Kinetis KL05: 48MHz Cortex-M0+ 8-32KB Flash (24-48 pin)

Freescale Semiconductor, Inc.
Data Sheet: Technical Data
KL05P48M48SF1
Rev 4 03/2014
Kinetis KL05 32 KB Flash
48 MHz Cortex-M0+ Based Microcontroller
Designed with efficiency in mind. Features a size efficient, small
package, energy efficient ARM Cortex-M0+ 32-bit performance.
Shares the comprehensive enablement and scalability of the
Kinetis family.
This product offers:
• Run power consumption down to 45 μA/MHz in very low
power run mode
• Static power consumption down to 2 μA with full state
retention and 4 μs wakeup
• Ultra-efficient Cortex-M0+ processor running up to 48MHz
with industry leading throughput
• Memory option is up to 32 KB Flash and 4 KB RAM
• Energy-saving architecture is optimized for low power with
90 nm TFS technology, clock and power gating techniques,
and zero wait state flash memory controller
Performance
• 48 MHz ARM® Cortex®-M0+ core
Memories and memory interfaces
• Up to 32 KB program flash memory
• Up to 4 KB SRAM
MKL05ZxxVFK4
MKL05ZxxVLC4
MKL05ZxxVFM4
MKL05ZxxVLF4
24-pin QFN (FK)
32-pin QFN (FM)
4 x 4 x 1 Pitch 0.5 mm 5 x 5 x 1 Pitch 0.5 mm
32-pin LQFP (LC)
7 x 7 x 1.4 Pitch 0.8
mm
48-pin LQFP (LF)
7 x 7 x 1.4 Pitch 0.5
mm
Human-machine interface
• Low-power hardware touch sensor interface (TSI)
• Up to 41 general-purpose input/output (GPIO)
Communication interfaces
• One 8-bit SPI module
• One low power UART module
• One I2C module
System peripherals
• Nine low-power modes to provide power optimization
based on application requirements
Analog Modules
• COP Software watchdog
• 12-bit SAR ADC
• 4-channel DMA controller, supporting up to 63 request
• 12-bit DAC
sources
• Analog comparator (CMP) containing a 6-bit DAC
• Low-leakage wakeup unit
and programmable reference input
• SWD debug interface and Micro Trace Buffer
• Bit Manipulation Engine
Timers
• Six channel Timer/PWM (TPM)
Clocks
• One 2-channel Timer/PWM module
• 32 kHz to 40 kHz or 3 MHz to 32 MHz crystal oscillator
• Periodic interrupt timers
• Multi-purpose clock source
• 16-bit low-power timer (LPTMR)
• 1 kHz LPO clock
• Real time clock
Operating Characteristics
• Voltage range: 1.71 to 3.6 V
• Flash write voltage range: 1.71 to 3.6 V
• Temperature range (ambient): -40 to 105°C
Security and integrity modules
• 80-bit unique identification number per chip
Freescale reserves the right to change the detail specifications as may be required to
permit improvements in the design of its products. © 2012–2014 Freescale
Semiconductor, Inc. All rights reserved.
Ordering Information
Part Number
Memory
Maximum number of I\O's
Flash (KB)
SRAM (KB)
MKL05Z8VFK4
8
1
22
MKL05Z16VFK4
16
2
22
MKL05Z32VFK4
32
4
22
MKL05Z8VLC4
8
1
28
MKL05Z16VLC4
16
2
28
MKL05Z32VLC4
32
4
28
MKL05Z8VFM4
8
1
28
MKL05Z16VFM4
16
2
28
MKL05Z32VFM4
32
4
28
MKL05Z16VLF4
16
2
41
MKL05Z32VLF4
32
4
41
Related Resources
Type
Description
Selector Guide
The Freescale Solution Advisor is a web-based tool that features interactive application wizards and
a dynamic product selector.
Product Brief
The Product Brief contains concise overview/summary information to enable quick evaluation of a
device for design suitability.
Reference Manual
The Reference Manual contains a comprehensive description of the structure and function
(operation) of a device.
Data Sheet
The Data Sheet includes electrical characteristics and signal connections.
Chip Errata
The chip mask set Errata provides additional or corrective information for a particular device mask
set.
Package drawing
Package dimensions are provided in package drawings.
2
Freescale Semiconductor, Inc.
Kinetis KL05 32 KB Flash, Rev4 03/2014.
Table of Contents
1 Ratings..................................................................................4
1.1 Thermal handling ratings...............................................4
1.2 Moisture handling ratings...............................................4
1.3 ESD handling ratings.....................................................4
1.4 Voltage and current operating ratings............................4
2 General.................................................................................5
2.1 AC electrical characteristics...........................................5
2.2 Nonswitching electrical specifications............................5
2.2.1 Voltage and current operating requirements......5
2.2.2 LVD and POR operating requirements..............6
2.2.3 Voltage and current operating behaviors...........7
2.2.4 Power mode transition operating behaviors.......8
2.2.5 Power consumption operating behaviors...........9
2.2.6 EMC performance..............................................15
2.2.7 Capacitance attributes.......................................16
2.3 Switching specifications.................................................16
2.3.1 Device clock specifications................................16
2.3.2 General switching specifications........................17
2.4 Thermal specifications...................................................17
2.4.1 Thermal operating requirements........................17
2.4.2 Thermal attributes..............................................17
3 Peripheral operating requirements and behaviors................18
3.1 Core modules................................................................18
3.1.1 SWD electricals .................................................18
3.2 System modules............................................................19
3.3 Clock modules...............................................................20
3.3.1 MCG specifications............................................20
3.3.2 Oscillator electrical specifications......................21
3.4 Memories and memory interfaces.................................23
3.4.1 Flash electrical specifications............................23
3.5 Security and integrity modules.......................................25
3.6 Analog............................................................................25
3.6.1 ADC electrical specifications..............................25
Kinetis KL05 32 KB Flash, Rev4 03/2014.
4
5
6
7
8
9
3.6.2 CMP and 6-bit DAC electrical specifications......28
3.6.3 12-bit DAC electrical characteristics..................30
3.7 Timers............................................................................33
3.8 Communication interfaces.............................................33
3.8.1 SPI switching specifications...............................33
3.8.2 Inter-Integrated Circuit Interface (I2C) timing.....38
3.8.3 UART.................................................................39
3.9 Human-machine interfaces (HMI)..................................39
3.9.1 TSI electrical specifications................................39
Dimensions...........................................................................40
4.1 Obtaining package dimensions......................................40
Pinout....................................................................................40
5.1 KL05 signal multiplexing and pin assignments..............40
5.2 KL05 pinouts..................................................................42
Ordering parts.......................................................................46
6.1 Determining valid orderable parts..................................46
Part identification...................................................................46
7.1 Description.....................................................................46
7.2 Format...........................................................................47
7.3 Fields.............................................................................47
7.4 Example.........................................................................47
Terminology and guidelines..................................................48
8.1 Definition: Operating requirement..................................48
8.2 Definition: Operating behavior.......................................48
8.3 Definition: Attribute........................................................48
8.4 Definition: Rating...........................................................49
8.5 Result of exceeding a rating..........................................49
8.6 Relationship between ratings and operating
requirements..................................................................49
8.7 Guidelines for ratings and operating requirements........50
8.8 Definition: Typical value.................................................50
8.9 Typical value conditions.................................................51
Revision history.....................................................................52
3
Freescale Semiconductor, Inc.
Ratings
1 Ratings
1.1 Thermal handling ratings
Table 1. Thermal handling ratings
Symbol
Description
Min.
Max.
Unit
Notes
TSTG
Storage temperature
–55
150
°C
1
TSDR
Solder temperature, lead-free
—
260
°C
2
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
1.2 Moisture handling ratings
Table 2. Moisture handling ratings
Symbol
MSL
Description
Moisture sensitivity level
Min.
Max.
Unit
Notes
—
3
—
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
1.3 ESD handling ratings
Table 3. ESD handling ratings
Symbol
Description
Min.
Max.
Unit
Notes
VHBM
Electrostatic discharge voltage, human body model
–2000
+2000
V
1
VCDM
Electrostatic discharge voltage, charged-device
model
–500
+500
V
2
Latch-up current at ambient temperature of 105 °C
–100
+100
mA
3
ILAT
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human
Body Model (HBM).
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.
4
Freescale Semiconductor, Inc.
Kinetis KL05 32 KB Flash, Rev4 03/2014.
General
1.4 Voltage and current operating ratings
Table 4. Voltage and current operating ratings
Symbol
Description
Min.
Max.
Unit
VDD
Digital supply voltage
–0.3
3.8
V
IDD
Digital supply current
—
120
mA
VIO
IO pin input voltage
–0.3
VDD + 0.3
V
Instantaneous maximum current single pin limit (applies to
all port pins)
–25
25
mA
VDD – 0.3
VDD + 0.3
V
ID
VDDA
Analog supply voltage
2 General
2.1 AC electrical characteristics
Unless otherwise specified, propagation delays are measured from the 50% to the 50%
point, and rise and fall times are measured at the 20% and 80% points, as shown in the
following figure.
Figure 1. Input signal measurement reference
All digital I/O switching characteristics, unless otherwise specified, assume the output
pins have the following characteristics.
• CL=30 pF loads
• Slew rate disabled
• Normal drive strength
2.2 Nonswitching electrical specifications
Kinetis KL05 32 KB Flash, Rev4 03/2014.
5
Freescale Semiconductor, Inc.
General
2.2.1 Voltage and current operating requirements
Table 5. Voltage and current operating requirements
Symbol
Description
Min.
Max.
Unit
VDD
Supply voltage
1.71
3.6
V
VDDA
Analog supply voltage
1.71
3.6
V
—
VDD – VDDA VDD-to-VDDA differential voltage
–0.1
0.1
V
—
VSS – VSSA VSS-to-VSSA differential voltage
–0.1
0.1
V
—
VIH
VIL
Input high voltage
—
• 2.7 V ≤ VDD ≤ 3.6 V
0.7 × VDD
—
V
• 1.7 V ≤ VDD ≤ 2.7 V
0.75 × VDD
—
V
Input low voltage
—
• 2.7 V ≤ VDD ≤ 3.6 V
—
0.35 × VDD
V
• 1.7 V ≤ VDD ≤ 2.7 V
—
0.3 × VDD
V
0.06 × VDD
—
V
–3
—
mA
—
+3
VHYS
Input hysteresis
IICIO
IO pin negative DC injection current—single pin
—
1
• VIN < VSS–0.3V (negative current injection)
• VIN < VSS–0.3V (positive current injection)
IICcont
Notes
Contiguous pin DC injection current —regional limit,
includes sum of negative injection currents or sum of
positive injection currents of 16 contiguous pins
• Negative current injection
• Positive current injection
—
–25
—
mA
—
+25
VODPU
Open drain pullup voltage level
VDD
VDD
V
2
VRAM
VDD voltage required to retain RAM
1.2
—
V
—
1. All IO pins are internally clamped to VSS and VDD through ESD protection diodes. If VIN is greater than VIO_MIN
(=VSS-0.3V) and VIN is less than VIO_MAX(=VDD+0.3V) is observed, then there is no need to provide current limiting
resistors at the pads. If these limits cannot be observed then a current limiting resistor is required. The negative DC
injection current limiting resistor is calculated as R=(VIO_MIN-VIN)/|IICIO|. The positive injection current limiting resistor is
calculated as R=(VIN-VIO_MAX)/|IICIO|. Select the larger of these two calculated resistances.
2. Open drain outputs must be pulled to VDD.
2.2.2 LVD and POR operating requirements
Table 6. VDD supply LVD and POR operating requirements
Symbol
Description
Min.
Typ.
Max.
Unit
Notes
VPOR
Falling VDD POR detect voltage
0.8
1.1
1.5
V
—
VLVDH
Falling low-voltage detect threshold — high
range (LVDV = 01)
2.48
2.56
2.64
V
—
Low-voltage warning thresholds — high range
1
Table continues on the next page...
6
Freescale Semiconductor, Inc.
Kinetis KL05 32 KB Flash, Rev4 03/2014.
General
Table 6. VDD supply LVD and POR operating requirements (continued)
Symbol
Min.
Typ.
Max.
Unit
VLVW1H
Description
• Level 1 falling (LVWV = 00)
2.62
2.70
2.78
V
VLVW2H
• Level 2 falling (LVWV = 01)
2.72
2.80
2.88
V
VLVW3H
• Level 3 falling (LVWV = 10)
2.82
2.90
2.98
V
VLVW4H
• Level 4 falling (LVWV = 11)
2.92
3.00
3.08
V
—
±60
—
mV
—
1.54
1.60
1.66
V
—
VHYSH
Low-voltage inhibit reset/recover hysteresis —
high range
VLVDL
Falling low-voltage detect threshold — low
range (LVDV=00)
Notes
Low-voltage warning thresholds — low range
VLVW1L
• Level 1 falling (LVWV = 00)
VLVW2L
• Level 2 falling (LVWV = 01)
VLVW3L
• Level 3 falling (LVWV = 10)
VLVW4L
• Level 4 falling (LVWV = 11)
VHYSL
Low-voltage inhibit reset/recover hysteresis —
low range
1
1.74
1.80
1.86
V
1.84
1.90
1.96
V
1.94
2.00
2.06
V
2.04
2.10
2.16
V
—
±40
—
mV
—
VBG
Bandgap voltage reference
0.97
1.00
1.03
V
—
tLPO
Internal low power oscillator period — factory
trimmed
900
1000
1100
μs
—
1. Rising thresholds are falling threshold + hysteresis voltage
2.2.3 Voltage and current operating behaviors
Table 7. Voltage and current operating behaviors
Symbol
VOH
Description
Min.
Unit
Output high voltage — Normal drive pad (except
RESET)
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = –5 mA
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = –1.5 mA
VOH
Max.
1, 2
VDD – 0.5
—
V
VDD – 0.5
—
V
Output high voltage — High drive pad (except
RESET_b)
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = –18 mA
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = –6 mA
IOHT
Output high current total for all ports
VOL
Output low voltage — Normal drive pad
Notes
1, 2
VDD – 0.5
—
V
VDD – 0.5
—
V
—
100
mA
1
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 5 mA
—
0.5
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 1.5 mA
—
0.5
V
Table continues on the next page...
Kinetis KL05 32 KB Flash, Rev4 03/2014.
7
Freescale Semiconductor, Inc.
General
Table 7. Voltage and current operating behaviors (continued)
Symbol
VOL
Description
Min.
Max.
Unit
Notes
Output low voltage — High drive pad
1
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 18 mA
—
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 6 mA
0.5
V
—
0.5
V
Output low current total for all ports
—
100
mA
IIN
Input leakage current (per pin) for full temperature
range
—
1
μA
3
IIN
Input leakage current (per pin) at 25 °C
—
0.025
μA
3
IIN
Input leakage current (total all pins) for full
temperature range
—
41
μA
3
IOZ
Hi-Z (off-state) leakage current (per pin)
—
1
μA
RPU
Internal pullup resistors
20
50
kΩ
IOLT
4
1. PTA12, PTA13, PTB0 and PTB1 I/O have both high drive and normal drive capability selected by the associated
PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only.
2. The reset pin only contains an active pull down device when configured as the RESET signal or as a GPIO. When
configured as a GPIO output, it acts as a pseudo open drain output.
3. Measured at VDD = 3.6 V
4. Measured at VDD supply voltage = VDD min and Vinput = VSS
2.2.4 Power mode transition operating behaviors
All specifications except tPOR and VLLSx→RUN recovery times in the following table
assume this clock configuration:
• CPU and system clocks = 48 MHz
• Bus and flash clock = 24 MHz
• FEI clock mode
POR and VLLSx→RUN recovery use FEI clock mode at the default CPU and system
frequency of 21 MHz, and a bus and flash clock frequency of 10.5 MHz.
Table 8. Power mode transition operating behaviors
Symbol
tPOR
Description
After a POR event, amount of time from the
point VDD reaches 1.8 V to execution of the first
instruction across the operating temperature
range of the chip.
Min.
Typ.
Max.
Unit
—
—
300
μs
—
95
115
μs
• VLLS0 → RUN
1
• VLLS1 → RUN
Table continues on the next page...
8
Freescale Semiconductor, Inc.
Kinetis KL05 32 KB Flash, Rev4 03/2014.
General
Table 8. Power mode transition operating behaviors (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
—
93
115
μs
—
42
53
μs
—
4
4.6
μs
—
4
4.4
μs
—
4
4.4
μs
• VLLS3 → RUN
• LLS → RUN
• VLPS → RUN
• STOP → RUN
1. Normal boot (FTFA_FOPT[LPBOOT]=11).
2.2.5 Power consumption operating behaviors
The maximum values stated in the following table represent characterized results
equivalent to the mean plus three times the standard deviation (mean + 3 sigma).
Table 9. Power consumption operating behaviors
Symbol
IDDA
Description
Analog supply current
IDD_RUNCO Run mode current in compute operation - 48
MHz core / 24 MHz flash / bus clock disabled,
code of while(1) loop executing from flash
Min.
Typ.
Max.1
Unit
Notes
—
—
See note
mA
2
3
—
4.0
4.3
mA
• at 3.0 V
IDD_RUN
Run mode current - 48 MHz core / 24 MHz bus
and flash, all peripheral clocks disabled, code
executing from flash
3
—
4.9
5.3
mA
• at 3.0 V
IDD_RUN
Run mode current - 48 MHz core / 24 MHz bus
and flash, all peripheral clocks enabled, code
executing from flash
• at 3.0 V
• at 25 °C
3, 4
mA
—
5.7
5.8
—
6.0
6.2
• at 125 °C
IDD_WAIT
Wait mode current - core disabled / 48 MHz
system / 24 MHz bus / flash disabled (flash
doze enabled), all peripheral clocks disabled
• at 3.0 V
3
—
2.7
2.9
mA
Table continues on the next page...
Kinetis KL05 32 KB Flash, Rev4 03/2014.
9
Freescale Semiconductor, Inc.
General
Table 9. Power consumption operating behaviors (continued)
Symbol
Description
Min.
IDD_WAIT
Wait mode current - core disabled / 24 MHz
system / 24 MHz bus / flash disabled (flash
doze enabled), all peripheral clocks disabled
• at 3.0 V
IDD_PSTOP2 Stop mode current with partial stop 2 clocking
option - core and system disabled / 10.5 MHz
bus / flash disabled (flash doze enabled)
• at 3.0 V
IDD_VLPRCO Very-low-power run mode current in compute
operation - 4 MHz core / 0.8 MHz flash / bus
clock disabled, code executing from flash
• at 3.0 V
IDD_VLPR
IDD_VLPR
Very low power run mode current - 4 MHz
core / 0.8 MHz bus and flash, all peripheral
clocks disabled, code executing from flash
• at 3.0 V
Very low power run mode current - 4 MHz
core / 0.8 MHz bus and flash, all peripheral
clocks enabled, code executing from flash
• at 3.0 V
IDD_VLPW Very low power wait mode current - core
disabled / 4 MHz system / 0.8 MHz bus / flash
disabled (flash doze enabled), all peripheral
clocks disabled
• at 3.0 V
IDD_STOP
• at 50 °C
• at 70 °C
• at 85 °C
• at 105 °C
• at 50 °C
• at 70 °C
• at 85 °C
• at 105 °C
Unit
Notes
3
—
2.2
2.3
mA
3
—
1.5
1.7
mA
5
—
182
253
μA
5
—
213
284
μA
4, 5
—
243
313
μA
5
—
111
170
—
257
277
—
265
285
—
278
303
—
295
326
—
353
412
—
2.25
5.76
—
4.08
8.27
—
8.10
14.52
—
14.18
23.78
—
37.07
58.58
Very-low-power stop mode current
• at 3.0 V
• at 25 °C
IDD_LLS
Max.1
Stop mode current
• at 3.0 V
• at 25 °C
IDD_VLPS
Typ.
μA
μA
μA
Low-leakage stop mode current
• at 3.0 V
Table continues on the next page...
10
Freescale Semiconductor, Inc.
Kinetis KL05 32 KB Flash, Rev4 03/2014.
General
Table 9. Power consumption operating behaviors (continued)
Symbol
Min.
Typ.
Max.1
Unit
• at 25 °C
—
1.72
2.01
μA
• at 50 °C
—
2.52
3.18
• at 70 °C
—
4.32
5.94
• at 85 °C
—
7.18
10.00
• at 105 °C
—
18.67
25.65
—
1.16
1.36
—
1.78
2.27
—
3.23
4.38
—
5.57
7.53
—
14.80
19.74
—
0.64
0.81
—
1.14
1.50
—
2.35
3.20
—
4.37
5.80
—
12.40
16.13
—
0.38
0.54
—
0.88
1.23
—
2.10
2.95
—
4.14
5.59
—
12.00
15.73
Description
IDD_VLLS3 Very-low-leakage stop mode 3 current
• at 3.0 V
• at 25 °C
• at 50 °C
• at 70 °C
• at 85 °C
• at 105 °C
IDD_VLLS1 Very-low-leakage stop mode 1 current
• at 3.0 V
• at 25°C
• at 50°C
• at 70°C
• at 85°C
• at 105°C
IDD_VLLS0 Very-low-leakage stop mode 0 current
(SMC_STOPCTRL[PORPO] = 0)
• at 3.0 V
• at 25 °C
• at 50 °C
• at 70 °C
• at 85 °C
Notes
μA
μA
μA
• at 105 °C
IDD_VLLS0 Very-low-leakage stop mode 0 current
(SMC_STOPCTRL[PORPO] = 1)
• at 3.0 V
• at 25 °C
• at 50 °C
• at 70 °C
• at 85 °C
• at 105 °C
6
—
0.30
0.45
—
0.79
1.12
—
2.01
2.82
—
4.05
5.45
—
11.96
15.63
μA
1. Data based on characterization results.
Kinetis KL05 32 KB Flash, Rev4 03/2014.
11
Freescale Semiconductor, Inc.
General
2. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See
each module's specification for its supply current.
3. MCG configured for FEI mode.
4. Incremental current consumption from peripheral activity is not included.
5. MCG configured for BLPI mode.
6. No brownout
Table 10. Low power mode peripheral adders — typical value
Symbol
Description
Temperature (°C)
Unit
-40
25
50
70
85
105
IIREFSTEN4MHz
4 MHz internal reference clock (IRC)
adder. Measured by entering STOP or
VLPS mode with 4 MHz IRC enabled.
56
56
56
56
56
56
µA
IIREFSTEN32KHz
32 kHz internal reference clock (IRC)
adder. Measured by entering STOP
mode with the 32 kHz IRC enabled.
52
52
52
52
52
52
µA
IEREFSTEN4MHz
External 4 MHz crystal clock adder.
Measured by entering STOP or VLPS
mode with the crystal enabled.
206
228
237
245
251
258
uA
IEREFSTEN32KHz
External 32 kHz crystal clock adder by
means of the OSC0_CR[EREFSTEN
and EREFSTEN] bits. Measured by
entering all modes with the crystal
enabled.
• VLLS1
• VLLS3
• LLS
• VLPS
• STOP
440
490
540
560
570
580
440
490
540
560
570
580
490
490
540
560
570
680
510
560
560
560
610
680
510
560
560
560
610
680
nA
ICMP
CMP peripheral adder measured by
placing the device in VLLS1 mode with
CMP enabled using the 6-bit DAC and a
single external input for compare.
Includes 6-bit DAC power consumption.
22
22
22
22
22
22
µA
IRTC
RTC peripheral adder measured by
placing the device in VLLS1 mode with
external 32 kHz crystal enabled by
means of the RTC_CR[OSCE] bit and
the RTC ALARM set for 1 minute.
Includes ERCLK32K (32 kHz external
crystal) power consumption.
432
357
388
475
532
810
nA
IUART
UART peripheral adder measured by
placing the device in STOP or VLPS
mode with selected clock source waiting
for RX data at 115200 baud rate.
Includes selected clock source power
consumption.
• MCGIRCLK (4 MHz internal
reference clock)
• OSCERCLK (4 MHz external
crystal)
66
66
66
66
66
66
µA
214
237
246
254
260
268
Table continues on the next page...
12
Freescale Semiconductor, Inc.
Kinetis KL05 32 KB Flash, Rev4 03/2014.
General
Table 10. Low power mode peripheral adders — typical value (continued)
Symbol
ITPM
Description
TPM peripheral adder measured by
placing the device in STOP or VLPS
mode with selected clock source
configured for output compare
generating 100 Hz clock signal. No load
is placed on the I/O generating the
clock signal. Includes selected clock
source and I/O switching currents.
• MCGIRCLK (4 MHz internal
reference clock)
• OSCERCLK (4 MHz external
crystal)
Temperature (°C)
Unit
-40
25
50
70
85
105
86
86
86
86
86
86
235
256
265
274
280
287
µA
IBG
Bandgap adder when BGEN bit is set
and device is placed in VLPx, LLS, or
VLLSx mode.
45
45
45
45
45
45
µA
IADC
ADC peripheral adder combining the
measured values at VDD and VDDA by
placing the device in STOP or VLPS
mode. ADC is configured for low power
mode using the internal clock and
continuous conversions.
366
366
366
366
366
366
µA
2.2.5.1
Diagram: Typical IDD_RUN operating behavior
The following data was measured under these conditions:
•
•
•
•
MCG in FBE for run mode, and BLPE for VLPR mode
No GPIOs toggled
Code execution from flash with cache enabled
For the ALLOFF curve, all peripheral clocks are disabled except FTFA
Kinetis KL05 32 KB Flash, Rev4 03/2014.
13
Freescale Semiconductor, Inc.
General
Run Mode Current VS Core Frequency
Temperature = 25, VDD = 3, CACHE = Enable, Code Residence = Flash, Clocking Mode = FBE
7.00E-03
6.00E-03
Current Consumption on VDD (A)
5.00E-03
4.00E-03
All Peripheral CLK Gates
All Off
All On
3.00E-03
2.00E-03
1.00E-03
000.00E+00
'1-1
'1-1
'1-1
'1-1
'1-1
'1-1
'1-1
'1-2
1
2
3
4
6
12
24
48
CLK Ratio
Flash-Core
Core Freq (MHz)
Figure 2. Run mode supply current vs. core frequency
14
Freescale Semiconductor, Inc.
Kinetis KL05 32 KB Flash, Rev4 03/2014.
General
VLPR Mode Current VS Core Frequency
Temperature = 25, VDD = 3, CACHE = Enable, Code Residence = Flash, Clocking Mode = BLPE
350.00E-06
300.00E-06
Current Consumption on VDD (A)
250.00E-06
200.00E-06
All Peripheral CLK Gates
All Off
All On
150.00E-06
100.00E-06
50.00E-06
000.00E+00
'1-1
'1-2
1
'1-2
'1-4
2
4
CLK Ratio
Flash-Core
Core Freq (MHz)
Figure 3. VLPR mode current vs. core frequency
2.2.6 EMC performance
Electromagnetic compatibility (EMC) performance is highly dependent on the
environment in which the MCU resides. Board design and layout, circuit topology
choices, location and characteristics of external components as well as MCU software
operation play a significant role in EMC performance. The system designer must
consult the following Freescale applications notes, available on freescale.com for
advice and guidance specifically targeted at optimizing EMC performance.
• AN2321: Designing for Board Level Electromagnetic Compatibility
• AN1050: Designing for Electromagnetic Compatibility (EMC) with HCMOS
Microcontrollers
• AN1263: Designing for Electromagnetic Compatibility with Single-Chip
Microcontrollers
Kinetis KL05 32 KB Flash, Rev4 03/2014.
15
Freescale Semiconductor, Inc.
General
• AN2764: Improving the Transient Immunity Performance of MicrocontrollerBased Applications
• AN1259: System Design and Layout Techniques for Noise Reduction in MCUBased Systems
2.2.7 Capacitance attributes
Table 11. Capacitance attributes
Symbol
CIN
Description
Input capacitance
Min.
Max.
Unit
—
7
pF
Min.
Max.
Unit
2.3 Switching specifications
2.3.1 Device clock specifications
Table 12. Device clock specifications
Symbol
Description
Normal run mode
fSYS
System and core clock
—
48
MHz
fBUS
Bus clock
—
24
MHz
fFLASH
Flash clock
—
24
MHz
fLPTMR
LPTMR clock
—
24
MHz
VLPR and VLPS
modes1
fSYS
System and core clock
—
4
MHz
fBUS
Bus clock
—
1
MHz
Flash clock
—
1
MHz
—
24
MHz
—
16
MHz
—
16
MHz
Oscillator crystal or resonator frequency — high frequency
mode (high range) (MCG_C2[RANGE]=1x)
—
16
MHz
TPM asynchronous clock
—
8
MHz
UART0 asynchronous clock
—
8
MHz
fFLASH
clock2
fLPTMR
LPTMR
fERCLK
External reference clock
fLPTMR_ERCLK LPTMR external reference clock
fosc_hi_2
fTPM
fUART0
1. The frequency limitations in VLPR and VLPS modes here override any frequency specification listed in the timing
specification for any other module. These same frequency limits apply to VLPS, whether VLPS was entered from RUN
or from VLPR.
2. The LPTMR can be clocked at this speed in VLPR or VLPS only when the source is an external pin.
16
Freescale Semiconductor, Inc.
Kinetis KL05 32 KB Flash, Rev4 03/2014.
General
2.3.2 General switching specifications
These general-purpose specifications apply to all signals configured for GPIO and
UART signals.
Table 13. General switching specifications
Description
Min.
Max.
Unit
Notes
GPIO pin interrupt pulse width (digital glitch filter disabled)
— Synchronous path
1.5
—
Bus clock
cycles
1
External RESET and NMI pin interrupt pulse width —
Asynchronous path
100
—
ns
2
GPIO pin interrupt pulse width — Asynchronous path
16
—
ns
2
Port rise and fall time
—
36
ns
3
1. The greater synchronous and asynchronous timing must be met.
2. This is the shortest pulse that is guaranteed to be recognized.
3. 75 pF load
2.4 Thermal specifications
2.4.1 Thermal operating requirements
Table 14. Thermal operating requirements
Symbol
Description
Min.
Max.
Unit
TJ
Die junction temperature
–40
125
°C
TA
Ambient temperature
–40
105
°C
2.4.2 Thermal attributes
Table 15. Thermal attributes
Board type
Symbol
Single-layer (1S)
RθJA
Four-layer (2s2p)
RθJA
Description
48
LQFP
32
LQFP
32 QFN 24 QFN
Thermal resistance, junction
to ambient (natural
convection)
82
88
97
Thermal resistance, junction
to ambient (natural
convection)
58
59
34
Unit
Notes
110
°C/W
1
42
°C/W
Table continues on the next page...
Kinetis KL05 32 KB Flash, Rev4 03/2014.
17
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 15. Thermal attributes (continued)
Board type
Symbol
Single-layer (1S)
RθJMA
Four-layer (2s2p)
Description
48
LQFP
32
LQFP
32 QFN 24 QFN
Unit
Notes
Thermal resistance, junction
to ambient (200 ft./min. air
speed)
70
74
81
92
°C/W
RθJMA
Thermal resistance, junction
to ambient (200 ft./min. air
speed)
52
52
28
36
°C/W
—
RθJB
Thermal resistance, junction
to board
36
35
13
18
°C/W
2
—
RθJC
Thermal resistance, junction
to case
27
26
2.3
3.7
°C/W
3
—
ΨJT
Thermal characterization
parameter, junction to
package top outside center
(natural convection)
8
8
8
10
°C/W
4
1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental
Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method
Environmental Conditions—Forced Convection (Moving Air).
2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental
Conditions—Junction-to-Board.
3. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate
temperature used for the case temperature. The value includes the thermal resistance of the interface material between
the top of the package and the cold plate.
4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental
Conditions—Natural Convection (Still Air).
3 Peripheral operating requirements and behaviors
3.1 Core modules
3.1.1 SWD electricals
Table 16. SWD full voltage range electricals
Symbol
J1
Description
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
0
25
MHz
1/J1
—
ns
SWD_CLK frequency of operation
• Serial wire debug
J2
SWD_CLK cycle period
J3
SWD_CLK clock pulse width
Table continues on the next page...
18
Freescale Semiconductor, Inc.
Kinetis KL05 32 KB Flash, Rev4 03/2014.
Peripheral operating requirements and behaviors
Table 16. SWD full voltage range electricals (continued)
Symbol
Description
Min.
Max.
Unit
20
—
ns
• Serial wire debug
J4
SWD_CLK rise and fall times
—
3
ns
J9
SWD_DIO input data setup time to SWD_CLK rise
10
—
ns
J10
SWD_DIO input data hold time after SWD_CLK rise
0
—
ns
J11
SWD_CLK high to SWD_DIO data valid
—
32
ns
J12
SWD_CLK high to SWD_DIO high-Z
5
—
ns
J2
J3
J3
SWD_CLK (input)
J4
J4
Figure 4. Serial wire clock input timing
SWD_CLK
J9
SWD_DIO
J10
Input data valid
J11
SWD_DIO
Output data valid
J12
SWD_DIO
J11
SWD_DIO
Output data valid
Figure 5. Serial wire data timing
Kinetis KL05 32 KB Flash, Rev4 03/2014.
19
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
3.2 System modules
There are no specifications necessary for the device's system modules.
3.3 Clock modules
3.3.1 MCG specifications
Table 17. MCG specifications
Symbol
Description
Min.
Typ.
Max.
Unit
Notes
fints_ft
Internal reference frequency (slow clock) —
factory trimmed at nominal VDD and 25 °C
—
32.768
—
kHz
fints_t
Internal reference frequency (slow clock) —
user trimmed
31.25
—
39.0625
kHz
—
± 0.3
± 0.6
%fdco
1
Δfdco_res_t Resolution of trimmed average DCO output
frequency at fixed voltage and temperature —
using C3[SCTRIM] and C4[SCFTRIM]
Δfdco_t
Total deviation of trimmed average DCO output
frequency over voltage and temperature
—
+0.5/-0.7
±3
%fdco
1, 2
Δfdco_t
Total deviation of trimmed average DCO output
frequency over fixed voltage and temperature
range of 0–70 °C
—
± 0.4
± 1.5
%fdco
1, 2
Internal reference frequency (fast clock) —
factory trimmed at nominal VDD and 25 °C
—
4
—
MHz
Δfintf_ft
Frequency deviation of internal reference clock
(fast clock) over temperature and voltage —
factory trimmed at nominal VDD and 25 °C
—
+1/-2
±3
%fintf_ft
fintf_t
Internal reference frequency (fast clock) — user
trimmed at nominal VDD and 25 °C
3
—
5
MHz
fintf_ft
floc_low
Loss of external clock minimum frequency —
RANGE = 00
(3/5) x
fints_t
—
—
kHz
floc_high
Loss of external clock minimum frequency —
RANGE = 01, 10, or 11
(16/5) x
fints_t
—
—
kHz
31.25
—
39.0625
kHz
20
20.97
25
MHz
40
41.94
48
MHz
—
23.99
—
MHz
—
47.97
—
MHz
2
FLL
ffll_ref
fdco
FLL reference frequency range
DCO output
frequency range
Low range (DRS = 00)
3, 4
640 × ffll_ref
Mid range (DRS = 01)
1280 × ffll_ref
fdco_t_DMX3 DCO output
frequency
2
Low range (DRS = 00)
5, 6
732 × ffll_ref
Mid range (DRS = 01)
Table continues on the next page...
20
Freescale Semiconductor, Inc.
Kinetis KL05 32 KB Flash, Rev4 03/2014.
Peripheral operating requirements and behaviors
Table 17. MCG specifications (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
Notes
—
180
—
ps
7
—
—
1
ms
8
1464 × ffll_ref
Jcyc_fll
FLL period jitter
• fVCO = 48 MHz
tfll_acquire
FLL target frequency acquisition time
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock
mode).
2. The deviation is relative to the factory trimmed frequency at nominal VDD and 25 °C, fints_ft.
3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 0.
4. The resulting system clock frequencies must not exceed their maximum specified values. The DCO frequency
deviation (Δfdco_t) over voltage and temperature must be considered.
5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 1.
6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
7. This specification is based on standard deviation (RMS) of period or frequency.
8. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
3.3.2 Oscillator electrical specifications
3.3.2.1
Oscillator DC electrical specifications
Table 18. Oscillator DC electrical specifications
Symbol
Description
Min.
Typ.
Max.
Unit
VDD
Supply voltage
1.71
—
3.6
V
IDDOSC
IDDOSC
Supply current — low-power mode (HGO=0)
Notes
1
• 32 kHz
—
500
—
nA
• 4 MHz
—
200
—
μA
• 8 MHz (RANGE=01)
—
300
—
μA
• 16 MHz
—
950
—
μA
• 24 MHz
—
1.2
—
mA
• 32 MHz
—
1.5
—
mA
Supply current — high gain mode (HGO=1)
1
• 32 kHz
—
25
—
μA
• 4 MHz
—
400
—
μA
• 8 MHz (RANGE=01)
—
500
—
μA
• 16 MHz
—
2.5
—
mA
—
3
—
mA
—
4
—
mA
Table continues on the next page...
Kinetis KL05 32 KB Flash, Rev4 03/2014.
21
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 18. Oscillator DC electrical specifications (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
Notes
• 24 MHz
• 32 MHz
Cx
EXTAL load capacitance
—
—
—
2, 3
Cy
XTAL load capacitance
—
—
—
2, 3
RF
Feedback resistor — low-frequency, low-power
mode (HGO=0)
—
—
—
MΩ
Feedback resistor — low-frequency, high-gain
mode (HGO=1)
—
10
—
MΩ
Feedback resistor — high-frequency, lowpower mode (HGO=0)
—
—
—
MΩ
Feedback resistor — high-frequency, high-gain
mode (HGO=1)
—
1
—
MΩ
Series resistor — low-frequency, low-power
mode (HGO=0)
—
—
—
kΩ
Series resistor — low-frequency, high-gain
mode (HGO=1)
—
200
—
kΩ
Series resistor — high-frequency, low-power
mode (HGO=0)
—
—
—
kΩ
—
0
—
kΩ
Peak-to-peak amplitude of oscillation (oscillator
mode) — low-frequency, low-power mode
(HGO=0)
—
0.6
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — low-frequency, high-gain mode
(HGO=1)
—
VDD
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — high-frequency, low-power mode
(HGO=0)
—
0.6
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — high-frequency, high-gain mode
(HGO=1)
—
VDD
—
V
RS
2, 4
Series resistor — high-frequency, high-gain
mode (HGO=1)
5
Vpp
1. VDD=3.3 V, Temperature =25 °C
2. See crystal or resonator manufacturer's recommendation
3. Cx,Cy can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For
all other cases external capacitors must be used.
4. When low power mode is selected, RF is integrated and must not be attached externally.
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to
any other devices.
22
Freescale Semiconductor, Inc.
Kinetis KL05 32 KB Flash, Rev4 03/2014.
Peripheral operating requirements and behaviors
3.3.2.2
Symbol
Oscillator frequency specifications
Table 19. Oscillator frequency specifications
Min.
Typ.
Max.
Unit
Oscillator crystal or resonator frequency — lowfrequency mode (MCG_C2[RANGE]=00)
32
—
40
kHz
fosc_hi_1
Oscillator crystal or resonator frequency —
high-frequency mode (low range)
(MCG_C2[RANGE]=01)
3
—
8
MHz
fosc_hi_2
Oscillator crystal or resonator frequency —
high frequency mode (high range)
(MCG_C2[RANGE]=1x)
8
—
32
MHz
fec_extal
Input clock frequency (external clock mode)
—
—
48
MHz
tdc_extal
Input clock duty cycle (external clock mode)
40
50
60
%
Crystal startup time — 32 kHz low-frequency,
low-power mode (HGO=0)
—
—
ms
Crystal startup time — 32 kHz low-frequency,
high-gain mode (HGO=1)
—
—
ms
Crystal startup time — 8 MHz high-frequency
(MCG_C2[RANGE]=01), low-power mode
(HGO=0)
—
0.6
—
ms
Crystal startup time — 8 MHz high-frequency
(MCG_C2[RANGE]=01), high-gain mode
(HGO=1)
—
1
—
ms
fosc_lo
tcst
Description
Notes
1, 2
3, 4
1. Other frequency limits may apply when external clock is being used as a reference for the FLL
2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by
FRDIV, it remains within the limits of the DCO input clock frequency.
3. Proper PC board layout procedures must be followed to achieve specifications.
4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S
register being set.
3.4 Memories and memory interfaces
3.4.1 Flash electrical specifications
This section describes the electrical characteristics of the flash memory module.
3.4.1.1
Flash timing specifications — program and erase
The following specifications represent the amount of time the internal charge pumps
are active and do not include command overhead.
Kinetis KL05 32 KB Flash, Rev4 03/2014.
23
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 20. NVM program/erase timing specifications
Symbol
Description
Min.
Typ.
Max.
Unit
thvpgm4
Notes
Longword Program high-voltage time
—
7.5
18
μs
thversscr
Sector Erase high-voltage time
—
13
113
ms
1
thversall
Erase All high-voltage time
—
52
452
ms
1
1. Maximum time based on expectations at cycling end-of-life.
3.4.1.2
Flash timing specifications — commands
Table 21. Flash command timing specifications
Symbol
Description
Min.
Typ.
Max.
Unit
Notes
trd1sec1k
tpgmchk
Read 1s Section execution time (flash sector)
—
—
60
μs
1
Program Check execution time
—
—
45
μs
1
trdrsrc
Read Resource execution time
—
—
30
μs
1
tpgm4
Program Longword execution time
—
65
145
μs
tersscr
Erase Flash Sector execution time
—
14
114
ms
trd1all
Read 1s All Blocks execution time
—
—
0.5
ms
trdonce
Read Once execution time
—
—
25
μs
Program Once execution time
—
65
—
μs
tersall
Erase All Blocks execution time
—
61
500
ms
2
tvfykey
Verify Backdoor Access Key execution time
—
—
30
μs
1
tpgmonce
2
1
1. Assumes 25 MHz flash clock frequency.
2. Maximum times for erase parameters based on expectations at cycling end-of-life.
3.4.1.3
Flash high voltage current behaviors
Table 22. Flash high voltage current behaviors
Symbol
Description
IDD_PGM
IDD_ERS
3.4.1.4
Symbol
Min.
Typ.
Max.
Unit
Average current adder during high voltage
flash programming operation
—
2.5
6.0
mA
Average current adder during high voltage
flash erase operation
—
1.5
4.0
mA
Reliability specifications
Table 23. NVM reliability specifications
Description
Min.
Typ.1
Max.
Unit
Notes
Program Flash
Table continues on the next page...
24
Freescale Semiconductor, Inc.
Kinetis KL05 32 KB Flash, Rev4 03/2014.
Peripheral operating requirements and behaviors
Table 23. NVM reliability specifications (continued)
Min.
Typ.1
Max.
Unit
tnvmretp10k Data retention after up to 10 K cycles
5
50
—
years
tnvmretp1k
Data retention after up to 1 K cycles
20
100
—
years
nnvmcycp
Cycling endurance
10 K
50 K
—
cycles
Symbol
Description
Notes
2
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a
constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in
Engineering Bulletin EB619.
2. Cycling endurance represents number of program/erase cycles at -40 °C ≤ Tj ≤ 125 °C.
3.5 Security and integrity modules
There are no specifications necessary for the device's security and integrity modules.
3.6 Analog
3.6.1 ADC electrical specifications
All ADC channels meet the 12-bit single-ended accuracy specifications.
3.6.1.1
12-bit ADC operating conditions
Table 24. 12-bit ADC operating conditions
Symbol
Description
Conditions
Min.
Typ.1
Max.
Unit
VDDA
Supply voltage
Absolute
1.71
—
3.6
V
ΔVDDA
Supply voltage
Delta to VDD (VDD – VDDA)
-100
0
+100
mV
2
ΔVSSA
Ground voltage
Delta to VSS (VSS – VSSA)
-100
0
+100
mV
2
VREFH
ADC reference
voltage high
1.13
VDDA
VDDA
V
3
VREFL
ADC reference
voltage low
VSSA
VSSA
VSSA
V
3
VADIN
Input voltage
VREFL
—
VREFH
V
CADIN
Input
capacitance
—
4
5
pF
RADIN
Input series
resistance
—
2
5
kΩ
• 8-bit / 10-bit / 12-bit
modes
Notes
Table continues on the next page...
Kinetis KL05 32 KB Flash, Rev4 03/2014.
25
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 24. 12-bit ADC operating conditions (continued)
Symbol
Description
Conditions
RAS
Analog source
resistance
(external)
12-bit modes
Min.
Typ.1
Max.
Unit
Notes
4
fADCK < 4 MHz
—
—
5
kΩ
fADCK
ADC conversion ≤ 12-bit mode
clock frequency
1.0
—
18.0
MHz
Crate
ADC conversion ≤ 12-bit modes
rate
No ADC hardware averaging
5
6
20.000
—
818.330
Ksps
Continuous conversions
enabled, subsequent
conversion time
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for
reference only, and are not tested in production.
2. DC potential difference.
3. For packages without dedicated VREFH and VREFL pins, VREFH is internally tied to VDDA, and VREFL is internally tied to
VSSA.
4. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as
possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The RAS/
CAS time constant should be kept to < 1 ns.
5. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
6. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.
SIMPLIFIED
INPUT PIN EQUIVALENT
CIRCUIT
Pad
leakage
due to
input
protection
ZAS
RAS
ZADIN
SIMPLIFIED
CHANNEL SELECT
CIRCUIT
RADIN
ADC SAR
ENGINE
VADIN
CAS
VAS
RADIN
INPUT PIN
INPUT PIN
RADIN
RADIN
INPUT PIN
CADIN
Figure 6. ADC input impedance equivalency diagram
26
Freescale Semiconductor, Inc.
Kinetis KL05 32 KB Flash, Rev4 03/2014.
Peripheral operating requirements and behaviors
3.6.1.2
12-bit ADC electrical characteristics
Table 25. 12-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA)
Symbol
Description
IDDA_ADC
Supply current
ADC
asynchronous
clock source
fADACK
Conditions1
• ADLPC = 1, ADHSC =
0
• ADLPC = 1, ADHSC =
1
• ADLPC = 0, ADHSC =
0
Min.
Typ.2
Max.
Unit
Notes
0.215
—
1.7
mA
3
1.2
2.4
3.9
MHz
2.4
4.0
6.1
MHz
tADACK = 1/
fADACK
3.0
5.2
7.3
MHz
4.4
6.2
9.5
MHz
LSB4
5
LSB4
5
LSB4
5
LSB4
VADIN =
VDDA5
• ADLPC = 0, ADHSC =
1
Sample Time
TUE
DNL
INL
EFS
See Reference Manual chapter for sample times
Total unadjusted
error
• 12-bit modes
—
±4
±6.8
• <12-bit modes
—
±1.4
±2.1
Differential nonlinearity
• 12-bit modes
—
±0.7
–1.1 to
+1.9
• <12-bit modes
—
±0.2
• 12-bit modes
—
±1.0
• <12-bit modes
—
±0.5
• 12-bit modes
—
–4
–5.4
• <12-bit modes
—
–1.4
–1.8
• 12-bit modes
—
—
±0.5
Integral nonlinearity
Full-scale error
EQ
Quantization
error
EIL
Input leakage
error
–0.3 to 0.5
–2.7 to
+1.9
–0.7 to
+0.5
IIn × RAS
LSB4
mV
IIn =
leakage
current
(refer to
the MCU's
voltage
and
current
operating
ratings)
VTEMP25
Temp sensor
slope
Across the full temperature
range of the device
1.55
1.62
1.69
mV/°C
6
Temp sensor
voltage
25 °C
706
716
726
mV
6
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA
2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
Kinetis KL05 32 KB Flash, Rev4 03/2014.
27
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low
power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1
MHz ADC conversion clock speed.
4. 1 LSB = (VREFH - VREFL)/2N
5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
6. ADC conversion clock < 3 MHz
Figure 7. Typical ENOB vs. ADC_CLK for 12-bit single-ended mode
3.6.2 CMP and 6-bit DAC electrical specifications
Table 26. Comparator and 6-bit DAC electrical specifications
Symbol
Description
Min.
Typ.
Max.
Unit
VDD
Supply voltage
1.71
—
3.6
V
IDDHS
Supply current, high-speed mode (EN = 1, PMODE =
1)
—
—
200
μA
IDDLS
Supply current, low-speed mode (EN = 1, PMODE =
0)
—
—
20
μA
VAIN
Analog input voltage
VSS
—
VDD
V
VAIO
Analog input offset voltage
—
—
20
mV
• CR0[HYSTCTR] = 00
—
5
—
mV
• CR0[HYSTCTR] = 01
—
10
—
mV
VH
Analog comparator
hysteresis1
Table continues on the next page...
28
Freescale Semiconductor, Inc.
Kinetis KL05 32 KB Flash, Rev4 03/2014.
Peripheral operating requirements and behaviors
Table 26. Comparator and 6-bit DAC electrical specifications (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
• CR0[HYSTCTR] = 10
—
20
—
mV
• CR0[HYSTCTR] = 11
—
30
—
mV
VCMPOh
Output high
VDD – 0.5
—
—
V
VCMPOl
Output low
—
—
0.5
V
tDHS
Propagation delay, high-speed mode (EN = 1,
PMODE = 1)
20
50
200
ns
tDLS
Propagation delay, low-speed mode (EN = 1, PMODE
= 0)
80
250
600
ns
Analog comparator initialization delay2
—
—
40
μs
6-bit DAC current adder (enabled)
—
7
—
μA
IDAC6b
INL
6-bit DAC integral non-linearity
–0.5
—
0.5
LSB3
DNL
6-bit DAC differential non-linearity
–0.3
—
0.3
LSB
1. Typical hysteresis is measured with input voltage range limited to 0.7 to VDD – 0.7 V.
2. Comparator initialization delay is defined as the time between software writes to change control inputs (writes to
DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.
3. 1 LSB = Vreference/64
CMP Hysteresis vs Vinn
90.00E-03
80.00E-03
70.00E-03
CMP Hysteresis (V)
60.00E-03
HYSTCTR
Setting
50.00E-03
0
1
40.00E-03
2
3
30.00E-03
20.00E-03
10.00E-03
000.00E+00
0.1
0.4
0.7
1
1.3
1.6
1.9
2.2
2.5
2.8
3.1
Vinn (V)
Figure 8. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)
Kinetis KL05 32 KB Flash, Rev4 03/2014.
29
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
CMP Hysteresis vs Vinn
180.00E-03
160.00E-03
140.00E-03
CMP Hysteresis (V)
120.00E-03
HYSTCTR
Setting
100.00E-03
0
1
80.00E-03
2
3
60.00E-03
40.00E-03
20.00E-03
000.00E+00
0.1
0.4
0.7
1
-20.00E-03
1.3
1.6
1.9
2.2
2.5
2.8
3.1
Vinn (V)
Figure 9. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)
3.6.3 12-bit DAC electrical characteristics
3.6.3.1
Symbol
12-bit DAC operating requirements
Table 27. 12-bit DAC operating requirements
Desciption
Min.
VDDA
Supply voltage
VDACR
Reference voltage
Max.
Unit
Notes
3.6
V
1.13
3.6
V
1
2
CL
Output load capacitance
—
100
pF
IL
Output load current
—
1
mA
1. The DAC reference can be selected to be VDDA or VREFH.
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.
3.6.3.2
Symbol
12-bit DAC operating behaviors
Table 28. 12-bit DAC operating behaviors
Description
IDDA_DACL Supply current — low-power mode
Min.
Typ.
Max.
Unit
—
—
250
μA
—
—
900
μA
Notes
P
IDDA_DACH Supply current — high-speed mode
P
tDACLP
Full-scale settling time (0x080 to 0xF7F) —
low-power mode
—
100
200
μs
1
tDACHP
Full-scale settling time (0x080 to 0xF7F) —
high-power mode
—
15
30
μs
1
Table continues on the next page...
30
Freescale Semiconductor, Inc.
Kinetis KL05 32 KB Flash, Rev4 03/2014.
Peripheral operating requirements and behaviors
Table 28. 12-bit DAC operating behaviors (continued)
Symbol
Description
tCCDACLP Code-to-code settling time (0xBF8 to
0xC08) — low-power mode and high-speed
mode
Min.
Typ.
Max.
Unit
Notes
—
0.7
1
μs
1
Vdacoutl
DAC output voltage range low — highspeed mode, no load, DAC set to 0x000
—
—
100
mV
Vdacouth
DAC output voltage range high — highspeed mode, no load, DAC set to 0xFFF
VDACR
−100
—
VDACR
mV
INL
Integral non-linearity error — high speed
mode
—
—
±8
LSB
2
DNL
Differential non-linearity error — VDACR > 2
V
—
—
±1
LSB
3
DNL
Differential non-linearity error — VDACR =
VREF_OUT
—
—
±1
LSB
4
—
±0.4
±0.8
%FSR
5
Gain error
—
±0.1
±0.6
%FSR
5
Power supply rejection ratio, VDDA ≥ 2.4 V
60
—
90
dB
TCO
Temperature coefficient offset voltage
—
3.7
—
μV/C
TGE
Temperature coefficient gain error
—
0.000421
—
%FSR/C
Rop
Output resistance (load = 3 kΩ)
—
—
250
Ω
SR
Slew rate -80h→ F7Fh→ 80h
VOFFSET Offset error
EG
PSRR
BW
1.
2.
3.
4.
5.
6.
6
V/μs
• High power (SPHP)
1.2
1.7
—
• Low power (SPLP)
0.05
0.12
—
3dB bandwidth
kHz
• High power (SPHP)
550
—
—
• Low power (SPLP)
40
—
—
Settling within ±1 LSB
The INL is measured for 0 + 100 mV to VDACR −100 mV
The DNL is measured for 0 + 100 mV to VDACR −100 mV
The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V
Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV
VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC
set to 0x800, temperature range is across the full range of the device
Kinetis KL05 32 KB Flash, Rev4 03/2014.
31
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
8
6
4
DAC12 INL (LSB)
2
0
-2
-4
-6
-8
0
500
1000
1500
2000
2500
3000
3500
4000
Digital Code
Figure 10. Typical INL error vs. digital code
32
Freescale Semiconductor, Inc.
Kinetis KL05 32 KB Flash, Rev4 03/2014.
Peripheral operating requirements and behaviors
1.499
DAC12 Mid Level Code Voltage
1.4985
1.498
1.4975
1.497
1.4965
1.496
-40
55
25
85
105
125
Temperature °C
Figure 11. Offset at half scale vs. temperature
3.7 Timers
See General switching specifications.
3.8 Communication interfaces
Kinetis KL05 32 KB Flash, Rev4 03/2014.
33
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
3.8.1 SPI switching specifications
The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master and
slave operations. Many of the transfer attributes are programmable. The following
tables provide timing characteristics for classic SPI timing modes. See the SPI chapter
of the chip's Reference Manual for information about the modified transfer formats used
for communicating with slower peripheral devices.
All timing is shown with respect to 20% VDD and 80% VDD thresholds, unless noted, as
well as input signal transitions of 3 ns and a 30 pF maximum load on all SPI pins.
Table 29. SPI master mode timing on slew rate disabled pads
Num.
Symbol
1
fop
2
tSPSCK
3
tLead
4
tLag
5
tWSPSCK
6
tSU
7
Description
Min.
Max.
Unit
Note
fperiph/2048
fperiph/2
Hz
1
2 x tperiph
2048 x
tperiph
ns
2
Enable lead time
1/2
—
tSPSCK
—
Enable lag time
1/2
—
tSPSCK
—
tperiph – 30
1024 x
tperiph
ns
—
Data setup time (inputs)
16
—
ns
—
tHI
Data hold time (inputs)
0
—
ns
—
8
tv
Data valid (after SPSCK edge)
—
10
ns
—
9
tHO
Data hold time (outputs)
0
—
ns
—
10
tRI
Rise time input
—
tperiph – 25
ns
—
tFI
Fall time input
11
tRO
Rise time output
—
25
ns
—
tFO
Fall time output
Frequency of operation
SPSCK period
Clock (SPSCK) high or low time
1. For SPI0, fperiph is the bus clock (fBUS).
2. tperiph = 1/fperiph
Table 30. SPI master mode timing on slew rate enabled pads
Num.
Symbol
1
fop
2
tSPSCK
3
tLead
4
tLag
5
tWSPSCK
6
tSU
7
tHI
Description
Min.
Max.
Unit
Note
fperiph/2048
fperiph/2
Hz
1
2 x tperiph
2048 x
tperiph
ns
2
Enable lead time
1/2
—
tSPSCK
—
Enable lag time
1/2
—
tSPSCK
—
tperiph – 30
1024 x
tperiph
ns
—
Data setup time (inputs)
96
—
ns
—
Data hold time (inputs)
0
—
ns
—
Frequency of operation
SPSCK period
Clock (SPSCK) high or low time
Table continues on the next page...
34
Freescale Semiconductor, Inc.
Kinetis KL05 32 KB Flash, Rev4 03/2014.
Peripheral operating requirements and behaviors
Table 30. SPI master mode timing on slew rate enabled pads (continued)
Num.
Symbol
8
tv
9
Description
Min.
Max.
Unit
Note
Data valid (after SPSCK edge)
—
52
ns
—
tHO
Data hold time (outputs)
0
—
ns
—
10
tRI
Rise time input
—
tperiph – 25
ns
—
tFI
Fall time input
11
tRO
Rise time output
—
36
ns
—
tFO
Fall time output
1. For SPI0, fperiph is the bus clock (fBUS).
2. tperiph = 1/fperiph
SS 1
(OUTPUT)
3
2
SPSCK
(CPOL=0)
(OUTPUT)
11
10
11
4
5
SPSCK
(CPOL=1)
(OUTPUT)
6
MISO
(INPUT)
10
5
7
MSB IN 2
BIT 6 . . . 1
LSB IN
8
MOSI
(OUTPUT)
MSB OUT 2
BIT 6 . . . 1
9
LSB OUT
1. If configured as an output.
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
Figure 12. SPI master mode timing (CPHA = 0)
Kinetis KL05 32 KB Flash, Rev4 03/2014.
35
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
SS 1
(OUTPUT)
2
3
10
11
4
10
11
SPSCK
(CPOL=0)
(OUTPUT)
5
SPSCK
(CPOL=1)
(OUTPUT)
5
6
MISO
(INPUT)
7
MSB IN
BIT 6 . . . 1
2
9
8
MOSI
(OUTPUT)
LSB IN
PORT DATA MASTER MSB OUT
2
BIT 6 . . . 1
PORT DATA
MASTER LSB OUT
1.If configured as output
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
Figure 13. SPI master mode timing (CPHA = 1)
Table 31. SPI slave mode timing on slew rate disabled pads
Num.
Symbol
1
fop
2
tSPSCK
3
tLead
4
tLag
5
tWSPSCK
6
tSU
7
Min.
Max.
Unit
Note
0
fperiph/4
Hz
1
4 x tperiph
—
ns
2
Enable lead time
1
—
tperiph
—
Enable lag time
1
—
tperiph
—
tperiph – 30
—
ns
—
Data setup time (inputs)
2
—
ns
—
tHI
Data hold time (inputs)
7
—
ns
—
8
ta
Slave access time
—
tperiph
ns
3
9
tdis
Slave MISO disable time
—
tperiph
ns
4
10
tv
Data valid (after SPSCK edge)
—
22
ns
—
11
tHO
Data hold time (outputs)
0
—
ns
—
12
tRI
Rise time input
—
tperiph – 25
ns
—
tFI
Fall time input
tRO
Rise time output
—
25
ns
—
tFO
Fall time output
13
1.
2.
3.
4.
Description
Frequency of operation
SPSCK period
Clock (SPSCK) high or low time
For SPI0, fperiph is the bus clock (fBUS).
tperiph = 1/fperiph
Time to data active from high-impedance state
Hold time to high-impedance state
38
36
Freescale Semiconductor, Inc.
<<CLASSIFICATION>>
<<NDA MESSAGE>>
Kinetis KL05 32 KB Flash, Rev4 03/2014.
Peripheral operating requirements and behaviors
Table 32. SPI slave mode timing on slew rate enabled pads
Num.
Symbol
1
fop
2
tSPSCK
3
tLead
Enable lead time
4
tLag
Enable lag time
5
tWSPSCK
6
tSU
7
Frequency of operation
SPSCK period
Min.
Max.
Unit
Note
0
fperiph/4
Hz
1
4 x tperiph
—
ns
2
1
—
tperiph
—
1
—
tperiph
—
tperiph – 30
—
ns
—
Data setup time (inputs)
2
—
ns
—
tHI
Data hold time (inputs)
7
—
ns
—
8
ta
Slave access time
—
tperiph
ns
3
9
tdis
Slave MISO disable time
—
tperiph
ns
4
10
tv
Data valid (after SPSCK edge)
—
122
ns
—
11
tHO
Data hold time (outputs)
0
—
ns
—
12
tRI
Rise time input
—
tperiph – 25
ns
—
tFI
Fall time input
tRO
Rise time output
—
36
ns
—
tFO
Fall time output
13
1.
2.
3.
4.
Description
Clock (SPSCK) high or low time
For SPI0, fperiph is the bus clock (fBUS).
tperiph = 1/fperiph
Time to data active from high-impedance state
Hold time to high-impedance state
SS
(INPUT)
2
12
13
12
13
4
SPSCK
(CPOL=0)
(INPUT)
5
3
SPSCK
(CPOL=1)
(INPUT)
5
9
8
MISO
(OUTPUT)
see
note
SLAVE MSB
6
MOSI
(INPUT)
10
11
11
BIT 6 . . . 1
SLAVE LSB OUT
SEE
NOTE
7
MSB IN
BIT 6 . . . 1
LSB IN
NOTE: Not defined
Figure 14. SPI slave mode timing (CPHA = 0)
Kinetis KL05 32 KB Flash, Rev4 03/2014.
37
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
SS
(INPUT)
4
2
3
SPSCK
(CPOL=0)
(INPUT)
5
SPSCK
(CPOL=1)
(INPUT)
5
see
note
SLAVE
8
MSB OUT
6
MOSI
(INPUT)
13
12
13
11
10
MISO
(OUTPUT)
12
9
BIT 6 . . . 1
SLAVE LSB OUT
BIT 6 . . . 1
LSB IN
7
MSB IN
NOTE: Not defined
Figure 15. SPI slave mode timing (CPHA = 1)
3.8.2 Inter-Integrated Circuit Interface (I2C) timing
Table 33. I2C timing
Characteristic
Symbol
Standard Mode
Fast Mode
Minimum
Maximum
Minimum
Maximum
Unit
SCL Clock Frequency
fSCL
0
100
0
4001
kHz
Hold time (repeated) START condition.
After this period, the first clock pulse is
generated.
tHD; STA
4
—
0.6
—
µs
LOW period of the SCL clock
tLOW
4.7
—
1.3
—
µs
HIGH period of the SCL clock
tHIGH
4
—
0.6
—
µs
Set-up time for a repeated START
condition
tSU; STA
4.7
—
0.6
—
µs
Data hold time for I2C bus devices
tHD; DAT
02
3.453
04
0.92
µs
tSU; DAT
2505
—
1003, 6
Data set-up time
—
ns
7
Rise time of SDA and SCL signals
tr
—
1000
20 +0.1Cb
300
ns
Fall time of SDA and SCL signals
tf
—
300
20 +0.1Cb6
300
ns
Set-up time for STOP condition
tSU; STO
4
—
0.6
—
µs
Bus free time between STOP and
START condition
tBUF
4.7
—
1.3
—
µs
Pulse width of spikes that must be
suppressed by the input filter
tSP
N/A
N/A
0
50
ns
1. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can only achieved when using the High
drive pins (see Voltage and current operating behaviors) or when using the Normal drive pins and VDD ≥ 2.7 V
38
Freescale Semiconductor, Inc.
Kinetis KL05 32 KB Flash, Rev4 03/2014.
Peripheral operating requirements and behaviors
2. The master mode I2C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves
acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and
SCL lines.
3. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.
4. Input signal Slew = 10 ns and Output Load = 50 pF
5. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.
6. A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement tSU; DAT ≥ 250 ns
must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If
such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line trmax
+ tSU; DAT = 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification) before the SCL line is
released.
7. Cb = total capacitance of the one bus line in pF.
SDA
tf
tSU; DAT
tr
tLOW
tf
tHD; STA
tSP
tr
tBUF
SCL
S
tHD; STA
tHD; DAT
tHIGH
tSU; STA
tSU; STO
SR
P
S
Figure 16. Timing definition for fast and standard mode devices on the I2C bus
3.8.3 UART
See General switching specifications.
3.9 Human-machine interfaces (HMI)
3.9.1 TSI electrical specifications
Table 34. TSI electrical specifications
Symbol
Description
Min.
Typ.
Max.
Unit
TSI_RUNF
Fixed power consumption in run mode
—
100
—
µA
TSI_RUNV
Variable power consumption in run mode
(depends on oscillator's current selection)
1.0
—
128
µA
TSI_EN
Power consumption in enable mode
—
100
—
µA
TSI_DIS
Power consumption in disable mode
—
1.2
—
µA
TSI_TEN
TSI analog enable time
—
66
—
µs
TSI_CREF
TSI reference capacitor
—
1.0
—
pF
TSI_DVOLT
Voltage variation of VP & VM around nominal
values
0.19
—
1.03
V
Kinetis KL05 32 KB Flash, Rev4 03/2014.
39
Freescale Semiconductor, Inc.
Dimensions
4 Dimensions
4.1 Obtaining package dimensions
Package dimensions are provided in package drawings.
To find a package drawing, go to freescale.com and perform a keyword search for the
drawing’s document number:
If you want the drawing for this package
Then use this document number
24-pin QFN
98ASA00474D
32-pin QFN
98ASA00473D
32-pin LQFP
98ASH70029A
48-pin LQFP
98ASH00962A
5 Pinout
5.1 KL05 signal multiplexing and pin assignments
The following table shows the signals available on each pin and the locations of these
pins on the devices supported by this document. The Port Control Module is responsible
for selecting which ALT functionality is available on each pin.
48
LQFP
32
QFN
32
LQFP
24
QFN
Pin Name
1
1
1
1
PTB6/
IRQ_2/
LPTMR0_ALT3
DISABLED
DISABLED
PTB6/
IRQ_2/
LPTMR0_ALT3
TPM0_CH3
2
2
2
2
PTB7/
IRQ_3
DISABLED
DISABLED
PTB7/
IRQ_3
TPM0_CH2
3
—
—
—
PTA14
DISABLED
DISABLED
PTA14
TPM_CLKIN0
4
—
—
—
PTA15
DISABLED
DISABLED
PTA15
CLKOUT
5
3
3
3
VDD
VDD
VDD
6
4
4
3
VREFH
VREFH
VREFH
7
5
5
4
VREFL
VREFL
VREFL
8
6
6
4
VSS
VSS
VSS
40
Freescale Semiconductor, Inc.
Default
ALT0
ALT1
ALT2
ALT3
TPM_CLKIN1
Kinetis KL05 32 KB Flash, Rev4 03/2014.
Pinout
48
LQFP
32
QFN
32
LQFP
24
QFN
Pin Name
Default
9
7
7
5
PTA3
EXTAL0
EXTAL0
PTA3
I2C0_SCL
I2C0_SDA
10
8
8
6
PTA4/
LLWU_P0
XTAL0
XTAL0
PTA4/
LLWU_P0
I2C0_SDA
I2C0_SCL
11
—
—
—
VSS
VSS
VSS
12
—
—
—
PTB18
DISABLED
DISABLED
PTB18
13
—
—
—
PTB19
DISABLED
DISABLED
PTB19
14
9
9
7
PTA5/
LLWU_P1/
RTC_CLK_IN
DISABLED
DISABLED
PTA5/
LLWU_P1/
RTC_CLK_IN
TPM0_CH5
SPI0_SS_b
15
10
10
8
PTA6/
LLWU_P2
DISABLED
DISABLED
PTA6/
LLWU_P2
TPM0_CH4
SPI0_MISO
16
11
11
—
PTB8
ADC0_SE11
ADC0_SE11
PTB8
TPM0_CH3
17
12
12
—
PTB9
ADC0_SE10
ADC0_SE10
PTB9
TPM0_CH2
18
—
—
—
PTA16/
IRQ_4
DISABLED
DISABLED
PTA16/
IRQ_4
19
—
—
—
PTA17/
IRQ_5
DISABLED
DISABLED
PTA17/
IRQ_5
20
—
—
—
PTA18/
IRQ_6
DISABLED
DISABLED
PTA18/
IRQ_6
21
13
13
9
PTB10
ADC0_SE9/
TSI0_IN7
ADC0_SE9/
TSI0_IN7
PTB10
TPM0_CH1
22
14
14
10
PTB11
ADC0_SE8/
TSI0_IN6
ADC0_SE8/
TSI0_IN6
PTB11
TPM0_CH0
23
15
15
11
PTA7/
IRQ_7/
LLWU_P3
ADC0_SE7/
TSI0_IN5
ADC0_SE7/
TSI0_IN5
PTA7/
IRQ_7/
LLWU_P3
SPI0_MISO
SPI0_MOSI
24
16
16
12
PTB0/
IRQ_8/
LLWU_P4
ADC0_SE6/
TSI0_IN4
ADC0_SE6/
TSI0_IN4
PTB0/
IRQ_8/
LLWU_P4
EXTRG_IN
SPI0_SCK
25
17
17
13
PTB1/
IRQ_9
ADC0_SE5/
TSI0_IN3/
DAC0_OUT/
CMP0_IN3
ADC0_SE5/
TSI0_IN3/
DAC0_OUT/
CMP0_IN3
PTB1/
IRQ_9
UART0_TX
UART0_RX
26
18
18
14
PTB2/
IRQ_10/
LLWU_P5
ADC0_SE4/
TSI0_IN2
ADC0_SE4/
TSI0_IN2
PTB2/
IRQ_10/
LLWU_P5
UART0_RX
UART0_TX
27
19
19
15
PTA8
ADC0_SE3/
TSI0_IN1
ADC0_SE3/
TSI0_IN1
PTA8
28
20
20
16
PTA9
ADC0_SE2/
TSI0_IN0
ADC0_SE2/
TSI0_IN0
PTA9
29
—
—
—
PTB20
DISABLED
DISABLED
PTB20
30
—
—
—
VSS
VSS
VSS
31
—
—
—
VDD
VDD
VDD
32
—
—
—
PTB14/
IRQ_11
DISABLED
DISABLED
Kinetis KL05 32 KB Flash, Rev4 03/2014.
ALT0
ALT1
PTB14/
IRQ_11
ALT2
ALT3
EXTRG_IN
41
Freescale Semiconductor, Inc.
Pinout
48
LQFP
32
QFN
32
LQFP
24
QFN
Pin Name
Default
ALT0
ALT1
ALT2
ALT3
33
21
21
—
PTA10/
IRQ_12
DISABLED
TSI0_IN11
PTA10/
IRQ_12
34
22
22
—
PTA11/
IRQ_13
DISABLED
TSI0_IN10
PTA11/
IRQ_13
35
23
23
17
PTB3/
IRQ_14
DISABLED
DISABLED
PTB3/
IRQ_14
I2C0_SCL
UART0_TX
36
24
24
18
PTB4/
IRQ_15/
LLWU_P6
DISABLED
DISABLED
PTB4/
IRQ_15/
LLWU_P6
I2C0_SDA
UART0_RX
37
25
25
19
PTB5/
IRQ_16
NMI_b
ADC0_SE1/
CMP0_IN1
PTB5/
IRQ_16
TPM1_CH1
NMI_b
38
26
26
20
PTA12/
IRQ_17/
LPTMR0_ALT2
ADC0_SE0/
CMP0_IN0
ADC0_SE0/
CMP0_IN0
PTA12/
IRQ_17/
LPTMR0_ALT2
TPM1_CH0
TPM_CLKIN0
39
27
27
—
PTA13
TSI0_IN9
TSI0_IN9
PTA13
40
28
28
—
PTB12
TSI0_IN8
TSI0_IN8
PTB12
41
—
—
—
PTA19
DISABLED
DISABLED
PTA19
42
—
—
—
PTB15
DISABLED
DISABLED
PTB15
SPI0_MOSI
SPI0_MISO
43
—
—
—
PTB16
DISABLED
DISABLED
PTB16
SPI0_MISO
SPI0_MOSI
44
—
—
—
PTB17
DISABLED
DISABLED
PTB17
TPM_CLKIN1
SPI0_SCK
45
29
29
21
PTB13
ADC0_SE13
ADC0_SE13
PTB13
TPM1_CH1
RTC_CLKOUT
46
30
30
22
PTA0/
IRQ_0/
LLWU_P7
SWD_CLK
ADC0_SE12/
CMP0_IN2
PTA0/
IRQ_0/
LLWU_P7
TPM1_CH0
SWD_CLK
47
31
31
23
PTA1/
IRQ_1/
LPTMR0_ALT1
RESET_b
DISABLED
PTA1/
IRQ_1/
LPTMR0_ALT1
TPM_CLKIN0
RESET_b
48
32
32
24
PTA2
SWD_DIO
DISABLED
PTA2
CMP0_OUT
SWD_DIO
SPI0_SS_b
5.2 KL05 pinouts
The following figures show the pinout diagrams for the devices supported by this
document. Many signals may be multiplexed onto a single pin. To determine what
signals can be used on which pin, see KL05 signal multiplexing and pin assignments.
42
Freescale Semiconductor, Inc.
Kinetis KL05 32 KB Flash, Rev4 03/2014.
PTA2
PTA1/IRQ_1/LPTMR0_ALT1
PTA0/IRQ_0/LLWU_P7
PTB13
PTB17
PTB16
PTB15
PTA19
PTB12
PTA13
PTA12/IRQ_17/LPTMR0_ALT2
PTB5/IRQ_16
48
47
46
45
44
43
42
41
40
39
38
37
Pinout
VREFL
7
30
VSS
VSS
8
29
PTB20
PTA3
9
28
PTA9
PTA4/LLWU_P0
10
27
PTA8
VSS
11
26
PTB2/IRQ_10/LLWU_P5
PTB18
12
25
PTB1/IRQ_9
24
VDD
PTB0/IRQ_8/LLWU_P4
31
23
6
PTA7/IRQ_7/LLWU_P3
VREFH
22
PTB14/IRQ_11
PTB11
32
21
5
PTB10
VDD
20
PTA10/IRQ_12
PTA18/IRQ_6
33
19
4
PTA17/IRQ_5
PTA15
18
PTA11/IRQ_13
PTA16/IRQ_4
34
17
3
PTB9
PTA14
16
PTB3/IRQ_14
PTB8
35
15
2
PTA6/LLWU_P2
PTB7/IRQ_3
14
PTB4/IRQ_15/LLWU_P6
PTA5/LLWU_P1/RTC_CLK_IN
36
13
1
PTB19
PTB6/IRQ_2/LPTMR0_ALT3
Figure 17. KL05 48-pin LQFP pinout diagram
Kinetis KL05 32 KB Flash, Rev4 03/2014.
43
Freescale Semiconductor, Inc.
PTA2
PTA1/IRQ_1/LPTMR0_ALT1
PTA0/IRQ_0/LLWU_P7
PTB13
PTB12
PTA13
PTA12/IRQ_17/LPTMR0_ALT2
PTB5/IRQ_16
32
31
30
29
28
27
26
25
Pinout
21
PTA10/IRQ_12
VREFL
5
20
PTA9
VSS
6
19
PTA8
PTA3
7
18
PTB2/IRQ_10/LLWU_P5
PTA4/LLWU_P0
8
17
PTB1/IRQ_9
PTA6/LLWU_P2
PTA5/LLWU_P1/RTC_CLK_IN
16
4
PTB0/IRQ_8/LLWU_P4
VREFH
15
PTA11/IRQ_13
PTA7/IRQ_7/LLWU_P3
22
14
3
PTB11
VDD
13
PTB3/IRQ_14
PTB10
23
12
2
PTB9
PTB7/IRQ_3
11
PTB4/IRQ_15/LLWU_P6
PTB8
24
10
1
9
PTB6/IRQ_2/LPTMR0_ALT3
Figure 18. KL05 32-pin LQFP pinout diagram
44
Freescale Semiconductor, Inc.
Kinetis KL05 32 KB Flash, Rev4 03/2014.
PTA2
PTA1/IRQ_1/LPTMR0_ALT1
PTA0/IRQ_0/LLWU_P7
PTB13
PTB12
PTA13
PTA12/IRQ_17/LPTMR0_ALT2
PTB5/IRQ_16
32
31
30
29
28
27
26
25
Pinout
21
PTA10/IRQ_12
VREFL
5
20
PTA9
VSS
6
19
PTA8
PTA3
7
18
PTB2/IRQ_10/LLWU_P5
PTA4/LLWU_P0
8
17
PTB1/IRQ_9
PTA6/LLWU_P2
PTA5/LLWU_P1/RTC_CLK_IN
16
4
PTB0/IRQ_8/LLWU_P4
VREFH
15
PTA11/IRQ_13
PTA7/IRQ_7/LLWU_P3
22
14
3
PTB11
VDD
13
PTB3/IRQ_14
PTB10
23
12
2
PTB9
PTB7/IRQ_3
11
PTB4/IRQ_15/LLWU_P6
PTB8
24
10
1
9
PTB6/IRQ_2/LPTMR0_ALT3
Figure 19. KL05 32-pin QFN pinout diagram
Kinetis KL05 32 KB Flash, Rev4 03/2014.
45
Freescale Semiconductor, Inc.
PTA2
PTA1/IRQ_1/LPTMR0_ALT1
PTA0/IRQ_0/LLWU_P7
PTB13
PTA12/IRQ_17/LPTMR0_ALT2
PTB5/IRQ_16
24
23
22
21
20
19
Ordering parts
3
16
PTA9
VREFL VSS
4
15
PTA8
PTA3
5
14
PTB2/IRQ_10/LLWU_P5
PTA4/LLWU_P0
6
13
PTB1/IRQ_9
PTB10
PTA6/LLWU_P2
PTA5/LLWU_P1/RTC_CLK_IN
12
VDD VREFH
PTB0/IRQ_8/LLWU_P4
PTB3/IRQ_14
11
17
PTA7/IRQ_7/LLWU_P3
2
10
PTB7/IRQ_3
9
PTB4/IRQ_15/LLWU_P6
PTB11
18
8
1
7
PTB6/IRQ_2/LPTMR0_ALT3
Figure 20. KL05 24-pin QFN pinout diagram
6 Ordering parts
6.1 Determining valid orderable parts
Valid orderable part numbers are provided on the web. To determine the orderable part
numbers for this device, go to freescale.com and perform a part number search for the
following device numbers: PKL05 and MKL05
7 Part identification
46
Freescale Semiconductor, Inc.
Kinetis KL05 32 KB Flash, Rev4 03/2014.
Part identification
7.1 Description
Part numbers for the chip have fields that identify the specific part. You can use the
values of these fields to determine the specific part you have received.
7.2 Format
Part numbers for this device have the following format:
Q KL## A FFF R T PP CC N
7.3 Fields
This table lists the possible values for each field in the part number (not all
combinations are valid):
Table 35. Part number fields descriptions
Field
Description
Values
Q
Qualification status
• M = Fully qualified, general market flow
• P = Prequalification
KL##
Kinetis family
• KL05
A
Key attribute
• Z = Cortex-M0+
FFF
Program flash memory size
• 8 = 8 KB
• 16 = 16 KB
• 32 = 32 KB
R
Silicon revision
• (Blank) = Main
• A = Revision after main
T
Temperature range (°C)
• V = –40 to 105
PP
Package identifier
•
•
•
•
CC
Maximum CPU frequency (MHz)
• 4 = 48 MHz
N
Packaging type
• R = Tape and reel
• (Blank) = Trays
FK = 24 QFN (4 mm x 4 mm)
LC = 32 LQFP (7 mm x 7 mm)
FM = 32 QFN (5 mm x 5 mm)
LF = 48 LQFP (7 mm x 7 mm)
7.4 Example
This is an example part number:
Kinetis KL05 32 KB Flash, Rev4 03/2014.
47
Freescale Semiconductor, Inc.
Terminology and guidelines
MKL05Z8VLC4
8 Terminology and guidelines
8.1 Definition: Operating requirement
An operating requirement is a specified value or range of values for a technical
characteristic that you must guarantee during operation to avoid incorrect operation and
possibly decreasing the useful life of the chip.
8.1.1 Example
This is an example of an operating requirement:
Symbol
VDD
Description
1.0 V core supply
voltage
Min.
0.9
Max.
1.1
Unit
V
8.2 Definition: Operating behavior
Unless otherwise specified, an operating behavior is a specified value or range of
values for a technical characteristic that are guaranteed during operation if you meet the
operating requirements and any other specified conditions.
8.3 Definition: Attribute
An attribute is a specified value or range of values for a technical characteristic that are
guaranteed, regardless of whether you meet the operating requirements.
8.3.1 Example
This is an example of an attribute:
48
Freescale Semiconductor, Inc.
Kinetis KL05 32 KB Flash, Rev4 03/2014.
Terminology and guidelines
Symbol
CIN_D
Description
Input capacitance:
digital pins
Min.
—
Max.
7
Unit
pF
8.4 Definition: Rating
A rating is a minimum or maximum value of a technical characteristic that, if
exceeded, may cause permanent chip failure:
• Operating ratings apply during operation of the chip.
• Handling ratings apply when the chip is not powered.
8.4.1 Example
This is an example of an operating rating:
Symbol
VDD
Description
1.0 V core supply
voltage
Min.
–0.3
Max.
1.2
Unit
V
8.5 Result of exceeding a rating
Failures in time (ppm)
40
30
The likelihood of permanent chip failure increases rapidly as
soon as a characteristic begins to exceed one of its operating ratings.
20
10
0
Operating rating
Measured characteristic
Kinetis KL05 32 KB Flash, Rev4 03/2014.
49
Freescale Semiconductor, Inc.
Terminology and guidelines
8.6 Relationship between ratings and operating requirements
O
ra
pe
g
tin
g
tin
(
nt
me
ire
)
n.
mi
ra
g
tin
era
Op
)
in.
(m
u
req
ax
g
tin
era
Op
(m
nt
me
ire
u
req
.)
x.)
ma
ing
t
era
Op
(
ing
rat
Fatal range
Degraded operating range
Normal operating range
Degraded operating range
Fatal range
Expected permanent failure
- No permanent failure
- Possible decreased life
- Possible incorrect operation
- No permanent failure
- Correct operation
- No permanent failure
- Possible decreased life
- Possible incorrect operation
Expected permanent failure
–∞
∞
Operating (power on)
nd
Ha
g
lin
ng
i
rat
)
in.
(m
ng
ati
gr
.)
ax
(m
lin
nd
Ha
Fatal range
Handling range
Fatal range
Expected permanent failure
No permanent failure
Expected permanent failure
–∞
∞
Handling (power off)
8.7 Guidelines for ratings and operating requirements
Follow these guidelines for ratings and operating requirements:
• Never exceed any of the chip’s ratings.
• During normal operation, don’t exceed any of the chip’s operating requirements.
• If you must exceed an operating requirement at times other than during normal
operation (for example, during power sequencing), limit the duration as much as
possible.
8.8 Definition: Typical value
A typical value is a specified value for a technical characteristic that:
• Lies within the range of values specified by the operating behavior
• Given the typical manufacturing process, is representative of that characteristic
during operation when you meet the typical-value conditions or other specified
conditions
Typical values are provided as design guidelines and are neither tested nor guaranteed.
50
Freescale Semiconductor, Inc.
Kinetis KL05 32 KB Flash, Rev4 03/2014.
Terminology and guidelines
8.8.1 Example 1
This is an example of an operating behavior that includes a typical value:
Symbol
Description
IWP
Digital I/O weak
pullup/pulldown
current
Min.
10
Typ.
Max.
70
130
Unit
µA
8.8.2 Example 2
This is an example of a chart that shows typical values for various voltage and
temperature conditions:
5000
4500
4000
TJ
IDD_STOP (μA)
3500
150 °C
3000
105 °C
2500
25 °C
2000
–40 °C
1500
1000
500
0
0.90
0.95
1.00
1.05
1.10
VDD (V)
8.9 Typical value conditions
Typical values assume you meet the following conditions (or other conditions as
specified):
Kinetis KL05 32 KB Flash, Rev4 03/2014.
51
Freescale Semiconductor, Inc.
Revision history
Table 36. Typical value conditions
Symbol
Description
Value
Unit
TA
Ambient temperature
25
°C
VDD
3.3 V supply voltage
3.3
V
9 Revision history
The following table provides a revision history for this document.
Table 37. Revision history
Rev. No.
Date
2
9/2012
Initial public release.
3
11/2012
Completed all the TBDs.
4
3/2014
52
Freescale Semiconductor, Inc.
Substantial Changes
•
•
•
•
•
•
•
•
•
•
•
Updated the front page and restructured the chapters
Added a note to the ILAT in the ESD handling ratings
Updated Voltage and current operating ratings
Added VODPU in the Voltage and current operating requirements
Updated Voltage and current operating behaviors
Updated Power mode transition operating behaviors
Updated Power consumption operating behaviors
Updated Capacitance attributes
Updated footnote in the Device clock specifications
Add thversall in the Flash timing specifications — commands
Updated Temp sensor slope and voltage and added a note to them
in the 12-bit ADC electrical characteristics
• Removed TA in the 12-bit DAC operating requirements
• Added Inter-Integrated Circuit Interface (I2C) timing
Kinetis KL05 32 KB Flash, Rev4 03/2014.
How to Reach Us:
Home Page:
freescale.com
Web Support:
freescale.com/support
Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.
Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets
and/or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by
customer's technical experts. Freescale does not convey any license
under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found
at the following address: freescale.com/SalesTermsandConditions.
Freescale, the Freescale logo, Energy Efficient Solutions logo, and
Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat.
& Tm. Off. All other product or service names are the property of their
respective owners. ARM and Cortex-M0+ are the registered trademarks
of ARM Limited.
© 2012-2014 Freescale Semiconductor, Inc.
Document Number KL05P48M48SF1
Revision 4 03/2014