1 to 0 — • ≤13-bit modes — — ±0.5 Integral non-linearity Full-scale error Quantization error Effective number of bits Notes –0.3 to 0.5 –2.7 to +1.9 –0.7 to +0.5 LSB4 16-bit differential mode 6 • Avg = 32 12.8 14.5 • Avg = 4 11.9 13.8 — — bits bits 16-bit single-ended mode • Avg = 32 • Avg = 4 SINAD THD Signal-to-noise plus distortion See ENOB Total harmonic distortion 16-bit differential mode 12.2 13.9 11.4 13.1 — — 6.02 × ENOB + 1.76 • Avg = 32 bits bits dB dB — -94 7 — dB 16-bit single-ended mode • Avg = 32 SFDR Spurious free dynamic range — -85 82 95 16-bit differential mode • Avg = 32 16-bit single-ended mode 78 — — dB — dB 7 90 • Avg = 32 EIL Input leakage error IIn × RAS mV IIn = leakage current Table continues on the next page... K10 Sub-Family, Rev.6, 09/2015. 44 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 29. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued) Conditions1 Symbol Description Typ.2 Min. Max. Unit Notes (refer to the MCU's voltage and current operating ratings) Temp sensor slope Across the full temperature range of the device VTEMP25 Temp sensor voltage 25 °C 1.55 1.62 1.69 mV/°C 8 706 716 726 mV 8 1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA 2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed. 4. 1 LSB = (VREFH - VREFL)/2N 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11) 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz. 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz. 8. ADC conversion clock < 3 MHz Typical ADC 16-bit Differential ENOB vs ADC Clock 100Hz, 90% FS Sine Input 15.00 14.70 14.40 14.10 ENOB 13.80 13.50 13.20 12.90 12.60 Hardware Averaging Disabled Averaging of 4 samples Averaging of 8 samples Averaging of 32 samples 12.30 12.00 1 2 3 4 5 6 7 8 9 10 11 12 ADC Clock Frequency (MHz) Figure 21. Typical ENOB vs. ADC_CLK for 16-bit differential mode K10 Sub-Family, Rev.6, 09/2015. Freescale Semiconductor, Inc. 45 Peripheral operating requirements and behaviors Typical ADC 16-bit Single-Ended ENOB vs ADC Clock 100Hz, 90% FS Sine Input 14.00 13.75 13.50 13.25 13.00 ENOB 12.75 12.50 12.25 12.00 11.75 11.50 11.25 11.00 Averaging of 4 samples Averaging of 32 samples 1 2 3 4 5 6 7 8 9 10 11 12 ADC Clock Frequency (MHz) Figure 22. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode 6.6.1.3 16-bit ADC with PGA operating conditions Table 30. 16-bit ADC with PGA operating conditions Symbol Description Conditions Min. Typ.1 Max. Unit VDDA Supply voltage Absolute 1.71 — 3.6 V VREFPGA PGA ref voltage VADIN VCM RPGAD VREF_OU VREF_OU VREF_OU T T T V Notes 2, 3 Input voltage VSSA — VDDA V Input Common Mode range VSSA — VDDA V Gain = 1, 2, 4, 8 — 128 — kΩ IN+ to IN-4 Gain = 16, 32 — 64 — Gain = 64 — 32 — Differential input impedance RAS Analog source resistance — 100 — Ω 5 TS ADC sampling time 1.25 — — µs 6 18.484 — 450 Ksps 7 37.037 — 250 Ksps 8 Crate ADC conversion rate ≤ 13 bit modes No ADC hardware averaging Continuous conversions enabled Peripheral clock = 50 MHz 16 bit modes K10 Sub-Family, Rev.6, 09/2015. 46 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 30. 16-bit ADC with PGA operating conditions Symbol Description Conditions Typ.1 Min. Max. Unit Notes No ADC hardware averaging Continuous conversions enabled Peripheral clock = 50 MHz 1. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 6 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 2. ADC must be configured to use the internal voltage reference (VREF_OUT) 3. PGA reference is internally connected to the VREF_OUT pin. If the user wishes to drive VREF_OUT with a voltage other than the output of the VREF module, the VREF module must be disabled. 4. For single ended configurations the input impedance of the driven input is RPGAD/2 5. The analog source resistance (RAS), external to MCU, should be kept as minimum as possible. Increased RAS causes drop in PGA gain without affecting other performances. This is not dependent on ADC clock frequency. 6. The minimum sampling time is dependent on input signal frequency and ADC mode of operation. A minimum of 1.25µs time should be allowed for Fin=4 kHz at 16-bit differential mode. Recommended ADC setting is: ADLSMP=1, ADLSTS=2 at 8 MHz ADC clock. 7. ADC clock = 18 MHz, ADLSMP = 1, ADLST = 00, ADHSC = 1 8. ADC clock = 12 MHz, ADLSMP = 1, ADLST = 01, ADHSC = 1 6.6.1.4 16-bit ADC with PGA characteristics Table 31. 16-bit ADC with PGA characteristics Symbol Description Conditions IDDA_PGA Supply current Low power (ADC_PGA[PGALPb]=0) IDC_PGA Input DC current G BW PSRR Gain4 Input signal bandwidth Power supply rejection ratio Min. Typ.1 Max. Unit Notes — 420 644 μA 2 A 3 Gain =1, VREFPGA=1.2V, VCM=0.5V — 1.54 — μA Gain =64, VREFPGA=1.2V, VCM=0.1V — 0.57 — μA • PGAG=0 0.95 1 1.05 • PGAG=1 1.9 2 2.1 • PGAG=2 3.8 4 4.2 • PGAG=3 7.6 8 8.4 • PGAG=4 15.2 16 16.6 • PGAG=5 30.0 31.6 33.2 • PGAG=6 58.8 63.3 67.8 — — 4 kHz — — 40 kHz — -84 — dB • 16-bit modes • < 16-bit modes Gain=1 RAS < 100Ω VDDA= 3V ±100mV, Table continues on the next page... K10 Sub-Family, Rev.6, 09/2015. Freescale Semiconductor, Inc. 47 Peripheral operating requirements and behaviors Table 31. 16-bit ADC with PGA characteristics (continued) Symbol Description Conditions Min. Typ.1 Max. Unit Notes fVDDA= 50Hz, 60Hz CMRR VOFS Common mode rejection ratio • Gain=1 — -84 — dB • Gain=64 — -85 — dB Input offset voltage • Chopping disabled (ADC_PGA[PGACHPb] =1) • Chopping enabled (ADC_PGA[PGACHPb] =0) — 2.4 — mV — 0.2 — mV — — 10 µs • Gain=1 • Gain=64 — 6 10 ppm/°C — 31 42 ppm/°C • Gain=1 • Gain=64 — 0.07 0.21 %/V — 0.14 0.31 %/V TGSW Gain switching settling time dG/dT Gain drift over full temperature range dG/dVDDA Gain drift over supply voltage EIL Input leakage error All modes IIn × RAS mV VCM= 500mVpp, fVCM= 50Hz, 100Hz Output offset = VOFS*(Gain+1) 5 VDDA from 1.71 to 3.6V IIn = leakage current (refer to the MCU's voltage and current operating ratings) VPP,DIFF Maximum differential input signal swing SNR Signal-to-noise ratio • Gain=1 80 90 • Gain=64 52 Total harmonic distortion • Gain=1 THD SFDR ENOB V 6 — dB 66 — dB 16-bit differential mode, Average=32 85 100 — dB • Gain=64 49 95 — dB Spurious free dynamic range • Gain=1 85 105 — dB • Gain=64 53 88 — dB Effective number of bits • Gain=1, Average=4 11.6 13.4 — bits • Gain=1, Average=8 8.0 13.6 — bits • Gain=64, Average=4 7.2 9.6 — bits • Gain=64, Average=8 6.3 9.6 — bits 12.8 14.5 — bits where VX = VREFPGA × 0.583 16-bit differential mode, Average=32, fin=100Hz 16-bit differential mode, Average=32, fin=100Hz 16-bit differential mode,fin=100Hz Table continues on the next page... K10 Sub-Family, Rev.6, 09/2015. 48 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 31. 16-bit ADC with PGA characteristics (continued) Symbol Description Min. Typ.1 Max. Unit • Gain=1, Average=32 11.0 14.3 — bits • Gain=2, Average=32 7.9 13.8 — bits • Gain=4, Average=32 7.3 13.1 — bits • Gain=8, Average=32 6.8 12.5 — bits • Gain=16, Average=32 6.8 11.5 — bits • Gain=32, Average=32 7.5 10.6 — bits Conditions Notes • Gain=64, Average=32 SINAD Signal-to-noise plus distortion ratio See ENOB 6.02 × ENOB + 1.76 dB 1. Typical values assume VDDA =3.0V, Temp=25°C, fADCK=6MHz unless otherwise stated. 2. This current is a PGA module adder, in addition to ADC conversion currents. 3. Between IN+ and IN-. The PGA draws a DC current from the input terminals. The magnitude of the DC current is a strong function of input common mode voltage (VCM) and the PGA gain. 4. Gain = 2PGAG 5. After changing the PGA gain setting, a minimum of 2 ADC+PGA conversions should be ignored. 6. Limit the input signal swing so that the PGA does not saturate during operation. Input signal swing is dependent on the PGA reference voltage and gain setting. 6.6.2 CMP and 6-bit DAC electrical specifications Table 32. Comparator and 6-bit DAC electrical specifications Symbol Description Min. Typ. Max. Unit VDD Supply voltage 1.71 — 3.6 V IDDHS Supply current, High-speed mode (EN=1, PMODE=1) — — 200 μA IDDLS Supply current, low-speed mode (EN=1, PMODE=0) — — 20 μA VAIN Analog input voltage VSS – 0.3 — VDD V VAIO Analog input offset voltage — — 20 mV • CR0[HYSTCTR] = 00 — 5 — mV • CR0[HYSTCTR] = 01 — 10 — mV • CR0[HYSTCTR] = 10 — 20 — mV • CR0[HYSTCTR] = 11 — 30 — mV VH Analog comparator hysteresis1 VCMPOh Output high VDD – 0.5 — — V VCMPOl Output low — — 0.5 V tDHS Propagation delay, high-speed mode (EN=1, PMODE=1) 20 50 200 ns tDLS Propagation delay, low-speed mode (EN=1, PMODE=0) 80 250 600 ns — — 40 μs — 7 — μA Analog comparator initialization IDAC6b delay2 6-bit DAC current adder (enabled) Table continues on the next page... K10 Sub-Family, Rev.6, 09/2015. Freescale Semiconductor, Inc. 49 Peripheral operating requirements and behaviors Table 32. Comparator and 6-bit DAC electrical specifications (continued) Symbol Description Min. Typ. Max. Unit INL 6-bit DAC integral non-linearity –0.5 — 0.5 LSB3 DNL 6-bit DAC differential non-linearity –0.3 — 0.3 LSB 1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V. 2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and CMP_MUXCR[MSEL]) and the comparator output settling to a stable level. 3. 1 LSB = Vreference/64 0.08 0.07 CMP Hystereris (V) 0.06 HYSTCTR Setting 0.05 00 0.04 01 10 11 0.03 0.02 0.01 0 0.1 0.4 0.7 1 1.3 1.6 1.9 2.2 2.5 2.8 3.1 Vin level (V) Figure 23. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0) K10 Sub-Family, Rev.6, 09/2015. 50 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 0.18 0.16 0.14 CMP Hysteresis (V) 0.12 HYSTCTR Setting 0.1 00 01 10 11 0.08 0.06 0.04 0.02 0 0.1 0.4 0.7 1 1.3 1.6 1.9 Vin level (V) 2.2 2.5 2.8 3.1 Figure 24. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1) 6.6.3 12-bit DAC electrical characteristics 6.6.3.1 Symbol 12-bit DAC operating requirements Table 33. 12-bit DAC operating requirements Desciption Min. Max. Unit VDDA Supply voltage 1.71 3.6 V VDACR Reference voltage 1.13 3.6 V 1 2 CL Output load capacitance — 100 pF IL Output load current — 1 mA Notes 1. The DAC reference can be selected to be VDDA or VREFH. 2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC. K10 Sub-Family, Rev.6, 09/2015. Freescale Semiconductor, Inc. 51 Peripheral operating requirements and behaviors 6.6.3.2 Symbol 12-bit DAC operating behaviors Table 34. 12-bit DAC operating behaviors Description IDDA_DACL Supply current — low-power mode Min. Typ. Max. Unit — — 150 μA — — 700 μA Notes P IDDA_DACH Supply current — high-speed mode P tDACLP Full-scale settling time (0x080 to 0xF7F) — low-power mode — 100 200 μs 1 tDACHP Full-scale settling time (0x080 to 0xF7F) — high-power mode — 15 30 μs 1 — 0.7 1 μs 1 — — 100 mV tCCDACLP Code-to-code settling time (0xBF8 to 0xC08) — low-power mode and high-speed mode Vdacoutl DAC output voltage range low — high-speed mode, no load, DAC set to 0x000 Vdacouth DAC output voltage range high — highspeed mode, no load, DAC set to 0xFFF VDACR −100 — VDACR mV INL Integral non-linearity error — high speed mode — — ±8 LSB 2 DNL Differential non-linearity error — VDACR > 2 V — — ±1 LSB 3 DNL Differential non-linearity error — VDACR = VREF_OUT — — ±1 LSB 4 — ±0.4 ±0.8 %FSR 5 Gain error — ±0.1 ±0.6 %FSR 5 Power supply rejection ratio, VDDA ≥ 2.4 V 60 — 90 dB TCO Temperature coefficient offset voltage — 3.7 — μV/C TGE Temperature coefficient gain error — 0.000421 — %FSR/C Rop Output resistance (load = 3 kΩ) — — 250 Ω SR Slew rate -80h→ F7Fh→ 80h VOFFSET Offset error EG PSRR 1. 2. 3. 4. 5. 6. V/μs • High power (SPHP) 1.2 1.7 — • Low power (SPLP) 0.05 0.12 — — — -80 CT Channel to channel cross talk BW 3dB bandwidth 6 dB kHz • High power (SPHP) 550 — — • Low power (SPLP) 40 — — Settling within ±1 LSB The INL is measured for 0 + 100 mV to VDACR −100 mV The DNL is measured for 0 + 100 mV to VDACR −100 mV The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device K10 Sub-Family, Rev.6, 09/2015. 52 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 8 6 4 DAC12 INL (LSB) 2 0 -2 -4 -6 -8 0 500 1000 1500 2000 2500 3000 3500 4000 Digital Code Figure 25. Typical INL error vs. digital code K10 Sub-Family, Rev.6, 09/2015. Freescale Semiconductor, Inc. 53 Peripheral operating requirements and behaviors 1.499 DAC12 Mid Level Code Voltage 1.4985 1.498 1.4975 1.497 1.4965 1.496 25 -40 55 85 105 125 Temperature °C Figure 26. Offset at half scale vs. temperature 6.6.4 Voltage reference electrical specifications Table 35. VREF full-range operating requirements Symbol Description Min. Max. Unit VDDA Supply voltage 1.71 3.6 V TA Temperature CL Output load capacitance Operating temperature range of the device °C 100 nF Notes 1, 2 1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference. 2. The load capacitance should not exceed +/-25% of the nominal specified CL value over the operating temperature range of the device. K10 Sub-Family, Rev.6, 09/2015. 54 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 36. VREF full-range operating behaviors Symbol Description Min. Typ. Max. Unit Notes Vout Voltage reference output with factory trim at nominal VDDA and temperature=25C 1.1915 1.195 1.1977 V 1 Vout Voltage reference output — factory trim 1.1584 — 1.2376 V 1 Vout Voltage reference output — user trim 1.193 — 1.197 V 1 Vstep Voltage reference trim step — 0.5 — mV 1 Vtdrift Temperature drift (Vmax -Vmin across the full temperature range) — — 80 mV 1 Ibg Bandgap only current — — 80 µA 1 Ihp High-power buffer current — — 1 mA 1 mV 1, 2 ΔVLOAD Load regulation • current = + 1.0 mA — 2 — • current = - 1.0 mA — 5 — Tstup Buffer startup time — — 100 µs Vvdrift Voltage drift (Vmax -Vmin across the full voltage range) — 2 — mV 1 1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register. 2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load Table 37. VREF limited-range operating requirements Symbol Description Min. Max. Unit TA Temperature 0 50 °C Notes Table 38. VREF limited-range operating behaviors Symbol Vout Description Voltage reference output with factory trim Min. Max. Unit 1.173 1.225 V Notes 6.7 Timers See General switching specifications. 6.8 Communication interfaces K10 Sub-Family, Rev.6, 09/2015. Freescale Semiconductor, Inc. 55 Peripheral operating requirements and behaviors 6.8.1 CAN switching specifications See General switching specifications. 6.8.2 DSPI switching specifications (limited voltage range) The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provide DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices. Table 39. Master mode DSPI timing (limited voltage range) Num Description Min. Max. Unit Operating voltage 2.7 3.6 V Frequency of operation — 30 MHz 2 x tBUS — ns Notes DS1 DSPI_SCK output cycle time DS2 DSPI_SCK output high/low time (tSCK/2) − 2 (tSCK/2) + 2 ns DS3 DSPI_PCSn valid to DSPI_SCK delay (tBUS x 2) − 2 — ns 1 DS4 DSPI_SCK to DSPI_PCSn invalid delay (tBUS x 2) − 2 — ns 2 DS5 DSPI_SCK to DSPI_SOUT valid — 8.5 ns DS6 DSPI_SCK to DSPI_SOUT invalid −2 — ns DS7 DSPI_SIN to DSPI_SCK input setup 15 — ns DS8 DSPI_SCK to DSPI_SIN input hold 0 — ns 1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK]. 2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC]. DSPI_PCSn DS3 DSPI_SCK (CPOL=0) DSPI_SIN DSPI_SOUT DS7 DS1 DS2 DS4 DS8 First data First data Data Last data DS5 DS6 Data Last data Figure 27. DSPI classic SPI timing — master mode K10 Sub-Family, Rev.6, 09/2015. 56 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 40. Slave mode DSPI timing (limited voltage range) Num Description Min. Max. Unit 2.7 3.6 V 15 MHz 4 x tBUS — ns (tSCK/2) − 2 (tSCK/2) + 2 ns Operating voltage Frequency of operation DS9 DSPI_SCK input cycle time DS10 DSPI_SCK input high/low time DS11 DSPI_SCK to DSPI_SOUT valid — 10 ns DS12 DSPI_SCK to DSPI_SOUT invalid 0 — ns DS13 DSPI_SIN to DSPI_SCK input setup 2 — ns DS14 DSPI_SCK to DSPI_SIN input hold 7 — ns DS15 DSPI_SS active to DSPI_SOUT driven — 14 ns DS16 DSPI_SS inactive to DSPI_SOUT not driven — 14 ns DSPI_SS DS10 DS9 DSPI_SCK DS15 (CPOL=0) DSPI_SOUT DS12 First data DS13 DSPI_SIN DS16 DS11 Last data Data DS14 First data Data Last data Figure 28. DSPI classic SPI timing — slave mode 6.8.3 DSPI switching specifications (full voltage range) The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices. Table 41. Master mode DSPI timing (full voltage range) Num Description Operating voltage Frequency of operation DS1 DSPI_SCK output cycle time Min. Max. Unit Notes 1.71 — 3.6 V 1 15 MHz 4 x tBUS — ns Table continues on the next page... K10 Sub-Family, Rev.6, 09/2015. Freescale Semiconductor, Inc. 57 Peripheral operating requirements and behaviors Table 41. Master mode DSPI timing (full voltage range) (continued) Num Description Min. Max. Unit Notes DS2 DSPI_SCK output high/low time (tSCK/2) - 4 (tSCK/2) + 4 ns DS3 DSPI_PCSn valid to DSPI_SCK delay (tBUS x 2) − 4 — ns 2 DS4 DSPI_SCK to DSPI_PCSn invalid delay (tBUS x 2) − 4 — ns 3 DS5 DSPI_SCK to DSPI_SOUT valid — 10 ns DS6 DSPI_SCK to DSPI_SOUT invalid -4.5 — ns DS7 DSPI_SIN to DSPI_SCK input setup 20.5 — ns DS8 DSPI_SCK to DSPI_SIN input hold 0 — ns 1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced. 2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK]. 3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC]. DSPI_PCSn DS3 DSPI_SCK DSPI_SIN DS4 DS8 DS7 (CPOL=0) DS1 DS2 First data DSPI_SOUT Data Last data DS5 First data DS6 Data Last data Figure 29. DSPI classic SPI timing — master mode Table 42. Slave mode DSPI timing (full voltage range) Num Description Min. Max. Unit 1.71 3.6 V — 7.5 MHz 8 x tBUS — ns (tSCK/2) - 4 (tSCK/2) + 4 ns Operating voltage Frequency of operation DS9 DSPI_SCK input cycle time DS10 DSPI_SCK input high/low time DS11 DSPI_SCK to DSPI_SOUT valid — 20 ns DS12 DSPI_SCK to DSPI_SOUT invalid 0 — ns DS13 DSPI_SIN to DSPI_SCK input setup 2 — ns DS14 DSPI_SCK to DSPI_SIN input hold 7 — ns DS15 DSPI_SS active to DSPI_SOUT driven — 19 ns DS16 DSPI_SS inactive to DSPI_SOUT not driven — 19 ns K10 Sub-Family, Rev.6, 09/2015. 58 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors DSPI_SS DS10 DS9 DSPI_SCK DS15 (CPOL=0) DSPI_SOUT DS12 First data DS13 DSPI_SIN DS16 DS11 Last data Data DS14 First data Data Last data Figure 30. DSPI classic SPI timing — slave mode 6.8.4 Inter-Integrated Circuit Interface (I2C) timing Table 43. I 2C timing Characteristic Symbol Standard Mode Fast Mode Unit Minimum Maximum Minimum Maximum SCL Clock Frequency fSCL 0 100 0 400 1 kHz Hold time (repeated) START condition. After this period, the first clock pulse is generated. tHD; STA 4 — 0.6 — µs LOW period of the SCL clock tLOW 4.7 — 1.25 — µs HIGH period of the SCL clock tHIGH 4 — 0.6 — µs Set-up time for a repeated START condition tSU; STA 4.7 — 0.6 — µs Data hold time for I2C bus devices tHD; DAT 02 3.453 04 0.92 µs tSU; DAT 2505 — 1003,6 Data set-up time — ns 7 Rise time of SDA and SCL signals tr — 1000 20 +0.1Cb 300 ns Fall time of SDA and SCL signals tf — 300 20 +0.1Cb6 300 ns Set-up time for STOP condition tSU; STO 4 — 0.6 — µs Bus free time between STOP and START condition tBUF 4.7 — 1.3 — µs Pulse width of spikes that must be suppressed by the input filter tSP N/A N/A 0 50 ns 1. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can only be achieved when using a pin configured for high drive across the full voltage range and when using the a pin configured for low drive with VDD ≥ 2.7 V. 2. The master mode I2C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL lines. 3. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal. 4. Input signal Slew = 10 ns and Output Load = 50 pF 5. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty. 6. A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement tSU; DAT ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a K10 Sub-Family, Rev.6, 09/2015. Freescale Semiconductor, Inc. 59 Peripheral operating requirements and behaviors device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line trmax + tSU; DAT = 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification) before the SCL line is released. 7. Cb = total capacitance of the one bus line in pF. SDA tf tLOW tSU; DAT tr tf tHD; STA tr tSP tBUF SCL S HD; STA tHD; DAT tHIGH tSU; STA tSU; STO SR P S Figure 31. Timing definition for fast and standard mode devices on the I2C bus 6.8.5 UART switching specifications See General switching specifications. 6.8.6 SDHC specifications The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface. Table 44. SDHC switching specifications over a limited operating voltage range Num Symbol Description Min. Max. Unit Operating voltage 2.7 3.6 V Card input clock SD1 fpp Clock frequency (low speed) 0 400 kHz fpp Clock frequency (SD\SDIO full speed\high speed) 0 25\50 MHz fpp Clock frequency (MMC full speed\high speed) 0 20\50 MHz fOD Clock frequency (identification mode) 0 400 kHz tWL Clock low time 7 — ns SD3 tWH Clock high time 7 — ns SD4 tTLH Clock rise time — 3 ns SD5 tTHL Clock fall time — 3 ns SD2 SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK) SD6 tOD SDHC output delay (output valid) -5 6.5 ns SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK) SD7 tISU SDHC input setup time 5 — ns SD8 tIH SDHC input hold time 0 — ns K10 Sub-Family, Rev.6, 09/2015. 60 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 45. SDHC switching specifications over the full operating voltage range Num Symbol Description Min. Max. Unit Operating voltage 1.71 3.6 V Card input clock SD1 fpp Clock frequency (low speed) 0 400 kHz fpp Clock frequency (SD\SDIO full speed\high speed) 0 25\50 MHz fpp Clock frequency (MMC full speed\high speed) 0 20\50 MHz fOD Clock frequency (identification mode) 0 400 kHz SD2 tWL Clock low time 7 — ns SD3 tWH Clock high time 7 — ns SD4 tTLH Clock rise time — 3 ns SD5 tTHL Clock fall time — 3 ns SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK) SD6 tOD SDHC output delay (output valid) -5 6.5 ns SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK) SD7 tISU SDHC input setup time 5 — ns SD8 tIH SDHC input hold time 1.3 — ns SD3 SD2 SD1 SDHC_CLK SD6 Output SDHC_CMD Output SDHC_DAT[3:0] SD7 SD8 Input SDHC_CMD Input SDHC_DAT[3:0] Figure 32. SDHC timing 6.8.7 I2S/SAI switching specifications This section provides the AC timing for the I2S/SAI module in master mode (clocks are driven) and slave mode (clocks are input). All timing is given for noninverted serial clock polarity (TCR2[BCP] is 0, RCR2[BCP] is 0) and a noninverted frame sync (TCR4[FSP] K10 Sub-Family, Rev.6, 09/2015. Freescale Semiconductor, Inc. 61 Peripheral operating requirements and behaviors is 0, RCR4[FSP] is 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the bit clock signal (BCLK) and/or the frame sync (FS) signal shown in the following figures. 6.8.7.1 Normal Run, Wait and Stop mode performance over a limited operating voltage range This section provides the operating performance over a limited operating voltage for the device in Normal Run, Wait and Stop modes. Table 46. I2S/SAI master mode timing in Normal Run, Wait and Stop modes (limited voltage range) Num. Characteristic Min. Max. Unit Operating voltage 2.7 3.6 V S1 I2S_MCLK cycle time 40 — ns S2 I2S_MCLK pulse width high/low 45% 55% MCLK period S3 I2S_TX_BCLK/I2S_RX_BCLK cycle time (output) 80 — ns S4 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45% 55% BCLK period S5 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid — 15 ns S6 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid 0 — ns S7 I2S_TX_BCLK to I2S_TXD valid — 15 ns S8 I2S_TX_BCLK to I2S_TXD invalid 0 — ns S9 I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK 15 — ns S10 I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK 0 — ns K10 Sub-Family, Rev.6, 09/2015. 62 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors S1 S2 S2 I2S_MCLK (output) S3 I2S_TX_BCLK/ I2S_RX_BCLK (output) S4 S4 S6 S5 I2S_TX_FS/ I2S_RX_FS (output) S10 S9 I2S_TX_FS/ I2S_RX_FS (input) S7 S8 S7 S8 I2S_TXD S9 S10 I2S_RXD Figure 33. I2S/SAI timing — master modes Table 47. I2S/SAI slave mode timing in Normal Run, Wait and Stop modes (limited voltage range) Num. Characteristic Min. Max. Unit Operating voltage 2.7 3.6 V S11 I2S_TX_BCLK/I2S_RX_BCLK cycle time (input) 80 — ns S12 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input) 45% 55% MCLK period S13 I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK 4.5 — ns S14 I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK 2 — ns S15 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid — 21 — 15 • Multiple SAI Synchronous mode • All other modes ns S16 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid 0 — ns S17 I2S_RXD setup before I2S_RX_BCLK 4.5 — ns S18 I2S_RXD hold after I2S_RX_BCLK 2 — ns — 25 ns S19 I2S_TX_FS input assertion to I2S_TXD output valid1 1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear K10 Sub-Family, Rev.6, 09/2015. Freescale Semiconductor, Inc. 63 Peripheral operating requirements and behaviors S11 S12 I2S_TX_BCLK/ I2S_RX_BCLK (input) S12 S15 S16 I2S_TX_FS/ I2S_RX_FS (output) S13 I2S_TX_FS/ I2S_RX_FS (input) S19 S14 S15 S16 S15 S16 I2S_TXD S17 S18 I2S_RXD Figure 34. I2S/SAI timing — slave modes 6.8.7.2 Normal Run, Wait and Stop mode performance over the full operating voltage range This section provides the operating performance over the full operating voltage for the device in Normal Run, Wait and Stop modes. Table 48. I2S/SAI master mode timing in Normal Run, Wait and Stop modes (full voltage range) Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S1 I2S_MCLK cycle time 40 — ns S2 I2S_MCLK pulse width high/low 45% 55% MCLK period S3 I2S_TX_BCLK/I2S_RX_BCLK cycle time (output) 80 — ns S4 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45% 55% BCLK period S5 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid — 15 ns S6 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid -1.0 — ns S7 I2S_TX_BCLK to I2S_TXD valid — 15 ns S8 I2S_TX_BCLK to I2S_TXD invalid 0 — ns S9 I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK 20.5 — ns S10 I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK 0 — ns K10 Sub-Family, Rev.6, 09/2015. 64 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors S1 S2 S2 I2S_MCLK (output) S3 I2S_TX_BCLK/ I2S_RX_BCLK (output) S4 S4 S6 S5 I2S_TX_FS/ I2S_RX_FS (output) S10 S9 I2S_TX_FS/ I2S_RX_FS (input) S7 S8 S7 S8 I2S_TXD S9 S10 I2S_RXD Figure 35. I2S/SAI timing — master modes Table 49. I2S/SAI slave mode timing in Normal Run, Wait and Stop modes (full voltage range) Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S11 I2S_TX_BCLK/I2S_RX_BCLK cycle time (input) 80 — ns S12 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input) 45% 55% MCLK period S13 I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK 5.8 — ns S14 I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK 2 — ns S15 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid — 24 — 20.6 • Multiple SAI Synchronous mode • All other modes ns S16 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid 0 — ns S17 I2S_RXD setup before I2S_RX_BCLK 5.8 — ns S18 I2S_RXD hold after I2S_RX_BCLK 2 — ns — 25 ns S19 I2S_TX_FS input assertion to I2S_TXD output valid1 1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear K10 Sub-Family, Rev.6, 09/2015. Freescale Semiconductor, Inc. 65 Peripheral operating requirements and behaviors S11 S12 I2S_TX_BCLK/ I2S_RX_BCLK (input) S12 S15 S16 I2S_TX_FS/ I2S_RX_FS (output) S13 I2S_TX_FS/ I2S_RX_FS (input) S19 S14 S15 S16 S15 S16 I2S_TXD S17 S18 I2S_RXD Figure 36. I2S/SAI timing — slave modes 6.8.7.3 VLPR, VLPW, and VLPS mode performance over the full operating voltage range This section provides the operating performance over the full operating voltage for the device in VLPR, VLPW, and VLPS modes. Table 50. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range) Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S1 I2S_MCLK cycle time 62.5 — ns S2 I2S_MCLK pulse width high/low 45% 55% MCLK period S3 I2S_TX_BCLK/I2S_RX_BCLK cycle time (output) 250 — ns S4 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45% 55% BCLK period S5 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid — 45 ns S6 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid 0 — ns S7 I2S_TX_BCLK to I2S_TXD valid — 45 ns S8 I2S_TX_BCLK to I2S_TXD invalid -1.6 — ns S9 I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK 45 — ns S10 I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK 0 — ns K10 Sub-Family, Rev.6, 09/2015. 66 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors S1 S2 S2 I2S_MCLK (output) S3 I2S_TX_BCLK/ I2S_RX_BCLK (output) S4 S4 S6 S5 I2S_TX_FS/ I2S_RX_FS (output) S10 S9 I2S_TX_FS/ I2S_RX_FS (input) S7 S8 S7 S8 I2S_TXD S9 S10 I2S_RXD Figure 37. I2S/SAI timing — master modes Table 51. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range) Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S11 I2S_TX_BCLK/I2S_RX_BCLK cycle time (input) 250 — ns S12 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input) 45% 55% MCLK period S13 I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK 30 — ns S14 I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK 3 — ns S15 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid — 63 ns S16 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid 0 — ns S17 I2S_RXD setup before I2S_RX_BCLK 30 — ns S18 I2S_RXD hold after I2S_RX_BCLK 2 — ns — 72 ns S19 I2S_TX_FS input assertion to I2S_TXD output valid1 1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear K10 Sub-Family, Rev.6, 09/2015. Freescale Semiconductor, Inc. 67 Peripheral operating requirements and behaviors S11 S12 I2S_TX_BCLK/ I2S_RX_BCLK (input) S12 S15 S16 I2S_TX_FS/ I2S_RX_FS (output) S13 I2S_TX_FS/ I2S_RX_FS (input) S19 S14 S15 S16 S15 S16 I2S_TXD S17 S18 I2S_RXD Figure 38. I2S/SAI timing — slave modes 6.9 Human-machine interfaces (HMI) 6.9.1 TSI electrical specifications Table 52. TSI electrical specifications Symbol Description Min. Typ. Max. Unit VDDTSI Operating voltage 1.71 — 3.6 V 1 20 500 pF CELE fREFmax fELEmax CREF VDELTA IREF IELE Target electrode capacitance range Reference oscillator frequency — 8 15 Notes 1 MHz 2, 3 2, 4 5 Electrode oscillator frequency — 1 1.8 MHz Internal reference capacitor — 1 — pF Oscillator delta voltage — 600 — mV 2, — 2 3 μA 2, 6 — 36 50 — 2 3 μA 2, 7 — 36 50 Reference oscillator current source base current • 2 μA setting (REFCHRG = 0) • 32 μA setting (REFCHRG = 15) Electrode oscillator current source base current • 2 μA setting (EXTCHRG = 0) • 32 μA setting (EXTCHRG = 15) Pres5 Electrode capacitance measurement precision — 8.3333 38400 fF/count 8 Pres20 Electrode capacitance measurement precision — 8.3333 38400 fF/count 9 Pres100 Electrode capacitance measurement precision — 8.3333 38400 fF/count 10 0.008 1.46 — fF/count 11 Resolution — — 16 bits Response time @ 20 pF 8 15 25 μs Current added in run mode — 55 — μA Low power mode current adder — 1.3 2.5 μA MaxSens Maximum sensitivity Res TCon20 ITSI_RUN ITSI_LP 12 13 K10 Sub-Family, Rev.6, 09/2015. 68 Freescale Semiconductor, Inc. Dimensions 1. The TSI module is functional with capacitance values outside this range. However, optimal performance is not guaranteed. 2. Fixed external capacitance of 20 pF. 3. REFCHRG = 2, EXTCHRG=0. 4. REFCHRG = 0, EXTCHRG = 10. 5. VDD = 3.0 V. 6. The programmable current source value is generated by multiplying the SCANC[REFCHRG] value and the base current. 7. The programmable current source value is generated by multiplying the SCANC[EXTCHRG] value and the base current. 8. Measured with a 5 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 8; Iext = 16. 9. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 2; Iext = 16. 10. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 16, NSCN = 3; Iext = 16. 11. Sensitivity defines the minimum capacitance change when a single count from the TSI module changes. Sensitivity depends on the configuration used. The documented values are provided as examples calculated for a specific configuration of operating conditions using the following equation: (Cref * Iext)/( Iref * PS * NSCN) The typical value is calculated with the following configuration: Iext = 6 μA (EXTCHRG = 2), PS = 128, NSCN = 2, Iref = 16 μA (REFCHRG = 7), Cref = 1.0 pF The minimum value is calculated with the following configuration: Iext = 2 μA (EXTCHRG = 0), PS = 128, NSCN = 32, Iref = 32 μA (REFCHRG = 15), Cref = 0.5 pF The highest possible sensitivity is the minimum value because it represents the smallest possible capacitance that can be measured by a single count. 12. Time to do one complete measurement of the electrode. Sensitivity resolution of 0.0133 pF, PS = 0, NSCN = 0, 1 electrode, EXTCHRG = 7. 13. REFCHRG=0, EXTCHRG=4, PS=7, NSCN=0F, LPSCNITV=F, LPO is selected (1 kHz), and fixed external capacitance of 20 pF. Data is captured with an average of 7 periods window. 7 Dimensions 7.1 Obtaining package dimensions Package dimensions are provided in package drawings. To find a package drawing, go to freescale.com and perform a keyword search for the drawing’s document number: If you want the drawing for this package Then use this document number 144-pin LQFP 98ASS23177W 144-pin MAPBGA 98ASA00222D 8 Pinout 8.1 Pins with active pull control after reset The following pins are actively pulled up or down after reset: K10 Sub-Family, Rev.6, 09/2015. Freescale Semiconductor, Inc. 69 Pinout Table 53. Pins with active pull control after reset Pin Active pull direction after reset PTA0 pulldown PTA1 pullup PTA3 pullup PTA4 pullup RESET_b pullup 8.2 K10 Signal Multiplexing and Pin Assignments The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin. 144 144 LQFP MAP BGA Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 — L5 RTC_ WAKEUP_B RTC_ WAKEUP_B RTC_ WAKEUP_B — M5 NC NC NC — A10 NC NC NC — B10 NC NC NC — C10 NC NC NC 1 D3 PTE0 ADC1_SE4a ADC1_SE4a PTE0 SPI1_PCS1 UART1_TX SDHC0_D1 I2C1_SDA RTC_ CLKOUT 2 D2 PTE1/ LLWU_P0 ADC1_SE5a ADC1_SE5a PTE1/ LLWU_P0 SPI1_SOUT UART1_RX SDHC0_D0 I2C1_SCL SPI1_SIN 3 D1 PTE2/ LLWU_P1 ADC1_SE6a ADC1_SE6a PTE2/ LLWU_P1 SPI1_SCK UART1_ CTS_b SDHC0_ DCLK 4 E4 PTE3 ADC1_SE7a ADC1_SE7a PTE3 SPI1_SIN UART1_ RTS_b SDHC0_CMD 5 E5 VDD VDD VDD 6 F6 VSS VSS VSS 7 E3 PTE4/ LLWU_P2 DISABLED PTE4/ LLWU_P2 SPI1_PCS0 UART3_TX SDHC0_D3 8 E2 PTE5 DISABLED PTE5 SPI1_PCS2 UART3_RX SDHC0_D2 FTM3_CH0 9 E1 PTE6 DISABLED PTE6 SPI1_PCS3 UART3_ CTS_b I2S0_MCLK FTM3_CH1 10 F4 PTE7 DISABLED PTE7 UART3_ RTS_b I2S0_RXD0 FTM3_CH2 11 F3 PTE8 ADC2_SE16 ADC2_SE16 PTE8 I2S0_RXD1 UART5_TX I2S0_RX_FS FTM3_CH3 12 F2 PTE9 ADC2_SE17 ADC2_SE17 PTE9 I2S0_TXD1 UART5_RX I2S0_RX_ BCLK FTM3_CH4 EzPort SPI1_SOUT K10 Sub-Family, Rev.6, 09/2015. 70 Freescale Semiconductor, Inc. Pinout 144 144 LQFP MAP BGA Pin Name Default 13 F1 PTE10 DISABLED 14 G4 PTE11 ADC3_SE16 15 G3 PTE12 16 E6 17 ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 PTE10 UART5_ CTS_b I2S0_TXD0 FTM3_CH5 ADC3_SE16 PTE11 UART5_ RTS_b I2S0_TX_FS FTM3_CH6 ADC3_SE17 ADC3_SE17 PTE12 I2S0_TX_ BCLK FTM3_CH7 VDD VDD VDD F7 VSS VSS VSS 18 H1 PTE16 ADC0_SE4a ADC0_SE4a PTE16 SPI0_PCS0 UART2_TX FTM_CLKIN0 FTM0_FLT3 19 H2 PTE17 ADC0_SE5a ADC0_SE5a PTE17 SPI0_SCK UART2_RX FTM_CLKIN1 LPTMR0_ ALT3 20 G1 PTE18 ADC0_SE6a ADC0_SE6a PTE18 SPI0_SOUT UART2_ CTS_b I2C0_SDA 21 G2 PTE19 ADC0_SE7a ADC0_SE7a PTE19 SPI0_SIN UART2_ RTS_b I2C0_SCL 22 H3 VSS VSS VSS 23 J1 PGA2_DP/ ADC2_DP0/ ADC3_DP3/ ADC0_DP1 PGA2_DP/ ADC2_DP0/ ADC3_DP3/ ADC0_DP1 PGA2_DP/ ADC2_DP0/ ADC3_DP3/ ADC0_DP1 24 J2 PGA2_DM/ ADC2_DM0/ ADC3_DM3/ ADC0_DM1 PGA2_DM/ ADC2_DM0/ ADC3_DM3/ ADC0_DM1 PGA2_DM/ ADC2_DM0/ ADC3_DM3/ ADC0_DM1 25 K1 PGA3_DP/ ADC3_DP0/ ADC2_DP3/ ADC1_DP1 PGA3_DP/ ADC3_DP0/ ADC2_DP3/ ADC1_DP1 PGA3_DP/ ADC3_DP0/ ADC2_DP3/ ADC1_DP1 26 K2 PGA3_DM/ ADC3_DM0/ ADC2_DM3/ ADC1_DM1 PGA3_DM/ ADC3_DM0/ ADC2_DM3/ ADC1_DM1 PGA3_DM/ ADC3_DM0/ ADC2_DM3/ ADC1_DM1 27 L1 PGA0_DP/ ADC0_DP0/ ADC1_DP3 PGA0_DP/ ADC0_DP0/ ADC1_DP3 PGA0_DP/ ADC0_DP0/ ADC1_DP3 28 L2 PGA0_DM/ ADC0_DM0/ ADC1_DM3 PGA0_DM/ ADC0_DM0/ ADC1_DM3 PGA0_DM/ ADC0_DM0/ ADC1_DM3 29 M1 PGA1_DP/ ADC1_DP0/ ADC0_DP3 PGA1_DP/ ADC1_DP0/ ADC0_DP3 PGA1_DP/ ADC1_DP0/ ADC0_DP3 30 M2 PGA1_DM/ ADC1_DM0/ ADC0_DM3 PGA1_DM/ ADC1_DM0/ ADC0_DM3 PGA1_DM/ ADC1_DM0/ ADC0_DM3 31 H5 VDDA VDDA VDDA 32 G5 VREFH VREFH VREFH 33 G6 VREFL VREFL VREFL 34 H6 VSSA VSSA VSSA ALT7 EzPort CMP3_OUT K10 Sub-Family, Rev.6, 09/2015. Freescale Semiconductor, Inc. 71 Pinout 144 144 LQFP MAP BGA Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort 35 K3 ADC1_SE16/ ADC1_SE16/ ADC1_SE16/ CMP2_IN2/ CMP2_IN2/ CMP2_IN2/ ADC0_SE22 ADC0_SE22 ADC0_SE22 36 J3 ADC0_SE16/ ADC0_SE16/ ADC0_SE16/ CMP1_IN2/ CMP1_IN2/ CMP1_IN2/ ADC0_SE21 ADC0_SE21 ADC0_SE21 37 M3 VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18 VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18 VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18 38 L3 DAC0_OUT/ CMP1_IN3/ ADC0_SE23 DAC0_OUT/ CMP1_IN3/ ADC0_SE23 DAC0_OUT/ CMP1_IN3/ ADC0_SE23 39 L4 DAC1_OUT/ CMP0_IN4/ CMP2_IN3/ ADC1_SE23 DAC1_OUT/ CMP0_IN4/ CMP2_IN3/ ADC1_SE23 DAC1_OUT/ CMP0_IN4/ CMP2_IN3/ ADC1_SE23 40 M7 XTAL32 XTAL32 XTAL32 41 M6 EXTAL32 EXTAL32 EXTAL32 42 L6 VBAT VBAT VBAT 43 — VDD VDD VDD 44 — VSS VSS VSS 45 M4 PTE24 ADC0_SE17/ ADC0_SE17/ PTE24 EXTAL1 EXTAL1 CAN1_TX UART4_TX I2S1_TX_FS EWM_OUT_b I2S1_RXD1 46 K5 PTE25 ADC0_SE18/ ADC0_SE18/ PTE25 XTAL1 XTAL1 CAN1_RX UART4_RX I2S1_TX_ BCLK EWM_IN 47 K4 PTE26 ADC3_SE5b ADC3_SE5b PTE26 UART4_ CTS_b I2S1_TXD0 RTC_ CLKOUT 48 J4 PTE27 ADC3_SE4b ADC3_SE4b PTE27 UART4_ RTS_b I2S1_MCLK 49 H4 PTE28 ADC3_SE7a ADC3_SE7a PTE28 50 J5 PTA0 JTAG_TCLK/ TSI0_CH1 SWD_CLK/ EZP_CLK PTA0 UART0_ CTS_b/ UART0_ COL_b FTM0_CH5 JTAG_TCLK/ EZP_CLK SWD_CLK 51 J6 PTA1 JTAG_TDI/ EZP_DI TSI0_CH2 PTA1 UART0_RX FTM0_CH6 JTAG_TDI EZP_DI 52 K6 PTA2 JTAG_TDO/ TRACE_ SWO/ EZP_DO TSI0_CH3 PTA2 UART0_TX FTM0_CH7 JTAG_TDO/ TRACE_ SWO EZP_DO 53 K7 PTA3 JTAG_TMS/ SWD_DIO TSI0_CH4 PTA3 UART0_ RTS_b FTM0_CH0 JTAG_TMS/ SWD_DIO 54 L7 PTA4/ LLWU_P3 NMI_b/ EZP_CS_b TSI0_CH5 PTA4/ LLWU_P3 FTM0_CH1 NMI_b 55 M8 PTA5 DISABLED PTA5 FTM0_CH2 56 E7 VDD VDD CMP2_OUT I2S0_TX_ BCLK I2S1_TXD1 EZP_CS_b JTAG_TRST_ b VDD K10 Sub-Family, Rev.6, 09/2015. 72 Freescale Semiconductor, Inc. Pinout 144 144 LQFP MAP BGA Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 57 G7 VSS VSS VSS 58 J7 PTA6 ADC3_SE6a ADC3_SE6a PTA6 FTM0_CH3 I2S1_RXD0 59 J8 PTA7 ADC0_SE10 ADC0_SE10 PTA7 FTM0_CH4 I2S1_RX_ BCLK 60 K8 PTA8 ADC0_SE11 ADC0_SE11 PTA8 FTM1_CH0 I2S1_RX_FS 61 L8 PTA9 ADC3_SE5a ADC3_SE5a PTA9 62 M9 PTA10 ADC3_SE4a ADC3_SE4a 63 L9 PTA11 ADC3_SE15 64 K9 PTA12 65 J9 66 ALT5 ALT6 CLKOUT ALT7 TRACE_ CLKOUT TRACE_D3 FTM1_QD_ PHA TRACE_D2 FTM1_CH1 FTM1_QD_ PHB TRACE_D1 PTA10 FTM2_CH0 FTM2_QD_ PHA TRACE_D0 ADC3_SE15 PTA11 FTM2_CH1 FTM2_QD_ PHB CMP2_IN0 CMP2_IN0 PTA12 CAN0_TX FTM1_CH0 I2S0_TXD0 FTM1_QD_ PHA PTA13/ LLWU_P4 CMP2_IN1 CMP2_IN1 PTA13/ LLWU_P4 CAN0_RX FTM1_CH1 I2S0_TX_FS FTM1_QD_ PHB L10 PTA14 CMP3_IN0 CMP3_IN0 PTA14 SPI0_PCS0 UART0_TX I2S0_RX_ BCLK I2S0_TXD1 67 L11 PTA15 CMP3_IN1 CMP3_IN1 PTA15 SPI0_SCK UART0_RX I2S0_RXD0 68 K10 PTA16 CMP3_IN2 CMP3_IN2 PTA16 SPI0_SOUT UART0_ CTS_b/ UART0_ COL_b I2S0_RX_FS 69 K11 PTA17 ADC1_SE17 ADC1_SE17 PTA17 SPI0_SIN UART0_ RTS_b I2S0_MCLK 70 E8 VDD VDD VDD 71 G8 VSS VSS VSS 72 M12 PTA18 EXTAL0 EXTAL0 PTA18 FTM0_FLT2 FTM_CLKIN0 73 M11 PTA19 XTAL0 XTAL0 PTA19 FTM1_FLT0 FTM_CLKIN1 74 L12 RESET_b RESET_b RESET_b 75 K12 PTA24 CMP3_IN4 CMP3_IN4 PTA24 FB_A29 76 J12 PTA25 CMP3_IN5 CMP3_IN5 PTA25 FB_A28 77 J11 PTA26 ADC2_SE15 ADC2_SE15 PTA26 FB_A27 78 J10 PTA27 ADC2_SE14 ADC2_SE14 PTA27 FB_A26 79 H12 PTA28 ADC2_SE13 ADC2_SE13 PTA28 FB_A25 80 H11 PTA29 ADC2_SE12 ADC2_SE12 PTA29 81 H10 PTB0/ LLWU_P5 ADC0_SE8/ ADC1_SE8/ ADC2_SE8/ ADC3_SE8/ TSI0_CH0 ADC0_SE8/ ADC1_SE8/ ADC2_SE8/ ADC3_SE8/ TSI0_CH0 PTB0/ LLWU_P5 I2C0_SCL FTM1_CH0 FTM1_QD_ PHA 82 H9 ADC0_SE9/ ADC1_SE9/ ADC2_SE9/ ADC0_SE9/ ADC1_SE9/ ADC2_SE9/ PTB1 I2C0_SDA FTM1_CH1 FTM1_QD_ PHB PTB1 EzPort I2S0_RXD1 LPTMR0_ ALT1 FB_A24 K10 Sub-Family, Rev.6, 09/2015. Freescale Semiconductor, Inc. 73 Pinout 144 144 LQFP MAP BGA Pin Name Default ALT0 ADC3_SE9/ TSI0_CH6 ADC3_SE9/ TSI0_CH6 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 83 G12 PTB2 ADC0_SE12/ ADC0_SE12/ PTB2 TSI0_CH7 TSI0_CH7 I2C0_SCL UART0_ RTS_b FTM0_FLT3 84 G11 PTB3 ADC0_SE13/ ADC0_SE13/ PTB3 TSI0_CH8 TSI0_CH8 I2C0_SDA UART0_ CTS_b/ UART0_ COL_b FTM0_FLT0 85 G10 PTB4 ADC1_SE10 ADC1_SE10 PTB4 FTM1_FLT0 86 G9 PTB5 ADC1_SE11 ADC1_SE11 PTB5 FTM2_FLT0 87 F12 PTB6 ADC1_SE12 ADC1_SE12 PTB6 FB_AD23 88 F11 PTB7 ADC1_SE13 ADC1_SE13 PTB7 FB_AD22 89 F10 PTB8 DISABLED PTB8 90 F9 PTB9 DISABLED PTB9 91 E12 PTB10 ADC1_SE14 ADC1_SE14 92 E11 PTB11 ADC1_SE15 ADC1_SE15 93 H7 VSS VSS VSS 94 F5 VDD VDD VDD 95 E10 PTB16 TSI0_CH9 96 E9 PTB17 97 UART3_ RTS_b FB_AD21 SPI1_PCS1 UART3_ CTS_b FB_AD20 PTB10 SPI1_PCS0 UART3_RX I2S1_TX_ BCLK FB_AD19 FTM0_FLT1 PTB11 SPI1_SCK UART3_TX I2S1_TX_FS FB_AD18 FTM0_FLT2 TSI0_CH9 PTB16 SPI1_SOUT UART0_RX I2S1_TXD0 FB_AD17 EWM_IN TSI0_CH10 TSI0_CH10 PTB17 SPI1_SIN UART0_TX I2S1_TXD1 FB_AD16 EWM_OUT_b D12 PTB18 TSI0_CH11 TSI0_CH11 PTB18 CAN0_TX FTM2_CH0 I2S0_TX_ BCLK FB_AD15 FTM2_QD_ PHA 98 D11 PTB19 TSI0_CH12 TSI0_CH12 PTB19 CAN0_RX FTM2_CH1 I2S0_TX_FS FB_OE_b FTM2_QD_ PHB 99 D10 PTB20 ADC2_SE4a ADC2_SE4a PTB20 SPI2_PCS0 FB_AD31/ NFC_ DATA15 CMP0_OUT 100 D9 ADC2_SE5a ADC2_SE5a PTB21 SPI2_SCK FB_AD30/ NFC_ DATA14 CMP1_OUT 101 C12 PTB22 DISABLED PTB22 SPI2_SOUT FB_AD29/ NFC_ DATA13 CMP2_OUT 102 C11 PTB23 DISABLED PTB23 SPI2_SIN SPI0_PCS5 FB_AD28/ NFC_ DATA12 CMP3_OUT 103 B12 PTC0 ADC0_SE14/ ADC0_SE14/ PTC0 TSI0_CH13 TSI0_CH13 SPI0_PCS4 PDB0_ EXTRG FB_AD14/ NFC_ DATA11 I2S0_TXD1 104 B11 PTC1/ LLWU_P6 ADC0_SE15/ ADC0_SE15/ PTC1/ TSI0_CH14 TSI0_CH14 LLWU_P6 SPI0_PCS3 UART1_ RTS_b FB_AD13/ NFC_ DATA10 I2S0_TXD0 PTB21 FTM0_CH0 ALT7 EzPort K10 Sub-Family, Rev.6, 09/2015. 74 Freescale Semiconductor, Inc. Pinout 144 144 LQFP MAP BGA Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 105 A12 PTC2 ADC0_SE4b/ ADC0_SE4b/ PTC2 CMP1_IN0/ CMP1_IN0/ TSI0_CH15 TSI0_CH15 SPI0_PCS2 UART1_ CTS_b FTM0_CH1 FB_AD12/ NFC_DATA9 I2S0_TX_FS 106 A11 PTC3/ LLWU_P7 CMP1_IN1 CMP1_IN1 PTC3/ LLWU_P7 SPI0_PCS1 UART1_RX FTM0_CH2 CLKOUT I2S0_TX_ BCLK 107 H8 VSS VSS VSS 108 — VDD VDD VDD 109 A9 PTC4/ LLWU_P8 DISABLED PTC4/ LLWU_P8 SPI0_PCS0 UART1_TX FTM0_CH3 FB_AD11/ NFC_DATA8 CMP1_OUT I2S1_TX_ BCLK 110 D8 PTC5/ LLWU_P9 DISABLED PTC5/ LLWU_P9 SPI0_SCK LPTMR0_ ALT2 I2S0_RXD0 FB_AD10/ NFC_DATA7 CMP0_OUT I2S1_TX_FS 111 C8 PTC6/ LLWU_P10 CMP0_IN0 CMP0_IN0 PTC6/ LLWU_P10 SPI0_SOUT PDB0_ EXTRG I2S0_RX_ BCLK FB_AD9/ NFC_DATA6 I2S0_MCLK 112 B8 PTC7 CMP0_IN1 CMP0_IN1 PTC7 SPI0_SIN I2S0_RX_FS FB_AD8/ NFC_DATA5 113 A8 PTC8 ADC1_SE4b/ ADC1_SE4b/ PTC8 CMP0_IN2 CMP0_IN2 FTM3_CH4 I2S0_MCLK FB_AD7/ NFC_DATA4 114 D7 PTC9 ADC1_SE5b/ ADC1_SE5b/ PTC9 CMP0_IN3 CMP0_IN3 FTM3_CH5 I2S0_RX_ BCLK FB_AD6/ NFC_DATA3 FTM2_FLT0 115 C7 PTC10 ADC1_SE6b ADC1_SE6b PTC10 I2C1_SCL FTM3_CH6 I2S0_RX_FS FB_AD5/ NFC_DATA2 I2S1_MCLK 116 B7 PTC11/ LLWU_P11 ADC1_SE7b ADC1_SE7b PTC11/ LLWU_P11 I2C1_SDA FTM3_CH7 I2S0_RXD1 FB_RW_b/ NFC_WE 117 A7 PTC12 DISABLED PTC12 UART4_ RTS_b FB_AD27 118 D6 PTC13 DISABLED PTC13 UART4_ CTS_b FB_AD26 119 C6 PTC14 DISABLED PTC14 UART4_RX FB_AD25 120 B6 PTC15 DISABLED PTC15 UART4_TX FB_AD24 121 — VSS VSS VSS 122 — VDD VDD VDD 123 A6 PTC16 DISABLED PTC16 CAN1_RX UART3_RX FB_CS5_b/ FB_TSIZ1/ FB_BE23_ 16_b NFC_RB 124 D5 PTC17 DISABLED PTC17 CAN1_TX UART3_TX FB_CS4_b/ FB_TSIZ0/ FB_BE31_ 24_b NFC_CE0_b 125 C5 PTC18 DISABLED PTC18 UART3_ RTS_b FB_TBST_b/ NFC_CE1_b FB_CS2_b/ FB_BE15_8_ b 126 B5 PTC19 DISABLED PTC19 UART3_ CTS_b FB_CS3_b/ FB_TA_b FB_BE7_0_b 127 A5 PTD0/ LLWU_P12 DISABLED PTD0/ LLWU_P12 SPI0_PCS0 UART2_ RTS_b FTM3_CH0 FB_ALE/ FB_CS1_b/ FB_TS_b EzPort FTM3_FLT0 I2S1_RXD1 K10 Sub-Family, Rev.6, 09/2015. Freescale Semiconductor, Inc. 75 Pinout 144 144 LQFP MAP BGA Pin Name Default ALT0 ADC0_SE5b 128 D4 PTD1 ADC0_SE5b 129 C4 PTD2/ LLWU_P13 130 B4 131 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 PTD1 SPI0_SCK UART2_ CTS_b FTM3_CH1 FB_CS0_b I2S1_RXD0 DISABLED PTD2/ LLWU_P13 SPI0_SOUT UART2_RX FTM3_CH2 FB_AD4 I2S1_RX_FS PTD3 DISABLED PTD3 SPI0_SIN UART2_TX FTM3_CH3 FB_AD3 I2S1_RX_ BCLK A4 PTD4/ LLWU_P14 DISABLED PTD4/ LLWU_P14 SPI0_PCS1 UART0_ RTS_b FTM0_CH4 FB_AD2/ NFC_DATA1 EWM_IN 132 A3 PTD5 ADC0_SE6b ADC0_SE6b PTD5 SPI0_PCS2 UART0_ CTS_b/ UART0_ COL_b FTM0_CH5 FB_AD1/ NFC_DATA0 EWM_OUT_b 133 A2 PTD6/ LLWU_P15 ADC0_SE7b ADC0_SE7b PTD6/ LLWU_P15 SPI0_PCS3 UART0_RX FTM0_CH6 FB_AD0 FTM0_FLT0 134 M10 VSS VSS VSS 135 F8 VDD VDD VDD 136 A1 PTD7 DISABLED PTD7 CMT_IRO UART0_TX FTM0_CH7 137 C9 PTD8 DISABLED PTD8 I2C0_SCL UART5_RX FB_A16/ NFC_CLE 138 B9 PTD9 DISABLED PTD9 I2C0_SDA UART5_TX FB_A17/ NFC_ALE 139 B3 PTD10 DISABLED PTD10 UART5_ RTS_b FB_A18/ NFC_RE 140 B2 PTD11 DISABLED PTD11 SPI2_PCS0 UART5_ CTS_b SDHC0_ CLKIN FB_A19 141 B1 PTD12 DISABLED PTD12 SPI2_SCK FTM3_FLT0 SDHC0_D4 FB_A20 142 C3 PTD13 DISABLED PTD13 SPI2_SOUT SDHC0_D5 FB_A21 143 C2 PTD14 DISABLED PTD14 SPI2_SIN SDHC0_D6 FB_A22 144 C1 PTD15 DISABLED PTD15 SPI2_PCS1 SDHC0_D7 FB_A23 ALT7 EzPort FTM0_FLT1 8.3 K10 pinouts The figure below shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section. K10 Sub-Family, Rev.6, 09/2015. 76 Freescale Semiconductor, Inc. PTC7 PTC6/LLWU_P10 PTC5/LLWU_P9 PTC4/LLWU_P8 111 110 109 PTC13 PTC8 PTC14 118 112 PTC15 119 PTC9 VSS 120 113 VDD 121 PTC10 PTC16 122 115 PTC17 123 114 PTC18 124 PTC12 PTC19 125 PTC11/LLWU_P11 PTD0/LLWU_P12 126 116 PTD1 127 117 PTD2/LLWU_P13 VSS 134 128 VDD 135 PTD3 PTD7 136 129 PTD8 137 PTD4/LLWU_P14 PTD9 138 131 PTD10 139 130 PTD11 140 PTD6/LLWU_P15 PTD12 141 PTD5 PTD13 142 132 PTD14 143 133 PTD15 144 Pinout PTE0 1 108 VDD PTE1/LLWU_P0 2 107 VSS PTE2/LLWU_P1 3 106 PTC3/LLWU_P7 PTE3 4 105 PTC2 VDD 5 104 PTC1/LLWU_P6 VSS 6 103 PTC0 PTE4/LLWU_P2 7 102 PTB23 PTE5 8 101 PTB22 PTE6 9 100 PTB21 PTE7 10 99 PTB20 PTE8 11 98 PTB19 PTE9 12 97 PTB18 PTE10 13 96 PTB17 PTE11 14 95 PTB16 PTE12 15 94 VDD VDD 16 93 VSS VSS 17 92 PTB11 PTE16 18 91 PTB10 PTE17 19 90 PTB9 PTE18 20 89 PTB8 PTE19 21 88 PTB7 VSS 22 87 PTB6 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 VDD VSS PTA6 PTA7 PTA8 PTA9 PTA10 PTA11 PTA12 PTA13/LLWU_P4 PTA14 PTA15 PTA16 PTA17 VDD VSS PTA18 PTA19 55 RESET_b 73 PTA5 74 36 54 35 PTA4/LLWU_P3 ADC1_SE16/CMP2_IN2/ADC0_SE22 ADC0_SE16/CMP1_IN2/ADC0_SE21 53 PTA24 PTA3 75 52 34 PTA2 PTA25 VSSA 51 PTA26 76 50 77 33 PTA1 32 VREFL PTA0 VREFH 49 PTA27 PTE28 78 48 31 PTE27 PTA28 VDDA 47 79 PTE26 30 46 PTA29 PGA1_DM/ADC1_DM0/ADC0_DM3 PTE25 80 45 29 PTE24 PTB0/LLWU_P5 PGA1_DP/ADC1_DP0/ADC0_DP3 44 81 VSS 28 43 PTB1 PGA0_DM/ADC0_DM0/ADC1_DM3 VDD 82 42 27 VBAT PTB2 PGA0_DP/ADC0_DP0/ADC1_DP3 41 83 EXTAL32 26 40 PTB3 PGA3_DM/ADC3_DM0/ADC2_DM3/ADC1_DM1 XTAL32 84 39 25 DAC1_OUT/CMP0_IN4/CMP2_IN3/ADC1_SE23 PTB4 PGA3_DP/ADC3_DP0/ADC2_DP3/ADC1_DP1 38 PTB5 85 37 86 24 DAC0_OUT/CMP1_IN3/ADC0_SE23 23 VREF_OUT/CMP1_IN5/CMP0_IN5/ADC1_SE18 PGA2_DP/ADC2_DP0/ADC3_DP3/ADC0_DP1 PGA2_DM/ADC2_DM0/ADC3_DM3/ADC0_DM1 Figure 39. K10 144 LQFP Pinout Diagram K10 Sub-Family, Rev.6, 09/2015. Freescale Semiconductor, Inc. 77 Revision History 1 2 3 4 5 6 7 8 9 10 11 12 A PTD7 PTD6/ LLWU_P15 PTD5 PTD4/ LLWU_P14 PTD0/ LLWU_P12 PTC16 PTC12 PTC8 PTC4/ LLWU_P8 NC PTC3/ LLWU_P7 PTC2 A B PTD12 PTD11 PTD10 PTD3 PTC19 PTC15 PTC11/ LLWU_P11 PTC7 PTD9 NC PTC1/ LLWU_P6 PTC0 B C PTD15 PTD14 PTD13 PTD2/ LLWU_P13 PTC18 PTC14 PTC10 PTC6/ LLWU_P10 PTD8 NC PTB23 PTB22 C D PTE2/ LLWU_P1 PTE1/ LLWU_P0 PTE0 PTD1 PTC17 PTC13 PTC9 PTC5/ LLWU_P9 PTB21 PTB20 PTB19 PTB18 D E PTE6 PTE5 PTE4/ LLWU_P2 PTE3 VDD VDD VDD VDD PTB17 PTB16 PTB11 PTB10 E F PTE10 PTE9 PTE8 PTE7 VDD VSS VSS VDD PTB9 PTB8 PTB7 PTB6 F G PTE18 PTE19 PTE12 PTE11 VREFH VREFL VSS VSS PTB5 PTB4 PTB3 PTB2 G H PTE16 PTE17 VSS PTE28 VDDA VSSA VSS VSS PTB1 PTB0/ LLWU_P5 PTA29 PTA28 H J PGA2_DP/ ADC2_DP0/ ADC3_DP3/ ADC0_DP1 PGA2_DM/ ADC0_SE16/ ADC2_DM0/ CMP1_IN2/ ADC3_DM3/ ADC0_SE21 ADC0_DM1 PTE27 PTA0 PTA1 PTA6 PTA7 PTA13/ LLWU_P4 PTA27 PTA26 PTA25 J K PGA3_DP/ ADC3_DP0/ ADC2_DP3/ ADC1_DP1 PGA3_DM/ ADC1_SE16/ ADC3_DM0/ CMP2_IN2/ ADC2_DM3/ ADC0_SE22 ADC1_DM1 PTE26 PTE25 PTA2 PTA3 PTA8 PTA12 PTA16 PTA17 PTA24 K L PGA0_DP/ ADC0_DP0/ ADC1_DP3 PGA0_DM/ ADC0_DM0/ ADC1_DM3 DAC0_OUT/ CMP1_IN3/ ADC0_SE23 DAC1_OUT/ CMP0_IN4/ CMP2_IN3/ ADC1_SE23 RTC_ WAKEUP_B VBAT PTA4/ LLWU_P3 PTA9 PTA11 PTA14 PTA15 RESET_b L PGA1_DP/ M ADC1_DP0/ ADC0_DP3 PGA1_DM/ ADC1_DM0/ ADC0_DM3 VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18 PTE24 NC EXTAL32 XTAL32 PTA5 PTA10 VSS PTA19 PTA18 M 2 3 4 5 6 7 8 9 10 11 12 1 Figure 40. K10 144 MAPBGA Pinout Diagram 9 Revision History The following table provides a revision history for this document. Table 54. Revision History Rev. No. Date 3 3/2012 Substantial Changes Initial public release Table continues on the next page... K10 Sub-Family, Rev.6, 09/2015. 78 Freescale Semiconductor, Inc. Revision History Table 54. Revision History (continued) Rev. No. Date Substantial Changes 4 10/2012 Replaced TBDs throughout. 5 10/2013 Changes for 4N96B mask set: • Min VDD operating requirement specification updated to support operation down to 1.71V. New specifications: • Updated Vdd_ddr min specification. • Added Vodpu specification. • Removed Ioz, Ioz_ddr, and Ioz_tamper Hi-Z leakage specfications. They have been replaced by new Iina, Iind, and Zind specifications. • Fpll_ref_acc specification has been added. • I2C module was previously covered by the general switching specifications. To provide more detail on I2C operation a dedicated Inter-Integrated Circuit Interface (I2C) timing section has been added. Modified specifications: • • • • Vref_ddr max spec has been updated. Tpor spec has been split into two specifications based on VDD slew rate. Trd1allx and Trd1alln max have been updated. 16-bit ADC Temp sensor slope and Temp sensor voltage (Vtemp25) have been modified. The typical values that were listed previously have been updated, and min and max specifications have been added. Corrections: • Some versions of the datasheets listed incorrect clock mode information in the "Diagram: Typical IDD_RUN operating behavior section." These errors have been corrected. • Fintf_ft specification was previously shown as a max value. It has been corrected to be shown as a typical value as originally intended. • Corrected DDR write and read timing diagrams to show the correct location of the Tcmv specification. • SDHC peripheral 50MHz high speed mode options were left out of the last datasheet. These have been added to the SDHC specifications section. 6 09/2015 • Updated the footnotes of Thermal Attributes table • Removed Power Sequencing section • Added footnote to ambient temperature specification of Thermal Operating requirements • Updated Terminology and guidelines section • Updated the footnotes and the values of Power consumption operating behaviors table • Updated I2C timing table K10 Sub-Family, Rev.6, 09/2015. Freescale Semiconductor, Inc. 79 How to Reach Us: Home Page: freescale.com Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions. Freescale, the Freescale logo, the Energy Efficient Solutions logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. © 2012–2015 Freescale Semiconductor, Inc. Document Number K10P144M120SF3 Revision 6, 09/2015