S9S08RN60 Series Data Sheet - Data Sheet

Freescale Semiconductor
Data Sheet: Technical Data
Document Number: S9S08RN60
Rev. 1, 01/2014
S9S08RN60
S9S08RN60 Series Data
Sheet
Supports: S9S08RN60, S9S08RN48
and S9S08RN32
Features
• 8-Bit S08 central processor unit (CPU)
– Up to 20 MHz bus at 2.7 V to 5.5 V across
temperature range of -40 °C to 125 °C
– Supporting up to 40 interrupt/reset sources
– Supporting up to four-level nested interrupt
– On-chip memory
– Up to 60 KB flash read/program/erase over full
operating voltage and temperature
– Up to 256 byte EEPROM with ECC; 2-byte erase
sector; EEPROM program and erase while executing
code from flash
– Up to 4096 byte random-access memory (RAM)
– Flash and RAM access protection
• Power-saving modes
– One low-power stop mode; reduced power wait
mode
– Peripheral clock enable register can disable clocks to
unused modules, reducing currents; allows clocks to
remain enabled to specific peripherals in stop3 mode
• Clocks
– Oscillator (XOSC) - loop-controlled Pierce
oscillator; crystal or ceramic resonator
– Internal clock source (ICS) - containing a frequencylocked-loop (FLL) controlled by internal or external
reference; precision trimming of internal reference
allowing 1% deviation across temperature range of 0
°C to 70 °C and -40 °C to 85 °C, 1.5% deviation
across temperature range of -40 °C to 105 °C, and
2% deviation across temperature range of -40 °C to
125 °C; up to 20 MHz
• System protection
– Watchdog with independent clock source
– Low-voltage detection with reset or interrupt;
selectable trip points
– Illegal opcode detection with reset
– Illegal address detection with reset
• Development support
– Single-wire background debug interface
– Breakpoint capability to allow three breakpoints
setting during in-circuit debugging
– On-chip in-circuit emulator (ICE) debug module
containing two comparators and nine trigger modes
• Peripherals
– ACMP - one analog comparator with both positive
and negative inputs; separately selectable interrupt
on rising and falling comparator output; filtering
– ADC - 16-channel, 12-bit resolution; 2.5 µs
conversion time; data buffers with optional
watermark; automatic compare function; internal
bandgap reference channel; operation in stop mode;
optional hardware trigger
– CRC - programmable cyclic redundancy check
module
– FTM - three flex timer modulators modules
including one 6-channel and two 2-channel ones;
16-bit counter; each channel can be configured for
input capture, output compare, edge- or centeraligned PWM mode
– IIC - One inter-integrated circuit module; up to 400
kbps; multi-master operation; programmable slave
address; supporting broadcast mode and 10-bit
addressing
– MTIM - Two modulo timers with 8-bit prescaler and
overflow interrupt
– RTC - 16-bit real timer counter (RTC)
– SCI - three serial communication interface (SCI/
UART) modules optional 13-bit break; full duplex
non-return to zero (NRZ); LIN extension support
– SPI - one 8-bit and one 16-bit serial peripheral
interface (SPI) modules; full-duplex or single-wire
bidirectional; master or slave mode
– TSI - supporting up to 16 external electrodes;
configurable software or hardware scan trigger; fully
support freescale touch sensing software library;
capability to wake MCU from stop3 mode
Freescale reserves the right to change the detail specifications as may be
required to permit improvements in the design of its products.
© 2014 Freescale Semiconductor, Inc.
• Input/Output
– Up to 55 GPIOs including one output-only pin
– Two 8-bit keyboard interrupt modules (KBI)
– Two true open-drain output pins
– Eight, ultra-high current sink pins supporting 20 mA source/sink current
• Package options
– 64-pin LQFP
– 48-pin LQFP
– 32-pin LQFP
S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.
2
Freescale Semiconductor, Inc.
Table of Contents
1 Ordering parts...........................................................................4
5.2.2
Debug trace timing specifications.........................17
1.1 Determining valid orderable parts......................................4
5.2.3
FTM module timing...............................................17
2 Part identification......................................................................4
2.1 Description.........................................................................4
5.3 Thermal specifications.......................................................18
5.3.1
Thermal characteristics.........................................18
2.2 Format...............................................................................4
6 Peripheral operating requirements and behaviors....................19
2.3 Fields.................................................................................4
6.1 External oscillator (XOSC) and ICS characteristics...........20
2.4 Example............................................................................5
6.2 NVM specifications............................................................21
3 Parameter Classification...........................................................5
6.3 Analog...............................................................................23
4 Ratings......................................................................................5
6.3.1
ADC characteristics...............................................23
4.1 Thermal handling ratings...................................................5
6.3.2
Analog comparator (ACMP) electricals.................25
4.2 Moisture handling ratings..................................................6
4.3 ESD handling ratings.........................................................6
4.4 Voltage and current operating ratings...............................6
5 General.....................................................................................7
5.1 Nonswitching electrical specifications...............................7
6.4 Communication interfaces.................................................26
6.4.1
SPI switching specifications..................................26
6.5 Human-machine interfaces (HMI)......................................29
6.5.1
TSI electrical specifications...................................29
7 Dimensions...............................................................................29
5.1.1
DC characteristics.................................................7
5.1.2
Supply current characteristics...............................14
8 Pinout........................................................................................30
5.1.3
EMC performance.................................................15
8.1 Signal multiplexing and pin assignments...........................30
5.2 Switching specifications.....................................................16
8.2 Device pin assignment......................................................33
5.2.1
Control timing........................................................16
7.1 Obtaining package dimensions.........................................29
9 Revision history.........................................................................35
S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.
Freescale Semiconductor, Inc.
3
Ordering parts
1 Ordering parts
1.1 Determining valid orderable parts
Valid orderable part numbers are provided on the web. To determine the orderable part
numbers for this device, go to www.freescale.com and perform a part number search for
the following device numbers: RN60, RN48 and RN32.
2 Part identification
2.1 Description
Part numbers for the chip have fields that identify the specific part. You can use the
values of these fields to determine the specific part you have received.
2.2 Format
Part numbers for this device have the following format:
S 9 S08 RN AA F1 B CC
2.3 Fields
This table lists the possible values for each field in the part number (not all combinations
are valid):
Field
Description
Values
S
Qualification status
• S = fully qualified, general market flow
9
Memory
• 9 = flash based
S08
Core
• S08 = 8-bit CPU
RN
Device family
• RN
AA
Approximate flash size in KB
• 60 = 60 KB
• 48 = 48 KB
• 32 = 32 KB
F1
Fab and mask set identifier
• W1
B
Temperature range (°C)
• M = –40 to 125
Table continues on the next page...
S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.
4
Freescale Semiconductor, Inc.
Parameter Classification
Field
CC
Description
Package designator
Values
• LH = 64-pin LQFP
• LF = 48-pin LQFP
• LC = 32-pin LQFP
2.4 Example
This is an example part number:
S9S08RN60W1MLH
3 Parameter Classification
The electrical parameters shown in this supplement are guaranteed by various methods.
To give the customer a better understanding, the following classification is used and the
parameters are tagged accordingly in the tables where appropriate:
Table 1. Parameter Classifications
P
Those parameters are guaranteed during production testing on each individual device.
C
Those parameters are achieved by the design characterization by measuring a statistically relevant sample size
across process variations.
T
Those parameters are achieved by design characterization on a small sample size from typical devices under
typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D
Those parameters are derived mainly from simulations.
NOTE
The classification is shown in the column labeled “C” in the
parameter tables where appropriate.
4 Ratings
4.1 Thermal handling ratings
Symbol
Description
Min.
Max.
Unit
Notes
TSTG
Storage temperature
–55
150
°C
1
TSDR
Solder temperature, lead-free
—
260
°C
2
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.
Freescale Semiconductor, Inc.
5
Ratings
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
4.2 Moisture handling ratings
Symbol
MSL
Description
Moisture sensitivity level
Min.
Max.
Unit
Notes
—
3
—
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
4.3 ESD handling ratings
Symbol
Description
Min.
Max.
Unit
Notes
VHBM
Electrostatic discharge voltage, human body model
-6000
+6000
V
1
VCDM
Electrostatic discharge voltage, charged-device model
-500
+500
V
2
Latch-up current at ambient temperature of 125°C
-100
+100
mA
ILAT
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body
Model (HBM).
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
4.4 Voltage and current operating ratings
Absolute maximum ratings are stress ratings only, and functional operation at the
maxima is not guaranteed. Stress beyond the limits specified in below table may affect
device reliability or cause permanent damage to the device. For functional operating
conditions, refer to the remaining tables in this document.
This device contains circuitry protecting against damage due to high static voltage or
electrical fields; however, it is advised that normal precautions be taken to avoid
application of any voltages higher than maximum-rated voltages to this high-impedance
circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate
logic voltage level (for instance, either VSS or VDD) or the programmable pullup resistor
associated with the pin is enabled.
Symbol
Description
Min.
Max.
Unit
VDD
Supply voltage
–0.3
5.8
V
IDD
Maximum current into VDD
—
120
mA
Table continues on the next page...
S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.
6
Freescale Semiconductor, Inc.
General
Symbol
VDIO
VAIO
ID
VDDA
Description
Min.
Max.
Unit
Digital input voltage (except RESET, EXTAL, XTAL, or true
open drain pin PTA2 and PTA3)
–0.3
VDD + 0.3
V
Digital input voltage (true open drain pin PTA2 and PTA3)
-0.3
6
V
Analog1,
–0.3
VDD + 0.3
V
–25
25
mA
VDD – 0.3
VDD + 0.3
V
RESET, EXTAL, and XTAL input voltage
Instantaneous maximum current single pin limit (applies to all
port pins)
Analog supply voltage
1. All digital I/O pins, except open-drain pin PTA2 and PTA3, are internally clamped to VSS and VDD. PTA2 and PTA3 is only
clamped to VSS.
5 General
5.1 Nonswitching electrical specifications
5.1.1 DC characteristics
This section includes information about power supply requirements and I/O pin
characteristics.
Table 2. DC characteristics
Symbol
C
—
—
VOH
C
Min
Typical1
Max
Unit
—
2.7
—
5.5
V
5 V, Iload =
-5 mA
VDD - 0.8
—
—
V
3 V, Iload =
-2.5 mA
VDD - 0.8
—
—
V
High current drive
pins, high-drive
strength2, 2
5 V, Iload =
-20 mA
VDD - 0.8
—
—
V
3 V, Iload =
-10 mA
VDD - 0.8
—
—
V
Max total IOH for all
ports
5V
—
—
-100
mA
3V
—
—
-50
—
—
0.8
V
3 V, Iload =
2.5 mA
—
—
0.8
V
5 V, Iload
=20 mA
—
—
0.8
V
3 V, Iload =
10 mA
—
—
0.8
V
Descriptions
Operating voltage
Output high
voltage
All I/O pins, standarddrive strength
C
C
C
IOHT
VOL
D
C
Output high
current
Output low
voltage
All I/O pins, standard- 5 V, Iload = 5
drive strength
mA
C
C
High current drive
pins, high-drive
strength2
C
Table continues on the next page...
S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.
Freescale Semiconductor, Inc.
7
Nonswitching electrical specifications
Table 2. DC characteristics (continued)
Symbol
C
IOLT
D
VIH
P
C
VIL
P
C
Descriptions
Min
Typical1
Max
Unit
mA
Output low
current
Max total IOL for all
ports
5V
—
—
100
3V
—
—
50
Input high
voltage
All digital inputs
VDD>4.5V
0.70 × VDD
—
—
VDD>2.7V
0.75 × VDD
—
—
Input low
voltage
All digital inputs
VDD>4.5V
—
—
0.30 × VDD
VDD>2.7V
—
—
0.35 × VDD
V
V
Vhys
C
Input
hysteresis
All digital inputs
—
0.06 × VDD
—
—
mV
|IIn|
P
Input leakage
current
All input only pins
(per pin)
VIN = VDD or
VSS
—
0.1
1
µA
|IOZ|
P
Hi-Z (offstate) leakage
current
All input/output (per
pin)
VIN = VDD or
VSS
—
0.1
1
µA
|IOZTOT|
C
Total leakage All input only and I/O VIN = VDD or
combined for
VSS
all inputs and
Hi-Z pins
—
—
2
µA
RPU
P
Pullup
resistors
All digital inputs,
when enabled (all I/O
pins other than PTA2
and PTA3)
—
30.0
—
50.0
kΩ
RPU3
P
Pullup
resistors
PTA2 and PTA3 pin
—
30.0
—
60.0
kΩ
IIC
D
DC injection
current4, 5, 6
Single pin limit
VIN < VSS,
VIN > VDD
-0.2
—
2
mA
-5
—
25
Total MCU limit,
includes sum of all
stressed pins
CIn
C
Input capacitance, all pins
—
—
—
7
pF
VRAM
C
RAM retention voltage
—
2.0
—
—
V
1. Typical values are measured at 25 °C. Characterized, not tested.
2. Only PTB4, PTB5 support ultra high current output.
3. The specified resistor value is the actual value internal to the device. The pullup value may appear higher when measured
externally on the pin.
4. All functional non-supply pins, except for PTA2 and PTA3, are internally clamped to VSS and VDD.
5. Input must be current-limited to the value specified. To determine the value of the required current-limiting resistor,
calculate resistance values for positive and negative clamp voltages, then use the large one.
6. Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current
conditions. If the positive injection current (VIn > VDD) is higher than IDD, the injection current may flow out of VDD and could
result in external power supply going out of regulation. Ensure that external VDD load will shunt current higher than
maximum injection current when the MCU is not consuming power, such as no system clock is present, or clock rate is
very low (which would reduce overall power consumption).
Table 3. LVD and POR Specification
Symbol
VPOR
C
D
Description
POR re-arm
voltage1, 2
Min
Typ
Max
Unit
1.5
1.75
2.0
V
Table continues on the next page...
S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.
8
Freescale Semiconductor, Inc.
Nonswitching electrical specifications
Table 3. LVD and POR Specification (continued)
1.
2.
3.
4.
Symbol
C
Description
Min
Typ
Max
Unit
VLVDH
C
Falling low-voltage detect
threshold - high range (LVDV
= 1)3
4.2
4.3
4.4
V
VLVW1H
C
Level 1 falling
(LVWV = 00)
4.3
4.4
4.5
V
VLVW2H
C
Level 2 falling
(LVWV = 01)
4.5
4.5
4.6
V
VLVW3H
C
Level 3 falling
(LVWV = 10)
4.6
4.6
4.7
V
VLVW4H
C
Level 4 falling
(LVWV = 11)
4.7
4.7
4.8
V
VHYSH
C
High range low-voltage
detect/warning hysteresis
—
100
—
mV
VLVDL
C
Falling low-voltage detect
threshold - low range (LVDV =
0)
2.56
2.61
2.66
V
VLVDW1L
C
Level 1 falling
(LVWV = 00)
2.62
2.7
2.78
V
VLVDW2L
C
Level 2 falling
(LVWV = 01)
2.72
2.8
2.88
V
VLVDW3L
C
Level 3 falling
(LVWV = 10)
2.82
2.9
2.98
V
VLVDW4L
C
Level 4 falling
(LVWV = 11)
2.92
3.0
3.08
V
VHYSDL
C
Low range low-voltage detect
hysteresis
—
40
—
mV
VHYSWL
C
Low range low-voltage
warning hysteresis
—
80
—
mV
VBG
P
Buffered bandgap output 4
1.14
1.16
1.18
V
Falling lowvoltage
warning
threshold high range
Falling lowvoltage
warning
threshold low range
Maximum is highest voltage that POR is guaranteed.
POR ramp time must be longer than 20us/V to get a stable startup.
Rising thresholds are falling threshold + hysteresis.
Voltage factory trimmed at VDD = 5.0 V, Temp = 125 °C
S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.
Freescale Semiconductor, Inc.
9
Nonswitching electrical specifications
Typical I OH Vs. V DD -V OH (low drive strength) (V DD = 5 V)
0.6
V DD -V OH (V)
0.5
0.4
125°C
0.3
25°C
0.2
-40°
0.1
0
0
1
2
3
4
5
6
7
I OH (mA)
Figure 1. Typical IOH Vs. VDD-VOH (standard drive strength) (VDD = 5 V)
Typical I OH Vs. V DD -V OH (low drive strength) (V DD = 3 V)
0.9
0.8
V DD -V OH (V)
0.7
0.6
0.5
125°C
0.4
25°C
0.3
-40°C
0.2
0.1
0
0
1
2
3
4
5
6
7
I OH (mA)
Figure 2. Typical IOH Vs. VDD-VOH (standard drive strength) (VDD = 3 V)
S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.
10
Freescale Semiconductor, Inc.
Nonswitching electrical specifications
Typical I OH Vs. V DD -V OH (high drive strength) (V DD = 5 V)
0.7
V DD -V OH (V)
0.6
0.5
0.4
125°C
0.3
25°C
0.2
-40°C
0.1
0
0
5
10
15
20
25
30
I OH (mA)
Figure 3. Typical IOH Vs. VDD-VOH (high drive strength) (VDD = 5 V)
Typical I OH Vs. V DD -V OH (high drive strength) (V DD = 3 V)
1.2
V DD -V OH (V)
1
0.8
125°C
0.6
25°C
0.4
-40°C
0.2
0
0
5
10
15
20
25
30
I OH (mA)
Figure 4. Typical IOH Vs. VDD-VOH (high drive strength) (VDD = 3 V)
S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.
Freescale Semiconductor, Inc.
11
Nonswitching electrical specifications
Typical I OL Vs. V OL (low drive strength) (VDD = 5 V)
0.6
0.5
VOL (V)
0.4
125°C
0.3
25°C
0.2
-40°
0.1
0
0
1
2
3
4
5
6
7
I OL (mA)
Figure 5. Typical IOL Vs. VOL (standard drive strength) (VDD = 5 V)
Typical I OL Vs. V OL (low drive strength) (VDD = 3 V)
0.9
0.8
0.7
VOL (V)
0.6
0.5
125°C
0.4
25°C
0.3
-40°C
0.2
0.1
0
0
1
2
3
4
5
6
7
I OL (mA)
Figure 6. Typical IOL Vs. VOL (standard drive strength) (VDD = 3 V)
0.3
12
0.3
S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.
125°C
Freescale Semiconductor,
Inc.
125°C
Nonswitching electrical specifications
Typical I OL Vs. V OL (high drive strength) (VDD = 5 V)
0.6
0.5
VOL (V)
0.4
125°C
0.3
25°C
0.2
-40°C
0.1
0
0
5
10
15
20
25
30
I OL (mA)
Figure 7. Typical IOL Vs. VOL (high drive strength) (VDD = 5 V)
V OL (V)
Typical I OL Vs. V OL (high drive strength) (VDD = 3 V)
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
125°C
25°C
-40°
0
5
10
15
20
25
30
I OL (mA)
Figure 8. Typical IOL Vs. VOL (high drive strength) (VDD = 3 V)
S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.
Freescale Semiconductor, Inc.
13
Nonswitching electrical specifications
5.1.2 Supply current characteristics
This section includes information about power supply current in various operating modes.
Table 4. Supply current characteristics
Num
C
Parameter
Symbol
Bus Freq
VDD (V)
Typical1
Max
Unit
Temp
1
C
Run supply current FEI
mode, all modules on; run
from flash
RIDD
20 MHz
5
12.6
—
mA
-40 to 125 °C
10 MHz
7.2
—
1 MHz
2.4
—
9.6
—
mA
-40 to 125 °C
mA
-40 to 125 °C
mA
-40 to 125 °C
mA
-40 to 125 °C
µA
-40 to 125 °C
C
2
C
20 MHz
C
10 MHz
6.1
—
1 MHz
2.1
—
10.5
—
10 MHz
6.2
—
1 MHz
2.3
—
7.4
—
C
C
3
5
C
10 MHz
5.0
—
1 MHz
2.0
—
P
Run supply current FBE
mode, all modules on; run
from RAM
RIDD
20 MHz
3
12.1
14.8
10 MHz
5
6.5
—
1 MHz
1.8
—
9.1
11.8
P
20 MHz
C
10 MHz
5.5
—
1 MHz
1.5
—
9.8
12.3
5.4
—
P
Run supply current FBE
mode, all modules off &
gated; run from RAM
RIDD
20 MHz
1.6
—
6.9
9.2
10 MHz
4.4
—
1 MHz
1.4
—
7.8
—
10 MHz
4.5
—
1 MHz
1.3
—
5.1
—
10 MHz
3.5
—
1 MHz
1.2
—
C
Wait mode current FEI
mode, all modules on
WIDD
C
C
C
20 MHz
20 MHz
Stop3 mode supply
current no clocks active
(except 1 kHz LPO
clock)2, 3
5
1 MHz
20 MHz
C
3
10 MHz
P
C
6
20 MHz
20 MHz
C
5
RIDD
C
C
4
Run supply current FEI
mode, all modules off &
gated; run from flash
3
S3IDD
3
5
3
—
5
3.8
—
—
3
3
—
-40 to 125 °C
Table continues on the next page...
S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.
14
Freescale Semiconductor, Inc.
Nonswitching electrical specifications
Table 4. Supply current characteristics (continued)
Num
C
Parameter
Symbol
Bus Freq
VDD (V)
Typical1
Max
Unit
Temp
7
C
ADC adder to stop3
—
—
5
44
—
µA
-40 to 125 °C
C
ADLPC = 1
3
40
—
5
111
—
µA
-40 to 125 °C
3
110
—
5
130
—
µA
-40 to 125 °C
3
125
—
ADLSMP = 1
ADCO = 1
MODE = 10B
ADICLK = 11B
8
C
TSI adder to stop34
C
PS = 010B
—
—
NSCN =0x0F
EXTCHRG = 0
REFCHRG = 0
DVOLT = 01B
9
C
LVD adder to stop35
C
1.
2.
3.
4.
5.
—
—
Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
RTC adder cause <1 µA IDD increase typically, RTC clock source is 1 kHz LPO clock.
ACMP adder cause <1 µA IDD increase typically.
The current varies with TSI configuration and capacity of touch electrode. Please refer to TSI electrical specifications.
LVD is periodically woken up from stop3 by 5% duty cycle. The period is equal to or less than 2 ms.
5.1.3 EMC performance
Electromagnetic compatibility (EMC) performance is highly dependant on the
environment in which the MCU resides. Board design and layout, circuit topology
choices, location and characteristics of external components as well as MCU software
operation all play a significant role in EMC performance. The system designer should
consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and
AN1259 for advice and guidance specifically targeted at optimizing EMC performance.
5.1.3.1
EMC radiated emissions operating behaviors
S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.
Freescale Semiconductor, Inc.
15
Switching specifications
5.2 Switching specifications

5.2.1 Control timing
Table 5. Control timing

Typical1
Max
Unit
DC
—
20
MHz
fLPO
0.67
1.0
1.25
textrst
1.5 ×
—
—
KHz
ns
—
—
ns
—
—
ns
—
—
ns
100
—
—
ns
tIHIL
1.5 × tcyc
—
—
ns
tRise
—
10.2
—
ns
tFall
—
9.5
—
ns
tRise
tFall
—
5.4
—
ns
—
4.6
—
ns
Num
C
Rating
Symbol
Min
1
P
Bus frequency (tcyc = 1/fBus)
fBus
2
P
Internal low power oscillator frequency
3
D
External reset pulse width2, 2
4
D
Reset low drive
trstdrv
5
D
BKGD/MS setup time after issuing background
debug force reset to enter user or BDM modes
tMSSU
6
D
BKGD/MS hold time after issuing background
debug force reset to enter user or BDM modes3
tMSH
100
7
D
Asynchronous
path2
tILIH
Synchronous path
Port rise and fall time Normal drive strength
(HDRVE_PTXx = 0) (load
= 50 pF)4, 4
—
Port rise and fall time Extreme high drive
strength (HDRVE_PTXx =
1) (load = 50 pF)4
—
tSelf_reset
Keyboard interrupt pulse
width
D
8
C
C
C
C
34 × tcyc

500

1. Typical values are based on characterization data at VDD = 5.0 V, 25 °C unless otherwise stated.
2. This is the shortest pulse that is guaranteed to be recognized as a reset pin request.
3. To enter BDM mode following a POR, BKGD/MS must be held low during the powerup and for ahold time of tMSH after
VDD rises above VLVD.
4. Timing is shown with respect to 20% VDD and 80% VDD levels. Temperature range -40 °C to 125 °C.
textrst
RESET PIN
Figure 9. Reset timing
tIHIL
KBIPx
KBIPx
tILIH
Figure 10. KBIPx timing
S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.
16
Freescale Semiconductor, Inc.
Switching specifications
5.2.2 Debug trace timing specifications
Table 6. Debug trace operating behaviors
Symbol
Description
Min.
Max.
Unit
tcyc
Clock period
Frequency dependent
MHz
twl
Low pulse width
2
—
ns
twh
High pulse width
2
—
ns
tr
Clock and data rise time
—
3
ns
tf
Clock and data fall time
—
3
ns
ts
Data setup
3
—
ns
th
Data hold
2
—
ns
Figure 11. TRACE_CLKOUT specifications
TRACE_CLKOUT
Ts
Ts
Th
Th
TRACE_D[3:0]
Figure 12. Trace data specifications
5.2.3 FTM module timing
Synchronizer circuits determine the shortest input pulses that can be recognized or the
fastest clock that can be used as the optional external source to the timer counter. These
synchronizers operate from the current bus rate clock.
Table 7. FTM input timing
No.
C
Function
Symbol
Min
Max
Unit
1
D
External clock
frequency
fTCLK
0
fBus/4
Hz
Table continues on the next page...
S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.
Freescale Semiconductor, Inc.
17

Thermal specifications

Table 7. FTM input timing (continued)
No.
C
Function
Symbol
Min
Max
Unit
2
D
External clock
period
tTCLK
4
—
tcyc
3
D
External clock
high time
tclkh
— 
tcyc
4
D
External clock
low time
tclkl
1.5
—
tcyc
5
D
Input capture
pulse width
tICPW
1.5
—
tcyc


1.5


tTCLK
tclkh
TCLK
tclkl
Figure 13. Timer external clock
tICPW
FTMCHn
FTMCHn
tICPW
Figure 14. Timer input capture pulse
5.3 Thermal specifications
5.3.1 Thermal characteristics
This section provides information about operating temperature range, power dissipation,
and package thermal resistance. Power dissipation on I/O pins is usually small compared
to the power dissipation in on-chip logic and voltage regulator circuits, and it is userdetermined rather than being controlled by the MCU design. To take PI/O into account in
power calculations, determine the difference between actual pin voltage and VSS or VDD
and multiply by the pin current for each I/O pin. Except in cases of unusually high pin
current (heavy loads), the difference between pin voltage and VSS or VDD will be very
small.
S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.
18
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 8. Thermal characteristics
Rating
Symbol
Value
Unit
Operating temperature range
(packaged)
TA
TL to TH -40 to 125
°C
Junction temperature range
TJ
-40 to 135
°C
Thermal resistance single-layer board
64-pin LQFP
θJA
71
°C/W
48-pin LQFP
θJA
81
°C/W
θJA
86
°C/W
32-pin LQFP
Thermal resistance four-layer board
64-pin LQFP
θJA
53
°C/W
48-pin LQFP
θJA
57
°C/W
32-pin LQFP
θJA
57
°C/W
The average chip-junction temperature (TJ) in °C can be obtained from:
TJ = TA + (PD × θJA)
Where:
TA = Ambient temperature, °C
θJA = Package thermal resistance, junction-to-ambient, °C/W
PD = Pint + PI/O
Pint = IDD × VDD, Watts - chip internal power
PI/O = Power dissipation on input and output pins - user determined
For most applications, PI/O << Pint and can be neglected. An approximate relationship
between PD and TJ (if PI/O is neglected) is:
PD = K ÷ (TJ + 273 °C)
Solving the equations above for K gives:
K = PD × (TA + 273 °C) + θJA × (PD)2
where K is a constant pertaining to the particular part. K can be determined by measuring
PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ can be
obtained by solving the above equations iteratively for any value of TA.
6 Peripheral operating requirements and behaviors
S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.
Freescale Semiconductor, Inc.
19
Peripheral operating requirements and behaviors
6.1 External oscillator (XOSC) and ICS characteristics
Table 9. XOSC and ICS specifications (temperature range = -40 to 125 °C ambient)
Symbol
Min
Typical1
Max
Unit
Low range (RANGE = 0)
flo
32
—
40
kHz
High range (RANGE = 1)
FEE or FBE mode2, 2
fhi
4
—
20
MHz
C
High range (RANGE = 1),
high gain (HGO = 1),
FBELP mode
fhi
4
—
20
MHz
C
High range (RANGE = 1),
low power (HGO = 0),
FBELP mode
fhi
4
—
20
MHz
Num
C
1
C
C
2
D
3
D
Characteristic
Oscillator
crystal or
resonator
Load capacitors
Feedback
resistor
See Note3
C1, C2
Low Frequency, Low-Power
Mode4, 4
RF
—
—
—
MΩ
Low Frequency, High-Gain
Mode
—
10
—
MΩ
High Frequency, LowPower Mode
—
1
—
MΩ
High Frequency, High-Gain
Mode
—
1
—
MΩ
—
—
—
kΩ
—
200
—
kΩ
—
—
—
kΩ
4
D
Series resistor Low Frequency
Low-Power Mode 4
5
D
Series resistor High Frequency
Low-Power Mode4
D
Series resistor High
Frequency,
High-Gain Mode
4 MHz
—
0
—
kΩ
8 MHz
—
0
—
kΩ
16 MHz
—
0
—
kΩ
—
1000
—
ms
—
800
—
ms
—
3
—
ms
—
1.5
—
ms
tIRST
—
20
50
µs
fextal
0.03125
—
5
MHz
0
—
20
MHz
D
D
6
C
C
C
C
7
8
T
D
D
Crystal start-up
time Low range
= 39.0625 kHz
crystal; High
range = 20 MHz
crystal5, 5, 6
High-Gain Mode
Low range, low power
RS
tCSTL
Low range, high power
High range, low power
tCSTH
High range, high power
Internal reference start-up time
Square wave
input clock
frequency
RS
FEE or FBE
mode2
FBELP mode
9
P
Average internal reference frequency trimmed
fint_t
—
39.0625
—
kHz
10
P
DCO output frequency range - trimmed
fdco_t
16
—
20
MHz
Table continues on the next page...
S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.
20
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 9. XOSC and ICS specifications (temperature range = -40 to 125 °C ambient)
(continued)
Num
C
11
P
C
Characteristic
Total deviation
of DCO output
from trimmed
frequency5
C
Symbol
Min
Typical1
Max
Δfdco_t
—
—
±2.0
Over full voltage range and
temperature range of -40 to
125 °C
Over full voltage range and
temperature range of -40 to
105 °C
±1.5
Over fixed voltage and
temperature range of 0 to
70 °C
±1.0
Unit
%fdco
12
C
FLL acquisition time5, 7
tAcquire
—
—
2
ms
13
C
Long term jitter of DCO output clock
(averaged over 2 ms interval)8
CJitter
—
0.02
0.2
%fdco
1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
2. When ICS is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25
kHz to 39.0625 kHz.
3. See crystal or resonator manufacturer's recommendation.
4. Load capacitors (C1,C2), feedback resistor (RF) and series resistor (RS) are incorporated internally when RANGE = HGO =
0.
5. This parameter is characterized and not tested on each device.
6. Proper PC board layout procedures must be followed to achieve specifications.
7. This specification applies to any time the FLL reference source or reference divider is changed, trim value changed,
DMX32 bit is changed, DRS bit is changed, or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE,
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
8. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fBus.
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise
injected into the FLL circuitry via VDD and VSS and variation in crystal oscillator frequency increase the CJitter percentage
for a given interval.
XOSC
EXTAL
XTAL
RF
C1
RS
Crystal or Resonator
C2
Figure 15. Typical crystal or resonator circuit
S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.
Freescale Semiconductor, Inc.
21
Peripheral operating requirements and behaviors
6.2 NVM specifications
This section provides details about program/erase times and program/erase endurance for
the flash and EEPROM memories.
Table 10. Flash characteristics
1.
2.
3.
4.
C
Characteristic
Symbol
Min1
Typical2
Max3
Unit4
D
Supply voltage for program/erase -40 °C
to 125 °C
Vprog/erase
2.7
—
5.5
V
D
Supply voltage for read operation
VRead
2.7
—
5.5
V
D
NVM Bus frequency
fNVMBUS
1
—
25
MHz
D
NVM Operating frequency
fNVMOP
0.8
1
1.05
MHz
D
Erase Verify All Blocks
tVFYALL
—
—
17338
tcyc
D
Erase Verify Flash Block
tRD1BLK
—
—
16913
tcyc
D
Erase Verify EEPROM Block
tRD1BLK
—
—
810
tcyc
D
Erase Verify Flash Section
tRD1SEC
—
—
484
tcyc
D
Erase Verify EEPROM Section
tDRD1SEC
—
—
555
tcyc
D
Read Once
tRDONCE
—
—
450
tcyc
D
Program Flash (2 word)
tPGM2
0.12
0.12
0.29
ms
D
Program Flash (4 word)
tPGM4
0.20
0.21
0.46
ms
D
Program Once
tPGMONCE
0.20
0.21
0.21
ms
D
Program EEPROM (1 Byte)
tDPGM1
0.10
0.10
0.27
ms
D
Program EEPROM (2 Byte)
tDPGM2
0.17
0.18
0.43
ms
D
Program EEPROM (3 Byte)
tDPGM3
0.25
0.26
0.60
ms
D
Program EEPROM (4 Byte)
tDPGM4
0.32
0.33
0.77
ms
D
Erase All Blocks
tERSALL
96.01
100.78
101.49
ms
D
Erase Flash Block
tERSBLK
95.98
100.75
101.44
ms
D
Erase Flash Sector
tERSPG
19.10
20.05
20.08
ms
D
Erase EEPROM Sector
tDERSPG
4.81
5.05
20.57
ms
D
Unsecure Flash
tUNSECU
96.01
100.78
101.48
ms
D
Verify Backdoor Access Key
tVFYKEY
—
—
464
tcyc
D
Set User Margin Level
tMLOADU
—
—
407
tcyc
C
FLASH Program/erase endurance TL to
TH = -40 °C to 125 °C
nFLPE
10 k
100 k
—
Cycles
C
EEPROM Program/erase endurance TL
to TH = -40 °C to 125 °C
nFLPE
50 k
500 k
—
Cycles
C
Data retention at an average junction
temperature of TJavg = 85°C after up to
10,000 program/erase cycles
tD_ret
15
100
—
years
Minimum times are based on maximum fNVMOP and maximum fNVMBUS
Typical times are based on typical fNVMOP and maximum fNVMBUS
Maximum times are based on typical fNVMOP and typical fNVMBUS plus aging
tcyc = 1 / fNVMBUS
S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.
22
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Program and erase operations do not require any special power sources other than the
normal VDD supply. For more detailed information about program/erase operations, see
the Memory section.
6.3 Analog
6.3.1 ADC characteristics
Table 11. 5 V 12-bit ADC operating conditions
Characteri
stic
Supply
voltage
Conditions
Symb
Min
Typ1
Max
Unit
Comment
—
Absolute
VDDA
2.7
—
5.5
V
Delta to VDD (VDD-VDDAD)
ΔVDDA
-100
0
+100
mV
Delta to VSS (VSS-VSSA)2
ΔVSSA
-100
0
+100
mV
Input
voltage
VADIN
VREFL
—
VREFH
V
Input
capacitance
CADIN
—
4.5
5.5
pF
Input
resistance
RADIN
—
3
5
kΩ
—
RAS
—
—
2
kΩ
External to
MCU
—
—
5
—
—
5
—
—
10
—
—
10
0.4
—
8.0
MHz
—
0.4
—
4.0
Ground
voltage
Analog
source
resistance
•
•
12-bit mode
fADCK > 4 MHz
fADCK < 4 MHz
•
•
10-bit mode
fADCK > 4 MHz
fADCK < 4 MHz
8-bit mode
(all valid fADCK)
ADC
conversion
clock
frequency
High speed (ADLPC=0)
Low power (ADLPC=1)
fADCK
1. Typical values assume VDDA = 5.0 V, Temp = 25°C, fADCK=1.0 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
2. DC potential difference.
S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.
Freescale Semiconductor, Inc.
23
Peripheral operating requirements and behaviors
SIMPLIFIED
INPUT PIN EQUIVALENT
CIRCUIT
Pad
leakage
due to
input
protection
ZAS
R AS
z ADIN
SIMPLIFIED
CHANNEL SELECT
CIRCUIT
ADC SAR
ENGINE
R ADIN
v ADIN
v AS
C AS
R ADIN
INPUT PIN
R ADIN
INPUT PIN
R ADIN
INPUT PIN
C ADIN
Figure 16. ADC input impedance equivalency diagram
Table 12. 12-bit ADC Characteristics (VREFH = VDDA, VREFL = VSSA)
Characteristic
Conditions
Supply current
C
Symb
Min
Typ1
Max
Unit
T
IDDA
—
133
—
µA
T
IDDA
—
218
—
µA
T
IDDA
—
327
—
µA
T
IDDAD
—
582
990
µA
T
IDDA
—
0.011
1
µA
ADLPC = 1
ADLSMP = 1
ADCO = 1
Supply current
ADLPC = 1
ADLSMP = 0
ADCO = 1
Supply current
ADLPC = 0
ADLSMP = 1
ADCO = 1
Supply current
ADLPC = 0
ADLSMP = 0
ADCO = 1
Supply current
Stop, reset, module
off
Table continues on the next page...
S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.
24
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 12. 12-bit ADC Characteristics (VREFH = VDDA, VREFL = VSSA) (continued)
Characteristic
Conditions
C
Symb
Min
Typ1
Max
Unit
ADC asynchronous
clock source
High speed (ADLPC
= 0)
P
fADACK
2
3.3
5
MHz
1.25
2
3.3
—
20
—
—
40
—
—
3.5
—
—
23.5
—
—
±5.0
—
Low power (ADLPC
= 1)
Conversion time
(including sample
time)
Short sample
(ADLSMP = 0)
Sample time
Short sample
(ADLSMP = 0)
T
tADC
Long sample
(ADLSMP = 1)
T
tADS
Long sample
(ADLSMP = 1)
Total unadjusted
Error2, 2
Differential NonLinearity
12-bit mode
T
ETUE
10-bit mode
P
—
±1.5
±2.0
8-bit mode
P
—
±0.7
±1.0
12-bit mode
T
—
±1.0
—
10-bit mode4, 4
P
—
±0.25
±0.5
—
±0.15
±0.25
—
±1.0
—
DNL
mode4
P
Integral Non-Linearity 12-bit mode
T
10-bit mode
T
—
±0.3
±0.5
8-bit mode
T
—
±0.15
±0.25
12-bit mode
C
—
±2.0
—
10-bit mode
P
—
±0.25
±1.0
8-bit mode
P
—
±0.65
±1.0
12-bit mode
T
—
±2.5
—
10-bit mode
T
—
±0.5
±1.0
8-bit mode
T
—
±0.5
±1.0
≤12 bit modes
D
EQ
—
—
±0.5
all modes
D
EIL
-40°C– 25°C
D
m
8-bit
Zero-scale
Full-scale
error5, 5
error6
Quantization error
Input leakage
error7
Temp sensor slope
INL
EZS
EFS
25°C– 125°C
Temp sensor voltage 25°C
D
VTEMP25
IIn * RAS
ADCK
cycles
ADCK
cycles
LSB3, 3
LSB3
LSB3
LSB3
LSB3
LSB3
mV
—
3.266
—
—
3.638
—
—
1.396
—
mV/°C
V
1. Typical values assume VDDA = 5.0 V, Temp = 25°C, fADCK=1.0 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
2. Includes quantization.
3. 1 LSB = (VREFH - VREFL)/2N
4. Monotonicity and no-missing-codes guaranteed in 10-bit and 8-bit modes
5. VADIN = VSSA
6. VADIN = VDDA
7. IIn = leakage current (refer to DC characteristics)
S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.
Freescale Semiconductor, Inc.
25
Peripheral operating requirements and behaviors
6.3.2 Analog comparator (ACMP) electricals
Table 13. Comparator electrical specifications
C
Characteristic
Symbol
Min
Typical
Max
Unit
D
Supply voltage
VDDA
2.7
—
5.5
V
T
Supply current (Operation mode)
IDDA
—
10
20
µA
D
Analog input voltage
VAIN
VSS - 0.3
—
VDDA
V
P
Analog input offset voltage
VAIO
—
—
40
mV
C
Analog comparator hysteresis (HYST=0)
VH
—
15
20
mV
C
Analog comparator hysteresis (HYST=1)
VH
—
20
30
mV
T
Supply current (Off mode)
IDDAOFF
—
60
—
nA
C
Propagation Delay
tD
—
0.4
1
µs
6.4 Communication interfaces
6.4.1 SPI switching specifications
The serial peripheral interface (SPI) provides a synchronous serial bus with master and
slave operations. Many of the transfer attributes are programmable. The following tables
provide timing characteristics for classic SPI timing modes. Refer to the SPI chapter of
the chip's reference manual for information about the modified transfer formats used for
communicating with slower peripheral devices. All timing is shown with respect to 20%
VDD and 70% VDD, unless noted, and 100 pF load on all SPI pins. All timing assumes
slew rate control is disabled and high drive strength is enabled for SPI output pins.
Table 14. SPI master mode timing
Nu
m.
Symbol
Description
Min.
Max.
Unit
Comment
1
fop
fBus/2048
fBus/2
Hz
fBus is the bus
clock
2
tSPSCK
2 x tBus
2048 x tBus
ns
tBus = 1/fBus
3
tLead
Enable lead time
1/2
—
tSPSCK
—
4
tLag
Enable lag time
1/2
—
tSPSCK
—
5
tWSPSCK
6
tSU
Data setup time (inputs)
tBus - 30
1024 x tBus
ns
—
15
—
ns
—
7
tHI
Data hold time (inputs)
0
—
ns
—
8
tv
Data valid (after SPSCK edge)
—
25
ns
—
9
tHO
Data hold time (outputs)
0
—
ns
—
Frequency of operation
SPSCK period
Clock (SPSCK) high or low time
Table continues on the next page...
S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.
26
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 14. SPI master mode timing (continued)
Nu
m.
Symbol
10
tRI
Rise time input
tFI
Fall time input
tRO
Rise time output
tFO
Fall time output
11
Description
Min.
Max.
Unit
Comment
—
tBus - 25
ns
—
—
25
ns
—
SS1
(OUTPUT)
3
2
SPSCK
(CPOL = 0)
(OUTPUT)
10
11
10
11
4
5
5
SPSCK
(CPOL = 1)
(OUTPUT)
6
7
MISO
(INPUT)
MSB IN2
BIT 6 . . . 1
LSB IN
8
MOSI
(OUTPUT)
MSB OUT2
9
BIT 6 . . . 1
LSB OUT
1. If configured as an output.
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
Figure 17. SPI master mode timing (CPHA=0)
SS1
(OUTPUT)
2
3
SPSCK
(CPOL = 0)
(OUTPUT)
5
SPSCK
(CPOL = 1)
(OUTPUT)
5
6
MISO
(INPUT)
10
11
10
11
4
7
MSB
IN2
BIT 6 . . . 1
LSB IN
9
8
MOSI
2
(OUTPUT)PORT DATA MASTER MSB OUT
BIT 6 . . . 1
MASTER LSB OUT
PORT DATA
1.If configured as output
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
Figure 18. SPI master mode timing (CPHA=1)
S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.
Freescale Semiconductor, Inc.
27
Peripheral operating requirements and behaviors
Table 15. SPI slave mode timing
Nu
m.
Symbol
Description
1
fop
2
tSPSCK
3
tLead
Enable lead time
4
tLag
Enable lag time
5
tWSPSCK
6
tSU
7
Min.
Max.
Unit
Comment
0
fBus/4
Hz
fBus is the bus clock as
defined in .
4 x tBus
—
ns
tBus = 1/fBus
1
—
tBus
—
Frequency of operation
SPSCK period
1
—
tBus
—
tBus - 30
—
ns
—
Data setup time (inputs)
15
—
ns
—
tHI
Data hold time (inputs)
25
—
ns
—
8
ta
Slave access time
—
tBus
ns
Time to data active from
high-impedance state
9
tdis
Slave MISO disable time
—
tBus
ns
Hold time to highimpedance state
10
tv
Data valid (after SPSCK edge)
—
25
ns
—
11
tHO
Data hold time (outputs)
0
—
ns
—
12
tRI
Rise time input
—
tBus - 25
ns
—
tFI
Fall time input
tRO
Rise time output
—
25
ns
—
tFO
Fall time output
13
Clock (SPSCK) high or low time
SS
(INPUT)
2
SPSCK
(CPOL = 0)
(INPUT)
5
3
SPSCK
(CPOL = 1)
(INPUT)
13 4
12
13
9
8
MISO
(OUTPUT)
5
12
10
see
note
SLAVE MSB
6
MOSI
(INPUT)
BIT 6 . . . 1
11
11
SLAVE LSB OUT
SEE
NOTE
7
MSB IN
BIT 6 . . . 1
LSB IN
NOTE: Not defined
Figure 19. SPI slave mode timing (CPHA = 0)
S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.
28
Freescale Semiconductor, Inc.
Dimensions
SS
(INPUT)
4
2
3
SPSCK
(CPOL = 0)
(INPUT)
5
SPSCK
(CPOL = 1)
(INPUT)
5
see
note
SLAVE
8
MSB OUT
6
MOSI
(INPUT)
13
12
13
9
11
10
MISO
(OUTPUT)
12
BIT 6 . . . 1
SLAVE LSB OUT
7
MSB IN
LSB IN
BIT 6 . . . 1
NOTE: Not defined
Figure 20. SPI slave mode timing (CPHA=1)
6.5 Human-machine interfaces (HMI)
6.5.1 TSI electrical specifications
Table 16. TSI electrical specifications
Symbol
Description
Min.
Type
Max
Unit
TSI_RUNF
Fixed power consumption in run mode
—
100
—
µA
TSI_RUNV
Variable power consumption in run mode
(depends on oscillator's current selection)
1.0
—
128
µA
TSI_EN
Power consumption in enable mode
—
100
—
µA
TSI_DIS
Power consumption in disable mode
—
1.2
—
µA
TSI_TEN
TSI analog enable time
—
66
—
µs
TSI_CREF
TSI reference capacitor
—
1.0
—
pF
TSI_DVOLT
Voltage variation of VP & VM around nominal
values
-10
—
10
%
7 Dimensions
7.1 Obtaining package dimensions
Package dimensions are provided in package drawings.
S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.
Freescale Semiconductor, Inc.
29
Pinout
To find a package drawing, go to freescale.com and perform a keyword search for the
drawing’s document number:
If you want the drawing for this package
Then use this document number
32-pin LQFP
98ASH70029A
48-pin LQFP
98ASH00962A
64-pin LQFP
98ASS23234W
8 Pinout
8.1 Signal multiplexing and pin assignments
The following table shows the signals available on each pin and the locations of these
pins on the devices supported by this document. The Port Control Module is responsible
for selecting which ALT functionality is available on each pin.
Table 17. Pin availability by package pin-count
Pin Number
64-LQFP
1
48-LQFP
1
Lowest Priority <-- --> Highest
32-LQFP
Port Pin
Alt 1
Alt 2
Alt 3
Alt 4
1
PTD11, 1
KBI1P1
FTM2CH3
MOSI1
—
2
2
2
PTD01
KBI1P0
FTM2CH2
SPSCK1
—
3
—
—
PTH7
—
—
—
—
4
—
—
PTH6
—
—
—
—
5
3
—
PTE7
—
TCLK2
—
—
6
4
—
PTH2
—
BUSOUT
—
—
7
5
3
—
—
—
—
VDD
8
6
4
—
—
—
VDDA
VREFH
9
7
5
—
—
—
VSSA
VREFL
10
8
6
—
—
—
—
VSS
11
9
7
PTB7
—
SCL
—
EXTAL
12
10
8
PTB6
—
SDA
—
XTAL
13
11
—
—
—
—
—
VSS
—
PTH11
—
FTM2CH1
—
—
—
FTM2CH0
—
—
14
—
15
—
—
PTH01
16
12
—
PTE6
—
—
—
—
17
13
—
PTE5
—
—
—
—
FTM2CH5
SS0
—
—
FTM2CH4
MISO0
—
—
18
14
9
PTB51
19
15
10
PTB41
Table continues on the next page...
S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.
30
Freescale Semiconductor, Inc.
Pinout
Table 17. Pin availability by package pin-count (continued)
Pin Number
Lowest Priority <-- --> Highest
64-LQFP
48-LQFP
32-LQFP
Port Pin
Alt 1
Alt 2
Alt 3
Alt 4
20
16
11
PTC3
FTM2CH3
—
ADP11
—
21
17
12
PTC2
FTM2CH2
—
ADP10
—
22
18
—
PTD7
KBI1P7
TXD2
—
—
23
19
—
PTD6
KBI1P6
RXD2
—
—
24
20
—
PTD5
KBI1P5
—
—
—
25
21
13
PTC1
—
FTM2CH1
ADP9
TSI7
26
22
14
PTC0
—
FTM2CH0
ADP8
TSI6
27
—
—
PTF7
—
—
ADP15
—
28
—
—
PTF6
—
—
ADP14
—
29
—
—
PTF5
—
—
ADP13
—
30
—
—
PTF4
—
—
ADP12
—
31
23
15
PTB3
KBI0P7
MOSI0
ADP7
TSI5
32
24
16
PTB2
KBI0P6
SPSCK0
ADP6
TSI4
33
25
17
PTB1
KBI0P5
TXD0
ADP5
TSI3
34
26
18
PTB0
KBI0P4
RXD0
ADP4
TSI2
35
—
—
PTF3
—
—
—
TSI15
36
—
—
PTF2
—
—
—
TSI14
37
27
19
PTA7
FTM2FAULT2
—
ADP3
TSI1
38
28
20
PTA6
FTM2FAULT1
—
ADP2
TSI0
39
29
—
PTE4
—
—
—
—
40
30
—
—
—
—
—
VSS
41
31
—
—
—
—
—
VDD
42
—
—
PTF1
—
—
—
TSI13
43
—
—
PTF0
—
—
—
TSI12
44
32
—
PTD4
KBI1P4
—
—
—
45
33
21
PTD3
KBI1P3
SS1
—
TSI11
46
34
22
PTD2
KBI1P2
MISO1
—
TSI10
23
PTA32, 2
KBI0P3
TXD0
SCL
—
KBI0P2
RXD0
SDA
—
47
35
48
36
24
PTA22
49
37
25
PTA1
KBI0P1
FTM0CH1
ACMP1
ADP1
50
38
26
PTA0
KBI0P0
FTM0CH0
ACMP0
ADP0
51
39
27
PTC7
—
TxD1
—
TSI9
52
40
28
PTC6
—
RxD1
—
TSI8
53
41
—
PTE3
—
SS0
—
—
54
42
—
PTE2
—
MISO0
—
—
55
—
—
PTG3
—
—
—
—
56
—
—
PTG2
—
—
—
—
57
—
—
PTG1
—
—
—
—
Table continues on the next page...
S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.
Freescale Semiconductor, Inc.
31
Pinout
Table 17. Pin availability by package pin-count (continued)
Pin Number
Lowest Priority <-- --> Highest
64-LQFP
48-LQFP
32-LQFP
Port Pin
Alt 1
Alt 2
Alt 3
Alt 4
58
—
—
PTG0
—
—
—
—
59
43
—
PTE11
—
MOSI0
—
—
—
SPSCK0
TCLK1
—
60
44
—
PTE01
61
45
29
PTC5
—
FTM1CH1
—
—
62
46
30
PTC4
—
FTM1CH0
RTCO
—
63
47
31
—
—
—
—
RESET
64
48
32
—
—
—
BKGD
MS
1. This is a high current drive pin when operated as output.
2. This is a true open-drain pin when operated as output.
Note
When an alternative function is first enabled, it is possible to
get a spurious edge to the module. User software must clear any
associated flags before interrupts are enabled. The table above
illustrates the priority if multiple modules are enabled. The
highest priority module will have control over the pin. Selecting
a higher priority pin function with a lower priority function
already enabled can cause spurious edges to the lower priority
module. Disable all modules that share a pin before enabling
another module.
S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.
32
Freescale Semiconductor, Inc.
Pinout
PTE3/SS0
PTC6/RxD1/TSI8
PTC7/TxD1/TSI9
PTA0/KBI0P0/FTM0CH0/ACMP0/ADP0
PTA1/KBI0P1/FTM0CH1/ACMP1/ADP1
52
51
50
49
PTE2/MISO0
54
53
PTG2
PTG3
PTG1
55
PTG0
58
57
56
PTE0/SPSCK0/TCLK11
PTE1/MOSI01
PTC5/FTM1CH1
59
PTC4/FTM1CH0/RTCO
62
61
60
BKGD/MS
RESET
64
63
8.2 Device pin assignment
PTD1/KBI1P1/FTM2CH3/MOSI1 1
1
48
PTA2/KBI0P2/RxD0/SDA2
PTD0/KBI1P0/FTM2CH2/SPSCK1 1
2
47
PTA3/KBI0P3/TxD0/SCL2
PTD2/KBI1P2/MISO1/TSI10
PTH7
3
46
PTH6
4
45
PTD3/KBI1P3/SS1/TSI11
PTE7/TCLK2
5
44
PTD4/KBI1P4
PTH2/BUSOUT
VDD
6
43
PTF0/TSI12
7
42
PTF1/TSI13
VDDA /VREFH
8
41
VDD
VSSA /V
9
40
VSS
REFL
VSS
10
39
PTE4
PTB7/SCL/EXTAL
PTB6/SDA/XTAL
11
38
PTA6/FTM2FAULT1/ADP2/TSI0
12
37
PTA7/FTM2FAULT2/ADP3/TSI1
VSS
13
36
PTF2/TSI14
21
22
23
24
25
26
27
28
29
30
31
32
PTC2/FTM2CH2/ADP10
PTD7/KBI1P7/TxD2
PTD6/KBI1P6/RxD2
PTD5/KBI1P5
PTC1/FTM2CH1/ADP9/TSI7
PTC0/FTM2CH0/ADP8/TSI6
PTF7/ADP15
PTF6/ADP14
PTF5/ADP13
PTF4/ADP12
PTB3/KBI0P7/MOSI0/ADP7/TSI5
PTB2/KBI0P6/SPSCK0/ADP6/TSI4
PTB1/KBI0P5/TxD0/ADP5/TSI3
19
33
20
16
PTC3/FTM2CH3/ADP11
PTE6
PTB4/FTM2CH4/MISO0 1
PTB0/KBI0P4/RxD0/ADP4/TSI2
17
PTF3/TSI15
34
18
35
15
PTE5
14
PTB5/FTM2CH5/SS0 1
PTH1/FTM2CH11
PTH0/FTM2CH01
Pins in bold are not available on less pin-count packages.
1. High source/sink current pins
2. True open drain pins
Figure 21. S9S08RN60 64-pin LQFP package
S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.
Freescale Semiconductor, Inc.
33
PTE3/SS0
PTC6/RxD1/TSI8
PTC7/TxD1/TSI9
PTA0/KBI0P0/FTM0CH0/ACMP0/ADP0
PTA1/KBI0P1/FTM0CH1/ACMP1/ADP1
40
39
38
37
PTE2/MISO0
42
41
PTE0/SPSCK0/TCLK11
PTE1/MOSI01
PTC5/FTM1CH1
45
43
PTC4/FTM1CH0/RTCO
46
44
BKGD/MS
RESET
47
48
Pinout
34
PTD2/KBI1P2/MISO1/TSI10
PTH2/BUSOUT
4
33
PTD3/KBI1P3/SS1/TSI11
VDD
5
32
PTD4/KBI1P4
VDDA /VREFH
6
31
VDD
7
30
VSS
8
29
PTE4
9
PTB7/SCL/EXTAL
PTB6/SDA/XTAL 10
28
PTA6/FTM2FAULT1/ADP2/TSI0
17
18
PTC2/FTM2CH2/ADP10
PTD7/KBI1P7/TxD2
25
PTB1/KBI0P5/TxD0/ADP5/TSI3
24
16
PTC3/FTM2CH3/ADP11
PTA7/FTM2FAULT2/ADP3/TSI1
PTB0/KBI0P4/RxD0/ADP4/TSI2
PTB2/KBI0P6/SPSCK0/ADP6/TSI4
15
PTB4/FTM2CH4/MISO0 1
Pins in bold are not available on less pin-count packages.
1. High source/sink current pins
2. True open drain pins
27
26
23
13
14
PTE5
PTB5/FTM2CH5/SS0 1
VSS 11
PTE6 12
22
VSS
PTC0/FTM2CH0/ADP8/TSI6
REFL
PTB3/KBI0P7/MOSI0/ADP7/TSI5
VSSA /V
21
3
PTC1/FTM2CH1/ADP9/TSI7
PTA3/KBI0P3/TxD0/SCL2
PTE7/TCLK2
19
PTA2/KBI0P2/RxD0/SDA2
35
20
36
2
PTD5/KBI1P5
1
PTD6/KBI1P6/RxD2
PTD1/KBI1P1/FTM2CH3/MOSI1 1
PTD0/KBI1P0/FTM2CH2/SPSCK1 1
Figure 22. S9S08RN60 48-pin LQFP package
S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.
34
Freescale Semiconductor, Inc.
PTC6/RxD1/TSI8
PTC7/TxD1/TSI9
PTA0/KBI0P0/FTM0CH0/ACMP0/ADP0
PTA1/KBI0P1/FTM0CH1/ACMP1/ADP1
26
25
PTC5/FTM1CH1
29
27
PTC4/FTM1CH0/RTCO
30
28
BKGD/MS
RESET
32
31
Revision history
PTD1/KBI1P1/FTM2CH3/MOSI1 1
1
24
PTA2/KBI0P2/RxD0/SDA2
PTD0/KBI1P0/FTM2CH2/SPSCK1 1
2
23
PTA3/KBI0P3/TxD0/SCL2
PTD2/KBI1P2/MISO1/TSI10
3
22
VDDA /VREFH
4
21
PTD3/KBI1P3/SS1/TSI11
VSSA /V
5
20
PTA6/FTM2FAULT1/ADP2/TSI0
PTA7/FTM2FAULT2/ADP3/TSI1
VDD
REFL
15
16
14
PTC0/FTM2CH0/ADP8/TSI6
PTB3/KBI0P7/MOSI0/ADP7/TSI5
13
PTC1/FTM2CH1/ADP9/TSI7
1. High source/sink current pins
2. True open drain pins
PTB2/KBI0P6/SPSCK0/ADP6/TSI4
11
PTB1/KBI0P5/TxD0/ADP5/TSI3
12
17
PTC2/FTM2CH2/ADP10
8
PTC3/FTM2CH3/ADP11
PTB0/KBI0P4/RxD0/ADP4/TSI2
PTB6/SDA/XTAL
9
18
10
19
7
PTB4/FTM2CH4/MISO0 1
6
PTB5/FTM2CH5/SS0 1
VSS
PTB7/SCL/EXTAL
Figure 23. S9S08RN60 32-pin LQFP package
9 Revision history
The following table provides a revision history for this document.
Table 18. Revision history
Rev. No.
Date
1
01/2014
Substantial Changes
Initial Release
S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.
Freescale Semiconductor, Inc.
35
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
[email protected]
Document Number: S9S08RN60
Rev. 1, 01/2014
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductors products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any liability, including without limitation
consequential or incidental damages. "Typical" parameters that may be provided in
Freescale Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters,
including "Typicals", must be validated for each customer application by customer's
technical experts. Freescale Semiconductor does not convey any license under its patent
rights nor the rights of others. Freescale Semiconductor products are not designed,
intended, or authorized for use as components in systems intended for surgical implant
into the body, or other applications intended to support or sustain life, or for any other
application in which failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claims alleges
that Freescale Semiconductor was negligent regarding the design or manufacture of
the part.
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts.
For further information, see http://www.freescale.com or contact your Freescale
sales representative.
For information on Freescale's Environmental Products program, go to
http://www.freescale.com/epp.
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© 2014 Freescale Semiconductor, Inc.