SKW20N60 Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode C • 75% lower Eoff compared to previous generation combined with low conduction losses • Short circuit withstand time – 10 µs • Designed for: - Motor controls - Inverter • NPT-Technology for 600V applications offers: - very tight parameter distribution - high ruggedness, temperature stable behaviour - parallel switching capability • Very soft, fast recovery anti-parallel EmCon diode • Pb-free lead plating; RoHS compliant • Qualified according to JEDEC1 for target applications • Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type SKW20N60 G E PG-TO-247-3 VCE IC VCE(sat) Tj Marking Package 600V 20A 2.4V 150°C K20N60 PG-TO-247-3 Maximum Ratings Parameter Symbol Collector-emitter voltage VCE DC collector current IC Value 600 Unit V A TC = 25°C 40 TC = 100°C 20 Pulsed collector current, tp limited by Tjmax ICpuls 80 Turn off safe operating area - 80 VCE ≤ 600V, Tj ≤ 150°C Diode forward current IF TC = 25°C 40 TC = 100°C 20 Diode pulsed current, tp limited by Tjmax IFpuls 80 Gate-emitter voltage VGE ±20 V tSC 10 µs Ptot 179 W Ts 260 °C -55...+150 °C Short circuit withstand time 2 VGE = 15V, VCC ≤ 600V, Tj ≤ 150°C Power dissipation TC = 25°C Soldering temperature wavesoldering, 1.6 mm (0.063 in.) from case for 10s Operating junction and storage temperature 1 2 Tj , Tstg J-STD-020 and JESD-022 Allowed number of short circuits: <1000; time between short circuits: >1s. 1 Rev. 2_2 Sep 08 SKW20N60 Thermal Resistance Parameter Symbol Conditions Max. Value Unit RthJC 0.7 K/W RthJCD 1.3 RthJA 40 Characteristic IGBT thermal resistance, junction – case Diode thermal resistance, junction – case Thermal resistance, junction – ambient Electrical Characteristic, at Tj = 25 °C, unless otherwise specified Parameter Symbol Conditions Value min. Typ. max. 600 - - 1.7 2 2.4 - 2.4 2.9 1.2 1.4 1.8 T j = 150 °C - 1.25 1.65 3 4 5 Unit Static Characteristic Collector-emitter breakdown voltage V ( B R ) C E S V G E = 0 V , I C =500 µA Collector-emitter saturation voltage VCE(sat) V G E = 15 V, I C =20A T j = 25°C T j = 150 °C Diode forward voltage VF V VGE=0V, IF=20A T j = 25°C Gate-emitter threshold voltage VGE(th) I C =700 µA,V C E =V G E Zero gate voltage collector current ICES V C E = 60 0 V,V G E = 0 V µA T j = 25°C - - 40 T j = 150 °C - - 2500 Gate-emitter leakage current IGES V C E = 0 V , V G E =20V - - 100 nA Transconductance gfs V C E =20V, I C =20A - 14 - S Input capacitance Ciss V C E =25V, - 1100 1320 pF Output capacitance Coss VGE=0V, - 107 128 Reverse transfer capacitance Crss f=1MHz - 63 76 Gate charge QGate V C C = 48 0 V, I C =20A - 100 130 nC - 13 - nH - 200 - A Dynamic Characteristic V G E =15V Internal emitter inductance LE measured 5mm (0.197 in.) from case Short circuit collector current1) 1) IC(SC) V G E =15V,t S C ≤1 0 µs V C C ≤ 60 0V, T j ≤ 150 °C Allowed number of short circuits: <1000; time between short circuits: >1s. 2 Rev. 2_2 Sep 08 SKW20N60 Switching Characteristic, Inductive Load, at Tj=25 °C Parameter Symbol Conditions Value min. typ. max. - 36 46 - 30 36 - 225 270 - 54 65 - 0.44 0.53 Unit IGBT Characteristic - 0.33 0.43 Ets T j = 25°C , V C C = 40 0 V, I C =20A, V G E = 0 /1 5 V, R G = 1 6Ω , L σ 1 ) =1 80nH , C σ 1 ) =9 00p F Energy losses include “tail” and diode reverse recovery. - 0.77 0.96 trr Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy ns mJ Anti-Parallel Diode Characteristic Diode reverse recovery time T j = 25°C , - 300 - tS V R = 20 0 V , I F =20A, - 30 - tF d i F /d t= 200A/µs - 270 - ns Diode reverse recovery charge Qrr - 490 - nC Diode peak reverse recovery current Irrm - 5.5 - A Diode peak rate of fall of reverse recovery current during t b dirr/dt - 180 - A/µs Switching Characteristic, Inductive Load, at Tj=150 °C Parameter Symbol Conditions Value min. typ. max. - 36 46 - 30 36 - 250 300 - 63 76 - 0.67 0.81 Unit IGBT Characteristic - 0.49 0.64 Ets T j = 150 °C V C C = 40 0 V, I C =20A, V G E = 0 /1 5 V, R G = 1 6Ω , L σ 1 ) =1 80nH , C σ 1 ) =9 00p F Energy losses include “tail” and diode reverse recovery. - 1.12 1.45 trr T j = 150 °C - 410 - tS V R = 20 0 V , I F =20A, - 45 - tF d i F /d t= 200A/µs - 365 - Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy ns mJ Anti-Parallel Diode Characteristic Diode reverse recovery time ns Diode reverse recovery charge Qrr - 1270 - nC Diode peak reverse recovery current Irrm - 8.5 - A Diode peak rate of fall of reverse recovery current during t b dirr/dt - 200 - A/µs 1) Leakage inductance L σ a nd Stray capacity C σ due to dynamic test circuit in Figure E. 3 Rev. 2_2 Sep 08 SKW20N60 110A 100A Ic 100A tp=4µs 15µs 80A IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 90A 70A 60A 50A TC=80°C 40A 30A TC=110°C 20A Ic 10A 50µs 200µs 1ms 1A DC 10A 0A 10Hz 0.1A 100Hz 1kHz 10kHz 1V 100kHz f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj ≤ 150°C, D = 0.5, VCE = 400V, VGE = 0/+15V, RG = 16Ω) 10V 100V 1000V VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25°C, Tj ≤ 150°C) 200W 50A 180W 40A 140W IC, COLLECTOR CURRENT Ptot, POWER DISSIPATION 160W 120W 100W 80W 60W 40W 30A 20A 10A 20W 0W 25°C 50°C 75°C 100°C 0A 25°C 125°C TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj ≤ 150°C) 50°C 75°C 100°C 125°C TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE ≤ 15V, Tj ≤ 150°C) 4 Rev. 2_2 Sep 08 60A 60A 50A 50A 40A 30A 20A IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT SKW20N60 VGE=20V 15V 13V 11V 9V 7V 5V 10A 0A 0V 1V 2V 3V 4V 20A 0A 0V 5V 15V 13V 11V 9V 7V 5V Tj=+25°C 60A -55°C +150°C 50A 40A 30A 20A 10A 2V 4V 6V 8V 10V 1V 2V 3V 4V 5V VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics (Tj = 150°C) VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE 70A IC, COLLECTOR CURRENT 30A VGE=20V 10A VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics (Tj = 25°C) 0A 0V 40A VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics (VCE = 10V) 4.0V 3.5V IC = 40A 3.0V 2.5V IC = 20A 2.0V 1.5V 1.0V -50°C 0°C 50°C 100°C 150°C Tj, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V) 5 Rev. 2_2 Sep 08 SKW20N60 td(off) 100ns t, SWITCHING TIMES t, SWITCHING TIMES td(off) tf td(on) 100ns tf td(on) tr tr 10ns 10A 20A 30A 10ns 0Ω 40A IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, RG = 1 6 Ω, Dynamic test circuit in Figure E) 10Ω 20Ω 30Ω 40Ω 50Ω 60Ω RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, IC = 20A, Dynamic test circuit in Figure E) VGE(th), GATE-EMITTER THRESHOLD VOLTAGE 5.5V t, SWITCHING TIMES td(off) 100ns tf tr td(on) 10ns 0°C 50°C 100°C 150°C 5.0V 4.5V 4.0V max. 3.5V typ. 3.0V 2.5V min. 2.0V -50°C Tj, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 20A, RG = 16 Ω, Dynamic test circuit in Figure E) 0°C 50°C 100°C 150°C Tj, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.7mA) 6 Rev. 2_2 Sep 08 SKW20N60 3.0mJ 3.0mJ Ets* *) Eon and Ets include losses due to diode recovery. *) Eon and Ets include losses due to diode recovery. 2.5mJ E, SWITCHING ENERGY LOSSES E, SWITCHING ENERGY LOSSES 2.5mJ 2.0mJ Eon* 1.5mJ Eoff 1.0mJ 0.5mJ 0.0mJ 0A 10A 20A 30A 40A 2.0mJ Ets* 1.5mJ 1.0mJ Eon* Eoff 0.5mJ 0.0mJ 0Ω 50A IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, RG = 1 6 Ω, Dynamic test circuit in Figure E) 10Ω 20Ω 30Ω 40Ω 50Ω 60Ω RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, IC = 20A, Dynamic test circuit in Figure E) 1.6mJ *) Eon and Ets include losses due to diode recovery. 1.2mJ 0 Ets* 1.0mJ 0.8mJ Eon* 0.6mJ Eoff 0.4mJ 0.2mJ 0.0mJ 0°C ZthJC, TRANSIENT THERMAL IMPEDANCE E, SWITCHING ENERGY LOSSES 1.4mJ 10 K/W D=0.5 0.2 -1 10 K/W 0.1 0.05 0.02 R,(1/W) 0.1882 0.3214 0.1512 0.0392 -2 10 K/W 0.01 -3 10 K/W R1 τ, (s) 0.1137 -2 2.24*10 -4 7.86*10 -5 9.41*10 R2 single pulse C 1= τ1/R 1 C 2= τ2/R 2 -4 50°C 100°C 10 K/W 1µs 150°C 10µs 100µs 1ms 10ms 100ms 1s tp, PULSE WIDTH Tj, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 20A, RG = 16 Ω, Dynamic test circuit in Figure E) Figure 16. IGBT transient thermal impedance as a function of pulse width (D = tp / T) 7 Rev. 2_2 Sep 08 SKW20N60 25V Ciss 1nF 15V 120V C, CAPACITANCE VGE, GATE-EMITTER VOLTAGE 20V 480V 10V Crss 5V 0V 0nC 25nC 50nC 10pF 0V 75nC 100nC 125nC QGE, GATE CHARGE Figure 17. Typical gate charge (IC = 20A) 20V 30V IC(sc), SHORT CIRCUIT COLLECTOR CURRENT 350A 20 µ s 15 µ s 10 µ s 5µ s 0µ s 10V 10V VCE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (VGE = 0V, f = 1MHz) 25 µ s tsc, SHORT CIRCUIT WITHSTAND TIME Coss 100pF 11V 12V 13V 14V 300A 250A 200A 150A 100A 50A 0A 10V 15V VGE, GATE-EMITTER VOLTAGE Figure 19. Short circuit withstand time as a function of gate-emitter voltage (VCE = 600V, start at Tj = 25°C) 12V 14V 16V 18V 20V VGE, GATE-EMITTER VOLTAGE Figure 20. Typical short circuit collector current as a function of gate-emitter voltage (VCE ≤ 600V, Tj = 150°C) 8 Rev. 2_2 Sep 08 SKW20N60 600ns 2500nC IF = 40A 400ns IF = 20A 300ns 200ns IF = 10A 100ns 0ns 100A/µs 300A/µs 500A/µs 700A/µs Qrr, REVERSE RECOVERY CHARGE trr, REVERSE RECOVERY TIME 500ns IF = 20A 1000nC IF = 10A 500nC 300A/µs 500A/µs 700A/µs 900A/µs 1000A/ µs DIODE PEAK RATE OF FALL OF REVERSE RECOVERY CURRENT 20A IF = 40A 16A IF = 20A IF = 10A 8A d i r r / d t, Irr, REVERSE RECOVERY CURRENT 1500nC d i F /d t, DIODE CURRENT SLOPE Figure 22. Typical reverse recovery charge as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E) 24A 4A 0A 100A/µs IF = 40A 0nC 100A/µs 900A/µs d i F /d t, DIODE CURRENT SLOPE Figure 21. Typical reverse recovery time as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E) 12A 2000nC 300A/µs 500A/µs 700A/µs 800A/ µs 600A/ µs 400A/ µs 200A/ µs 0A/ µs 100A/µs 900A/µs d i F /d t, DIODE CURRENT SLOPE Figure 23. Typical reverse recovery current as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E) 300A/ µs 500A/µs 700A/µs 900A/µs diF/dt, DIODE CURRENT SLOPE Figure 24. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E) 9 Rev. 2_2 Sep 08 SKW20N60 40A 2.0V 35A I F = 40A 25A VF, FORWARD VOLTAGE IF, FORWARD CURRENT 30A 150°C 20A 100°C 15A 25°C 10A I F = 20A -55°C 5A 0A 0.0V 0.5V 1.0V 1.5V 1.0V 2.0V VF, FORWARD VOLTAGE Figure 25. Typical diode forward current as a function of forward voltage ZthJCD, TRANSIENT THERMAL IMPEDANCE 1.5V -40°C 0°C 40°C 80°C 120°C Tj, JUNCTION TEMPERATURE Figure 26. Typical diode forward voltage as a function of junction temperature 0 10 K/W D=0.5 0.2 0.1 -1 10 K/W 0.05 R,(1/W) 0.358 0.367 0.329 0.216 0.024 0.02 -2 10 K/W 0.01 R1 τ, (s) -2 9.02*10 -3 9.42*10 -4 9.93*10 -4 1.19*10 -5 1.92*10 R2 single pulse C1=τ1/R1 C2=τ2/R2 -3 10 K/W 1µs 10µs 100µs 1ms 10ms 100ms 1s tp, PULSE WIDTH Figure 27. Diode transient thermal impedance as a function of pulse width (D = tp / T) 10 Rev. 2_2 Sep 08 SKW20N60 PG-TO247-3 M M MAX 5.16 2.53 2.11 1.33 2.41 2.16 3.38 3.13 0.68 21.10 17.65 1.35 16.03 14.15 5.10 2.60 MIN 4.90 2.27 1.85 1.07 1.90 1.90 2.87 2.87 0.55 20.82 16.25 1.05 15.70 13.10 3.68 1.68 MIN 0.193 0.089 0.073 0.042 0.075 0.075 0.113 0.113 0.022 0.820 0.640 0.041 0.618 0.516 0.145 0.066 5.44 3 19.80 4.17 3.50 5.49 6.04 MAX 0.203 0.099 0.083 0.052 0.095 0.085 0.133 0.123 0.027 0.831 0.695 0.053 0.631 0.557 0.201 0.102 Z8B00003327 0 0 5 5 7.5mm 0.214 3 20.31 4.47 3.70 6.00 6.30 0.780 0.164 0.138 0.216 0.238 11 0.799 0.176 0.146 0.236 0.248 17-12-2007 03 Rev. 2_2 Sep 08 SKW20N60 i,v tr r =tS +tF diF /dt Qr r =QS +QF IF tr r tS QS Ir r m tF 10% Ir r m QF dir r /dt 90% Ir r m t VR Figure C. Definition of diodes switching characteristics τ1 τ2 r1 r2 τn rn Tj (t) p(t) r1 r2 rn Figure A. Definition of switching times TC Figure D. Thermal equivalent circuit Figure E. Dynamic test circuit Leakage inductance Lσ =180nH a nd Stray capacity C σ =900pF. Figure B. Definition of switching losses Published by Infineon Technologies AG, 12 Rev. 2_2 Sep 08 SKW20N60 Published by Infineon Technologies AG 81726 Munich, Germany © 2008 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 13 Rev. 2_2 Sep 08