SGP30N60 SGW30N60 Fast IGBT in NPT-technology C • 75% lower Eoff compared to previous generation combined with low conduction losses • Short circuit withstand time – 10 µs • Designed for: - Motor controls - Inverter • NPT-Technology for 600V applications offers: - very tight parameter distribution - high ruggedness, temperature stable behaviour - parallel switching capability G PG-TO-220-3-1 E PG-TO-247-3-21 1 • Qualified according to JEDEC for target applications • Pb-free lead plating; RoHS compliant • Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type VCE IC VCE(sat) Tj Marking Package SGP30N60 600V 30A 2.5V 150°C G30N60 PG-TO-220-3-1 SGW30N60 600V 30A 2.5V 150°C G30N60 PG-TO-247-3-21 Maximum Ratings Parameter Symbol Collector-emitter voltage VCE DC collector current IC Value 600 Unit V A TC = 25°C 41 TC = 100°C 30 Pulsed collector current, tp limited by Tjmax ICpul s 112 Turn off safe operating area - 112 Gate-emitter voltage VGE ±20 V Avalanche energy, single pulse EAS 165 mJ tSC 10 µs Ptot 250 W -55...+150 °C VCE ≤ 600V, Tj ≤ 150°C IC = 30 A, VCC = 50 V, RGE = 25 Ω , start at Tj = 25°C 2 Short circuit withstand time VGE = 15V, VCC ≤ 600V, Tj ≤ 150°C Power dissipation TC = 25°C Operating junction and storage temperature Tj , Tstg Soldering temperature, Ts 260 wavesoldering, 1.6mm (0.063 in.) from case for 10s 1 2 J-STD-020 and JESD-022 Allowed number of short circuits: <1000; time between short circuits: >1s. 1 Rev. 2.3 Sep. 07 SGP30N60 SGW30N60 Thermal Resistance Parameter Symbol Conditions Max. Value Unit 0.5 K/W Characteristic RthJC IGBT thermal resistance, junction – case RthJA Thermal resistance, junction – ambient PG-TO-220-3-1 62 PG-TO-247-3-21 40 Electrical Characteristic, at Tj = 25 °C, unless otherwise specified Parameter Symbol Conditions Value min. Typ. max. 600 - - 1.7 2.1 2.4 T j =1 5 0° C - 2.5 3.0 3 4 5 Unit Static Characteristic Collector-emitter breakdown voltage V ( B R ) C E S V G E = 0V , I C = 5 00 µA Collector-emitter saturation voltage VCE(sat) V V G E = 15 V , I C = 30 A T j =2 5 °C Gate-emitter threshold voltage VGE(th) I C = 70 0 µA , V C E = V G E Zero gate voltage collector current ICES V C E = 60 0 V, V G E = 0 V µA T j =2 5 °C - - 40 T j =1 5 0° C - - 3000 Gate-emitter leakage current IGES V C E = 0V , V G E =2 0 V - - 100 nA Transconductance gfs V C E = 20 V , I C = 30 A - 20 - S Input capacitance Ciss V C E = 25 V , - 1600 1920 pF Output capacitance Coss V G E = 0V , - 150 180 Reverse transfer capacitance Crss f= 1 MH z - 92 110 Gate charge QGate V C C = 48 0 V, I C =3 0 A - 140 182 nC PG-TO-220-3-1 - 7 - nH PG-TO-247-3-21 - 13 V G E = 15 V ,t S C ≤ 10 µs V C C ≤ 6 0 0 V, T j ≤ 1 5 0° C - 300 - A Dynamic Characteristic V G E = 15 V LE Internal emitter inductance measured 5mm (0.197 in.) from case 2) Short circuit collector current 2) IC(SC) Allowed number of short circuits: <1000; time between short circuits: >1s. 2 Rev. 2.3 Sep. 07 SGP30N60 SGW30N60 Switching Characteristic, Inductive Load, at Tj=25 °C Parameter Symbol Conditions Value min. typ. max. - 44 53 - 34 40 - 291 349 - 58 70 - 0.64 0.77 - 0.65 0.85 - 1.29 1.62 Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets T j =2 5 °C , V C C = 40 0 V, I C = 3 0 A, V G E = 0/ 15 V , R G =11Ω , 1) L σ = 18 0 nH , 1) C σ = 90 0 pF Energy losses include “tail” and diode reverse recovery. ns mJ Switching Characteristic, Inductive Load, at Tj=150 °C Parameter Symbol Conditions Value min. typ. max. - 44 53 - 34 40 - 324 389 - 67 80 - 0.98 1.18 - 0.92 1.19 - 1.90 2.38 Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets 1) T j =1 5 0° C V C C = 40 0 V, I C = 3 0 A, V G E = 0/ 15 V , R G = 1 1Ω , 1) L σ = 18 0 nH , 1) C σ = 90 0 pF Energy losses include “tail” and diode reverse recovery. ns mJ Leakage inductance L σ a nd Stray capacity C σ due to dynamic test circuit in Figure E. 3 Rev. 2.3 Sep. 07 SGP30N60 SGW30N60 160A Ic 140A tp=4µs 100A 15µs IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 120A 100A 80A TC=80°C 60A TC=110°C 40A 20A 0A 10Hz 50µs 10A 200µs 1ms 1A Ic DC 0.1A 100Hz 1kHz 10kHz 1V 100kHz f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj ≤ 150°C, D = 0.5, VCE = 400V, VGE = 0/+15V, RG = 11Ω) 10V 100V 1000V VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25°C, Tj ≤ 150°C) 300W 60A 250W 50A IC, COLLECTOR CURRENT Ptot, POWER DISSIPATION Limited by bond wire 200W 150W 100W 50W 0W 25°C 40A 30A 20A 10A 50°C 75°C 100°C 0A 25°C 125°C TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj ≤ 150°C) 50°C 75°C 100°C 125°C TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE ≤ 15V, Tj ≤ 150°C) 4 Rev. 2.3 Sep. 07 90A 90A 80A 80A 70A 70A 60A 50A 40A 30A IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT SGP30N60 SGW30N60 VGE=20V 15V 13V 11V 9V 7V 5V 20A 10A 0A 0V 1V 2V 3V 4V 15V 13V 11V 9V 7V 5V 50A 40A 30A 20A 0A 0V 5V Tj=+25°C -55°C +150°C 80A 70A 60A 50A 40A 30A 20A 10A 2V 4V 6V 8V 10V VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE 90A 1V 2V 3V 4V 5V VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics (Tj = 150°C) 100A IC, COLLECTOR CURRENT VGE=20V 10A VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics (Tj = 25°C) 0A 0V 60A VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics (VCE = 10V) 4.0V 3.5V IC = 60A 3.0V IC = 30A 2.5V 2.0V 1.5V 1.0V -50°C 0°C 50°C 100°C 150°C Tj, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V) 5 Rev. 2.3 Sep. 07 SGP30N60 SGW30N60 1000ns 1000ns td(off) 100ns t, SWITCHING TIMES t, SWITCHING TIMES td(off) tf td(on) 100ns tf td(on) tr tr 10ns 10A 20A 30A 40A 50A 10ns 0Ω 60A IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, RG = 11Ω, Dynamic test circuit in Figure E) VGE(th), GATE-EMITTER THRESHOLD VOLTAGE t, SWITCHING TIMES 100ns tf tr td(on) 10ns 0°C 50°C 100°C 20Ω 30Ω 40Ω RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, IC = 30A, Dynamic test circuit in Figure E) 1000ns td(off) 10Ω 150°C 5.5V 5.0V 4.5V 4.0V max. 3.5V typ. 3.0V 2.5V min. 2.0V -50°C Tj, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 30A, RG = 11Ω, Dynamic test circuit in Figure E) 0°C 50°C 100°C 150°C Tj, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.7mA) 6 Rev. 2.3 Sep. 07 SGP30N60 SGW30N60 4.0mJ 5.0mJ 4.0mJ 3.5mJ 3.0mJ 2.5mJ Eon* 2.0mJ Eoff 1.5mJ 1.0mJ Ets* 2.5mJ 2.0mJ 1.5mJ Eoff Eon* 1.0mJ 20A 30A 40A 50A 60A 0.0mJ 0Ω 70A 10Ω 20Ω 30Ω 40Ω IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, RG = 11Ω, Dynamic test circuit in Figure E) RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, IC = 30A, Dynamic test circuit in Figure E) 3.0mJ 10 K/W 0 *) Eon and Ets include losses due to diode recovery. 2.0mJ Ets* 1.5mJ Eon* 1.0mJ Eoff 0.5mJ 0.0mJ 0°C ZthJC, TRANSIENT THERMAL IMPEDANCE 2.5mJ E, SWITCHING ENERGY LOSSES 3.0mJ 0.5mJ 0.5mJ 0.0mJ 10A *) Eon and Ets include losses due to diode recovery. 3.5mJ E, SWITCHING ENERGY LOSSES E, SWITCHING ENERGY LOSSES 4.5mJ Ets* *) Eon and Ets include losses due to diode recovery. D=0.5 -1 10 K/W 0.2 0.1 0.05 -2 0.02 10 K/W R,(1/W) 0.3681 0.0938 0.0380 0.01 -3 10 K/W R1 τ, (s) 0.0555 1.26*10-3 1.49*10-4 R2 single pulse C 1= τ1/R 1 C 2= τ2/R 2 -4 50°C 100°C 10 K/W 1µs 150°C 10µs 100µs 1ms 10ms 100ms 1s tp, PULSE WIDTH Tj, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 30A, RG = 11Ω, Dynamic test circuit in Figure E) Figure 16. IGBT transient thermal impedance as a function of pulse width (D = tp / T) 7 Rev. 2.3 Sep. 07 SGP30N60 SGW30N60 25V 120V 480V 15V 10V Coss 100pF Crss 5V 0V 0nC 50nC 100nC 150nC 10pF 0V 200nC QGE, GATE CHARGE Figure 17. Typical gate charge (IC = 30A) 20V 30V IC(sc), SHORT CIRCUIT COLLECTOR CURRENT 500A 20 µ s 15 µ s 10 µ s 5µ s 0µ s 10V 10V VCE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (VGE = 0V, f = 1MHz) 25 µ s tsc, SHORT CIRCUIT WITHSTAND TIME Ciss 1nF C, CAPACITANCE VGE, GATE-EMITTER VOLTAGE 20V 11V 12V 13V 14V 450A 400A 350A 300A 250A 200A 150A 100A 50A 0A 10V 15V VGE, GATE-EMITTER VOLTAGE Figure 19. Short circuit withstand time as a function of gate-emitter voltage (VCE = 600V, start at Tj = 25°C) 12V 14V 16V 18V 20V VGE, GATE-EMITTER VOLTAGE Figure 20. Typical short circuit collector current as a function of gate-emitter voltage (VCE ≤ 600V, Tj = 150°C) 8 Rev. 2.3 Sep. 07 SGP30N60 SGW30N60 PG-TO-220-3-1 9 Rev. 2.3 Sep. 07 SGP30N60 SGW30N60 PG-TO247-3-21 10 Rev. 2.3 Sep. 07 SGP30N60 SGW30N60 τ1 τ2 r1 r2 τn rn Tj (t) p(t) r1 r2 rn TC Figure D. Thermal equivalent circuit Figure A. Definition of switching times Figure B. Definition of switching losses Figure E. Dynamic test circuit Leakage inductance Lσ =180nH an d Stray capacity C σ =900pF. 11 Rev. 2.3 Sep. 07 SGP30N60 SGW30N60 Edition 2006-01 Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 9/13/07. All Rights Reserved. Attention please! The information given in this data sheet shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 12 Rev. 2.3 Sep. 07