INFINEON SKW20N60_08

SKW20N60
Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode
C
• 75% lower Eoff compared to previous generation
combined with low conduction losses
• Short circuit withstand time – 10 µs
• Designed for:
- Motor controls
- Inverter
• NPT-Technology for 600V applications offers:
- very tight parameter distribution
- high ruggedness, temperature stable behaviour
- parallel switching capability
• Very soft, fast recovery anti-parallel EmCon diode
• Pb-free lead plating; RoHS compliant
• Qualified according to JEDEC1 for target applications
• Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
Type
SKW20N60
G
E
PG-TO-247-3
VCE
IC
VCE(sat)
Tj
Marking
Package
600V
20A
2.4V
150°C
K20N60
PG-TO-247-3
Maximum Ratings
Parameter
Symbol
Collector-emitter voltage
VCE
DC collector current
IC
Value
600
Unit
V
A
TC = 25°C
40
TC = 100°C
20
Pulsed collector current, tp limited by Tjmax
ICpuls
80
Turn off safe operating area
-
80
VCE ≤ 600V, Tj ≤ 150°C
Diode forward current
IF
TC = 25°C
40
TC = 100°C
20
Diode pulsed current, tp limited by Tjmax
IFpuls
80
Gate-emitter voltage
VGE
±20
V
tSC
10
µs
Ptot
179
W
Ts
260
°C
-55...+150
°C
Short circuit withstand time
2
VGE = 15V, VCC ≤ 600V, Tj ≤ 150°C
Power dissipation
TC = 25°C
Soldering temperature
wavesoldering, 1.6 mm (0.063 in.) from case for 10s
Operating junction and storage temperature
1
2
Tj , Tstg
J-STD-020 and JESD-022
Allowed number of short circuits: <1000; time between short circuits: >1s.
1
Rev. 2_2
Sep 08
SKW20N60
Thermal Resistance
Parameter
Symbol
Conditions
Max. Value
Unit
RthJC
0.7
K/W
RthJCD
1.3
RthJA
40
Characteristic
IGBT thermal resistance,
junction – case
Diode thermal resistance,
junction – case
Thermal resistance,
junction – ambient
Electrical Characteristic, at Tj = 25 °C, unless otherwise specified
Parameter
Symbol
Conditions
Value
min.
Typ.
max.
600
-
-
1.7
2
2.4
-
2.4
2.9
1.2
1.4
1.8
T j = 150 °C
-
1.25
1.65
3
4
5
Unit
Static Characteristic
Collector-emitter breakdown voltage
V ( B R ) C E S V G E = 0 V , I C =500 µA
Collector-emitter saturation voltage
VCE(sat)
V G E = 15 V, I C =20A
T j = 25°C
T j = 150 °C
Diode forward voltage
VF
V
VGE=0V, IF=20A
T j = 25°C
Gate-emitter threshold voltage
VGE(th)
I C =700 µA,V C E =V G E
Zero gate voltage collector current
ICES
V C E = 60 0 V,V G E = 0 V
µA
T j = 25°C
-
-
40
T j = 150 °C
-
-
2500
Gate-emitter leakage current
IGES
V C E = 0 V , V G E =20V
-
-
100
nA
Transconductance
gfs
V C E =20V, I C =20A
-
14
-
S
Input capacitance
Ciss
V C E =25V,
-
1100
1320
pF
Output capacitance
Coss
VGE=0V,
-
107
128
Reverse transfer capacitance
Crss
f=1MHz
-
63
76
Gate charge
QGate
V C C = 48 0 V, I C =20A
-
100
130
nC
-
13
-
nH
-
200
-
A
Dynamic Characteristic
V G E =15V
Internal emitter inductance
LE
measured 5mm (0.197 in.) from case
Short circuit collector current1)
1)
IC(SC)
V G E =15V,t S C ≤1 0 µs
V C C ≤ 60 0V,
T j ≤ 150 °C
Allowed number of short circuits: <1000; time between short circuits: >1s.
2
Rev. 2_2
Sep 08
SKW20N60
Switching Characteristic, Inductive Load, at Tj=25 °C
Parameter
Symbol
Conditions
Value
min.
typ.
max.
-
36
46
-
30
36
-
225
270
-
54
65
-
0.44
0.53
Unit
IGBT Characteristic
-
0.33
0.43
Ets
T j = 25°C ,
V C C = 40 0 V, I C =20A,
V G E = 0 /1 5 V,
R G = 1 6Ω ,
L σ 1 ) =1 80nH ,
C σ 1 ) =9 00p F
Energy losses include
“tail” and diode
reverse recovery.
-
0.77
0.96
trr
Turn-on delay time
td(on)
Rise time
tr
Turn-off delay time
td(off)
Fall time
tf
Turn-on energy
Eon
Turn-off energy
Eoff
Total switching energy
ns
mJ
Anti-Parallel Diode Characteristic
Diode reverse recovery time
T j = 25°C ,
-
300
-
tS
V R = 20 0 V , I F =20A,
-
30
-
tF
d i F /d t= 200A/µs
-
270
-
ns
Diode reverse recovery charge
Qrr
-
490
-
nC
Diode peak reverse recovery current
Irrm
-
5.5
-
A
Diode peak rate of fall of reverse
recovery current during t b
dirr/dt
-
180
-
A/µs
Switching Characteristic, Inductive Load, at Tj=150 °C
Parameter
Symbol
Conditions
Value
min.
typ.
max.
-
36
46
-
30
36
-
250
300
-
63
76
-
0.67
0.81
Unit
IGBT Characteristic
-
0.49
0.64
Ets
T j = 150 °C
V C C = 40 0 V, I C =20A,
V G E = 0 /1 5 V,
R G = 1 6Ω ,
L σ 1 ) =1 80nH ,
C σ 1 ) =9 00p F
Energy losses include
“tail” and diode
reverse recovery.
-
1.12
1.45
trr
T j = 150 °C
-
410
-
tS
V R = 20 0 V , I F =20A,
-
45
-
tF
d i F /d t= 200A/µs
-
365
-
Turn-on delay time
td(on)
Rise time
tr
Turn-off delay time
td(off)
Fall time
tf
Turn-on energy
Eon
Turn-off energy
Eoff
Total switching energy
ns
mJ
Anti-Parallel Diode Characteristic
Diode reverse recovery time
ns
Diode reverse recovery charge
Qrr
-
1270
-
nC
Diode peak reverse recovery current
Irrm
-
8.5
-
A
Diode peak rate of fall of reverse
recovery current during t b
dirr/dt
-
200
-
A/µs
1)
Leakage inductance L σ a nd Stray capacity C σ due to dynamic test circuit in Figure E.
3
Rev. 2_2
Sep 08
SKW20N60
110A
100A
Ic
100A
tp=4µs
15µs
80A
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
90A
70A
60A
50A
TC=80°C
40A
30A
TC=110°C
20A
Ic
10A
50µs
200µs
1ms
1A
DC
10A
0A
10Hz
0.1A
100Hz
1kHz
10kHz
1V
100kHz
f, SWITCHING FREQUENCY
Figure 1. Collector current as a function of
switching frequency
(Tj ≤ 150°C, D = 0.5, VCE = 400V,
VGE = 0/+15V, RG = 16Ω)
10V
100V
1000V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 2. Safe operating area
(D = 0, TC = 25°C, Tj ≤ 150°C)
200W
50A
180W
40A
140W
IC, COLLECTOR CURRENT
Ptot,
POWER DISSIPATION
160W
120W
100W
80W
60W
40W
30A
20A
10A
20W
0W
25°C
50°C
75°C
100°C
0A
25°C
125°C
TC, CASE TEMPERATURE
Figure 3. Power dissipation as a function
of case temperature
(Tj ≤ 150°C)
50°C
75°C
100°C
125°C
TC, CASE TEMPERATURE
Figure 4. Collector current as a function of
case temperature
(VGE ≤ 15V, Tj ≤ 150°C)
4
Rev. 2_2
Sep 08
60A
60A
50A
50A
40A
30A
20A
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
SKW20N60
VGE=20V
15V
13V
11V
9V
7V
5V
10A
0A
0V
1V
2V
3V
4V
20A
0A
0V
5V
15V
13V
11V
9V
7V
5V
Tj=+25°C
60A
-55°C
+150°C
50A
40A
30A
20A
10A
2V
4V
6V
8V
10V
1V
2V
3V
4V
5V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 6. Typical output characteristics
(Tj = 150°C)
VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE
70A
IC, COLLECTOR CURRENT
30A
VGE=20V
10A
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 5. Typical output characteristics
(Tj = 25°C)
0A
0V
40A
VGE, GATE-EMITTER VOLTAGE
Figure 7. Typical transfer characteristics
(VCE = 10V)
4.0V
3.5V
IC = 40A
3.0V
2.5V
IC = 20A
2.0V
1.5V
1.0V
-50°C
0°C
50°C
100°C
150°C
Tj, JUNCTION TEMPERATURE
Figure 8. Typical collector-emitter
saturation voltage as a function of junction
temperature
(VGE = 15V)
5
Rev. 2_2
Sep 08
SKW20N60
td(off)
100ns
t, SWITCHING TIMES
t, SWITCHING TIMES
td(off)
tf
td(on)
100ns
tf
td(on)
tr
tr
10ns
10A
20A
30A
10ns
0Ω
40A
IC, COLLECTOR CURRENT
Figure 9. Typical switching times as a
function of collector current
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+15V, RG = 1 6 Ω,
Dynamic test circuit in Figure E)
10Ω
20Ω
30Ω
40Ω
50Ω
60Ω
RG, GATE RESISTOR
Figure 10. Typical switching times as a
function of gate resistor
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+15V, IC = 20A,
Dynamic test circuit in Figure E)
VGE(th), GATE-EMITTER THRESHOLD VOLTAGE
5.5V
t, SWITCHING TIMES
td(off)
100ns
tf
tr
td(on)
10ns
0°C
50°C
100°C
150°C
5.0V
4.5V
4.0V
max.
3.5V
typ.
3.0V
2.5V
min.
2.0V
-50°C
Tj, JUNCTION TEMPERATURE
Figure 11. Typical switching times as a
function of junction temperature
(inductive load, VCE = 400V, VGE = 0/+15V,
IC = 20A, RG = 16 Ω,
Dynamic test circuit in Figure E)
0°C
50°C
100°C
150°C
Tj, JUNCTION TEMPERATURE
Figure 12. Gate-emitter threshold voltage
as a function of junction temperature
(IC = 0.7mA)
6
Rev. 2_2
Sep 08
SKW20N60
3.0mJ
3.0mJ
Ets*
*) Eon and Ets include losses
due to diode recovery.
*) Eon and Ets include losses
due to diode recovery.
2.5mJ
E, SWITCHING ENERGY LOSSES
E, SWITCHING ENERGY LOSSES
2.5mJ
2.0mJ
Eon*
1.5mJ
Eoff
1.0mJ
0.5mJ
0.0mJ
0A
10A
20A
30A
40A
2.0mJ
Ets*
1.5mJ
1.0mJ
Eon*
Eoff
0.5mJ
0.0mJ
0Ω
50A
IC, COLLECTOR CURRENT
Figure 13. Typical switching energy losses
as a function of collector current
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+15V, RG = 1 6 Ω,
Dynamic test circuit in Figure E)
10Ω
20Ω
30Ω
40Ω
50Ω
60Ω
RG, GATE RESISTOR
Figure 14. Typical switching energy losses
as a function of gate resistor
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+15V, IC = 20A,
Dynamic test circuit in Figure E)
1.6mJ
*) Eon and Ets include losses
due to diode recovery.
1.2mJ
0
Ets*
1.0mJ
0.8mJ
Eon*
0.6mJ
Eoff
0.4mJ
0.2mJ
0.0mJ
0°C
ZthJC, TRANSIENT THERMAL IMPEDANCE
E, SWITCHING ENERGY LOSSES
1.4mJ
10 K/W
D=0.5
0.2
-1
10 K/W 0.1
0.05
0.02
R,(1/W)
0.1882
0.3214
0.1512
0.0392
-2
10 K/W
0.01
-3
10 K/W
R1
τ, (s)
0.1137
-2
2.24*10
-4
7.86*10
-5
9.41*10
R2
single pulse
C 1= τ1/R 1
C 2= τ2/R 2
-4
50°C
100°C
10 K/W
1µs
150°C
10µs
100µs
1ms
10ms 100ms
1s
tp, PULSE WIDTH
Tj, JUNCTION TEMPERATURE
Figure 15. Typical switching energy losses
as a function of junction temperature
(inductive load, VCE = 400V, VGE = 0/+15V,
IC = 20A, RG = 16 Ω,
Dynamic test circuit in Figure E)
Figure 16. IGBT transient thermal
impedance as a function of pulse width
(D = tp / T)
7
Rev. 2_2
Sep 08
SKW20N60
25V
Ciss
1nF
15V
120V
C, CAPACITANCE
VGE, GATE-EMITTER VOLTAGE
20V
480V
10V
Crss
5V
0V
0nC
25nC
50nC
10pF
0V
75nC 100nC 125nC
QGE, GATE CHARGE
Figure 17. Typical gate charge
(IC = 20A)
20V
30V
IC(sc), SHORT CIRCUIT COLLECTOR CURRENT
350A
20 µ s
15 µ s
10 µ s
5µ s
0µ s
10V
10V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 18. Typical capacitance as a
function of collector-emitter voltage
(VGE = 0V, f = 1MHz)
25 µ s
tsc, SHORT CIRCUIT WITHSTAND TIME
Coss
100pF
11V
12V
13V
14V
300A
250A
200A
150A
100A
50A
0A
10V
15V
VGE, GATE-EMITTER VOLTAGE
Figure 19. Short circuit withstand time as a
function of gate-emitter voltage
(VCE = 600V, start at Tj = 25°C)
12V
14V
16V
18V
20V
VGE, GATE-EMITTER VOLTAGE
Figure 20. Typical short circuit collector
current as a function of gate-emitter voltage
(VCE ≤ 600V, Tj = 150°C)
8
Rev. 2_2
Sep 08
SKW20N60
600ns
2500nC
IF = 40A
400ns
IF = 20A
300ns
200ns
IF = 10A
100ns
0ns
100A/µs
300A/µs
500A/µs
700A/µs
Qrr, REVERSE RECOVERY CHARGE
trr, REVERSE RECOVERY TIME
500ns
IF = 20A
1000nC
IF = 10A
500nC
300A/µs
500A/µs
700A/µs
900A/µs
1000A/ µs
DIODE PEAK RATE OF FALL
OF REVERSE RECOVERY CURRENT
20A
IF = 40A
16A
IF = 20A
IF = 10A
8A
d i r r / d t,
Irr, REVERSE RECOVERY CURRENT
1500nC
d i F /d t, DIODE CURRENT SLOPE
Figure 22. Typical reverse recovery charge
as a function of diode current slope
(VR = 200V, Tj = 125°C,
Dynamic test circuit in Figure E)
24A
4A
0A
100A/µs
IF = 40A
0nC
100A/µs
900A/µs
d i F /d t, DIODE CURRENT SLOPE
Figure 21. Typical reverse recovery time as
a function of diode current slope
(VR = 200V, Tj = 125°C,
Dynamic test circuit in Figure E)
12A
2000nC
300A/µs
500A/µs
700A/µs
800A/ µs
600A/ µs
400A/ µs
200A/ µs
0A/ µs
100A/µs
900A/µs
d i F /d t, DIODE CURRENT SLOPE
Figure 23. Typical reverse recovery current
as a function of diode current slope
(VR = 200V, Tj = 125°C,
Dynamic test circuit in Figure E)
300A/ µs
500A/µs
700A/µs
900A/µs
diF/dt, DIODE CURRENT SLOPE
Figure 24. Typical diode peak rate of fall of
reverse recovery current as a function of
diode current slope
(VR = 200V, Tj = 125°C,
Dynamic test circuit in Figure E)
9
Rev. 2_2
Sep 08
SKW20N60
40A
2.0V
35A
I F = 40A
25A
VF, FORWARD VOLTAGE
IF, FORWARD CURRENT
30A
150°C
20A
100°C
15A
25°C
10A
I F = 20A
-55°C
5A
0A
0.0V
0.5V
1.0V
1.5V
1.0V
2.0V
VF, FORWARD VOLTAGE
Figure 25. Typical diode forward current as
a function of forward voltage
ZthJCD, TRANSIENT THERMAL IMPEDANCE
1.5V
-40°C
0°C
40°C
80°C
120°C
Tj, JUNCTION TEMPERATURE
Figure 26. Typical diode forward voltage as
a function of junction temperature
0
10 K/W D=0.5
0.2
0.1
-1
10 K/W 0.05
R,(1/W)
0.358
0.367
0.329
0.216
0.024
0.02
-2
10 K/W
0.01
R1
τ, (s)
-2
9.02*10
-3
9.42*10
-4
9.93*10
-4
1.19*10
-5
1.92*10
R2
single pulse
C1=τ1/R1
C2=τ2/R2
-3
10 K/W
1µs
10µs
100µs
1ms
10ms 100ms
1s
tp, PULSE WIDTH
Figure 27. Diode transient thermal
impedance as a function of pulse width
(D = tp / T)
10
Rev. 2_2
Sep 08
SKW20N60
PG-TO247-3
M
M
MAX
5.16
2.53
2.11
1.33
2.41
2.16
3.38
3.13
0.68
21.10
17.65
1.35
16.03
14.15
5.10
2.60
MIN
4.90
2.27
1.85
1.07
1.90
1.90
2.87
2.87
0.55
20.82
16.25
1.05
15.70
13.10
3.68
1.68
MIN
0.193
0.089
0.073
0.042
0.075
0.075
0.113
0.113
0.022
0.820
0.640
0.041
0.618
0.516
0.145
0.066
5.44
3
19.80
4.17
3.50
5.49
6.04
MAX
0.203
0.099
0.083
0.052
0.095
0.085
0.133
0.123
0.027
0.831
0.695
0.053
0.631
0.557
0.201
0.102
Z8B00003327
0
0
5 5
7.5mm
0.214
3
20.31
4.47
3.70
6.00
6.30
0.780
0.164
0.138
0.216
0.238
11
0.799
0.176
0.146
0.236
0.248
17-12-2007
03
Rev. 2_2
Sep 08
SKW20N60
i,v
tr r =tS +tF
diF /dt
Qr r =QS +QF
IF
tr r
tS
QS
Ir r m
tF
10% Ir r m
QF
dir r /dt
90% Ir r m
t
VR
Figure C. Definition of diodes
switching characteristics
τ1
τ2
r1
r2
τn
rn
Tj (t)
p(t)
r1
r2
rn
Figure A. Definition of switching times
TC
Figure D. Thermal equivalent
circuit
Figure E. Dynamic test circuit
Leakage inductance Lσ =180nH
a nd Stray capacity C σ =900pF.
Figure B. Definition of switching losses
Published by
Infineon Technologies AG,
12
Rev. 2_2
Sep 08
SKW20N60
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2008 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or
any information regarding the application of the device, Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual
property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the
types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies
components may be used in life-support devices or systems only with the express written approval of
Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of
that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and
sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other
persons may be endangered.
13
Rev. 2_2
Sep 08