Freescale Semiconductor Data Sheet: Technical Data VF3xxR, VF5xxR Features • Operating characteristics – Voltage range 3 V to 3.6 V – Temperature range(ambient) -40 °C to 85 °C • ARM® Cortex® A5 Core features – Up to 400 MHz ARM® Cortex® A5 core – 32 KB/32 KB I/D L1 Cache – 1.6 DMIPS/MHz based on ARMv7 architecture – NEON™ MPE (Media Processing Engine) Coprocessor – Double Precision Floating Point Unit – 512 KB L2 cache (on selected part numbers only) • ARM Cortex M4 Core features – Up to 133 MHz ARM Cortex M4 – Integrated DSP capability – 64 KB Tightly Coupled Memory (TCM) – 16 KB/16 KB I/D L1 Cache – 1.25 DMIPS/MHz based on ARMv7 architecture • Clocks – 24 MHz crystal oscillator – 32 kHz crystal oscillator – Internal reference clocks (128 KHz and 24 MHz) – Phase Locked Loops (PLLs) – Low Jitter Digital PLLs • System debug, protection, and power management – Various stop, wait, and run modes to provide low power based on application needs – Peripheral clock enable register can disable clocks to unused modules, thereby reducing currents – Low voltage warning and detect with selectable trip points – Illegal opcode and illegal address detection with programmable reset or processor exception response – Hardware CRC module to support fast cyclic redundancy checks (CRC) – 128-bit unique chip identifier – Hardware watchdog – External Watchdog Monitor (EWM) – Dual DMA controller with 32 channels (with DMAMUX) Document Number VYBRIDRSERIESEC Rev 7, 11/2014 VYBRIDRSERIESEC • Debug – Standard JTAG – 16-bit Trace port • Timers – Motor control/general purpose timer (FTM) – Periodic Interrupt Timers (PITs) – Low-power timer (LPTMR0) – IEEE 1588 Timer per MAC interface (part of Ethernet Subsystem) • Communications – Six Universal asynchronous receivers/transmitters (UART)/Serial communications interface (SCI) with LIN, ISO7816, IrDA, and hardware flow control – Four Deserial Serial peripheral interface (DSPI) – Four Inter-Integrated Circuit (I2C) with SMBUS support – Dual USB OTG Controller + PHY – Dual 4/8 bit Secure Digital Host controller – Local Media Bus (MLB50) – Dual 10/100 Ethernet (IEEE 1588) – Dual FlexCAN3 • Security – ARM TrustZone including the TZ architecture – Secure Non-Volatile Storage (SNVS) – Real Time Clock – Real Time Integrity Checker (RTIC) – TrustZone Watchdog (TZ WDOG) – Trust Zone Address Space Controller – Random Number Generator – Hashing – Secure JTAG • Memory Interfaces – 8/16-bit DRAM Controller with support for LPDDR2/DDR3 - Up to 400 MHz (ECC supported for 8-bit only and not 16-bit) – 8/16-bit NAND Flash controller with ECC (ECC supported for 8-bit only and not 16-bit) – Dual Quad SPI with XIP (Execute-In-Place) – 8/16/32-bit External bus (Flexbus) Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its products. © 2012–2013 Freescale Semiconductor, Inc. • Display and Video – Dual Display Control Unit (DCU) with support for color TFT display up to WVGA – Segmented LCD (3V Glass only) configurable as 40x4, 38x8, and 36x6 – Video Interface Unit (VIU) for camera – Open VG Graphics Processing Unit (GPU) – VideoADC • Analog – Dual 12-bit SAR ADC with 1MS/s – Dual 12-bit DAC • Audio – Four Synchronous Audio Interface (SAI) – Enhanced Serial Audio Interface (ESAI) – Sony Philips Digital Interface (SPDIF), Rx and Tx – Asynchronous Sample Rate Converter (ASRC) • Human-Machine Interface (HMI) – GPIO pins with interrupt support, DMA request capability, digital glitch filter. – Hysteresis and configurable pull up/down device on all input pins – Configurable slew rate and drive strength on all output pins • On-Chip Memory – 512 KB On-chip SRAM with ECC – 1 MB On-chip graphics SRAM (no ECC). This depends on the part selected. Alternate configuration could be 512 KB graphics and 512 KB L2 cache. – 96 KB Boot ROM VF3xxR, VF5xxR, Rev7, 11/2014. 2 Freescale Semiconductor, Inc. Table of Contents 1 Ordering parts.....................................................................................5 1.1 2 3 4 5 Determining valid orderable parts ..........................................5 USB PHY current consumption..............................21 6.2.5.1 Power Down Mode............................. 21 Part identification............................................................................... 5 6.2.6 EMC radiated emissions operating behaviors........ 21 2.1 Description.............................................................................. 5 6.2.7 EMC Radiated Emissions Web Search Procedure 2.2 Part Number Format................................................................5 2.3 Fields....................................................................................... 6 2.4 Part Numbers ..........................................................................7 boilerplate............................................................... 22 6.2.8 7 Terminology and guidelines...............................................................8 Capacitance attributes............................................. 22 I/O parameters....................................................................................22 7.1 GPIO parameters..................................................................... 22 3.1 Definition: Operating requirement.......................................... 8 3.2 Definition: Operating behavior............................................... 8 3.3 Definition: Attribute................................................................8 3.4 Definition: Rating....................................................................9 8.1 Power sequencing ...................................................................28 3.5 Result of exceeding a rating.................................................... 9 8.2 Power supply........................................................................... 30 3.6 Relationship between ratings and operating requirements......10 8.3 Absolute maximum ratings..................................................... 31 3.7 Guidelines for ratings and operating requirements................. 10 8.4 Recommended operating conditions....................................... 32 3.8 Definition: Typical value........................................................ 10 8.5 Recommended Connections for Unused Analog Interfaces... 33 3.9 Typical Value Conditions........................................................11 Handling ratings................................................................................. 12 7.1.1 7.2 8 9 Output Buffer Impedance measurement................. 24 DDR parameters......................................................................25 Power supplies and sequencing..........................................................28 Peripheral operating requirements and behaviours............................ 34 9.1 Analog..................................................................................... 34 4.1 ESD handling ratings ............................................................. 12 4.2 Thermal handling ratings........................................................ 12 9.1.1.1 12-bit ADC operating conditions........ 34 4.3 Moisture handling ratings........................................................12 9.1.1.2 12-bit ADC characteristics..................35 9.1.1 Operating Requirements.....................................................................13 5.1 6 6.2.5 9.1.2 12-bit ADC electrical characteristics...................... 34 12-bit DAC electrical characteristics...................... 39 Thermal operating requirements............................................. 13 9.1.2.1 12-bit DAC operating requirements....39 General............................................................................................... 13 9.1.2.2 12-bit DAC operating behaviors......... 39 6.1 AC electrical characteristics....................................................13 6.2 Nonswitching electrical specifications ...................................14 6.2.1 6.2.2 6.2.3 6.2.4 9.1.3 9.2 VREG electrical specifications .............................. 14 VideoADC Specifications.......................................43 Display and Video interfaces.................................................. 45 9.2.1 DCU Switching Specifications............................... 45 6.2.1.1 HPREG electrical characteristics........ 14 9.2.1.1 Interface to TFT panels (DCU0/1)......45 6.2.1.2 LPREG electrical characteristics.........14 9.2.1.2 Interface to TFT LCD Panels—Pixel 6.2.1.3 ULPREG electrical characteristics......15 6.2.1.4 WBREG electrical characteristics.......15 6.2.1.5 External NPN Ballast.......................... 16 Level Timings..................................... 46 9.2.1.3 Interface to TFT LCD panels—access level..................................................... 47 LVD electrical specifications .................................18 9.2.2 Video Input Unit timing..........................................48 6.2.2.1 Main Supply electrical characteristics 18 9.2.3 LCD driver electrical characteristics...................... 49 6.2.2.2 LVD DIG characteristics.....................18 9.3 Ethernet specifications............................................................ 49 LDO electrical specifications .................................19 9.3.1 Ethernet Switching Specifications.......................... 49 6.2.3.1 LDO_1P1............................................ 19 9.3.2 Receive and Transmit signal timing specifications 49 6.2.3.2 LDO_2P5............................................ 19 9.3.3 Receive and Transmit signal timing specifications 6.2.3.3 LDO_3P0 ........................................... 20 Power consumption operating behaviors................ 20 for MII interfaces.................................................... 51 9.4 Audio interfaces...................................................................... 53 VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 3 9.4.1 Enhanced Serial Audio Interface (ESAI) Timing 9.7.4 Parameters...............................................................53 9.5 9.6 9.7 9.4.2 SPDIF Timing Parameters...................................... 55 9.4.3 SAI/I2S Switching Specifications.......................... 56 Slow internal RC oscillator (128 KHz) electrical characteristics..........................................................84 9.7.5 PLL1 and PLL2 (528 MHz System PLL) Electrical Parameters.............................................. 84 Memory interfaces...................................................................58 9.7.6 PLL3 and PLL7 (480 MHz USB PLL) Electrical 9.5.1 QuadSPI timing.......................................................58 Parameters...............................................................84 9.5.2 NFC specifications..................................................61 9.7.7 PLL5 (Ethernet PLL) Electrical Parameters........... 85 9.5.3 FlexBus timing specifications.................................64 9.7.8 PLL4 (Audio PLL) Electrical Parameters...............85 9.5.4 DDR controller specifications................................ 66 9.7.9 PLL6 (Video PLL) Electrical Parameters...............85 9.5.4.1 DDR3 Timing Parameters ..................66 9.8 Debug specifications............................................................... 86 9.5.4.2 DDR3 Read Cycle...............................68 9.8.1 JTAG electricals..................................................... 86 9.5.4.3 DDR3 Write cycle...............................69 9.8.2 Debug trace timing specifications...........................88 9.5.4.4 LPDDR2 Timing Parameter................70 10 Thermal attributes.............................................................................. 89 9.5.4.5 LPDDR2 Read Cycle.......................... 71 10.1 Thermal attributes................................................................... 89 9.5.4.6 LPDDR2 Write Cycle......................... 72 11 Dimensions.........................................................................................90 Communication interfaces.......................................................73 11.1 Obtaining package dimensions ...............................................90 9.6.1 MediaLB (MLB) DC Characteristics..................... 73 12 Pinouts................................................................................................91 9.6.2 MediaLB (MLB) Controller AC Timing Electrical 12.1 Pinouts.....................................................................................91 Specifications..........................................................73 12.2 Pinout diagrams.......................................................................103 9.6.3 DSPI timing specifications..................................... 75 12.2.1 GPIO Mapping........................................................105 9.6.4 I2C timing............................................................... 78 12.2.2 Special Signal ........................................................ 109 9.6.5 SDHC specifications...............................................80 13 Power Supply Pins............................................................................. 111 9.6.6 USB PHY specifications.........................................81 13.1 Power Supply Pins.................................................................. 111 Clocks and PLL Specifications............................................... 81 14 Functional Assignment Pins...............................................................112 9.7.1 24 MHz Oscillator Specifications...........................81 14.1 Functional Assignment Pins....................................................112 9.7.2 32 KHz Oscillator Specifications........................... 82 15 Revision History.................................................................................121 9.7.3 Fast internal RC oscillator (24 MHz) electrical characteristics..........................................................83 VF3xxR, VF5xxR, Rev7, 11/2014. 4 Freescale Semiconductor, Inc. Ordering parts 1 Ordering parts 1.1 Determining valid orderable parts Valid orderable part numbers are provided on the web. 1. To determine the orderable part numbers for this device, go to www.freescale.com and search the required part number. The part numbering format is described in the section that follows. 2 Part identification 2.1 Description Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received. 2.2 Part Number Format The figure below represents the format of part number of this device. VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 5 Part identification S V F 3 1 1 R 3 K1 C MK 2 R Tape & Reel R = Tape & Reel (Optional) Qualification Status P = engineering samples S = automotive qualified Speed (A5 core) 2 = 266MHz 4 = 400MHz Brand: V = Vybrid Series: F = current Package KU = 176LQFP MK = 364BGA Family 3 = Standard 5 = Advanced Core 1 = Cortex A5 2 = Cortex A5 + M4 3 = M4 Primary Graphics 1 = No Open VG 2 = Open VG Temp Spec C = -40 to +85C Ta Option K1 = Placeholder Version R = Auto Memory Option 3 = Standard (1.5MB SRAM) 2 = Optional (1MB SRAM and 512K L2 Cache) Figure 1. Part Number Format 2.3 Fields This table lists the possible values for each field in the part number (not all combinations are valid): Field Description Values Q Qualification status • P = engineering samples • S = automotive qualified B Brand • V = Vybrid S Series • F = current F Family • 3 = Standard • 5 = Advanced C Core • 1 = Cortex A5 • 2 = Cortex A5 + M4 • 3 = M4 Primary G Graphics • 1 = No Open VG • 2 = OpenVG V Version • R = Auto Table continues on the next page... VF3xxR, VF5xxR, Rev7, 11/2014. 6 Freescale Semiconductor, Inc. Part identification Field Description Values M Memory option • 3 = Standard (1.5MB SRAM) • 2 = Optional (1MB SRAM and 512K L2 Cache) T Temperature spec • C = -40 C to +85 C Ta P Package • KU = 176LQFP • MK = 364BGA S Speed (A5 core) • 2 = 266MHz • 4 = 400MHz 0 0 2.4 Part Numbers This table lists the part numbers on the device. Part Number Package Description SVF311R3K1CKU2 LQFP-EP 176 24*24*1.6 A5-266, 176LQFP-EP SVF312R3K1CKU2 LQFP-EP 176 24*24*1.6 A5-266, OpenVG GPU, 176LQFP-EP SVF321R3K1CKU2 LQFP-EP 176 24*24*1.6 A5-266, M4, 176LQFP-EP SVF322R3K1CKU2 LQFP-EP 176 24*24*1.6 A5-266, M4, OpenVG GPU, 176LQFPEP SVF331R3K1CKU2 LQFP-EP 176 24*24*1.6 A5-266, M4 Primary, 176LQFP-EP SVF332R3K1CKU2 LQFP-EP 176 24*24*1.6 A5-266, M4 Primary, OpenVG GPU, 176LQFP-EP SVF511R3K1CMK4 MAP 364 17*17*1.5 P0.8 A5-400, 364BGA SVF512R3K1CMK4 MAP 364 17*17*1.5 P0.8 A5-400, OpenVG GPU, 364BGA SVF521R3K1CMK4 MAP 364 17*17*1.5 P0.8 A5-400, M4, 364BGA SVF522R2K1CMK4 MAP 364 17*17*1.5 P0.8 A5-400, M4, L2 Cache, OpenVG GPU, 364BGA SVF522R3K1CMK4 MAP 364 17*17*1.5 P0.8 A5-400, M4, OpenVG GPU, 364BGA SVF531R3K1CMK4 MAP 364 17*171.5 P0.8 A5-400, M4 Primary, 364BGA SVF532R2K1CMK4 MAP 364 17*17*1.5 P0.8 A5-400, M4 Primary, L2 Cache OpenVG GPU, 364BGA SVF532R3K1CMK4 MAP 364 17*17*1.5 P0.8 A5-400, M4 Primary, OpenVG GPU, 364BGA VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 7 Terminology and guidelines 3 Terminology and guidelines 3.1 Definition: Operating requirement An operating requirement is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip. 3.1.1 Example This is an example of an operating requirement: Symbol VDD Description 1.0 V core supply voltage Min. 0.9 Max. 1.1 Unit V 3.2 Definition: Operating behavior Unless otherwise specified, an operating behavior is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions. 3.2.1 Example This is an example of an operating behavior: Symbol IWP Description Digital I/O weak pullup/ 10 pulldown current Min. Max. 130 Unit µA 3.3 Definition: Attribute An attribute is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements. VF3xxR, VF5xxR, Rev7, 11/2014. 8 Freescale Semiconductor, Inc. Terminology and guidelines 3.3.1 Example This is an example of an attribute: Symbol CIN_D Description Input capacitance: digital pins Min. — Max. 7 Unit pF 3.4 Definition: Rating A rating is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure: • Operating ratings apply during operation of the chip. • Handling ratings apply when the chip is not powered. 3.4.1 Example This is an example of an operating rating: Symbol VDD Description 1.0 V core supply voltage Min. –0.3 Max. 1.2 Unit V 3.5 Result of exceeding a rating Failures in time (ppm) 40 30 The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings. 20 10 0 Operating rating Measured characteristic VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 9 Terminology and guidelines 3.6 Relationship between ratings and operating requirements g( era Op tin g in rat n. mi era g tin u req ) in. t (m n me ire Op ire g tin era Op u req t (m n me ax .) g tin era Op x.) ma g( in rat Fatal range Degraded operating range Normal operating range Degraded operating range Fatal range Expected permanent failure - No permanent failure - Possible decreased life - Possible incorrect operation - No permanent failure - Correct operation - No permanent failure - Possible decreased life - Possible incorrect operation Expected permanent failure –∞ ∞ Operating (power on) ng dli n Ha –∞ ) rat n.) mi ( ing ng dli n Ha ma rat ( ing x.) Fatal range Handling range Fatal range Expected permanent failure No permanent failure Expected permanent failure ∞ Handling (power off) 3.7 Guidelines for ratings and operating requirements Follow these guidelines for ratings and operating requirements: • Never exceed any of the chip’s ratings. • During normal operation, don’t exceed any of the chip’s operating requirements. • If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible. 3.8 Definition: Typical value A typical value is a specified value for a technical characteristic that: • Lies within the range of values specified by the operating behavior • Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions Typical values are provided as design guidelines and are neither tested nor guaranteed. VF3xxR, VF5xxR, Rev7, 11/2014. 10 Freescale Semiconductor, Inc. Terminology and guidelines 3.8.1 Example 1 This is an example of an operating behavior that includes a typical value: Symbol Description IWP Digital I/O weak pullup/pulldown current Min. 10 Typ. 70 Max. 130 Unit µA 3.8.2 Example 2 This is an example of a chart that shows typical values for various voltage and temperature conditions: 5000 4500 4000 TJ IDD_STOP (μA) 3500 150 °C 3000 105 °C 2500 25 °C 2000 –40 °C 1500 1000 500 0 0.90 0.95 1.00 1.05 1.10 VDD (V) 3.9 Typical Value Conditions Typical values assume you meet the following conditions (or other conditions as specified): Symbol Description Value Unit TA Ambient temperature 25 °C VDD 3.3 V supply voltage 3.3 V VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 11 Handling ratings 4 Handling ratings 4.1 ESD handling ratings Symbol Description Min. Max. Unit Notes VHBM Electrostatic discharge voltage, human body model -2000 2000 V 1 VCDM Electrostatic discharge voltage, charged-device model -500 500 V 2 Latch-up Current at ambient temperature of 85 °C -100 100 mA Description Min. Max. Unit Notes TSTG Storage temperature –55 150 °C 1 TSDR Solder temperature, lead-free — 260 °C 2 Solder temperature, leaded — 245 ILAT 1. Determined according to the AEC spec AEC-Q100-002 for HBM 2. Determined according to AEC spec AEC-Q100-011 4.2 Thermal handling ratings Symbol 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life. 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 4.3 Moisture handling ratings Symbol MSL Description Moisture sensitivity level Min. Max. Unit Notes — 3 — 1 1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. VF3xxR, VF5xxR, Rev7, 11/2014. 12 Freescale Semiconductor, Inc. Operating Requirements 5 Operating Requirements 5.1 Thermal operating requirements Table 1. Thermal operating requirements Symbol Description Min. Max. Unit TA Ambient temperature –40 85 °C TJ Junction temperature 105 °C 6 General 6.1 AC electrical characteristics Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure. VIH Input Signal High Low 80% 50% 20% Midpoint1 Fall Time VIL Rise Time The midpoint is VIL + (VIH - VIL) / 2 Figure 2. Input signal measurement reference VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 13 Nonswitching electrical specifications 6.2 Nonswitching electrical specifications 6.2.1 VREG electrical specifications 6.2.1.1 HPREG electrical characteristics Table 2. HPREG electrical characteristics Parameters Min Typ Max Unit Comments Power supply 3.0 3.3 3.6 V - Current Consumption - 1.2 1.5 mA @ no load - 2.0 2.5 mA @ full load - 600 12001 mA DC load current 1.23 1.26 V Output current capacity Output voltage @ no load Output voltage @ full load 1.20 1.21 V External decoupling cap 4.7 - μF - 0.05 0.1 Ohms ESR of external cap 20 mOhms Total effective PAD+PCB trace resistances @ DC @noload -48 dB @ DC @full load -40 @ worst case any frequency -20 PSRR with 4.7uF output cap 1. This is peak and not continuous maximum value. 6.2.1.2 LPREG electrical characteristics Table 3. LPREG electrical characteristics Parameters Min Typ Max Unit Power supply 3.0 3.3 3.6 V Current Consumption 350 400 - 500 Output current capacity Output voltage @ no load μA @ no load 650 μA @ full load 100 200 mA DC load current 1.22 1.240 V Output voltage @ full load 1.180 V External decoupling cap 4.7 μF 0.05 Comments 0.1 Ohms ESR of external cap 20 mOhms Total PAD+PCB trace resistance Table continues on the next page... VF3xxR, VF5xxR, Rev7, 11/2014. 14 Freescale Semiconductor, Inc. VREG electrical specifications Table 3. LPREG electrical characteristics (continued) Parameters Min Typ Max Unit @ DC @noload -40 dB @ DC @full load -35 Worst case @ any frequency -12 Comments PSRR with 4.7uF output cap 6.2.1.3 ULPREG electrical characteristics Table 4. ULPREG electrical characteristics Parameters Min Typ Max Unit Power supply 3.0 3.3 3.6 V Current Consumption 1.88 2.3 2.86 μA - 610 670 μA @ full load 20 mA DC load current 1.175 V Output current capacity Output voltage @ no load Output voltage @ full load PSRR with 500 pF output cap 1.125 V -20 dB @ DC @noload -50 @200KHz @noload -37 @ DC @full load -42 @200KHz @full load -37 Worst case @ any frequency @ any load -15 6.2.1.4 Comments @ no load Worst case at any frequency across corners dB WBREG electrical characteristics Table 5. WBREG electrical characteristics Parameters Min Typ Max Unit Comments Power supply 3 3.3 3.6 V - Current Consumption - 2 5 µA @ no load - 2 5 µA @ full load - 1 2 mA DC load current 1.4 1.425 V Output current capacity Output voltage @ no load Output voltage @ full load 1.375 1.398 Output voltage programmability 1.4 1.4 V 1.7 V 16 steps of 25 mV each VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 15 VREG electrical specifications 6.2.1.5 External NPN Ballast The internal main regulator requires an external NPN ballast transistor to be connected as shown in the following figure as well as an external capacitance to be connected to the device in order to provide a stable 1.2V digital supply to the device. The HPREG design allows for collector voltage lower than VDDREG value. See AN4807 at www.freescale.com . NOTE To not overload BCTRL output, collector voltage should appear no later than VDDREG / VDD33 (3.3V). Figure 3. External NPN Ballast connections Table 6. BCTRL OUTPUT specification Parameter Value Comments BCTRL OUTPUT specification 20mA BCTRL driver can not drive more than 20mA current Maximum pin voltage VDDREG-0.5V For Example, VDDREG =3.0V BCTRL should not exceed 2.5V. Table 7. Assumptions For calculations Parameter Value VDDREG 3.0V to 3.6V with typical value of 3.3V Max DC Collector current 0.85A @85 °C Emitter voltage 1.2V to 1.25V Collector voltage Equal to VDDREG VF3xxR, VF5xxR, Rev7, 11/2014. 16 Freescale Semiconductor, Inc. VREG electrical specifications Table 8. General guidelines for selection of NPN ballast Symbol Parameters Value Hfe Minimum DC current gain (Beta) 42.5 PD (Junction to ambient) Minimum power dissipation @ TA=85 °C 2.04 W Assuming 0.85A collector current with Collector voltage of Ballast 3.6V(max) we get VCE= 3.6V-1.2V=2.4V So power dissipated is 2.4V*0.85A=2.04W . This should be met for junction to ambient power dissipation spec of ballast IcmaxDC peak Maximum peak DC collector current 0.85 A 1.2A and above capacity device preferable V For a VDDREG of 3.0 V (min.), BCTRL pin can drive voltage up to VDDREG 0.5 V = 2.5 V. Since emitter of ballast is fixed at 1.25 V (max) if chosen ballast can supply 0.85 A collector current @ 85 °C with a base-to-emitter voltage of 1.25 V or lower, it is suitable for application. VBE Ft Maximum voltage 1.25V for 0.85A @ that BCTRL pin can 85 °C drive Unity current gain Frequency of Ballast 50 Unit Comments As BCTRL pin can not drive more than 20mA Minimum value of beta for a collector current of 0.85A comes out to be 42.5. MHz Reducing the collector-to-emitter voltage drop lowers the ballast transistor heat dissipation. This can be implemented in two ways: 1. By introducing series resistor or diode(s) between the collector and VDDREG (placed far enough from the transistor for proper cooling) 2. By connecting the collector to a separate lower-voltage supply In both of the above cases the transistor has to stay away from the deep saturation region; otherwise, due to significant Hfe degradation, its base current exceeds the BCTRL output maximum value. In general, the transistor must be selected such that its Vce saturation voltage is lower than the expected minimum Collector-Emitter voltage, and at the same time, the base current is less than 20 mA for the maximum expected collector current. More information can be found in collateral documentation at http://www.freescale.com VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 17 LVD electrical specifications 6.2.2 LVD electrical specifications 6.2.2.1 Main Supply electrical characteristics Table 9. LVD_MAIN supply electrical characteristics Main Supply LVD Parameters Min Typ Max Unit Power supply 3.0 3.3 3.6 V 2.76 2.915 V Upper voltage threshold (value @27oC) Lower voltage threshold (value @27oC) 2.656 Time constant of RC filter at LVD input (0.69*RC) 6.2.2.2 2.73 Comments V 3.3 μs 3.3 V noise rejection at LVD comparator input LVD DIG characteristics Table 10. LVD DIG electrical specifications [HPREG(RUN MODE) and LPREG(STOP MODE)] LVD DIG Parameters Min Typ Max Unit Power supply 3.0 3.3 3.6 V Upper voltage threshold 1.135 1.16 1.185 V Lower voltage threshold 1.105 1.13 1.155 V Time constant of RC filter at LVD input 200 Comments ns 1.2V noise rejection at the input of LVD comparator Table 11. LVD DIG electrical specifications [ULPREG(STANDBY MODE)] LVD DIG Parameters Min Typ Max Unit Power supply 3.0 3.3 3.6 V Upper voltage threshold 1.105 1.13 1.155 V Lower voltage threshold 1.075 1.10 1.125 V Time constant of RC filter at LVD input 200 ns Comments 1.2V noise rejection at the input of LVD comparator VF3xxR, VF5xxR, Rev7, 11/2014. 18 Freescale Semiconductor, Inc. LDO electrical specifications 6.2.3 LDO electrical specifications 6.2.3.1 LDO_1P1 Specification Table 12. LDO_1P1 parameters Min Typ Max Unit Comments VDDIO 3 3.3 3.6 V IO supply VDD1P1_OUT 0.9 1.1 1.2 V Regulator output I_out - 150 mA >= 300mV drop out 1.4 V Programmable in 25mV steps Regulator output 0.8 programming range 1.1 Brownout Voltage 0.85 0.94 Brownout offset step 0 - 175 mV Programmable in 25mV steps Minimum external decoupling capacitor 1 - - µF low ESR V For additional information, see the device reference manual. 6.2.3.2 LDO_2P5 Specification Table 13. LDO_2P5 parameters Min Typ Max Unit Comments VDDIO 3 3.3 3.6 V IO supply VDD2P5_OUT 2.3 2.5 2.6 V Regulator output I_out - 350 mA @500mV drop out 2.75 V Programmable in 25mV steps Regulator output 2.0 programming range 2.5 [P:][C:] Brownout Voltage 2.25 2.33 Brownout offset step 0 - 175 mV Programmable in 25mV steps Minimum external decoupling capacitor 1 - - µF low ESR V For additional information, see the reference manual. VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 19 LDO electrical specifications 6.2.3.3 LDO_3P0 Specification Table 14. LDO_3P0 parameters Min Typ Max Unit Comments Input OTG VBUS Supply 4.4 5.25 V Input HOST VBUS Supply 4.4 5.25 V VDD3P0_OUT 2.9 3.1 V Regulator output at default setting I_out - 50 mA 500 mV drop-out voltage 3.4 V Programmable in 25mV steps 3.0 Regulator output 2.625 programming range [P:][C:] Brownout Voltage 2.75 2.85 V Brownout offset step 0 - 175 mV Programmable in 25mV steps Minimum external decoupling capacitor 1 - - µF low ESR NOTE These values are with Anadig_REG_3P0[ENABLE_ILIMIT]= 0 and Anadig_REG_3P0[ENABLE_LINREG]= 1. It is required to set these values before using USB. 6.2.4 Power consumption operating behaviors Table 15. Power consumption operating behaviors Symbol Description Typ.1 Max.2 Unit IDD_RUN Run mode current — All functionalities of the chip available 400 850 mA IDD_WAIT Wait mode high frequency current at 3.3 V ± 10% 80 500 mA 3 IDD_LPRUN Low-power run mode current at 3.3 V ± 10%, 24MHz operation, PLL Bypass. 13 325 mA 4 IDD_ULPRUN Ultra-low-power run mode current at 3.3 V ± 10% 12 395 mA 5 IDD_STOP Stop mode current at 3.3 V ± 10% 7 300 mA 6 IDD_LPS3 Low-power stop3 mode current at 3.3 V ± 10% 300 1300 uA 7 IDD_LPS2 Low-power stop 2 mode current at 3.3 V ± 10% 50 875 uA 8 IDD_VBAT Battery backup mode 5 45 uA 9 Notes 1. The Typ numbers represent the average value taken from a matrix lot of parts across normal process variation at ambient temperature. VF3xxR, VF5xxR, Rev7, 11/2014. 20 Freescale Semiconductor, Inc. LDO electrical specifications 2. The Max numbers represent the single worst case value taken from a matrix lot of parts across normal process variation at maximum temperature. 3. CA5, CM4 cores halted 4. 24MHz operation, PLL Bypass 5. 32 kHz /128 kHz operation, PLL Off 6. Lowest power mode with all power retained, RAM retention and LVD protection. 7. Standby Mode. 64K RAM retention. I/O states held. ADCs/DACs optionally power-gated. RTC functional. Wakeup from interrupts. Fast IRC enabled. 8. Standby Mode 16K RAM retention. I/O states held. ADCs/DACs optionally power-gated. RTC functional. Wakeup from interrupts. Fast IRC enabled. 9. All supplies OFF, SRTC, 32kXOSC ON, tampers and monitors ON. 128k IRC optionally ON. 6.2.5 USB PHY current consumption 6.2.5.1 Power Down Mode Everything powered down, including the VBUS valid detectors, typ condition. Table 16. USB PHY Current Consumption in Normal Mode Current USBx_VBUS VDD33_LDOIN VDD33_LDOIN (3.0V) (2.5V) (1.1V) Avg Avg Avg 5.1 μA 1.7 μA <0.5 μA NOTE The currents on the 2.5 voltage regulator and 3.0 voltage regulator were identified to be the voltage divider circuits in the USB-specific level shifters. 6.2.6 EMC radiated emissions operating behaviors Table 17. EMC radiated emissions operating behaviors Symbol VEME Condition1 Clocks Device Configuration, test conditions and EM testing FCPU = 396 per standard IEC 61967-2; Supply voltages: VDD= 5.0 MHz FBUS V VDD33 = 3.3 V VDD15 = 1.5 V VDD12 = 1.2 V = 66 MHz Temp = 25°C External Crystal = 24 MHz Frequency band 2 Level (Typ)3 Unit 150 KHz – 50 MHz 22 dBμV 50 MHz – 150 MHz 24 150 MHz – 500 MHz 25 500–1000 20 IEC level4 K — 1. Measurements were made per IEC 61967-2 while the device was running basic application code. 2. Measurements were performed on the BGA364 version of the device VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 21 I/O parameters 3. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range. 4. IEC Level Maximums: N ≤ 12dBmV, M ≤ 18dBmV, L ≤ 24dBmV, K ≤ 30dBmV, I ≤ 36dBmV, H ≤ 42dBmV 6.2.7 EMC Radiated Emissions Web Search Procedure boilerplate To find application notes that provide guidance on designing your system to minimize interference from radiated emissions: 1. Go to www.freescale.com. 2. Perform a keyword search for “EMC design.” 6.2.8 Capacitance attributes Table 18. Capacitance attributes Symbol Description Min. Max. Unit CIN_A Input capacitance: analog pins — 7 pF CIN_D Input capacitance: digital pins — 7 pF 7 I/O parameters 7.1 GPIO parameters Table 19. GPIO DC operating conditions Symbol Parameter vddi1 Core internal supply voltage ovdd I/O output supply voltage Min Typ Max Unit 1.2 3 3.3 V 3.6 V Max Unit 1. This is internally controlled. Table 20. GPIO DC Electrical characteristics Symbol Voh Parameter High-level output voltage Test condition Ioh= -1mA Min Typ ovdd-0.15 V Table continues on the next page... VF3xxR, VF5xxR, Rev7, 11/2014. 22 Freescale Semiconductor, Inc. I/O parameters Table 20. GPIO DC Electrical characteristics (continued) Symbol Parameter Test condition Min Typ Max Unit VOH/VOL values are with respect to DSE=0011 Vol Low-level output Iol= 1mA voltage 0.15 V Vih High-Level DC input voltage 0.7*ovdd ovdd V Vil2 Low-Level DC input voltage 0 0.3*ovdd V Vhys Input Hysteresis ovdd=3.3 V 250 mV Vt+2 Schmitt trigger VT+ 0.5*ovdd V Vt-2, 3 Schmitt trigger VT- Iin4 Input current (no Vin = ovdd or 0 pull-up/down) Iin_22pu Input current (22KOhm PU) Iin_47pu Input current (47KOhm PU) 0.5*ovdd V 1 uA Vin = 0 212 uA Vin = ovdd 1 Vin = 0 100 Vin = ovdd 1 Input current (100KOhm PU) Vin = 0 50 Vin = ovdd 1 Input current (100KOhm PD) Vin = 0 1 Vin = ovdd 50 R_Keeper Keeper Circuit Resistance Vin = 0.3 x 105 OVDD VI = 0.7 x OVDD 175 Ohm Issod Sink current in open drain mode Vin = ovdd 7 mA Issop Sink/source current in Push Pull mode Vin = ovdd 7 mA Iin_100pu Iin_100pd -1 1. For details about Software MUX Pad Control Register DSE bit, see IOMUX Controller chapter of the device reference manual. 2. To maintain a valid level, the transitioning edge of the input must sustain a constant slew rate (monotonic) from the current DC level through to the target DC level, VIL or VIH. Monotonic input transition time is from 0.1ns to 1s. Vil and Vih do not apply when hysteresis is enabled. 3. Hysteresis of 250 mV is guaranteed over all operating conditions when hysteresis is enabled. 4. Typ condition: typ model, 3.3V, and 25°C. Max condition: bcs model, 3.6V, and -40°C. Min condition: wcs model, 3.0V and 85 °C. These values are for digital IO buffer cells. VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 23 I/O parameters Table 21. GPIO AC Electrical Characteristics (3.3V power mode) Symbol tpr Drive strength1 Parameter IO Output Transition Max 1 1 1 Times (PA1), rise/fall slow High 1 0 1 Low 0 1 1 IO Output Propagation Delay (PA2), rise/fall Max 1 1 1 Low 0 1 1 tpv Output Enable to Output Valid Delay, rise/fall Max 1 1 1 fast 1.69 1.79 slow 3.07 3.31 fast 2.45 2.61 slow 5.13 5.44 fast 4.79 5.18 15pF Cload on pad, 5.01 input edge rate 200ps 3.06 5.04 slow 5.55 5.68 fast 3.52 3.55 slow 6.37 6.67 fast 4.04 4.11 slow 7.39 7.60 fast 5.54 6.10 5.12 5.21 3.18 3.28 5.72 5.80 fast 3.67 3.71 slow 6.55 6.80 fast 4.06 4.09 slow 7.80 8.19 fast 5.72 6.22 1.06 1.31 1.22 1.41 15pF Cload on pad, input edge rate 200ps, 0->1, 1->0 pad transitions slow Low 0 1 1 Input Pad Propagation Delay rise/fall 2.44 fast Medium 1 0 0 tpi 2.30 slow High 1 0 1 Max slow fast Medium 1 0 0 Min 1.81 slow High 1 0 1 Test conditions 15pF Cload on pad, 1.70 input edge rate 200ps 1.04 fast Medium 1 0 0 tpo Slew rate without hysteresis - with hysteresis - 150f Cload on, input edge rate from pad =1.2ns Unit ns 1.18 ns 3.10 ns ns 1. The drive strengths are controlled by the DSE bit of the Software MUX Pad Control Register. For details, see IOMUX Controller chapter of the device reference manual. 7.1.1 Output Buffer Impedance measurement Table 22. Output Buffer Average Impedance (3.3V power mode) Symbol Rdrv Drive strength1 Parameter Output driver impedance Min Typ Max 001 116 150 220 010 58 75 110 011 39 50 73 Unit Ohm Table continues on the next page... VF3xxR, VF5xxR, Rev7, 11/2014. 24 Freescale Semiconductor, Inc. I/O parameters Table 22. Output Buffer Average Impedance (3.3V power mode) (continued) Symbol Drive strength1 Parameter Min Typ Max 100 30 37 58 101 24 30 46 110 20 25 38 17 20 32 Unit Extra drive strength 111 1. The drive strengths are controlled by the DSE bit of the Software MUX Pad Control Register. For details, see IOMUX Controller chapter of the device reference manual. 7.2 DDR parameters Table 23. DDR operating conditions Symbol Parameter Min Typ Max Unit vddi Core internal supply voltage 1.16 1.23 1.26 V ovdd I/O output supply voltage (DDR3 mode) 1.425 1.5 1.575 V ovdd I/O output supply voltage (LPDDR2 mode) 1.14 1.2 1.26 V vdd2p5 I/O PD predriver and level shifters supply voltage 2.25 2.5 2.75 V Table 24. LPDDR2 mode DC Electrical characteristics Symbol Parameter Test condition Min Voh High-level output voltage Vol Low-level output voltage Vref Input reference voltage 0.49*ovdd Vih(dc) DC input high voltage Vil(dc) Typ Max 0.9*ovdd Unit V 0.1*ovdd V 0.51*ovdd V Vref+0.13 ovdd V DC input low voltage ovss Vref-0.13 V Vih(diff) DC differential input logic high 0.26 Note1 V Vil(diff) DC differential input logic low Note -0.26 V 0.5*ovdd Notes Note that the JEDEC LPDDR2 specification (JESD209_2B ) supersedes any specification in this document. Table continues on the next page... VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 25 I/O parameters Table 24. LPDDR2 mode DC Electrical characteristics (continued) Symbol Parameter Test condition Min Typ Max Iin Input current (no pull-up/ down) Vin = ovdd or 0 2.5 Tri-state I/O supply current2 Icc-ovdd Vin = ovdd or 0 4 Vi = vddi or 0 1.5 Tri-state Icc-vdd2p5 vdd2p5 supply current2 Tri-state core supply current2 Icc-vddi 1 Driver unit (240 Ohm) calibration resolution Rres 10 Unit Notes uA Ohm 1. The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as the limitations for overshoot and undershoot. 2. Typ condition: typ model, 1.2 V, and 25 °C junction. Max condition: bcs model, 1.26V, and -40 °C. Min condition: wcs model, 1.14V, and Tj 125 °C. Table 25. DDR3 mode DC Electrical characteristics Symbol Parameter Test condition Min Voh High-level output voltage Vol Low-level Iol= 1mA output voltage Vref Input reference voltage 0.49*ovdd Vih(dc) DC input high voltage Vil(dc) Typ Max 0.8*ovdd Unit V 0.2*ovdd V 0.51*ovdd V Vref+0.1 ovdd V DC input low voltage ovss Vref-0.1 V Vih(diff) DC differential input logic high 0.2 Note1 V Vil(diff) DC differential input logic low Note -0.2 V Vtt2 Termination voltage Vin = ovdd or 0 Iin Input current (no pullup/ pulldown) Vi = 0 Vi = ovdd 0.49*ovdd 0.5*ovdd 0.5*ovdd Notes Note that the JEDEC JESD79_3E specification supersedes any specification in this document 0.51*ovdd 3 uA Table continues on the next page... VF3xxR, VF5xxR, Rev7, 11/2014. 26 Freescale Semiconductor, Inc. I/O parameters Table 25. DDR3 mode DC Electrical characteristics (continued) Symbol Tri-state I/O supply current3 Parameter Icc-ovdd Tri-state Icc-vdd2p5 vdd2p5 supply current3 Test condition Min Typ Max Vin = ovdd or 0 5 Vi = vddi or 0 1.5 Tri-state core supply current3 Icc-vddi 1 Driver unit (240 Ohm) calibration resolution Rres 10 Unit Notes Ohm 1. The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as the limitations for overshoot and undershoot. 2. Vtt is expected to track ovdd/2. 3. Typ condition: typ model, 1.5 V, and 25 °C. Max condition: bcs model, 1.575V, and -40 °C. Min condition: wcs model, 1.425V, and max Tj °C 125 °C junction Table 26. LPDDR2 mode AC Electrical characteristics Symbol Parameter Test condition Vih(ac) AC input logic high Vil(ac) AC input logic low Vidh(ac) AC differential input high voltage Vidl(ac)1 AC differential input low voltage Vix(ac)2 AC differential Relative to input crosspoint ovdd/2 voltage Vpeak Min Vref+0.22 Max Unit ovdd V Vref-0.22 V - V 0.44 V 0.12 V Over/undershoot peak 0.35 V Varea Over/undershoot at 800MHz data area (above rate ovdd or below ovss) 0.3 V*ns tsr Single output slew rate 2 V/ns tskd Skew between pad rise/fall asymmetry + skew cased by SSN 0.2 ns 0.44 -0.12 0.4 Notes Note that the Jedec LPDDR2 specification (JESD209-2B) supersedes any specification in this document. VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 27 Power supplies and sequencing 1. Vid(ac) specifies the input differential voltage |Vtr-Vcp| required for switching, where Vtr is the “true” input signal and Vcp is the “complementary” input signal. The Minimum value is equal to Vih(ac)-Vil(ac). 2. The typical value of Vix(ac) is expected to be about 0.5*ovdd, and Vix(ac) is expected to track variation of ovdd. Vix(ac) indicates the voltage at which differential input signal must cross. Table 27. DDR3 mode AC Electrical characteristics Symbol Parameter Test condition Min Max Unit Vih(ac) AC input logic high Vref+0.175 ovdd V Vil(ac) AC input logic low ovss Vref-0.175 V Vidh(ac) AC differential input high voltage 0.35 - V Vidl(ac)1 AC differential input low voltage 0.35 Vix(ac)2 AC differential relative to input crosspoint ovdd/2 voltage Vref-0.15 Vpeak Note that the JEDEC JESD79_3E specification supersedes any specification in this document V Vref+0.15 V Over/undershoot peak 0.4 V Varea Over/undershoot at 800 MHz data area (above rate ovdd or below ovss) 0.5 V*ns tsr Single output slew rate 2 V/ns tskd Skew between pad rise/fall asymmetry + skew cased by SSN 0.2 ns 0.4 Notes 1. Vid(ac) specifies the input differential voltage |Vtr-Vcp| required for switching, where Vtr is the “true” input signal and Vcp is the “complementary” input signal. The Minimum value is equal to Vih(ac)-Vil(ac). 2. The typical value of Vix(ac) is expected to be about 0.5*ovdd, and Vix(ac) is expected to track variation of ovdd. Vix(ac) indicates the voltage at which differential input signal must cross. 8 Power supplies and sequencing 8.1 Power sequencing Table 28. Power sequencing Power Supply (PKG Board Level Level) Power Nets Parameters VBAT Battery supply in case of LDOIN fails VBAT Power Order Comment NA Table continues on the next page... VF3xxR, VF5xxR, Rev7, 11/2014. 28 Freescale Semiconductor, Inc. Power supplies and sequencing Table 28. Power sequencing (continued) Power Supply (PKG Board Level Level) Power Nets Parameters Power Order VDD33_LDOIN VDD33 LDO input supply (LDO1P1, LDO2P5, LDO1P1_RTC) 1 VDDREG VDD33 Device PMU regulator and External ballast supply 1 VDD33 VDD33 GPIO 3.3V IO supply, LCD Supply 1 SDRAMC_VDD1P5 SDRAMC_VDD1P5 1.2/1.5 DDR Main IO supply VDDA33_ADC VDDA33_ADC 3.3V supply for ADC, DAC and IO segment 1 VREFH_ADC VREFH_ADC High Reference of ADC, DAC 1 VDDA33_AFE VDDA33_AFE 3.3V supply of AFE (Video ADC) 1 VDD12_AFE VDD 1.2V supply for AFE (Video ADC) 2 FA_VDD VDD Shorted with VDD at Board Level in 364BGA (Test pin only) NA VDD VDD 1.2V core supply from External ballast USB0_VBUS USB_VBUS VBUS supply for USB NA USB1_VBUS USB_VBUS VBUS supply for USB NA NA Comment VDD33_LDOIN,VDDREG and VDD33 should come from a common supply source (represented as 3.3V SMPS in the Figure 4) In case the Ballast transistor’s collector is connected to the 1.5V DRAM supply (instead of the 3.3V supply), turn this 1.5V supply on before turning on the 3.3V. 2 NOTE NA stands for no sequencing needs, for example, the supply can come in any order. NOTE All supplies grouped together e.g. 1,2, others. These have no power sequencing restriction in between them. NOTE If none of the SDRAMC pins are connected on the board, the SDRAMC supply could be left floating. NOTE At power up, 1.2V supply will follow 3.3V supply. At power down, it should be checked that 1.2V falls before 3.3V. NOTE The standby current on USBx_VBUS is 300 - 500 uA. This is well below the 2.5 mA limit set by the USB 2.0 specification. This supply will be ON for applications that need to monitor the VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 29 Power supplies and sequencing USB bus during standby. This supply can be turned-off during standby in applications that cannot tolerate the standby current and do not monitor the USB bus. 8.2 Power supply 10uF VDDA33_AFE BCTRL VDD 4.7uF VDD VideoADC HPREG LPREG VDDREG WELL PD1 48K 16K WBREG* 3.3V ULPREG VDD33_LDOIN GPIO's PD0 VDD33 DAC x 2 eFUSE LDO2P5 SNVS_IO COIN cell Battery supply (See note) 12-bit SAR ADC x 2 USB 0/1 PHY PLLs DDR IO SDRAMC_VDD2P5 1.5V/1.2V DDR Supply SDRAMC_VDD1P5 DECAP_V25_LDO_OUT LDO1P1 SNVS LDO VDDA33_ADC VREFH_ADC PLLs SNVS LDO3P0 USB_DCAP DECAP_V11_LDO_OUT USB0_VBUS (5V) USB1_VBUS (5V) Figure 4. Power supply NOTE VBAT is the backup battery supply. If not required, then VBAT should be tied to VDDREG. VF3xxR, VF5xxR, Rev7, 11/2014. 30 Freescale Semiconductor, Inc. Power supplies and sequencing NOTE WBREG is the Well Bias Regulator. Supplies PD1 WELL during well bias modes. 8.3 Absolute maximum ratings NOTE These are the values above which device can get damaged. Refer to the recommended operating conditions table for intended use case values Table 29. Absolute maximum ratings Symbol Parameters Min Max Unit USB0_VBUS VBUS supply for USB - 5.25 V USB1_VBUS VBUS supply for USB - 5.25 V USB_DCAP USB LDO 5V->3.3V Outpu -0.3 3.6 V VBAT Battery supply in case of LDOIN fails -0.3 3.6 V VDD33_LDOIN LDO input supply -0.3 3.6 V DECAP_V11_LDO_OUT LDO 3.3V -> 1.1V Output -0.3 1.3 V DECAP_V25_LDO_OUT LDO 3.3V -> 2.5 Output for PLL, DDR, EFUSE -0.3 3.6 V VDD33 GPIO 3.3V IO supply -0.3 3.6 V VDDREG Device PMU regulator and External ballast supply -0.3 3.6 V VDDA33_ADC 3.3V supply for ADC, DAC and IO segment -0.3 3.6 V VREFH_ADC 3.3V supply of AFE (Video ADC) -0.3 3.6 V VDDA33_AFE 3.3V supply of AFE (Video ADC) -0.3 3.6 V VDD12_AFE 1.2V supply for AFE (Video ADC) -0.3 1.3 V FA_VDD Test purpose only -0.3 1.3 V VDD 1.2V core supply -0.3 1.3 V SDRAMC_VDD1P5 1.2/1.5 DDR Main IO supply -0.3 1.975 V SDRAMC_VDD2P5 2.5V DDR pre-drive supply DD2P5_LDO_OUT -0.3 3.6 V VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 31 Power supplies and sequencing 8.4 Recommended operating conditions Table 30. Recommended operating conditions Symbol Parameters USB0_VBUS Conditions Min Typ Max Unit VBUS supply for USB w.r.t USB0_GND 4.4 5 5.25 V USB1_VBUS VBUS supply for USB w.r.t USB1_GND 4.4 5 5.25 V USB_DCAP USB LDO 5V->3 V Output VBAT Battery supply in case of LDOIN fails VDD33_LDOIN LDO input supply External DCAP (10uF termination for USBREG) External CAP 0.1uF 3 V 2.4 3.3 3.6 V 3 3.3 3.6 V DECAP_V11_LDO_OU LDO 3.3V -> 1.1V T Output Recommended External DCAP: 1uF(Min) 10uF (Max) 1.1 V DECAP_V25_LDO_OU LDO 3.3V -> 2.5 Output T for PLL, DDR predriver, EFUSE Recommended External DCAP: 1uF(Min) 10uF (Max) 2.5 V VDD33 GPIO 3.3V IO supply External CAP (10uF) 3 3.3 3.6 V VDDREG Device PMU regulator and External ballast supply External CAP (10uF) 3 3.3 3.6 V VDDA33_ADC 3.3V supply for ADC, DAC and IO segment External CAP (10uF) 3 3.3 3.6 V VREFH_ADC High reference voltage for ADC and DAC Relation with VDDDA33_ADC (1uF) 2.5 3.3 VDDA33_ ADC V VREFL_ADC Low reference voltage for ADC and DAC External CAP (10uF) VDDA33_AFE 3.3V supply of AFE (Video ADC) VDD12_AFE 0 External CAP 10uF V 3 3.3 3.6 V 1.2V supply for AFE (Video ADC) 1.16 1.23 1.26 V FA_VDD For testing purpose only should be shorted to VDD on board. 1.16 1.23 1.26 V VDD1 1.2V core supply 1.16 1.23 1.26 V USB0_GND Ground supply for USB 0 V USB1_GND Ground supply for USB 0 V VSS_KEL0 USB LDO ground output 0 V VSS VSS ground 0 V VSSA33_ADC Ground supply for ADC, DAC and IO segment 0 V 4.7uF with a low ESR value (100 milliohms) Table continues on the next page... VF3xxR, VF5xxR, Rev7, 11/2014. 32 Freescale Semiconductor, Inc. Power supplies and sequencing Table 30. Recommended operating conditions (continued) Symbol Parameters Conditions Min VSSA33_AFE Ground supply of AFE (Video ADC) 0 V VSS12_AFE Ground supply for AFE (Video ADC) 0 V SDRAMC_VDD1P5 LPDDR2 External CAP 10uF 1.142 1.2 1.26 V SDRAMC_VDD1P5 DDR3 External CAP 10uF 1.425 1.5 1.575 V SDRAMC_VDD2P5 2.5V DDR pre-drive supply DD2P5_LDO_OUT External CAP 10uF 2.25 2.5 2.75 V - Maximum power supply ramp rate (Slew limit for power-up) 0.1 V/us - Typ Max Unit 1. For customer applications, this is governed by ballast output which is controlled by the device and appropriate voltage ranges are maintained. 8.5 Recommended Connections for Unused Analog Interfaces NOTE There are two options to handle unused power pins: 1. Connect all unused supplies to their respective voltage. To save the power, do not enable the module and/or do not enable clock gate to the module. 2. Keep all unused supplies floating. If pin is shared by several peripheral, then all peripherals connected to multiplexer have to be powered. For example: if pin is shared by GPIO and ADC input and GPIO functionality is used, then ADC has to be powered due to internal structure of the multiplexer. Keep unused input signals grounded if power pins are powered. Keep unused input signals floating if power pins are floating. Keep unused output signals floating. Module Name Recommendation if Unused ADC VDDA33_ADC 3.3V or float (Note: Powers both ADC and DAC) VREFH_ADC, VREFL_ADC VREFH_ADC same as VDDA33_ADC VREFL_ADC ground or float ADC0SE8, ADC0SE9, ADC1SE8, ADC1SE9 Ground or float CCM LVDS0P, LVDS0N Float DAC DACO0, DACO1 Float Table continues on the next page... VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 33 Peripheral operating requirements and behaviours Module Name Recommendation if Unused USB USB_DCAP, USB0_VBUS, USB1_VBUS Connect USBx_VBUS and USB_DCAP together and tie to ground through a 10K ohm resistor. Do NOT tie directly to ground, latch-up risk. USB0_GND, USB1_GND Ground USB0_VBUS_DETECT, USB1_VBUS_DETECT Float USB0_DM, USB0_DP, USB1_DM, USB1_DP Float VDDA33_AFE 3.3V or Float VDD12_AFE 1.2V or Float Video ADC VADC_AFE_BANDGAP Float VADCSE0, VADCSE1, VADCSE2, VADCSE3 Ground or Float 9 Peripheral operating requirements and behaviours 9.1 Analog 9.1.1 12-bit ADC electrical characteristics 9.1.1.1 12-bit ADC operating conditions Characteristic Table 31. 12-bit ADC Operating Conditions Conditions Symb Min Typ Max Unit Comment 1 Supply voltage Absolute VDDAD 2.5 - 3.6 V - Delta to VDDAD (VDDVDDAD) ΔVDDAD -100 0 100 mV - Ground voltage Delta to VSSAD (VSSVSSAD)2 ΔVSSAD -100 0 100 mV - Ref Voltage High - VREFH 1.5 VDDAD VDDAD V - Ref Voltage Low - VREFL VSSAD VSSAD VSSAD V - Input Voltage - VADIN VREFL - VREFH V - Input Capacitance 8/10/12 bit modes CADIN - 1.5 2 pF - Input Resistance ADLPC=0, ADHSC=1 RADIN - 5 7 kohms - ADLPC=0, ADHSC=0 - 12.5 15 kohms - ADLPC=1, ADHSC=0 - 25 30 kohms - Table continues on the next page... VF3xxR, VF5xxR, Rev7, 11/2014. 34 Freescale Semiconductor, Inc. Analog Table 31. 12-bit ADC Operating Conditions (continued) Characteristic Conditions Symb Min Typ Max Unit Comment 1 kohms Tsamp=150 ns 1 Analog Source Resistance 12 bit mode fADCK = 40MHz ADLSMP=0, ADSTS=10, ADHSC=1 RAS - - RAS depends on Sample Time Setting (ADLSMP, ADSTS) and ADC Power Mode (ADHSC, ADLPC). See charts for Minimum Sample Time vs RAS ADC Conversion Clock Frequency ADLPC=0, ADHSC=1 12 bit mode fADCK 4 - 40 MHz - ADLPC=0, ADHSC=0 12 bit mode 4 - 30 MHz - ADLPC=1, ADHSC=0 12 bit mode 4 - 20 MHz - 1. Typical values assume VDDAD = 3.3 V, Temp = 25°C, fADCK=20 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 2. DC potential difference Simplified input pin equivalent circuit Pad leakage due to input protection ZAS RAS VAS + – CAS ZADIN Simplified channel select circuit RADIN ADC SAR engine + VADIN – RADIN Input pin Input pin RADIN RADIN Input pin CADIN Figure 5. 12-bit ADC Input Impedance Equivalency Diagram VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 35 Analog 9.1.1.2 12-bit ADC characteristics Table 32. 12-bit ADC Characteristics (VREFH = VDDAD, VREFL = VSSAD) Characteristic Conditions Symb Supply Current ADLPC=1, ADHSC=0 IDDAD Min Typ 250 ADLPC=0, ADHSC=0 350 ADLPC=0, ADHSC=1 400 Supply Current Stop, Reset, Module Off IDDAD 0.01 ADC Asynchronous Clock Source ADHSC=0 fADACK 10 Sample Cycles ADLSMP=0, ADSTS=00 Conversion Cycles Conversion Time ADHSC=1 Csamp 2 4 ADLSMP=0, ADSTS=10 6 ADLSMP=0, ADSTS=11 8 ADLSMP=1, ADSTS=00 12 ADLSMP=1, ADSTS=01 16 ADLSMP=1, ADSTS=10 20 ADLSMP=1, ADSTS=11 24 Cconv 28 ADLSMP=0 ADSTS=01 30 ADLSMP=0 ADSTS=10 32 ADLSMP=0 ADSTS=11 34 ADLSMP=1 ADSTS=00 38 ADLSMP=1 ADSTS=01 42 ADLSMP=1 ADSTS=10 46 ADLSMP=1, ADSTS=11 50 ADLSMP=0 ADSTS=00 ADLSMP=0 ADSTS=01 0.8 Unit Comment µA ADLSMP=0 ADSTS=10 ADCO=1 µA MHz tADACK = 1/fADACK 20 ADLSMP=0, ADSTS=01 ADLSMP=0 ADSTS=00 Max Tconv 0.7 cycles cycles µs Fadc=40 MHz 0.75 Table continues on the next page... VF3xxR, VF5xxR, Rev7, 11/2014. 36 Freescale Semiconductor, Inc. Analog Table 32. 12-bit ADC Characteristics (VREFH = VDDAD, VREFL = VSSAD) (continued) Characteristic Total Unadjusted Error Conditions Symb 0.8 ADLSMP=0 ADSTS=11 0.85 ADLSMP=1 ADSTS=00 0.95 ADLSMP=1 ADSTS=01 1.05 ADLSMP=1 ADSTS=10 1.15 ADLSMP=1, ADSTS=11 1.25 12 bit mode Comment LSB With Max Averaging LSB1 Waiting for histogram method confirmation LSB1 Waiting for histogram method confirmation LSB1 VADIN = VREFL With Max Averaging LSB1 VADIN = VREFH With Max Averaging +5 10 bit mode -0.5 - +2 8 bit mode -0.25 - +1.5 - ±0.6 ±1.5 - ±0.5 ±1 - ±0.25 ±0.5 - ±2 ±4 10bit mode - ±1 ±2 8 bit mode - ±0.5 ±1 - +1.0 ±1.6 10bit mode - ±0.4 ±0.8 8 bit mode - ±0.1 ±0.4 - ±2 ±3.5 12 bit mode DNL 10bit mode 8 bit mode Quantization Error Unit - Integral Non-Linearity TUE Max -2 12 bit mode Full-Scale Error Typ ADLSMP=0 ADSTS=10 Differential NonLinearity Zero-Scale Error Min INL 12 bit mode EZS 12 bit mode EFS 10bit mode - ±0.5 ±1 8 bit mode - ±0.25 ±0.75 - ±1 to 0 10bit mode - ±0.5 8 bit mode - ±0.5 10.1 10.7 12 bit mode EQ LSB1 Effective Number of Bits 12 bit mode ENOB - Bits Signal to Noise plus Distortion See ENOB SINAD SINAD = 6.02 x ENOB + 1.76 dB Input Leakage Error all modes EIL IIn x RAS mV Temp Sensor Slope Across the full temperature range of the device m -- 1.84 -- mV/°C Temp Sensor Voltage 25°C VTEMP25 - 696 - mV Fin = 100Hz IIn = 400 nA leakage current 1. 1 LSB = (VREFH - VREFL)/2N VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 37 Analog NOTE The ADC electrical spec would be met with the calibration enabled configuration. Figure 6. Minimum Sample Time Vs Ras (Cas = 2pF) Figure 7. Minimum Sample Time Vs Ras (Cas = 5pF) VF3xxR, VF5xxR, Rev7, 11/2014. 38 Freescale Semiconductor, Inc. Analog Figure 8. Minimum Sample Time Vs Ras (Cas = 10pF) 9.1.2 12-bit DAC electrical characteristics 9.1.2.1 12-bit DAC operating requirements Table 33. 12-bit DAC operating requirements Symbol Desciption Min. Typ Max. Unit Notes VDDA33_ADC Supply voltage 3.0 3.3 3.6 V VREFH_ADC Reference voltage 2.5 3.3 VDDA33_ ADC V 1 CL Output load capacitance — 100 pF 2 IL Output load current — 1 mA 1. User will need to set up DACx_STATCTRL [DACRFS]=1 to select the valid VREFH_ADC reference. When DACx_STATCTRL [DACRFS]=0, the DAC reference is connected to an internal ground node and is not a valid voltage reference. Note that the DAC and ADC share the VREFH_ADC reference simultaneously. ) 2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC 9.1.2.2 Symbol 12-bit DAC operating behaviors Table 34. 12-bit DAC operating behaviors Description IDDA_DACL Supply current — low-power mode Min. Typ. Max. Unit — — 100 μA — — 500 μA — 10 15 μs Notes P IDDA_DACH Supply current — high-power mode P tDACLP Full-scale settling time (0x080 to 0xF7F) — low-power mode Table continues on the next page... VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 39 Analog Table 34. 12-bit DAC operating behaviors (continued) Symbol Description tDACHP Full-scale settling time (0x080 to 0xF7F) — high-power mode Min. Typ. Max. Unit Notes — 3 5 μs 1 μs 1 tCCDACLP Code-to-code settling time (0xBF8 to 0xC08) low-power mode — 5 — high-power mode — 1 — Vdacoutl DAC output voltage range low — high-speed mode, no load, DAC set to 0x000 — — 100 mV Vdacouth DAC output voltage range high — highspeed mode, no load, DAC set to 0xFFF VDACR −100 — VDACR mV INL Integral non-linearity error — high speed mode — — ±8 LSB 2 DNL Differential non-linearity error — VDACR = VREF_OUT — — ±1 LSB 3 — ±0.4 ±0.8 %FSR — ±0.1 ±0.6 %FSR VOFFSET Offset error EG PSRR Power supply rejection ratio, VDDA =3 V, T = 25 C 70 TCO Temperature coefficient offset voltage — 3.7 TGE Temperature coefficient gain error — AC Offset aging coefficient — Rop Output resistance load = 3 kΩ — SR Slew rate -80h→ F7Fh→ 80h CT 1. 2. 3. 4. Gain error dB — μV/C 0.000421 — %FSR/C — 100 μV/yr — 250 Ω V/μs High power (SPHP) 1.7 3 Low power (SPLP) 0.3 0.6 Channel to channel cross talk 4 — 70 dB Settling within ±1 LSB The INL is measured for 0+100mV to VDACR−100 mV The DNL is measured for 0+100mV to VDACR−100 mV Calculated by a best fit curve from VSS+100 mV to VDACR−100 mV VF3xxR, VF5xxR, Rev7, 11/2014. 40 Freescale Semiconductor, Inc. Analog Figure 9. INL error vs. digital code VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 41 Analog Figure 10. DNL error vs. digital code VF3xxR, VF5xxR, Rev7, 11/2014. 42 Freescale Semiconductor, Inc. Analog Figure 11. Offset at half scale vs. temperature 9.1.3 VideoADC Specifications This section describes the electrical specification and characteristics of the VideoADC Analog Front End. Table 35. VideoADC Specifications Symbol VDDA33_AFE VDDA12_AFE Vin Description Min. Typ. Max. Unit Notes Supply voltage 3.0 3.3 3.6 V — Supply current — — 41 mA — Supply voltage 1.1 1.2 1.26 V — Supply current — — 14 mA — Input signal voltage range 0.5 0 External AC coupling 10 — 1.4 47 V nF The external AC coupling capacitance cannot be too large. Table continues on the next page... VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 43 Analog Table 35. VideoADC Specifications (continued) Symbol Description VBG Bandgap voltage VDDA33_AFE — Typ. 0.6 VSSA33_AFE VDD12_AFE 100nF (See notes) VADC_AFE_BANDGAP Min. Max. — Unit V 47nF 47nF 100nF (See notes) Band Gap 47nF 47nF Mux, Clamp and Filter Bandgap voltage on VADC_AFE_BANDGAP pin. Pin should be decoupled with a 100nF capacitor VSS12_AFE Control Interface 100nF VADCSE0 VADCSE1 VADCSE2 VADCSE3 Notes ADC Correction To Video Decoder Figure 12. VideoADC supply scheme Figure 13. VideoADC supply decoupling VF3xxR, VF5xxR, Rev7, 11/2014. 44 Freescale Semiconductor, Inc. Display and Video interfaces NOTE VideoADC 3.3V and 1.2V power supply pins should be decoupled to their respective grounds using low-ESR 100nF capacitors NOTE If possible, avoid using switched voltage regulators for the AFE power domains. Use linear voltage regulators instead. NOTE The 3.3V and 1.2V power domains should be separated from other circuitry on the board by inductors/beads to filter out high frequency noise. 9.2 Display and Video interfaces 9.2.1 DCU Switching Specifications 9.2.1.1 Interface to TFT panels (DCU0/1) This section provides the LCD interface timing for a generic active matrix color TFT panel. In the figure below, signals are shown with positive polarity. The sequence of events for active matrix interface timing: • PCLK latches data into the panel on its positive edge (when positive polarity is selected). In active mode, PCLK runs continuously. This signal frequency could be from 5 to 66 MHz depending on the panel type. • HSYNC causes the panel to start a new line. It always encompasses at least one PCLK pulse. • VSYNC causes the panel to start a new frame. It always encompasses at least one HSYNC pulse. • DE acts like an output enable signal to the LCD panel. This output enables the data to be shifted onto the display. When disabled, the data is invalid and the trace is off. Figure 14. TFT LCD interface timing overview1 1. In the figure, LD[23:0]” signal is “line data,” an aggregation of the DCU’s RGB signals—R[0:7], G[0:7] and B[0:7]. VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 45 DCU Switching Specifications VSYNC HSYNC LINE 1 LINE 2 LINE 3 LINE n-1 LINE 4 LINE n HSYNC DE 1 2 3 m-1 m PCLK LD[23:0] 9.2.1.2 Interface to TFT LCD Panels—Pixel Level Timings This section provides the horizontal timing (timing of one line), including both the horizontal sync pulse and data. All parameters shown in the figure below are programmable. This timing diagram corresponds to positive polarity of the PCLK signal (meaning the data and sync signals change on the rising edge) and active-high polarity of the HSYNC, VSYNC and DE signals. The user can select the polarity of the HSYNC and VSYNC signals via the SYN_POL register, whether active-high or active-low. The default is active-high. The DE signal is always active-high. Pixel clock inversion and a flexible programmable pixel clock delay are also supported. They are programmed via the clock divide . The DELTA_X and DELTA_Y parameters are programmed via the DISP_SIZE register. The PW_H, BP_H and FP_H parameters are programmed via the HSYN PARA register. The PW_V, BP_V and FP_V parameters are programmed via the VSYN_PARA register. Table 36. LCD interface timing parameters—horizontal and vertical Symbol Characteristic Unit tPCP Display pixel clock period 11.2 ns tPWH HSYNC pulse width PW_H * tPCP ns tBPH HSYNC back porch width BP_H * tPCP ns tFPH HSYNC front porch width FP_H * tPCP ns tSW Screen width DELTA_X * tPCP ns tHSP HSYNC (line) period (PW_H + BP_H + FP_H + DELTA_X ) * tPCP ns tPWV VSYNC pulse width PWV * tHSP ns tBPV VSYNC back porch width BP_V * tHSP ns tFPV VSYNC front porch width FP_V * tHSP ns tSH Screen height DELTA_Y * tHSP ns tVSP VSYNC (frame) period (PW_V + BP_V + FP_V + DELTA_Y ) * tHSP ns VF3xxR, VF5xxR, Rev7, 11/2014. 46 Freescale Semiconductor, Inc. DCU Switching Specifications tHSP Start of line tPWH tBPH tSW tFPH tPCP PCLK Invalid Data LD[23:0] 1 3 2 Invalid Data DELTA_X HSYNC DE Figure 15. Horizontal sync timing tVSP Start of Frame tPWV tBPV tSH tFPV tHCP HSYNC LD[23:0] (Line Data) Invalid Data 1 2 3 Invalid Data DELTA_Y HSYNC DE Figure 16. Vertical sync pulse 9.2.1.3 Interface to TFT LCD panels—access level This section provides the access level timing parameters of the LCD interface. Table 37. LCD Interface Timing Parameters1, 2, 3—Access Level Symbol Description Min Max Unit tCKP Pixel Clock Period 11.2 _ ns tDV TFT interface data valid after pixel clock _ 4.4 ns tDV TFT interface HSYNC valid after pixel clock _ 4.4 ns tDV TFT interface VSYNC valid after pixel clock _ 4.4 ns tDV TFT interface DE valid after pixel clock _ 4.4 ns tHO TFT interface output hold time for data and control bits 0 _ ns Relative skew between the data bits _ 4.4 ns 1. The characteristics in this table are based on the assumption that data is output at +ve edge and displays latch data on -ve edg6 VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 47 DCU Switching Specifications 2. Intra bit skew is less than 2 ns 3. Load CL = 50 pf tHO tDV Figure 17. LCD Interface Timing Parameters—Access Level 9.2.2 Video Input Unit timing This section provides the timing parameters of the Video Input Unit (VIU) interface. tSU tHO Figure 18. VIU Timing Parameters Table 38. VIU Timing Parameters Symbol Characteristic Min Value Max Value Unit fPIX_CK VIU pixel clock frequency _ 64 MHz tDSU VIU data setup time 4 _ ns tDHD VIU data hold time 1 _ ns VF3xxR, VF5xxR, Rev7, 11/2014. 48 Freescale Semiconductor, Inc. Ethernet specifications 9.2.3 LCD driver electrical characteristics This section provides LCD driver electrical specification at VDD33 = 3.3 V ± 10%. Table 39. LCD driver specifications Symbol Parameter Min VLCD Voltage on VLCD (LCD supply) pin with respect to VSS 0 ZBP/FP LCD output impedance (BP[n-1:0],FP[m-1:0]) for output levels VDDE, VSS _ IBP/FP LCD output current (BP[n-1:0],FP[m-1:0]) for _ outputs charge/discharge voltage levels VDDE2/3, VDDE1/2, VDDE/3)1 Typical Max Unit VDD33 + 0.3 V _ 5.0 KΩ 25 _ µA 1. With PWR=10, BSTEN=0, and BSTAO=0 9.3 Ethernet specifications 9.3.1 Ethernet Switching Specifications The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface. All Ethernet signals use pad type pad_fsr. The timing specifications described i the section assume a pad slew rate setting of 11 and a load of 50 pF2. 9.3.2 Receive and Transmit signal timing specifications This section provides timing specs that meet the requirements for RMII interfaces for a range of transceiver devices. Table 40. Receive signal timing for RMII interfaces Characteristic RMII Mode Min Unit Max — EXTAL frequency (RMII input clock RMII_CLK) — 50 MHz E3, E7 RMII_CLK pulse width high 35% 65% RMII_CLK period Table continues on the next page... 2. These timing parameters are specified assuming maximum operating frequency and the fastest pad slew rate setting (11). When operating this interface at lower frequencies, increase the slew rate by using the 10, 01, or 00 setting to increase edge rise and fall times, thus reducing EMI. VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 49 Ethernet specifications Table 40. Receive signal timing for RMII interfaces (continued) Characteristic RMII Mode Min Unit Max E4, E8 RMII_CLK pulse width low 35% 65% RMII_CLK period E1 RXD[1:0], CVS_DV, RXER to RMII_CLK setup 4 — ns E2 RMII_CLK to RXD[1:0], CRS_DV, RXER hold 2 — ns E6 RMII_CLK to TXD[1:0], TXEN valid — 14 ns E5 RMII_CLK to TXD[1:0], TXEN invalid 4 — ns Figure 19. RMII receive signal timing diagram Figure 20. RMII transmit signal timing diagram NOTE See the most current device errata document when using the internally generated RXCLK and TXCLK clocks. VF3xxR, VF5xxR, Rev7, 11/2014. 50 Freescale Semiconductor, Inc. Ethernet specifications tCYC tPWH RX_CLK (Input) tS tH RXDn, RX_DV, RX_ER (Input) (n = 0-3) Figure 21. MII receive signal timing diagram Table 41. Receive signal timing for MII interfaces Characteristic MII Mode Min RX_CLK clock period (100/10 MBPS) tCYC RX_CLK duty cycle, tPWH/tCYC Typ Unit Max 40/400 45 50 ns 55 % Input setup time before RX_CLK tS 5 ns Input setup time after RX_CLK tH 5 ns 9.3.3 Receive and Transmit signal timing specifications for MII interfaces This section provides timing specs that meet the requirements for MII interfaces for a range of transceiver devices. VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 51 Ethernet specifications tCYC tPWH RX_CLK (Input) tS tH RXDn, RX_DV, RX_ER (Input) (n = 0-3) Figure 22. MII receive signal timing diagram Table 42. Receive signal timing for MII interfaces Characteristic MII Mode Min RX_CLK clock period (100/10 MBPS) tCYC Unit Typ Max 40/400 RX_CLK duty cycle, tPWH/tCYC 45 ns 50 55 % Input setup time before RX_CLK ts 5 ns Input hold time after RX_CLK th 5 ns tCYC tPWH TX_CLK (Input) tD TXDn, TX_EN, TX_ER (Output) Note: Device pins applicable to MII interface are applicable to TMII interface, and operates at 50 MHz reference clock. Figure 23. MII transmit signal timing diagram Table 43. Transmit signal timing for MII interfaces Characteristic MII Mode Min TX_CLK clock period (100/10 MBPS) tCYC TX_CLK duty cycle, tPWH/tCYC Out delay from TX_CLK Max 40/400 45 tD Typ Unit 2 50 ns 55 % 25 ns VF3xxR, VF5xxR, Rev7, 11/2014. 52 Freescale Semiconductor, Inc. Audio interfaces 9.4 Audio interfaces 9.4.1 Enhanced Serial Audio Interface (ESAI) Timing Parameters The ESAI consists of independent transmitter and receiver sections, each section with its own clock generator. The following table shows the interface timing values. Table 44. Enhanced Serial Audio Interface (ESAI) Timing No 1 2 Characteristics Clock cycle2 Clock high period: • master • slave Symbol Min Max Condition1 Unit tSSICC 30.0 — master ns (4 × Tc) — — — ns — — — — — — — 6 — (2 × Tc − 9.0) 15 (2 × Tc) 3 Clock low period: • master • slave — FSR Input and Data Input setup time before SCKR (SCK in synchronous mode) falling edge — 6 — Slave — 15 — Master FSR Input and Data Input hold time after SCKR falling edge — 2 — Slave — 0 — Master 6 SCKT rising edge to FST out and Data out valid — — 15 Slave — — 6 Master 7 SCKT rising edge to FST out and Data out hold — — 0 Slave — — 0 Master 8 FST input setup time before SCKT falling edge — 6 — Slave — 15 — Master 9 FST input hold time after SCKT falling edge — 2 — Slave — 0 — Master 10 HCKR/HCKT clock cycle — 15 — — ns 11 HCKT input rising edge to SCKT output — — 18.0 — ns 12 HCKR input rising edge to SCKR output — — 18.0 — ns 4 5 — 6 (2 × Tc − 9.0) ns 15 (2 × Tc) ns ns ns ns ns ns (2 x TC) 1. SCKT(SCKT pin) = transmit clock SCKR(SCKR pin) = receive clock FST(FST pin) = transmit frame sync FSR(FSR pin) = receive frame sync HCKT(HCKT pin) = transmit high frequency clock HCKR(HCKR pin) = receive high frequency clock 2. For the internal clock, the external clock cycle is defined by Icyc and the ESAI control register. VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 53 Audio interfaces 1 2 3 SCKT (input/output) FST (bit) out 6 FST (word) out First bit Data out Last Lastbitbit 9 FST (bit) in 9 8 FST (word) in Figure 24. ESAI Transmitter Timing 1 2 SCKR (input/output) 3 FSR (bit) out FSR (word) out 5 4 Data in First bit Last bit FSR (bit) in FSR (word) in Figure 25. ESAI Receiver Timing VF3xxR, VF5xxR, Rev7, 11/2014. 54 Freescale Semiconductor, Inc. Audio interfaces 9.4.2 SPDIF Timing Parameters The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal. Table and Figure below show SPDIF timing parameters for the Sony/Philips Digital Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SRCK) for SPDIF in Rx mode and the timing of the modulating Tx clock (STCLK) for SPDIF in Tx mode. Table 45. SPDIF Timing Parameters Characteristic Symbol Timing Parameter Range Min SPDIFIN Skew: asynchronous inputs, no specs apply Max 0.7 SPDIFOUT output (Load = 50pf) • Skew • Transition rising • Transition falling ns • 1.5 • 24.2 • 31.3 SPDIFOUT1 output (Load = 30pf) - Skew 1.5 • Transition rising • Transition falling Unit ns ns Refer Table 21 Modulating Rx clock (SRCK) period srckp 40 ns SRCK high period srckph 16 ns SRCK low period srckpl 16 ns Modulating Tx clock (STCLK) period stclkp 40 ns STCLK high period stclkph 16 ns STCLK low period stclkpl 16 ns Figure 26. SRCK Timing Diagram VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 55 Audio interfaces Figure 27. STCLK Timing Diagram 9.4.3 SAI/I2S Switching Specifications This section provides the AC timings for the SAI in master (clocks driven) and slave modes (clocks input). All timings are given for non-inverted serial clock polarity (SAI_TCR[TSCKP] = 0, SAI_RCR[RSCKP] = 0) and a non-inverted frame sync (SAI_TCR[TFSI] = 0, SAI_RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal (SAI_BCLK) and/or the frame sync (SAI_FS) shown in the figures below. Table 46. Master Mode SAI Timing Num Characteristic Min Max Unit S1 SAI_MCLK cycle time 2 x tSYS — ns S2 SAI_MCLK pulse width high/low 40% 60% MCLK period S3 SAI_BCLK cycle time 4 x tSYS — ns S4 SAI_BCLK pulse width high/low 40% 60% BCLK period S5 SAI_BCLK to SAI_FS output valid — 15 ns S6 SAI_BCLK to SAI_FS output invalid 0 — ns S7 SAI_BCLK to SAI_TXD valid — 15 ns S8 SAI_BCLK to SAI_TXD invalid 0 — ns S9 SAI_RXD/SAI_FS input setup before SAI_BCLK 15 — ns S10 SAI_RXD/SAI_FS input hold after SAI_BCLK 0 — ns VF3xxR, VF5xxR, Rev7, 11/2014. 56 Freescale Semiconductor, Inc. Audio interfaces S1 S2 S2 I2S_MCLK (output) S3 I2S_BCLK (output) S4 S4 S6 S5 I2S_FS (output) S10 S9 I2S_FS (input) S7 S8 S7 S8 I2S_TXD S9 S10 I2S_RXD Figure 28. SAI Timing — Master Modes Table 47. Slave Mode SAI Timing Num Characteristic Min Max Unit S11 SAI_BCLK cycle time (input) 4 x tSYS — ns S12 SAI_BCLK pulse width high/low (input) 40% 60% BCLK period S13 SAI_FS input setup before SAI_BCLK 10 — ns S14 SAI_FS input hold after SAI_BCLK 2 — ns S15 SAI_BCLK to SAI_TXD/SAI_FS output valid — 20 ns S16 SAI_BCLK to SAI_TXD/SAI_FS output invalid 0 — ns S17 SAI_RXD setup before SAI_BCLK 10 — ns S18 SAI_RXD hold after SAI_BCLK 2 — ns S11 S12 I2S_BCLK (input) S12 S15 S16 I2S_FS (output) S13 S14 I2S_FS (input) S15 S16 S15 S16 I2S_TXD S17 S18 I2S_RXD Figure 29. SAI Timing — Slave Modes VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 57 Memory interfaces 9.5 Memory interfaces 9.5.1 QuadSPI timing • All data is based on a negative edge data launch from the device and a negative edge data capture, as shown in the timing diagrams in this section. This corresponds to the N/1 sample point as shown in the reference manual QSPI section "Internal Sampling of Serial Flash Input Data." • Measurements are with a load of 35 pF on output pins. I/P Slew : 1ns • Timings assume a setting of 0x0000_000x for QSPI_SMPR register (see the reference manual for details). SDR mode Tck SCK Tcss Tcsh CS Tis Tih Data in Figure 30. QuadSPI Input/Read timing (SDR mode) Table 48. QuadSPI Input/Read timing (SDR mode) Symbol Parameter Value Min Unit Max Tis Setup time for incoming data 4.5 — ns Tih Hold time requirement for incoming data 0 — ns VF3xxR, VF5xxR, Rev7, 11/2014. 58 Freescale Semiconductor, Inc. Memory interfaces Tck SCK Tcss Tcsh CS Toh Tov Data out Figure 31. QuadSPI Output/Write timing (SDR mode) Table 49. QuadSPI Output/Write timing (SDR mode) Symbol Parameter Value Min Unit Max Tov Output Data Valid - 3.2 ns Toh Output Data Hold 0 - ns Tck SCK clock period - 80 MHz Tcss Chip select output setup time 3 - SCK clock cycles Tcsh Chip select output hold time 3 - SCK clock cycles • • • • • NOTE Tcss and Tcsh are set by QuadSPI_FLSCH register, the minimum values of 3 shown are the register default values, refer to Reference Manual for further details. The timing in the datasheet is based on default values for the QuadSPI-SMPR register and is the recommended setting for highest SCK frequency in SDR mode. A negative time indicates the actual capture edge inside the device is earlier than clock appearing at pad. Frequency calculator guideline (Max read frequency): SCK > (Flash access time)max + (Tis)max A negative input hold time has no bearing on the maximum achievable operating frequency. DDR Mode VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 59 Memory interfaces Tck SCK Tcss Tcsh CS Tih Tis Data in Figure 32. QuadSPI Input/Read timing (DDR mode) • • • • • NOTE The numbers are for a setting of 0x1 in regiater QuadSPI_SMPR[DDRSMP] Read frequency calculations should be: SCK/2 > (flash access time) + Setup (Tis) (QuadSPI_SMPR[DDRSMP])x SCK/4 Frequency calculator guideline (Max read frequency): SCK/2 > (Flash access time)max + (Tis)max (QuadSPI_SMPR[DDRSMP]) xSCK/4 Hold timing: flash_access (min) + flash_data_valid (min) > SCK/2 + HOLD(Tih) + (QuadSPI_SMPR[DDRSMP])SCK/4 A negative time indicates the actual capture edge inside the device is earlier than clock appearing at pad. Table 50. QuadSPI Input/Read timing (DDR mode) Symbol Parameter Value Min Unit Max Tis Setup time for incoming data 6.4 — ns Tih Hold time requirement for incoming data -3.0 — ns NOTE VF3xxR, VF5xxR, Rev7, 11/2014. 60 Freescale Semiconductor, Inc. Memory interfaces Tck SCK Tcss Tcsh CS Tov Toh Data out Figure 33. QuadSPI Output/Write timing (DDR mode) Table 51. QuadSPI Output/Write timing (DDR mode) Symbol Parameter Value Min Unit Max Tov Output Data Valid — 3.2 ns Toh Output Data Hold 0 — ns Tck SCK clock period - 45 MHz Tcss Chip select output setup time 3 - Clk(sck) Tcsh Chip select output hold time 3 - Clk(sck) 9.5.2 NFC specifications The NAND flash controller (NFC) implements the interface to standard NAND flash memory devices. This section describes the timing parameters of the NFC. In the following table: • TH is the flash clock high time and • TL is flash clock low time, which are defined as: TNFC = TH + TL NOTE Refer to the Reference Manual for further details on setting up the NFC clocks (CCM_CSCDR2[NFC_FRAC_DIV_EN + NFC_FRAC_DIV] and CCM_CSCDR3[NFC_PRE_DIV]). VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 61 Memory interfaces Table 52. NFC specifications Num Description Min. Max. Unit tCLS NFC_CLE setup time 2TH + TL – 1 — ns tCLH NFC_CLE hold time TH + TL – 1 — ns tCS NFC_CEn setup time 2TH + TL – 1 — ns tCH NFC_CEn hold time TH + TL — ns tWP NFC_WP pulse width TL – 1 — ns tALS NFC_ALE setup time 2TH + TL — ns tALH NFC_ALE hold time TH + TL — ns tDS Data setup time TL – 1 — ns tDH Data hold time TH – 1 — ns tWC Write cycle time TH + TL – 1 — ns tWH NFC_WE hold time TH – 1 — ns tRR Ready to NFC_RE low 4TH + 3TL + 90 — ns tRP NFC_RE pulse width TL + 1 — ns tRC Read cycle time TL + TH – 1 — ns tREH NFC_RE high hold time TH – 1 — ns tIS Data input setup time 11 — ns NFC_CLE tCLS tCLH NFC_CEn tCS tWP tCH NFC_WE tDS tDH NFC_IOn Figure 34. Command latch cycle timing VF3xxR, VF5xxR, Rev7, 11/2014. 62 Freescale Semiconductor, Inc. Memory interfaces NFC_ALE tALS tALH NFC_CEn tCS tWP tCH NFC_WE tDS NFC_IOn tDH address Figure 35. Address latch cycle timing tCS tCH tWC NFC_CEn tWP tWH tDS tDH NFC_WE NFC_IOn data data data Figure 36. Write data latch cycle timing tCH tRC NFC_CEn tRP tREH NFC_RE tIS NFC_IOn data data data tRR NFC_RB Figure 37. Read data latch cycle timing in non-fast mode VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 63 Memory interfaces tCH tRC NFC_CEn tRP tREH NFC_RE tIS NFC_IOn data data data tRR NFC_RB Figure 38. Read data latch cycle timing in fast mode 9.5.3 FlexBus timing specifications This section provides FlexBus timing parameters. All processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency. The following timing numbers indicate when data is latched or driven onto the external bus, relative to the FlexBus output clock (FB_CLK). All other timing relationships can be derived from these values. All FlexBus signals use pad type pad_fsr. The following timing specifications assume a pad slew rate setting of 11 and a load of 50 pF3 Table 53. FlexBus timing specifications Num Characteristic Frequency of operation Min — Max Unit 831 (with Wait state) MHz 572 without Wait state , -1 FB1 Clock Period 12 — ns FB4 Input setup 10.6 — ns FB5 Input hold 0 — ns FB2 Output valid — 6.4 ns FB3 Output hold 0 — ns 1. Freq = 1000/(11+ access time of external memory+ trace delay for clk and data) 2. Freq = 1000/(17+access time of external memory) 3. These timing parameters are specified assuming maximum operating frequency and the fastest pad slew rate setting (11). VF3xxR, VF5xxR, Rev7, 11/2014. 64 Freescale Semiconductor, Inc. Memory interfaces Figure 39. FlexBus read timing Figure 40. FlexBus write timing VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 65 DDR controller specifications 9.5.4 DDR controller specifications 9.5.4.1 DDR3 Timing Parameters Figure 41. DDR3 Command and Address Timing Parameters NOTE RESET pin has a external weak pull DOWN requirement if DDR3 memory is NOT required to support content retention in the device low power modes where core voltage is off but DRAM voltage is on. VF3xxR, VF5xxR, Rev7, 11/2014. 66 Freescale Semiconductor, Inc. DDR controller specifications NOTE RESET pin has a external weak pull UP requirement if DDR3 memory is required to support content retention in the device low power modes where core voltage is off but DRAM voltage is on. NOTE CKE pin has a external weak pull down requirement. Table 54. DDR3 Timing Parameter ID Parameter Symbol CK = 400 MHz Unit Min Max DDR1 CK clock high-level width tCH 0.47 0.53 tCK DDR2 CK clock low-level width tCL 0.47 0.53 tCK DDR4 CS, RAS, CAS, CKE, WE, ODT setup time tIS 440 - ps DDR5 CS, RAS, CAS, CKE, WE, ODT hold time tIH 315 - ps DDR6 Address output setup time tIS 440 - ps DDR7 Address output hold time tIH 315 - ps NOTE All measurements are in reference to Vref level. NOTE Measurements were done using balanced load and 25 ohms resistor from outputs to VDD_REF. VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 67 DDR controller specifications 9.5.4.2 DDR3 Read Cycle Figure 42. DDR3 Read Cycle Table 55. DDR3 Read Cycle ID DDR26 Parameter Symbol Minimum required DQ valid window width - CK = 400 MHz Unit Min Max 750 - ps NOTE To receive the reported setup and hold values, read calibration should be performed in order to locate the DQS in the middle of DQ window. NOTE All measurements are in reference to Vref level. NOTE Measurements were done using balanced load and 25 ohms resistor from outputs to VDD_REF VF3xxR, VF5xxR, Rev7, 11/2014. 68 Freescale Semiconductor, Inc. DDR controller specifications 9.5.4.3 DDR3 Write cycle Figure 43. DDR3 Write cycle Table 56. DDR3 Write cycle ID Parameter Symbol CK = 400 MHz Unit Min Max DDR17 DQ and DQM setup time to DQS (differential strobe) tDS 240 — ps DDR18 DQ and DQM hold time to DQS (differential strobe) tDH 215 — ps DDR21 DQS latching rising transitions to associated clock edges tDQSS -0.25 +0.25 tCK DDR22 DQS high level width tDQSH 0.45 0.55 tCK DDR22 DQS low level width tDQSL 0.45 0.55 tCK NOTE To receive the reported setup and hold values, write calibration should be performed in order to locate the DQS in the middle of DQ window. NOTE All measurements are in reference to Vref level. NOTE Measurements were done using balanced load and 25 ohms resistor from outputs to VDD_REF. VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 69 DDR controller specifications 9.5.4.4 LPDDR2 Timing Parameter Figure 44. LPDDR2 Command and Address timing parameter NOTE RESET pin has a external weak pull DOWN requirement if LPDDR2 memory is NOT required to support content retention in the device low power modes where core voltage is off but DRAM voltage is on. NOTE RESET pin has a external weak pull UP requirement if LPDDR2 memory is required to support content retention in the device low power modes where core voltage is off but DRAM voltage is on. NOTE CKE pin has a external weak pull down requirement. Table 57. LPDDR2 Timing Parameter ID Parameter Symbol CK = 400 MHz Unit Min Max LP1 SDRAM clock high-level width tCH 0.45 0.55 tCK LP2 SDRAM clock LOW-level width tCL 0.45 0.55 tCK LP3 CS, CKE setup time tIS 230 - ps LP4 CS, CKE hold time tIH 230 - ps LP3 CA setup time tIS 230 - ps LP4 CA hold time tIH 230 - ps NOTE All measurements are in reference to Vref level. VF3xxR, VF5xxR, Rev7, 11/2014. 70 Freescale Semiconductor, Inc. DDR controller specifications NOTE Measurements were done using balanced load and 25 ohms resistor from outputs to VDD_REF. 9.5.4.5 LPDDR2 Read Cycle Figure 45. LPDDR2 Read cycle Table 58. LPDDR2 Read Cycle ID LP26 Parameter Symbol Minimum required DQ valid window width for LPDDR2 - CK = 400 MHz Unit Min Max 270 - ps NOTE To receive the reported setup and hold values, read calibration should be performed in order to locate the DQS in the middle of DQ window. NOTE All measurements are in reference to Vref level. NOTE Measurements were done using balanced load and 25 ohms resistor from outputs to VDD_REF VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 71 DDR controller specifications 9.5.4.6 LPDDR2 Write Cycle Figure 46. LPDDR3 Write Cycle Table 59. LPDDR2 Write Cycle ID Parameter Symbol CK = 400 MHz Unit Min Max LP17 DQ and DQM setup time to DQS (differential strobe) tDS 220 0.55 ps LP18 DQ and DQM hold time to DQS (differential strobe) tDH 220 0.55 ps LP21 DQS latching rising transitions to associated clock edges tDQSS -0.25 +0.25 tCK LP22 DQS high level width tDQSH 0.4 - tCK LP23 DQS low level width tDQSL 0.4 - tCK NOTE To receive the reported setup and hold values, write calibration should be performed in order to locate the DQS in the middle of DQ window. NOTE All measurements are in reference to Vref level. NOTE Measurements were done using balanced load and 25 ohms resistor from outputs to VDD_REF. VF3xxR, VF5xxR, Rev7, 11/2014. 72 Freescale Semiconductor, Inc. Communication interfaces 9.6 Communication interfaces 9.6.1 MediaLB (MLB) DC Characteristics The section lists the MediaLB 3-pin interface electrical characteristics. Table 60. MediaLB 3-Pin Interface Electrical DC Specifications Parameter Symbol Test Conditions Maximum input voltage — — Low level input threshold VIL — Note1 Min Max Unit — 3.6 V — 0.7 V 1.8 — V High level input threshold VIH See Low level output threshold VOL IOL = –6 mA — 0.4 V High level output threshold VOH IOH = –6 mA 2.0 — V Input leakage current IL 0 < Vin < VDD — ±10 μA 1. Higher VIH thresholds can be used; however, the risks associated with less noise margin in the system must be evaluated and assumed by the customer. 9.6.2 MediaLB (MLB) Controller AC Timing Electrical Specifications This section describes the timing electrical information of the MediaLB module. VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 73 Communication interfaces Figure 47. MediaLB 3-PinTiming Ground = 0.0 V; Load Capacitance = 40 pF, input transition= 1 ns; MediaLB speed = 256/512 Fs; Fs = 48 kHz; all timing parameters specified from the valid voltage threshold as listed below; unless otherwise noted. Table 61. MLB 256/512 Fs Timing Parameters Parameter Symbol Min Max MLBCLK operating frequency fmck 11.264 MLBCLK rise time tmckr Refer Table 21 MLBCLK fall time tmckf MLBCLK low time1 25.6 Unit Comment MHz 256xFs at 44.0 kHz, 512xFs at 50.0 kHz ns VIL to VIH ns VIH to VIL tmckl 30, 14 — ns 256xFs, 512xFs MLBCLK high time tmckh 30, 14 — ns 256xFs, 512xFs MLBSIG/MLBDAT receiver input setup to MLBCLK falling tdsmcf 3 — ns — MLBSIG/MLBDAT receiver input hold from MLBCLK low tdhmcf 2 — ns — MLBSIG/MLBDAT output valid from MLBCLK low tmcfdz 0 16 ns 2 Bus output hold from MLBCLK low tmdzh 2 — ns — 1. MLBCLK low/high time includes the pluse width variation. VF3xxR, VF5xxR, Rev7, 11/2014. 74 Freescale Semiconductor, Inc. Communication interfaces 2. The MediaLB driver can release the MLBDAT/MLBSIG line as soon as MLBCLK is low; however, the logic state of the final driven bit on the line must remain on the bus for tmdzh. Therefore, coupling must be minimized while meeting the maximum load capacitance listed. Table 62. MLB 1024 Fs Timing Parameters Parameter Symbol Min Max MLBCLK Operating Frequency1 fmck 45.056 MLBCLK rise time fmckr Refer Table 21 MLBCLK fall time fmckf MLBCLK low time tmckl 6.1 MLBCLK high time tmckh MLBSIG/MLBDAT receiver input setup to MLBCLK falling 51.2 Unit Comme nt MHz 1024xfs at 44.0 kHz 1024xfs at 50.0 kHz ns VIL to VIH ns VIH to VIL — ns 2 9.3 — ns tdsmcf 3 — ns MLBSIG/MLBDAT receiver input hold from MLBCLK low tdhmcf 2 — ns MLBSIG/MLBDAT output valid from MLBCLK low tmcfdz - 16 ns Bus Hold from MLBCLK low tmdzh 2 — ns 3 1. The controller can shut off MLBCLK to place MediaLB in a low-power state. Depending on the time the clock is shut off, a runt pulse can occur on MLBCLK. 2. MLBCLK low/high time includes the pluse width variation. 3. The MediaLB driver can release the MLBDAT/MLBSIG line as soon as MLBCLK is low; however, the logic state of the final driven bit on the line must remain on the bus for tmdzh. Therefore, coupling must be minimized while meeting the maximum load capacitance listed. 9.6.3 DSPI timing specifications Table 63. DSPI timing No. Symbol Characteristic Condition Min Max Unit 1 tSCK SCK Cycle Time — tSYS * 2 — ns 4 tSDC SCK Clock Pulse Width — 40% 60% tSCK 2 tCSC CS to SCK Delay Master 16 — ns 3 tASC After SCK Delay Master 16 — ns 5 tA Slave Access Time (SS active Slave to SOUT driven) — 15 ns 6 tDI Slave Disable Time (SS inactive to SOUT High-Z or invalid) Slave — 10 ns 9 tSUI Data Setup Time for Inputs Master 9 — ns Table continues on the next page... VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 75 Communication interfaces Table 63. DSPI timing (continued) No. 10 11 12 Symbol tHI Characteristic Condition tHO Max Slave 4 — Master 0 — Slave 2 — Data Valid (after SCK edge) for Outputs Master — 5 Slave — 10 Data Hold Time for Outputs Master 0 — Slave 0 — Data Hold Time for Inputs tDV Min 2 Unit ns ns ns 3 CSx 1 4 S C K O utput (C P O L = 0) 4 S C K O utput (CP OL = 1 ) 9 S IN 10 F irst D a ta D ata 12 SOUT F irst D ata La st D ata 11 D ata L ast D a ta Figure 48. DSPI classic SPI timing master, CPHA=0 VF3xxR, VF5xxR, Rev7, 11/2014. 76 Freescale Semiconductor, Inc. Communication interfaces CSx S C K O u tp u t (C P O L = 0 ) 10 S C K O u tp u t (CP OL = 1 ) 9 D a ta F irs t D a ta S IN L a s t D a ta 12 SOUT 11 D a ta F irs t D a ta L a st D a ta Figure 49. DSPI classic SPI timing master, CPHA=1 3 2 SS 1 4 S C K In p u t (C P O L = 0 ) 4 S C K In p u t (C P O L = 1 ) 5 SOUT F irs t D a ta 9 S IN 11 12 D a ta L a s t D a ta D a ta L a s t D a ta 6 10 F irs t D a ta Figure 50. DSPI classic SPI timing slave, CPHA=0 VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 77 Communication interfaces SS S C K In p u t (C P O L = 0 ) S C K In p u t (C P O L = 1 ) 11 5 6 12 SOUT F irst D a ta 9 S IN D a ta L a s t D a ta D a ta L a s t D a ta 10 F irst D a ta Figure 51. DSPI classic SPI timing slave, CPHA=1 9.6.4 I2C timing Table 64. I2C input timing specifications — SCL and SDA1 No. Parameter Min. Max. Unit 1 Start condition hold time 2 — PER_CLK Cycle2 2 Clock low time 8 — PER_CLK Cycle 3 Bus free time between Start and Stop condition 4.7 — μs 4 Data hold time 0.0 — μs 5 Clock high time 4 — PER_CLK Cycle 6 Data setup time 0.0 — ns 7 Start condition setup time (for repeated start condition only) 2 — PER_CLK Cycle 8 Stop condition setup time 2 — PER_CLKCyc le 1. I2C input timing is valid for Automotive and TTL inputs levels, hysteresis enabled, and an input edge rate no slower than 1 ns (10% – 90%). 2. PER_CLK is the IPG Clock which drive the I2C BIU and module clock inputs. Typically this is 83Mhz. See the Clocking Overview chapter in the device reference manual for more details. Table 65. I2C output timing specifications — SCL and SDA1234 No. 1 Parameter Min Start condition hold time 6 Max — Unit PER_CLK Cycle5 Table continues on the next page... VF3xxR, VF5xxR, Rev7, 11/2014. 78 Freescale Semiconductor, Inc. Communication interfaces Table 65. I2C output timing specifications — SCL and SDA1234 (continued) No. Parameter Min Max Unit 2 Clock low time 10 — PER_CLK Cycle 3 Bus free time between 4.7 Start and Stop condition — μs 4 Data hold time 7 — PER_CLK Cycle 5 Clock high time 10 — PER_CLK Cycle 6 Data setup time 2 — PER_CLK Cycle 7 Start condition setup time (for repeated start condition only) 20 — PER_CLK Cycle 8 Stop condition setup time 10 — PER_CLK Cycle 1. All output timing is worst case and includes the mismatching of rise and fall times of the output pads. 2. Output parameters are valid for CL = 25 pF, where CL is the external load to the device (lumped). The internal package capacitance is accounted for, and does not need to be subtracted from the 25 pF value. 3. Timing is guaranteed to same drive capabilities for all signals, mixing of pad drives may reduce operating speedsand may cause incorrect operation. 4. Programming the IBFD register (I2C bus Frequency Divider) with the maximum frequency results in the minimum output timings listed. The I2C interface is designed to scale the data transition time, moving it to the middle of the SCL low period. The actual position is affected by the pre-scale and division values programmed in the IBC field of the IBFD register. 5. PER_CLK is the IPG Clock which drive the I2C BIU and module clock inputs. Typically this is 83Mhz. See the Clocking Overview chapter in the device reference manual for more details. Figure 52. I2C input/output timing VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 79 Communication interfaces 9.6.5 SDHC specifications The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface. A load of 50 pF is assumed. Table 66. SDHC switching specifications Num Symbol Description Min. Max. Unit Operating voltage 1.71 3.6 V Card input clock SD1 fpp Clock frequency (low speed) 0 400 kHz fpp Clock frequency (SD\SDIO full speed\high speed) 0 25\50 MHz fpp Clock frequency (MMC full speed\high speed) 0 20\50 MHz fOD Clock frequency (identification mode) 0 400 kHz SD2 tWL Clock low time 7 — ns SD3 tWH Clock high time 7 — ns SD4 tTLH Clock rise time — 3 ns SD5 tTHL Clock fall time — 3 ns SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK) SD6 tOD SDHC output delay (output valid) -5 4 ns SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK) SD7 tISU SDHC input setup time 5 — ns SD8 tIH SDHC input hold time 0 — ns SD3 SD2 SD1 SDHC_CLK SD6 Output SDHC_CMD Output SDHC_DAT[3:0] SD7 SD8 Input SDHC_CMD Input SDHC_DAT[3:0] Figure 53. SDHC timing VF3xxR, VF5xxR, Rev7, 11/2014. 80 Freescale Semiconductor, Inc. Clocks and PLL Specifications 9.6.6 USB PHY specifications This section describes the USB-OTG PHY and the USB Host port PHY parameters. The USB PHY meets the electrical compliance requirements defined in the Universal Serial Bus Revision 2.0 OTG, USB Host with the amendments below (On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification is not applicable to Host port). • USB ENGINEERING CHANGE NOTICE • Title: 5V Short Circuit Withstand Requirement Change • Applies to: Universal Serial Bus Specification, Revision 2.0 • Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000 • USB ENGINEERING CHANGE NOTICE • Title: Pull-up/Pull-down resistors • Applies to: Universal Serial Bus Specification, Revision 2.0 • USB ENGINEERING CHANGE NOTICE • Title: Suspend Current Limit Changes • Applies to: Universal Serial Bus Specification, Revision 2.0 • On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification • Revision 2.0 plus errata and ecn June 4, 2010 • Battery Charging Specification (available from USB-IF) • Revision 1.2, December 7, 2010 9.7 Clocks and PLL Specifications 9.7.1 24 MHz Oscillator Specifications The system crystal oscillator consists of a Pierce-type structure running off the digital supply. A straight forward biased-inverter implementation is used. The crystal must be rated for a drive level of 250 μW or higher. An ESR (equivalent series resistance) of 80 Ω or less is recommended to achieve a gain margin of 5. Table 67. 24MHz external oscillator electrical characteristics Symbol Parameter Condition Value Min Typ Unit Max fosc Crystal oscillator range — — 24 — MHz Iosc Startup current — — <5 — mA tuposc Oscillator startup time — — <5 — ms Table continues on the next page... VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 81 Clocks and PLL Specifications Table 67. 24MHz external oscillator electrical characteristics (continued) Symbol Parameter Condition Value Min Typ Unit Max CIN Input Capacitance EXTAL and XTAL pins — 9 — pF VIH XTAL pin input high voltage — 0.8 x Vdd1 — Vdd +0.3 V VIL XTAL pin input low voltage — Vss -0.3 — 0.2 x Vdd V 1. VDD =1.1 V ± 10%, TA = -40 to +85 °C, unless otherwise specified. 9.7.2 32 KHz Oscillator Specifications This block implements an amplifier that when combined with a suitable quartz crystal and external load capacitors implements a low power oscillator. It also implements a power mux such that it can be powered from either a ~3 V backup battery or VDDIO such as the oscillator consumes power from VDDIO when that supply is available and transitions to the back up battery when VDDIO is lost. In addition, if the clock monitor determines that the OSC32K is not present, then the source of the 32 K will automatically switch to the 128kHz internal RC clock divided by 4. The OSC32k runs from vdd_rtc supply, generated inside OSC32k itself from VDDIO/ VBAT. The target battery is a ~3 V coin cell. Proper choice of coin cell type is necessary for chosen VDDIO range. Appropriate series resistor (Rs) must be used when connecting the coin cell. Rs depends on the charge current limit that depends on the chosen coin cell. For example: • Average Discharge Voltage is 2.5 V • Maximum Charge Current is 0.6 mA For a charge voltage of 3.2 V, Rs = (3.2-2.5)/0.6 m = 1.17 k Table 68. OSC32K Main Characteristics Notes FOSC This frequency is nominal and determined mainly by the crystal selected. 32.0 K would work as well. Current consumption The 4 μA is the consumption of the oscillator alone (OSC32k). Total supply consumption will depend on what the digital portion of the RTC consumes. The ring oscillator consumes 1 μA when ring oscillator is inactive, 20 μA when the ring Min Typ Max 32.768 KHz 4 μA Table continues on the next page... VF3xxR, VF5xxR, Rev7, 11/2014. 82 Freescale Semiconductor, Inc. Clocks and PLL Specifications Table 68. OSC32K Main Characteristics (continued) Notes Min Typ Max oscillator is running. Another 1.5 μA is drawn from vdd_rtc in the power_detect block. So, the total current is 6.5 μA on vdd_rtc when the ring oscillator is not running. Bias resistor This the integrated bias resistor that sets the amplifier into a high gain state. Any leakage through the ESD network, external board leakage, or even a scope probe that is significant relative to this value will debias the amp. The debiasing will result in low gain, and will impact the circuit's ability to start up and maintain oscillations. 14 MΩ Crystal Properties Cload Usually crystals can be purchased tuned for different Cloads. This Cload value is typically 1/2 of the capacitances realized on the PCB on either side of the quartz. A higher Cload will decrease oscillation margin, but increases current oscillating through the crystal 12.5 pF ESR Equivalent series resistance of the crystal. Choosing a crystal with a higher value will decrease the oscillating margin. 50 kΩ 9.7.3 Fast internal RC oscillator (24 MHz) electrical characteristics This section describes a fast internal RC oscillator (FIRC). This is used as the default clock at the power-up of the device. Table 69. Fast internal oscillator electrical characteristics Symbol Condition1 Parameter Value Min Typ Max fRCM RC oscillator high frequency TA= 25 °C, trimmed — 24 IRCMRUN RC oscillator high frequency current in running mode TA= 25 °C, trimmed — 55 μA IRCMPWD RC oscillator high frequency current in power down mode TA= 25 °C 100 nA RCMTRIM RC oscillator precision after trimming of fRC TA= 25 °C RCMVAR RC oscillator variation in temperature and supply with respect to fRC at TA = 55 °C in high frequency configuration -1 -5 — — Unit MHz +1 % +5 % 1. VDD = 1.2 V , TA = -40 to +85 °C, unless otherwise specified. VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 83 Clocks and PLL Specifications 9.7.4 Slow internal RC oscillator (128 KHz) electrical characteristics This section describes a slow internal RC oscillator (SIRC). This can be used as the reference clock for the RTC module. Table 70. Slow internal RC oscillator electrical characteristics Symbol Condition1 Parameter Value Min Typ Max — Unit fRCL RC oscillator low frequency TA= 25 °C, trimmed — 128 kHz IRCL RC oscillator low frequency current TA= 25 °C, trimmed — 3.1 RCLTRIM RC oscillator precision after trimming of fRCL TA= 25 °C -1 — +1 % RCLVAR 3 RC oscillator variation in temperature and supply with respect to fRC at TA = 55 °C in high frequency configuration High frequency configuration -5 — +5 % μA 1. VDD = 1.2 V , TA = -40 to +85 °C, unless otherwise specified. 9.7.5 PLL1 and PLL2 (528 MHz System PLL) Electrical Parameters Table 71. PLL1 and PLL2 Electrical Parameters Parameter Value Clock output range 528 MHz PLL output Reference clock 24 MHz Lock time <7500 reference cycles Period jitter(p2p) <140ps Duty Cycle 48.9%~51.7% PLL output 9.7.6 PLL3 and PLL7 (480 MHz USB PLL) Electrical Parameters Table 72. PLL3 and PLL7 Electrical Parameters Parameter Value Clock output range 480 MHz PLL output Reference clock 24 MHz Lock time <425 reference cycles Period jitter(p2p) <140 ps Duty Cycle 48.9%~51.7% PLL output VF3xxR, VF5xxR, Rev7, 11/2014. 84 Freescale Semiconductor, Inc. Clocks and PLL Specifications 9.7.7 PLL5 (Ethernet PLL) Electrical Parameters Table 73. PLL5 Electrical Parameters Parameter Value Clock output range 500 MHz Reference clock 24 MHz Lock time <7500 reference cycles Cycle to cycle jitter (p2p)1 <400ps @ 50 MHz Duty Cycle 45%~55% 1. Jitter numbers are measured at divided PLL clock because high frequency cannot be brought-out IO pad. 9.7.8 PLL4 (Audio PLL) Electrical Parameters Table 74. PLL4 Electrical Parameters Parameter Value Clock output range 650 MHz ~1.3 GHz Reference clock 24 MHz Lock time <7500 reference cycles Long term jitter(RMS) <42ps @1128MHz Period jitter(p2p)1 <115ps@1128MHz Duty Cycle 43%~57% 1. Jitter numbers are measured at divided PLL clock because high frequency cannot be brought-out on IO pad. 9.7.9 PLL6 (Video PLL) Electrical Parameters Table 75. PLL6 Electrical Parameters Parameter Value Clock output range 650 MHz ~1.3 GHz Reference clock 24 MHz Lock time <7500 reference cycles Long term jitter(RMS)1 <42ps @ 1128 MHz Period jitter(p2p) <130ps @960MHz Duty Cycle 43%~57% 1. Jitter numbers are measured at divided PLL clock because high frequency cannot be brought-out on IO pad & at use case frequency. VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 85 Debug specifications 9.8 Debug specifications 9.8.1 JTAG electricals Table 76. JTAG limited voltage range electricals Symbol J1 Description Min. Max. Unit Operating voltage 2.7 3.6 V TCLK frequency of operation MHz • Boundary Scan - 25 • JTAG and CJTAG - 25 • Serial Wire Debug - 25 1/J1 — ns • Boundary Scan 20 — ns • JTAG and CJTAG 20 — ns • Serial Wire Debug 20 — ns J2 TCLK cycle period J3 TCLK clock pulse width J4 TCLK rise and fall times J5 Boundary scan input data setup time to TCLK rise Refer Table 21 J6 ns 8 — ns Boundary scan input data hold time after TCLK rise 1.3 — ns J7 TCLK low to boundary scan output data valid — 17 ns J8 TCLK low to boundary scan output high-Z — 17 ns J9 TMS, TDI input data setup time to TCLK rise 8 — ns J10 TMS, TDI input data hold time after TCLK rise 1.3 — ns J11 TCLK low to TDO data valid — 17 ns J12 TCLK low to TDO high-Z — 17 ns NOTE Input transition (1ns), output load (25 pf) and SRE (000), DSE (111), FSEL(011). J2 J3 J3 TCLK (input) J4 J4 Figure 54. Test clock input timing VF3xxR, VF5xxR, Rev7, 11/2014. 86 Freescale Semiconductor, Inc. Debug specifications TCLK J5 Data inputs J6 Input data valid J7 Data outputs Output data valid J8 Data outputs J7 Data outputs Output data valid Figure 55. Boundary scan (JTAG) timing TCLK J9 TDI/TMS J10 Input data valid J11 TDO Output data valid J12 TDO J11 TDO Output data valid Figure 56. Test Access Port timing VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 87 Debug specifications 9.8.2 Debug trace timing specifications Table 77. Debug trace operating behaviors Symbol Description Min. Max. Tcyc Clock period Twl Low pulse width 2 — ns Twh High pulse width 2 — ns 50 Tr Clock and data rise time Tf Clock and data fall time Refer Unit MHz Refer Table 21 ns ns tDV Data output valid 3 — ns tHO Data output hold 1 — ns TRACECLK Tr Tf Twh Twl Tcyc Figure 57. TRACE_CLKOUT specifications trace output clock trace output data tHO tDV Figure 58. Trace data specifications VF3xxR, VF5xxR, Rev7, 11/2014. 88 Freescale Semiconductor, Inc. Thermal attributes 10 Thermal attributes 10.1 Thermal attributes Board type Symbol Description 176LQFP Unit Notes Single-layer (1s) RθJA Thermal 50 resistance, junction to ambient (natural convection) °C/W , Four-layer (2s2p) RθJA Thermal 32 resistance, junction to ambient (natural convection) °C/W 1, Single-layer (1s) RθJMA Thermal 40 resistance, junction to ambient (200 ft./ min. air speed) °C/W 1, 2 Four-layer (2s2p) RθJMA Thermal 25 resistance, junction to ambient (200 ft./ min. air speed) °C/W 1, 2 — RθJB Thermal 21 resistance, junction to board °C/W — RθJCtop Thermal 12 resistance, junction to case top °C/W — ΨJT Thermal 3 characterization parameter, junction to package top (natural convection) °C/W 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance 2. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal. Board type Symbol Description 364 MAPBGA Unit Single-layer (1s) RθJA Thermal 45 resistance, junction to ambient (natural convection) °C/W Four-layer (2s2p) RθJA Thermal 28 resistance, junction to ambient (natural convection) °C/W Notes 1 Table continues on the next page... VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 89 Dimensions Board type Symbol Description 364 MAPBGA Unit Notes Single-layer (1s) RθJMA Thermal 37 resistance, junction to ambient (200 ft./ min. air speed) °C/W 1,2 Four-layer (2s2p) RθJMA Thermal 24 resistance, junction to ambient (200 ft./ min. air speed) °C/W 1,2 — RθJB Thermal 17 resistance, junction to board °C/W — RθJC Thermal 10 resistance, junction to case °C/W — ΨJT Thermal 2 characterization parameter, junction to package top outside center (natural convection) °C/W 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. 2. Per JEDEC JESD51-6 with the board horizontal. 11 Dimensions 11.1 Obtaining package dimensions Package dimensions are provided in package drawing. To find a package drawing, go to www.freescale.com and perform a keyword search for the drawing’s document number: Package Freescale Document Number 176-pin LQFP 98ASA00452D 364 MAPBGA 98ASA00418D VF3xxR, VF5xxR, Rev7, 11/2014. 90 Freescale Semiconductor, Inc. Pinouts 12 Pinouts 12.1 Pinouts The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The IOMUX Controller Module is responsible for selecting which ALT functionality is available on each pin. 364 176 MAP LQFP BGA Pin Name Default ALT0 N/ A ALT1 Y2 — ADC0SE8 W2 — ADC0SE9 ADC0_SE9 W3 — ADC1SE8 ADC1_SE8 Y3 — ADC1SE9 ADC1_SE9 W1 34 VREFH_ADC VREFH_ADC U3 33 VREFL_ADC VREFL_ADC V1 31 VDDA33_ ADC VDDA33_ ADC V2 32 VSSA33_ ADC VSSA33_ ADC U1 29 DACO0 DACO0 U2 30 DACO1 DACO1 Y4 35 VADCSE0 VADCSE0 U4 37 VADCSE1 VADCSE1 W4 — VADCSE2 VADCSE2 V5 — VADCSE3 VADCSE3 V3 40 VDDA33_ AFE VDDA33_ AFE V4 39 VSSA33_AFE VSSA33_AFE T5 36 VDD12_AFE VDD12_AFE R5 38 VSS12_AFE VSS12_AFE U5 41 VADC_AFE_ BANDGAP VADC_AFE_ BANDGAP Y13 73 EXTAL EXTAL W13 72 XTAL XTAL Y12 70 EXTAL32 EXTAL32 W12 71 XTAL32 XTAL32 T4 28 RESETB/ RESETB/ RESET_OUT RESET_OUT RESETB/ RESET_OUT N5 19 PTA6 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort ADC0_SE8 PTA6 RMII_ CLKOUT RMII_CLKIN/ MII0_TXCLK DCU1_ TCON11 DCU1_R2 VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 91 Pinouts 364 176 MAP LQFP BGA Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 T3 27 TEST TEST T1 23 Ext_POR TEST2 V12 69 DECAP_ V11_LDO_ OUT DECAP_ V11_LDO_ OUT T11 65 DECAP_ V25_LDO_ OUT DECAP_ V25_LDO_ OUT T2 26 BCTRL BCTRL P5 24 VDDREG VDDREG T12 68 VDD33_ LDOIN VDD33_ LDOIN V11 67 VSS VSS U11 66 VSS_KEL0 VSS_KEL0 W14 — LVDS0P LVDS0P Y14 — LVDS0N LVDS0N K4 3 JTCLK/ SWCLK JTCLK/ SWCLK PTA8 JTCLK/ SWCLK K2 4 JTDI JTDI PTA9 JTDI RMII_ CLKOUT K1 5 JTDO JTDO/ TRACESWO PTA10 JTDO EXT_AUDIO_ MCLK L1 6 JTMS/ SWDIO JTMS/ SWDIO PTA11 JTMS/ SWDIO L3 7 PTA12 PTA12 TRACECK EXT_AUDIO_ MCLK Y5 43 PTA16 PTA16 TRACED0 USB0_ VBUS_EN ADC1_SE0 LCD29 SAI2_TX_ BCLK VIU_DATA14 I2C0_SDA Y6 44 PTA17 PTA17 TRACED1 USB0_ VBUS_OC ADC1_SE1 LCD30 USB0_SOF_ PULSE VIU_DATA15 I2C1_SCL V6 46 PTA18 PTA18 TRACED2 ADC0_SE0 FTM1_QD_ PHA LCD31 SAI2_TX_ DATA VIU_DATA16 I2C1_SDA U6 47 PTA19 PTA19 TRACED3 ADC0_SE1 FTM1_QD_ PHB LCD32 SAI2_TX_ SYNC VIU_DATA17 QSPI1_A_ SCK B18 143 PTA20 PTA20 TRACED4 D18 145 PTA21 PTA21/ MII0_RXCLK TRACED5 E17 147 PTA22 PTA22 TRACED6 DCU0_R0 EzPort MLBCLK RMII_CLKIN/ DCU0_R1 MII0_TXCLK WDOG_b DCU0_G0 ENET_TS_ CLKIN DCU0_G1 MLBSIGNAL MLBDATA VIU_DATA13 I2C0_SCL LCD33 SCI3_TX DCU1_ HSYNC/ DCU1_ TCON1 SAI2_RX_ BCLK SCI3_RX DCU1_ VSYNC/ DCU1_ TCON2 SAI2_RX_ DATA I2C2_SCL DCU1_TAG/ DCU1_ TCON0 VF3xxR, VF5xxR, Rev7, 11/2014. 92 Freescale Semiconductor, Inc. Pinouts 364 176 MAP LQFP BGA Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 SAI2_RX_ SYNC I2C2_SDA ALT7 C17 148 PTA23 PTA23 TRACED7 R16 — PTA24 PTA24 TRACED8 USB1_ VBUS_EN SDHC1_CLK DCU1_ TCON4 R17 — PTA25 PTA25 TRACED9 USB1_ VBUS_OC SDHC1_CMD DCU1_ TCON5 R19 — PTA26 PTA26 TRACED10 SAI3_TX_ BCLK SDHC1_ DAT0 DCU1_ TCON6 R20 — PTA27 PTA27 TRACED11 SAI3_RX_ BCLK SDHC1_ DAT1 DCU1_ TCON7 P20 — PTA28 PTA28 TRACED12 SAI3_RX_ DATA ENET1_ 1588_TMR0 SCI4_TX SDHC1_ DAT2 DCU1_ TCON8 P18 — PTA29 PTA29 TRACED13 SAI3_TX_ DATA ENET1_ 1588_TMR1 SCI4_RX SDHC1_ DAT3 DCU1_ TCON9 P17 — PTA30 PTA30 TRACED14 SAI3_RX_ SYNC ENET1_ 1588_TMR2 SCI4_RTS I2C3_SCL SCI3_TX P16 — PTA31 PTA31 TRACED15 SAI3_TX_ SYNC ENET1_ 1588_TMR3 SCI4_CTS I2C3_SDA SCI3_RX T6 49 PTB0 PTB0 FTM0_CH0 ADC0_SE2 TRACECTL LCD34 SAI2_RX_ BCLK VIU_DATA18 QSPI1_A_ CS0 T7 50 PTB1 RCON30 PTB1 FTM0_CH1 ADC0_SE3 RCON30 LCD35 SAI2_RX_ DATA VIU_DATA19 QSPI1_A_ DATA3 V7 51 PTB2 RCON31 PTB2 FTM0_CH2 ADC1_SE2 RCON31 LCD36 SAI2_RX_ SYNC VIU_DATA20 QSPI1_A_ DATA2 W7 53 PTB3 PTB3 FTM0_CH3 ADC1_SE3 EXTRIG LCD37 Y7 54 PTB4 PTB4 FTM0_CH4 SCI1_TX ADC0_SE4 LCD38 VIU_FID VIU_DATA22 QSPI1_A_ DATA0 Y8 55 PTB5 PTB5 FTM0_CH5 SCI1_RX ADC1_SE4 LCD39 VIU_DE VIU_DATA23 QSPI1_A_ DQS W8 56 PTB6 PTB6 FTM0_CH6 SCI1_RTS QSPI0_A_ CS1 LCD40 FB_CLKOUT VIU_HSYNC SCI2_TX D13 166 PTB7 PTB7 FTM0_CH7 SCI1_CTS QSPI0_B_ CS1 LCD41 VIU_VSYNC SCI2_RX J16 121 PTB8 PTB8 FTM1CH0 FTM1_QD_ PHA J19 123 PTB9 PTB9 FTM1CH1 FTM1_QD_ PHB B15 159 PTB10 PTB10 SCI0_TX DCU0_ TCON4 VIU_DE CKO1 ENET_TS_ CLKIN D14 164 PTB11 PTB11 SCI0_RX DCU0_ TCON5 SNVS_ ALARM_ OUT_B CKO2 ENET0_ 1588_TMR0 E13 165 PTB12 PTB12 SCI0_RTS SPI0_PCS5 DCU0_ TCON6 FB_AD1 NMI ENET0_ 1588_TMR1 D15 156 PTB13 PTB13 SCI0_CTS SPI0_PCS4 DCU0_ TCON7 FB_AD0 TRACECTL NMI EzPort DCU1_DE/ DCU1_ TCON3 VIU_DATA21 QSPI1_A_ DATA1 VIU_DE DCU1_R6 DCU1_R7 VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 93 Pinouts 364 176 MAP LQFP BGA Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 B14 162 PTB14 PTB14 CAN0_RX I2C0_SCL DCU0_ TCON8 DCU1_PCLK A14 161 PTB15 PTB15 CAN0_TX I2C0_SDA DCU0_ TCON9 VIU_PIX_ CLK C14 163 PTB16 PTB16 CAN1_RX I2C1_SCL DCU0_ TCON10 A15 160 PTB17 PTB17 CAN1_TX I2C1_SDA DCU0_ TCON11 B12 171 PTB18 PTB18 SPI0_PCS1 EXT_AUDIO_ MCLK C13 167 PTB19 PTB19 SPI0_PCS0 A13 169 PTB20 PTB20 SPI0_SIN LCD42 VIU_DATA11 CCM_OBS2 E12 173 PTB21 PTB21 SPI0_SOUT LCD43 VIU_DATA12 DCU1_PCLK D12 172 PTB22 PTB22 SPI0_SCK V10 61 USB0_GND USB0_GND T10 63 USB0_DP USB0_DP T9 62 USB0_DM USB0_DM W11 60 USB0_VBUS USB0_VBUS Y10 59 USB_DCAP USB_DCAP Y11 64 USB0_ VBUS_ DETECT USB0_ VBUS_ DETECT Y9 — USB1_GND USB1_GND W9 — USB1_DP USB1_DP V9 — USB1_DM USB1_DM W10 — USB1_VBUS USB1_VBUS U9 — USB1_ VBUS_ DETECT USB1_ VBUS_ DETECT L4 8 PTC0 PTC0 RMII0_MDC/ MII0_MDC FTM1CH0 SPI0_PCS3 ESAI_SCKT SDHC0_CLK VIU_DATA0 RCON18 L5 9 PTC1 PTC1 RMII0_MDIO/ FTM1CH1 MII0_MDC SPI0_PCS2 ESAI_FST SDHC0_CMD VIU_DATA1 RCON19 M5 11 PTC2 PTC2 RMII0_CRS_ SCI1_TX DV ESAI_SDO0 SDHC0_ DAT0 VIU_DATA2 RCON20 M3 12 PTC3 PTC3 RMII0_RXD1/ SCI1_RX MII0_RXD[1] ESAI_SDO1 SDHC0_ DAT1 VIU_DATA3 DCU0_R0 L2 14 PTC4 PTC4 RMII0_RXD0/ SCI1_RTS MII0_RXD[0] SPI1_PCS1 ESAI_SDO2/ ESAI_SDI3 SDHC0_ DAT2 VIU_DATA4 DCU0_R1 M1 15 PTC5 PTC5 RMII0_RXER/ SCI1_CTS MII0_RXER SPI1_PCS0 ESAI_SDO3/ ESAI_SDI2 SDHC0_ DAT3 VIU_DATA5 DCU0_G0 N1 16 PTC6 PTC6 RMII0_TXD1/ MII0_TXD[1] SPI1_SIN ESAI_SDO5/ ESAI_SDI0 SDHC0_WP VIU_DATA6 DCU0_G1 N2 17 PTC7 PTC7 RMII0_TXD0/ MII0_TXD[0] SPI1_SOUT ESAI_SDO4/ ESAI_SDI1 VIU_DATA7 DCU0_B0 VIU_DATA9 EzPort CCM_OBS0 VIU_DATA10 CCM_OBS1 VIU_FID VF3xxR, VF5xxR, Rev7, 11/2014. 94 Freescale Semiconductor, Inc. Pinouts 364 176 MAP LQFP BGA Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 N4 18 PTC8 PTC8 RMII0_TXEN/ MII0_TXEN SPI1_SCK VIU_DATA8 T15 — PTC9 PTC9 RMII1_MDC ESAI_SCKT MLBCLK U15 — PTC10 PTC10 RMII1_MDIO ESAI_FST MLBSIGNAL P4 — PTC11 PTC11 RMII1_CRS_ DV ESAI_SDO0 MLBDATA P3 — PTC12 PTC12 RMII1_RXD1 ESAI_SDO1 SAI2_TX_ BCLK P1 — PTC13 PTC13 RMII1_RXD0 ESAI_SDO2/ ESAI_SDI3 SAI2_RX_ BCLK R1 — PTC14 PTC14 RMII1_RXER ESAI_SDO3/ ESAI_SDI2 SCI5_TX SAI2_RX_ DATA ADC0_SE6 P2 — PTC15 PTC15 RMII1_TXD1 ESAI_SDO5/ ESAI_SDI0 SCI5_RX SAI2_TX_ DATA ADC0_SE7 R3 — PTC16 PTC16 RMII1_TXD0 ESAI_SDO4/ ESAI_SDI1 SCI5_RTS SAI2_RX_ SYNC ADC1_SE6 R4 — PTC17 PTC17 RMII1_TXEN ADC1_SE7 SCI5_CTS SAI2_TX_ SYNC USB1_SOF_ PULSE B10 — DDR_A[15] DDR_A15 D9 — DDR_A[14] DDR_A14 A10 — DDR_A[13] DDR_A13 C10 — DDR_A[12] DDR_A12 D10 — DDR_A[11] DDR_A11 D7 — DDR_A[10] DDR_A10 B9 — DDR_A[9] DDR_A9 A11 — DDR_A[8] DDR_A8 A7 — DDR_A[7] DDR_A7 A9 — DDR_A[6] DDR_A6 B6 — DDR_A[5] DDR_A5 A6 — DDR_A[4] DDR_A4 B7 — DDR_A[3] DDR_A3 A8 — DDR_A[2] DDR_A2 C11 — DDR_A[1] DDR_A1 C7 — DDR_A[0] DDR_A0 D8 — DDR_BA[2] DDR_BA2 C9 — DDR_BA[1] DDR_BA1 C8 — DDR_BA[0] DDR_BA0 B4 — DDR_CAS_b DDR_CAS_b A5 — DDR_CKE[0] DDR_CKE0 A2 — DDR_CLK[0] DDR_CLK0 B2 — DDR_CLK_ b[0] DDR_CLK_ b0 ALT7 EzPort DCU0_B1 VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 95 Pinouts 364 176 MAP LQFP BGA Pin Name Default ALT0 ALT1 C5 — DDR_CS_ b[0] DDR_CS_b0 D2 — DDR_D[15] DDR_D15 H2 — DDR_D[14] DDR_D14 C1 — DDR_D[13] DDR_D13 G1 — DDR_D[12] DDR_D12 E2 — DDR_D[11] DDR_D11 H1 — DDR_D[10] DDR_D10 D1 — DDR_D[9] DDR_D9 J1 — DDR_D[8] DDR_D8 G3 — DDR_D[7] DDR_D7 C3 — DDR_D[6] DDR_D6 J3 — DDR_D[5] DDR_D5 F3 — DDR_D[4] DDR_D4 G4 — DDR_D[3] DDR_D3 D4 — DDR_D[2] DDR_D2 H3 — DDR_D[1] DDR_D1 F4 — DDR_D[0] DDR_D0 G2 — DDR_DQM[1] DDR_DQM1 J4 — DDR_DQM[0] DDR_DQM0 E1 — DDR_DQS[1] DDR_DQS1 D3 — DDR_DQS[0] DDR_DQS0 F1 — DDR_DQS_ b[1] DDR_DQS_ b1 E3 — DDR_DQS_ b[0] DDR_DQS_ b0 A4 — DDR_RAS_b DDR_RAS_b C6 — DDR_WE_b DDR_WE_b C4 — DDR_ODT[0] DDR_ODT0 B1 — DDR_ODT[1] DDR_ODT1 G5 — DDR_VREF DDR_VREF A3 — DDR_ZQ DDR_ZQ ALT2 ALT3 ALT4 ALT5 D6 — DDR_RESET J20 — PTD31 PTD31 FB_AD31 NF_IO15 FTM3_CH0 SPI2_PCS1 H20 — PTD30 PTD30 FB_AD30 NF_IO14 FTM3_CH1 SPI2_PCS0 H18 — PTD29 PTD29 FB_AD29 NF_IO13 FTM3_CH2 SPI2_SIN H17 — PTD28 PTD28 FB_AD28 NF_IO12 I2C2_SCL FTM3_CH3 SPI2_SOUT H16 — PTD27 PTD27 FB_AD27 NF_IO11 I2C2_SDA FTM3_CH4 SPI2_SCK G16 — PTD26 PTD26 FB_AD26 NF_IO10 FTM3_CH5 SDHC1_WP G18 — PTD25 PTD25 FB_AD25 NF_IO9 FTM3_CH6 G19 — PTD24 PTD24 FB_AD24 NF_IO8 FTM3_CH7 ALT6 ALT7 EzPort DDR_RESET VF3xxR, VF5xxR, Rev7, 11/2014. 96 Freescale Semiconductor, Inc. Pinouts 364 176 MAP LQFP BGA Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 G20 124 PTD23 PTD23/ MII0_ RXDATA[3] FB_AD23 NF_IO7 FTM2CH0 ENET0_ 1588_TMR0 SDHC0_ DAT4 SCI2_TX DCU1_R3 F20 126 PTD22 PTD22/ MII0_ RXDATA[2] FB_AD22 NF_IO6 FTM2CH1 ENET0_ 1588_TMR1 SDHC0_ DAT5 SCI2_RX DCU1_R4 F19 128 PTD21 PTD21/ MII0_CRS FB_AD21 NF_IO5 ENET0_ 1588_TMR2 SDHC0_ DAT6 SCI2_RTS DCU1_R5 F17 129 PTD20 PTD20/ MII0_COL FB_AD20 NF_IO4 ENET0_ 1588_TMR3 SDHC0_ DAT7 SCI2_CTS DCU1_R0 F16 130 PTD19 PTD19 FB_AD19 NF_IO3 ESAI_SCKR I2C0_SCL FTM2_QD_ PHA MII0_ TXDATA[3] DCU1_R1 E18 131 PTD18 PTD18 FB_AD18 NF_IO2 ESAI_FSR I2C0_SDA FTM2_QD_ PHB MII0_ TXDATA[2] DCU1_G0 E20 132 PTD17 PTD17 FB_AD17 NF_IO1 ESAI_HCKR I2C1_SCL MII0_TXERR DCU1_G1 D20 133 PTD16 PTD16 FB_AD16 NF_IO0 ESAI_HCKT I2C1_SDA DCU1_G2 Y17 86 PTD0 PTD0 QSPI0_A_ SCK SCI2_TX FB_AD15 SPDIF_ EXTCLK Y18 87 PTD1 PTD1 QSPI0_A_ CS0 SCI2_RX FB_AD14 SPDIF_IN1 V18 88 PTD2 PTD2 QSPI0_A_ DATA3 SCI2_RTS SPI1_PCS3 FB_AD13 SPDIF_OUT1 Y19 89 PTD3 PTD3 QSPI0_A_ DATA2 SCI2_CTS SPI1_PCS2 FB_AD12 SPDIF_ PLOCK W19 90 PTD4 PTD4 QSPI0_A_ DATA1 SPI1_PCS1 FB_AD11 SPDIF_ SRCLK W20 91 PTD5 PTD5 QSPI0_A_ DATA0 SPI1_PCS0 FB_AD10 V20 92 PTD6 PTD6 QSPI0_A_ DQS SPI1_SIN FB_AD9 V19 93 PTD7 PTD7 QSPI0_B_ SCK SPI1_SOUT FB_AD8 U17 94 PTD8 PTD8 QSPI0_B_ CS0 FB_CLKOUT SPI1_SCK FB_AD7 U18 97 PTD9 PTD9 QSPI0_B_ DATA3 SPI3_PCS1 FB_AD6 U20 98 PTD10 PTD10 QSPI0_B_ DATA2 SPI3_PCS0 FB_AD5 T20 99 PTD11 PTD11 QSPI0_B_ DATA1 SPI3_SIN FB_AD4 T19 100 PTD12 PTD12 QSPI0_B_ DATA0 SPI3_SOUT FB_AD3 T18 101 PTD13 PTD13 QSPI0_B_ DQS SPI3_SCK FB_AD2 A19 141 PTB23 PTB23 SAI0_TX_ BCLK SCI1_TX FB_MUXED_ FB_TS_b ALE SAI1_TX_ SYNC EzPort DCU1_B0 DCU1_B1 SCI3_RTS DCU1_G3 VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 97 Pinouts 364 176 MAP LQFP BGA Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 SCI3_CTS DCU1_G4 A18 142 PTB24 PTB24 SAI0_RX_ BCLK SCI1_RX FB_MUXED_ NF_WE_b TSIZ0 B17 149 PTB25 PTB25 SAI0_RX_ DATA SCI1_RTS FB_CS1_b NF_CE0_b DCU1_G5 A17 150 PTB26 RCON21 PTB26 SAI0_TX_ DATA SCI1_CTS RCON21 FB_CS0_b NF_CE1_b DCU1_G6 U8 57 PTB27 RCON22 PTB27 SAI0_RX_ SYNC RCON22 FB_OE_b FB_MUXED_ NF_RE_b TBST_b DCU1_G7 A16 151 PTB28 RCON23 PTB28 SAI0_TX_ SYNC RCON23 FB_RW_b D16 153 PTC26 RCON24 PTC26 SAI1_TX_ BCLK SPI0_PCS5 RCON24 FB_TA_b NF_RB_b E16 154 PTC27 RCON25 PTC27 SAI1_RX_ BCLK SPI0_PCS4 RCON25 FB_BE3_b FB_CS3_b NF_ALE DCU1_B2 E15 155 PTC28 RCON26 PTC28 SAI1_RX_ DATA SPI0_PCS3 RCON26 FB_BE2_b FB_CS2_b NF_CLE DCU1_B3 C16 152 PTC29 RCON27 PTC29 SAI1_TX_ DATA SPI0_PCS2 RCON27 FB_BE1_b FB_MUXED_ TSIZ1 T8 58 PTC30 RCON28 PTC30 SAI1_RX_ SYNC SPI1_PCS2 RCON28 FB_MUXED_ FB_TSIZ0 BE0_b W5 42 PTC31 RCON29 PTC31 SAI1_TX_ SYNC N16 103 PTE0 BOOTMOD1 PTE0 DCU0_ HSYNC/ DCU0_ TCON1 BOOTMOD1 LCD0 N18 104 PTE1 BOOTMOD0 PTE1 DCU0_ VSYNC/ DCU0_ TCON2 BOOTMOD0 LCD1 N19 105 PTE2 PTE2 DCU0_PCLK LCD2 Y15 77 PTE3 PTE3 DCU0_TAG/ DCU0_ TCON0 LCD3 N20 106 PTE4 PTE4 DCU0_DE/ DCU0_ TCON3 LCD4 T16 80 PTE5 PTE5 DCU0_R0 LCD5 W16 81 PTE6 PTE6 DCU0_R1 M20 109 PTE7 RCON0 PTE7 DCU0_R2 RCON0 LCD7 M19 110 PTE8 RCON1 PTE8 DCU0_R3 RCON1 LCD8 M17 111 PTE9 RCON2 PTE9 DCU0_R4 RCON2 LCD9 M16 112 PTE10 RCON3 PTE10 DCU0_R5 RCON3 LCD10 L16 113 PTE11 RCON4 PTE11 DCU0_R6 RCON4 LCD11 L17 114 PTE12 RCON5 PTE12 DCU0_R7 RCON5 LCD12 Y16 78 PTE13 PTE13 DCU0_G0 RCON29 EzPort DCU1_B6 DCU1_B7 DCU1_B4 ADC0_SE5 DCU1_B5 ADC1_SE5 DCU1_B6 LCD6 SPI1_PCS3 LPT_ALT0 LCD13 VF3xxR, VF5xxR, Rev7, 11/2014. 98 Freescale Semiconductor, Inc. Pinouts 364 176 MAP LQFP BGA Pin Name W15 76 PTE14 L18 115 PTE15 L20 116 K20 K19 Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 PTE14 DCU0_G1 RCON6 PTE15 DCU0_G2 RCON6 LCD15 PTE16 RCON7 PTE16 DCU0_G3 RCON7 LCD16 117 PTE17 RCON8 PTE17 DCU0_G4 RCON8 LCD17 118 PTE18 RCON9 PTE18 DCU0_G5 RCON9 LCD18 K18 119 PTE19 RCON10 PTE19 DCU0_G6 RCON10 LCD19 I2C0_SCL A12 170 PTE20 RCON11 PTE20 DCU0_G7 RCON11 LCD20 I2C0_SDA V16 79 PTE21 PTE21 DCU0_B0 LCD21 W17 84 PTE22 PTE22 DCU0_B1 LCD22 J17 122 PTE23 RCON12 PTE23 DCU0_B2 RCON12 LCD23 D19 134 PTE24 RCON13 PTE24 DCU0_B3 RCON13 LCD24 C19 135 PTE25 RCON14 PTE25 DCU0_B4 RCON14 LCD25 C20 137 PTE26 RCON15 PTE26 DCU0_B5 RCON15 LCD26 B20 138 PTE27 RCON16 PTE27 DCU0_B6 RCON16 LCD27 I2C1_SCL K16 120 PTE28 RCON17 PTE28 DCU0_B7 RCON17 LCD28 I2C1_SDA V15 75 PTA7 PTA7 VIU_PIX_ CLK T14 — EXT_ TAMPER0 EXT_ TAMPER0 U14 — EXT_ TAMPER1 EXT_ TAMPER1 T13 — EXT_ TAMPER2/ EXT_WM0_ TAMPER_IN EXT_ TAMPER2/ EXT_WM0_ TAMPER_IN U13 — EXT_ TAMPER3/ EXT_WM0_ TAMPER_ OUT EXT_ TAMPER3/ EXT_WM0_ TAMPER_ OUT U12 — EXT_ TAMPER4/ EXT_WM1_ TAMPER_IN EXT_ TAMPER4/ EXT_WM1_ TAMPER_IN U10 — EXT_ TAMPER5/ EXT_WM1_ TAMPER_ OUT EXT_ TAMPER5/ EXT_WM1_ TAMPER_ OUT G7 2 VDD VDD J7 22 VDD VDD L7 48 VDD VDD H8 — VDD VDD K8 85 VDD VDD M8 102 VDD VDD ALT6 ALT7 EzPort LCD14 EWM_in EWM_out VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 99 Pinouts 364 176 MAP LQFP BGA Pin Name Default ALT0 ALT1 P8 125 VDD VDD G9 136 VDD VDD N9 174 VDD VDD H10 — VDD VDD P10 — VDD VDD G11 — VDD VDD N11 — VDD VDD H12 — VDD VDD P12 — VDD VDD G13 — VDD VDD J13 — VDD VDD L13 — VDD VDD N13 — VDD VDD H14 — VDD VDD K14 — VDD VDD M14 — VDD VDD P14 — VDD VDD A1 1 VSS VSS A20 13 VSS VSS B3 20 VSS VSS B5 25 VSS VSS B8 45 VSS VSS B11 — VSS VSS B13 — VSS VSS B16 — VSS VSS B19 — VSS VSS C2 — VSS VSS D17 — VSS VSS E5 — VSS VSS E8 — VSS VSS E11 — VSS VSS E14 — VSS VSS E19 — VSS VSS F2 — VSS VSS G17 — VSS VSS H4 — VSS VSS J2 — VSS VSS J18 — VSS VSS M2 — VSS VSS M4 — VSS VSS ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort VF3xxR, VF5xxR, Rev7, 11/2014. 100 Freescale Semiconductor, Inc. Pinouts 364 176 MAP LQFP BGA Pin Name Default ALT0 ALT1 M18 — VSS VSS R2 — VSS VSS R18 — VSS VSS U7 — VSS VSS U19 — VSS VSS V13 — VSS VSS W6 — VSS VSS V17 — VSS VSS Y1 — VSS VSS Y20 — VSS VSS H19 — VSS VSS L19 — VSS VSS P19 — VSS VSS J5 — SDRAMC_ VDD2P5 SDRAMC_ VDD2P5 E6 — SDRAMC_ VDD2P5 SDRAMC_ VDD2P5 E10 — SDRAMC_ VDD2P5 SDRAMC_ VDD2P5 E4 — SDRAMC_ VDD1P5 SDRAMC_ VDD1P5 D5 — SDRAMC_ VDD1P5 SDRAMC_ VDD1P5 F5 — SDRAMC_ VDD1P5 SDRAMC_ VDD1P5 H5 — SDRAMC_ VDD1P5 SDRAMC_ VDD1P5 K5 — SDRAMC_ VDD1P5 SDRAMC_ VDD1P5 E7 — SDRAMC_ VDD1P5 SDRAMC_ VDD1P5 E9 — SDRAMC_ VDD1P5 SDRAMC_ VDD1P5 D11 — SDRAMC_ VDD1P5 SDRAMC_ VDD1P5 K3 10 VDD33 VDD33 N3 21 VDD33 VDD33 V8 52 VDD33 VDD33 C12 — VDD33 VDD33 C15 83 VDD33 VDD33 U16 95 VDD33 VDD33 K17 108 VDD33 VDD33 N17 127 VDD33 VDD33 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 101 Pinouts 364 176 MAP LQFP BGA Pin Name Default ALT0 ALT1 T17 140 VDD33 VDD33 C18 146 VDD33 VDD33 F18 158 VDD33 VDD33 W18 168 VDD33 VDD33 H7 — VSS VSS K7 74 VSS VSS M7 82 VSS VSS P7 96 VSS VSS G8 107 VSS VSS J8 — VSS VSS L8 139 VSS VSS N8 — VSS VSS H9 157 VSS VSS J9 175 VSS VSS K9 176 VSS VSS L9 — VSS VSS M9 — VSS VSS P9 — VSS VSS G10 — VSS VSS J10 — VSS VSS K10 — VSS VSS L10 — VSS VSS M10 — VSS VSS N10 — VSS VSS H11 — VSS VSS J11 — VSS VSS K11 — VSS VSS L11 — VSS VSS M11 — VSS VSS P11 — VSS VSS G12 — VSS VSS J12 — VSS VSS K12 — VSS VSS L12 — VSS VSS M12 — VSS VSS N12 — VSS VSS H13 — VSS VSS K13 — VSS VSS M13 — VSS VSS P13 — VSS VSS ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort VF3xxR, VF5xxR, Rev7, 11/2014. 102 Freescale Semiconductor, Inc. Pinouts 364 176 MAP LQFP BGA Pin Name Default ALT0 ALT1 G14 — VSS VSS J14 — VSS VSS L14 — VSS VSS N14 — VSS VSS N7 — FA_VDD FA_VDD V14 — VBAT VBAT — FLG VSS ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort VSS 12.2 Pinout diagrams NOTE The 176 LQFP parts are not pin compatible between the F and R series families devices. NOTE If tamper detection is not required, the tamper pins must be tied to ground. VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 103 VSS PTE26 VDD PTE25 PTE24 PTD16 137 136 135 134 133 VDD33 140 PTE27 PTB23 141 138 PTB24 142 139 VSS PTA20 PTA21 145 143 VDD33 146 144 PTA23 PTB25 149 PTA22 PTB26 150 147 PTB28 151 148 PTC26 PTC29 PTC27 154 152 PTC28 155 153 VSS PTB13 157 156 PTB10 VDD33 159 158 PTB15 PTB17 160 PTB14 162 161 PTB11 PTB16 164 163 PTB7 PTB12 166 165 VDD33 PTB19 168 167 PTE20 PTB20 170 169 PTB22 PTB21 PTB18 VDD 173 171 VSS 174 172 VSS 176 175 Pinouts VSS 1 132 PTD17 VDD 2 131 PTD18 JTCLK/SWCLK 3 130 PTD19 JTDI 4 129 PTD20 PTD21 JTDO 5 128 JTMS/SWDIO 6 127 VDD33 PTA12 7 126 PTD22 PTC0 8 125 VDD PTC1 9 124 PTD23 VDD33 10 123 PTB9 PTC2 11 122 PTE23 PTC3 12 121 PTB8 VSS 13 120 PTE28 PTC4 14 119 PTE19 PTC5 15 118 PTE18 PTC6 16 117 PTE17 PTC7 17 116 PTE16 PTC8 18 115 PTE15 PTA6 19 114 PTE12 VSS 20 113 PTE11 VDD33 21 112 PTE10 VDD 22 111 PTE9 PTE8 FLG Ext_POR 23 110 VDDREG 24 109 PTE7 VSS 25 108 VDD33 BCTRL 26 107 VSS TEST 27 106 PTE4 RESETB/RESET_OUT 28 105 PTE2 DACO0 29 104 PTE1 DACO1 30 103 PTE0 VDDA33_ADC 31 102 VDD VSSA33_ADC 32 101 PTD13 VREFL_ADC 33 100 PTD12 VREFH_ADC 34 99 PTD11 VADCSE0 35 98 PTD10 VDD12_AFE 36 97 PTD9 VSS VADCSE1 37 96 VSS12_AFE 38 95 VDD33 VSSA33_AFE 39 94 PTD8 PTD7 VDDA33_AFE 40 93 VADC_AFE_BANDGAP 41 92 PTD6 PTC31 42 91 PTD5 79 80 81 82 83 84 85 86 87 88 PTE21 PTE5 PTE6 VSS VDD33 PTE22 VDD PTD0 PTD1 PTD2 VSS 78 74 EXTAL PTE13 73 XTAL 77 72 XTAL32 PTE3 71 EXTAL32 75 70 DECAP_V11_LDO_OUT 76 69 VDD33_LDOIN PTA7 68 VSS PTE14 66 67 VSS_KEL0 64 65 USB0_VBUS_DETECT DECAP_V25_LDO_OUT 62 63 61 USB0_GND USB0_DP 60 USB0_DM 59 USB_DCAP USB0_VBUS 57 58 PTB27 PTC30 55 56 PTB5 PTB6 53 54 PTB3 PTB4 50 PTB1 51 49 PTB0 52 48 VDD PTB2 47 PTA19 VDD33 46 PTD4 PTD3 45 90 89 VSS 43 44 PTA18 PTA16 PTA17 Figure 59. 176 LQFP Pinout Diagram VF3xxR, VF5xxR, Rev7, 11/2014. 104 Freescale Semiconductor, Inc. Pinouts 1 2 3 4 5 6 7 8 A VSS DDR_ CLK[0] DDR_ZQ DDR_ RAS_b DDR_ CKE[0] DDR_A[4] DDR_A[7] DDR_A[2] 12 13 14 15 16 17 18 19 20 DDR_A[6] DDR_A[13] DDR_A[8] B DDR_ ODT[1] DDR_ CLK_b[0] VSS DDR_ CAS_b VSS DDR_A[5] DDR_A[3] VSS C DDR_D[13] VSS DDR_D[6] DDR_ ODT[0] DDR_ CS_b[0] DDR_ WE_b D DDR_D[9] DDR_D[15] DDR_ DQS[0] DDR_ D[2] SDRAMC_ VDD1P5 DDR_ RESET PTE20 PTB20 PTB15 PTB17 PTB28 PTB26 PTB24 PTB23 VSS A DDR_A[9] DDR_A[15] PTB18 VSS PTB14 PTB10 VSS PTB25 PTA20 VSS PTE27 B DDR_A[0] DDR_BA[0] DDR_BA[1] DDR_A[12] DDR_A[1] VDD33 PTB19 PTB16 VDD33 PTC29 PTA23 VDD33 PTE25 PTE26 C DDR_A[10] DDR_BA[2] DDR_A[14] SDRAMC_ VDD1P5 PTB22 PTB7 PTB11 PTB13 PTC26 VSS PTA21 PTE24 PTD16 D VSS PTB21 PTB12 VSS PTC28 PTC27 PTA22 PTD18 VSS PTD17 E PTD19 PTD20 VDD33 PTD21 PTD22 F SDRAMC_ SDRAMC_ VDD2P5 VDD1P5 VSS 9 10 DDR_ A[11] SDRAMC_ SDRAMC_ VDD1P5 VDD2P5 11 VSS E DDR_ DQS[1] DDR_ D[11] DDR_ DQS_b[0] SDRAMC_ VDD1P5 VSS F DDR_ DQS_b[1] VSS DDR_D[4] DDR_ D[0] SDRAMC_ VDD1P5 G DDR_ D[12] DDR_ DQM[1] DDR_ D[7] DDR_ D[3] DDR_ VREF VDD VSS VDD VSS VDD VSS VDD VSS PTD26 VSS PTD25 PTD24 PTD23 G H DDR_ D[10] DDR_ D[14] DDR_ D[1] VSS SDRAMC_ VDD1P5 VSS VDD VSS VDD VSS VDD VSS VDD PTD27 PTD28 PTD29 VSS PTD30 H J DDR_D[8] VSS DDR_D[5] DDR_ DQM[0] SDRAMC_ VDD2P5 VDD VSS VSS VSS VSS VSS VDD VSS PTB8 PTE23 VSS PTB9 PTD31 J K JTDO JTDI VDD33 JTCLK/ SWCLK SDRAMC_ VDD1P5 VSS VDD VSS VSS VSS VSS VSS VDD PTE28 VDD33 PTE19 PTE18 PTE17 K L JTMS /SWDIO PTC4 PTA12 PTC0 PTC1 VDD VSS VSS VSS VSS VSS VDD VSS PTE11 PTE12 PTE15 VSS PTE16 L M PTC5 VSS PTC3 VSS PTC2 VSS VDD VSS VSS VSS VSS VSS VDD PTE10 PTE9 VSS PTE8 PTE7 M N PTC6 PTC7 VDD33 PTC8 PTA6 FA_VDD VSS VDD VSS VDD VSS VDD VSS PTE0 VDD33 PTE1 PTE2 PTE4 N P PTC13 PTC15 PTC12 PTC11 VDDREG VSS VDD VSS VDD VSS VDD VSS VDD PTA31 PTA30 PTA29 VSS PTA28 P R PTC14 VSS PTC16 PTC17 VSS12_ AFE PTA24 PTA25 VSS PTA26 PTA27 R T TEST2 BCTRL TEST RESETB /RESET_ OUT VDD12_ AFE U DACO0 DACO1 VREFL_ ADC VADCSE1 V VDDA33_ ADC VSSA33_ ADC VDDA33_ AFE W VREFH_ ADC ADC0SE9 Y VSS 1 PTB0 PTB1 PTC30 USB0_DM USB0_DP DECAP_ V25_LDO _OUT VADC_ AFE_ BANDGAP PTA19 VSS PTB27 USB1_ VBUS_ DETECT EXT_TAMPER5 /EXT_WM1_ TAMPER_OUT VSS_KEL0 VSSA33_ AFE VADCSE3 PTA18 PTB2 VDD33 USB1_DM USB0_ GND VSS ADC1SE8 VADCSE2 PTC31 VSS PTB3 PTB6 USB1_DP USB1_ VBUS USB0_ VBUS ADC0SE8 ADC1SE9 VADCSE0 PTA16 PTA17 PTB4 PTB5 USB1_GND USB_ DCAP USB0_ VBUS_ DETECT 2 3 4 5 6 7 8 9 10 11 VDD33_ LDOIN EXT_TAMPER2 /EXT_WM0_ TAMPER_IN EXT_TAMPER4 EXT_TAMPER3 /EXT_WM1_ /EXT_WM0_ TAMPER_IN TAMPER_OUT EXT_ TAMPER0 PTC9 PTE5 VDD33 PTD13 PTD12 PTD11 T EXT_ TAMPER1 PTC10 VDD33 PTD8 PTD9 VSS PTD10 U DECAP_ V11_LDO_ OUT VSS VBAT PTA7 PTE21 VSS PTD2 PTD7 PTD6 V XTAL32 XTAL LVDS0P PTE14 PTE6 PTE22 VDD33 PTD4 PTD5 W EXTAL32 EXTAL LVDS0N PTE3 PTE13 PTD0 PTD1 PTD3 VSS Y 12 13 14 15 16 17 18 19 20 Figure 60. 364-pin BGA package ballmap 12.2.1 GPIO Mapping Table 78. RGPIO versus Pins RGPIO In GPIO module Corresponding Pin on the chip IOMUX register name IOMUX register address RGPIO[0] PORT0[0] PTA6 IOMUXC_PTA6 40048000 Table continues on the next page... VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 105 Pinouts Table 78. RGPIO versus Pins (continued) RGPIO In GPIO module Corresponding Pin on the chip IOMUX register name IOMUX register address RGPIO[1] PORT0[1] PTA8 IOMUXC_PTA8 40048004 RGPIO[2] PORT0[2] PTA9 IOMUXC_PTA9 40048008 RGPIO[3] PORT0[3] PTA10 IOMUXC_PTA10 4004800C RGPIO[4] PORT0[4] PTA11 IOMUXC_PTA11 40048010 RGPIO[5] PORT0[5] PTA12 IOMUXC_PTA12 40048014 RGPIO[6] PORT0[6] PTA16 IOMUXC_PTA16 40048018 RGPIO[7] PORT0[7] PTA17 IOMUXC_PTA17 4004801C RGPIO[8] PORT0[8] PTA18 IOMUXC_PTA18 40048020 RGPIO[9] PORT0[9] PTA19 IOMUXC_PTA19 40048024 RGPIO[10] PORT0[10] PTA20 IOMUXC_PTA20 40048028 RGPIO[11] PORT0[11] PTA21 IOMUXC_PTA21 4004802C RGPIO[12] PORT0[12] PTA22 IOMUXC_PTA22 40048030 RGPIO[13] PORT0[13] PTA23 IOMUXC_PTA23 40048034 RGPIO[14] PORT0[14] PTA24 IOMUXC_PTA24 40048038 RGPIO[15] PORT0[15] PTA25 IOMUXC_PTA25 4004803C RGPIO[16] PORT0[16] PTA26 IOMUXC_PTA26 40048040 RGPIO[17] PORT0[17] PTA27 IOMUXC_PTA27 40048044 RGPIO[18] PORT0[18] PTA28 IOMUXC_PTA28 40048048 RGPIO[19] PORT0[19] PTA29 IOMUXC_PTA29 4004804C RGPIO[20] PORT0[20] PTA30 IOMUXC_PTA30 40048050 RGPIO[21] PORT0[21] PTA31 IOMUXC_PTA31 40048054 RGPIO[22] PORT0[22] PTB0 IOMUXC_PTB0 40048058 RGPIO[23] PORT0[23] PTB1 IOMUXC_PTB1 4004805C RGPIO[24] PORT0[24] PTB2 IOMUXC_PTB2 40048060 RGPIO[25] PORT0[25] PTB3 IOMUXC_PTB3 40048064 RGPIO[26] PORT0[26] PTB4 IOMUXC_PTB4 40048068 RGPIO[27] PORT0[27] PTB5 IOMUXC_PTB5 4004806C RGPIO[28] PORT0[28] PTB6 IOMUXC_PTB6 40048070 RGPIO[29] PORT0[29] PTB7 IOMUXC_PTB7 40048074 RGPIO[30] PORT0[30] PTB8 IOMUXC_PTB8 40048078 RGPIO[31] PORT0[31] PTB9 IOMUXC_PTB9 4004807C RGPIO[32] PORT1[0] PTB10 IOMUXC_PTB10 40048080 RGPIO[33] PORT1[1] PTB11 IOMUXC_PTB11 40048084 RGPIO[34] PORT1[2] PTB12 IOMUXC_PTB12 40048088 RGPIO[35] PORT1[3] PTB13 IOMUXC_PTB13 4004808C RGPIO[36] PORT1[4] PTB14 IOMUXC_PTB14 40048090 RGPIO[37] PORT1[5] PTB15 IOMUXC_PTB15 40048094 RGPIO[38] PORT1[6] PTB16 IOMUXC_PTB16 40048098 RGPIO[39] PORT1[7] PTB17 IOMUXC_PTB17 4004809C Table continues on the next page... VF3xxR, VF5xxR, Rev7, 11/2014. 106 Freescale Semiconductor, Inc. Pinouts Table 78. RGPIO versus Pins (continued) RGPIO In GPIO module Corresponding Pin on the chip IOMUX register name IOMUX register address RGPIO[40] PORT1[8] PTB18 IOMUXC_PTB18 400480A0 RGPIO[41] PORT1[9] PTB19 IOMUXC_PTB19 400480A4 RGPIO[42] PORT1[10] PTB20 IOMUXC_PTB20 400480A8 RGPIO[43] PORT1[11] PTB21 IOMUXC_PTB21 400480AC RGPIO[44] PORT1[12] PTB22 IOMUXC_PTB22 400480B0 RGPIO[45] PORT1[13] PTC0 IOMUXC_PTC0 400480B4 RGPIO[46] PORT1[14] PTC1 IOMUXC_PTC1 400480B8 RGPIO[47] PORT1[15] PTC2 IOMUXC_PTC2 400480BC RGPIO[48] PORT1[16] PTC3 IOMUXC_PTC3 400480C0 RGPIO[49] PORT1[17] PTC4 IOMUXC_PTC4 400480C4 RGPIO[50] PORT1[18] PTC5 IOMUXC_PTC5 400480C8 RGPIO[51] PORT1[19] PTC6 IOMUXC_PTC6 400480CC RGPIO[52] PORT1[20] PTC7 IOMUXC_PTC7 400480D0 RGPIO[53] PORT1[21] PTC8 IOMUXC_PTC8 400480D4 RGPIO[54] PORT1[22] PTC9 IOMUXC_PTC9 400480D8 RGPIO[55] PORT1[23] PTC10 IOMUXC_PTC10 400480DC RGPIO[56] PORT1[24] PTC11 IOMUXC_PTC11 400480E0 RGPIO[57] PORT1[25] PTC12 IOMUXC_PTC12 400480E4 RGPIO[58] PORT1[26] PTC13 IOMUXC_PTC13 400480E8 RGPIO[59] PORT1[27] PTC14 IOMUXC_PTC14 400480EC RGPIO[60] PORT1[28] PTC15 IOMUXC_PTC15 400480F0 RGPIO[61] PORT1[29] PTC16 IOMUXC_PTC16 400480F4 RGPIO[62] PORT1[30] PTC17 IOMUXC_PTC17 400480F8 RGPIO[63] PORT1[31] PTD31 IOMUXC_PTD31 400480FC RGPIO[64] PORT2[0] PTD30 IOMUXC_PTD30 40048100 RGPIO[65] PORT2[1] PTD29 IOMUXC_PTD29 40048104 RGPIO[66] PORT2[2] PTD28 IOMUXC_PTD28 40048108 RGPIO[67] PORT2[3] PTD27 IOMUXC_PTD27 4004810C RGPIO[68] PORT2[4] PTD26 IOMUXC_PTD26 40048110 RGPIO[69] PORT2[5] PTD25 IOMUXC_PTD25 40048114 RGPIO[70] PORT2[6] PTD24 IOMUXC_PTD24 40048118 RGPIO[71] PORT2[7] PTD23 IOMUXC_PTD23 4004811C RGPIO[72] PORT2[8] PTD22 IOMUXC_PTD22 40048120 RGPIO[73] PORT2[9] PTD21 IOMUXC_PTD21 40048124 RGPIO[74] PORT2[10] PTD20 IOMUXC_PTD20 40048128 RGPIO[75] PORT2[11] PTD19 IOMUXC_PTD19 4004812C RGPIO[76] PORT2[12] PTD18 IOMUXC_PTD18 40048130 RGPIO[77] PORT2[13] PTD17 IOMUXC_PTD17 40048134 RGPIO[78] PORT2[14] PTD16 IOMUXC_PTD16 40048138 Table continues on the next page... VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 107 Pinouts Table 78. RGPIO versus Pins (continued) RGPIO In GPIO module Corresponding Pin on the chip IOMUX register name IOMUX register address RGPIO[79] PORT2[15] PTD0 IOMUXC_PTD0 4004813C RGPIO[80] PORT2[16] PTD1 IOMUXC_PTD1 40048140 RGPIO[81] PORT2[17] PTD2 IOMUXC_PTD2 40048144 RGPIO[82] PORT2[18] PTD3 IOMUXC_PTD3 40048148 RGPIO[83] PORT2[19] PTD4 IOMUXC_PTD4 4004814C RGPIO[84] PORT2[20] PTD5 IOMUXC_PTD5 40048150 RGPIO[85] PORT2[21] PTD6 IOMUXC_PTD6 40048154 RGPIO[86] PORT2[22] PTD7 IOMUXC_PTD7 40048158 RGPIO[87] PORT2[23] PTD8 IOMUXC_PTD8 4004815C RGPIO[88] PORT2[24] PTD9 IOMUXC_PTD9 40048160 RGPIO[89] PORT2[25] PTD10 IOMUXC_PTD10 40048164 RGPIO[90] PORT2[26] PTD11 IOMUXC_PTD11 40048168 RGPIO[91] PORT2[27] PTD12 IOMUXC_PTD12 4004816C RGPIO[92] PORT2[28] PTD13 IOMUXC_PTD13 40048170 RGPIO[93] PORT2[29] PTB23 IOMUXC_PTB23 40048174 RGPIO[94] PORT2[30] PTB24 IOMUXC_PTB24 40048178 RGPIO[95] PORT2[31] PTB25 IOMUXC_PTB25 4004817C RGPIO[96] PORT3[0] PTB26 IOMUXC_PTB26 40048180 RGPIO[97] PORT3[1] PTB27 IOMUXC_PTB27 40048184 RGPIO[98] PORT3[2] PTB28 IOMUXC_PTB28 40048188 RGPIO[99] PORT3[3] PTC26 IOMUXC_PTC26 4004818C RGPIO[100] PORT3[4] PTC27 IOMUXC_PTC27 40048190 RGPIO[101] PORT3[5] PTC28 IOMUXC_PTC28 40048194 RGPIO[102] PORT3[6] PTC29 IOMUXC_PTC29 40048198 RGPIO[103] PORT3[7] PTC30 IOMUXC_PTC30 4004819C RGPIO[104] PORT3[8] PTC31 IOMUXC_PTC31 400481A0 RGPIO[105] PORT3[9] PTE0 IOMUXC_PTE0 400481A4 RGPIO[106] PORT3[10] PTE1 IOMUXC_PTE1 400481A8 RGPIO[107] PORT3[11] PTE2 IOMUXC_PTE2 400481AC RGPIO[108] PORT3[12] PTE3 IOMUXC_PTE3 400481B0 RGPIO[109] PORT3[13] PTE4 IOMUXC_PTE4 400481B4 RGPIO[110] PORT3[14] PTE5 IOMUXC_PTE5 400481B8 RGPIO[111] PORT3[15] PTE6 IOMUXC_PTE6 400481BC RGPIO[112] PORT3[16] PTE7 IOMUXC_PTE7 400481C0 RGPIO[113] PORT3[17] PTE8 IOMUXC_PTE8 400481C4 RGPIO[114] PORT3[18] PTE9 IOMUXC_PTE9 400481C8 RGPIO[115] PORT3[19] PTE10 IOMUXC_PTE10 400481CC RGPIO[116] PORT3[20] PTE11 IOMUXC_PTE11 400481D0 RGPIO[117] PORT3[21] PTE12 IOMUXC_PTE12 400481D4 Table continues on the next page... VF3xxR, VF5xxR, Rev7, 11/2014. 108 Freescale Semiconductor, Inc. Pinouts Table 78. RGPIO versus Pins (continued) RGPIO In GPIO module Corresponding Pin on the chip IOMUX register name IOMUX register address RGPIO[118] PORT3[22] PTE13 IOMUXC_PTE13 400481D8 RGPIO[119] PORT3[23] PTE14 IOMUXC_PTE14 400481DC RGPIO[120] PORT3[24] PTE15 IOMUXC_PTE15 400481E0 RGPIO[121] PORT3[25] PTE16 IOMUXC_PTE16 400481E4 RGPIO[122] PORT3[26] PTE17 IOMUXC_PTE17 400481E8 RGPIO[123] PORT3[27] PTE18 IOMUXC_PTE18 400481EC RGPIO[124] PORT3[28] PTE19 IOMUXC_PTE19 400481F0 RGPIO[125] PORT3[29] PTE20 IOMUXC_PTE20 400481F4 RGPIO[126] PORT3[30] PTE21 IOMUXC_PTE21 400481F8 RGPIO[127] PORT3[31] PTE22 IOMUXC_PTE22 400481FC RGPIO[128] PORT4[0] PTE23 IOMUXC_PTE23 40048200 RGPIO[129] PORT4[1] PTE24 IOMUXC_PTE24 40048204 RGPIO[130] PORT4[2] PTE25 IOMUXC_PTE25 40048208 RGPIO[131] PORT4[3] PTE26 IOMUXC_PTE26 4004820C RGPIO[132] PORT4[4] PTE27 IOMUXC_PTE27 40048210 RGPIO[133] PORT4[5] PTE28 IOMUXC_PTE28 40048214 RGPIO[134] PORT4[6] PTA7 IOMUXC_PTA7 40048218 12.2.2 Special Signal Table 79. Special Signal Considerations Special Signal Comments DDR_VREF When using DDR_VREF with DDR I/O, the nominal reference voltage must be half of the SDRAMC_VDD1P5 supply. The user must tie DDR_VREF to a precision external resistor divider. Shunt each resistor with a closely-mounted 0.1 μF capacitor. DDR_ZQ DRAM calibration resistor 240 Ω 1% used as reference during DRAM output buffer driver calibration should be connected between this pad and GND DECAP_V25_LDO_OUT DCAP_V25_LDO_OUT can be tied to SDRAMC_VDD2P5 to provide the predriver supply for the DDR I/O segment. SDRAMC_VDD1P5 requires an external regulated supply. If SDRAMC_VDD2P5 uses an external 2.5V supply, do NOT tie it to DCAP_V25_LDO_OUT. EXT_POR, TEST Factory use only, tie to ground.. EXT_TAMPER0, EXT_TAMPER1, EXT_TAMPER2, EXT_TAMPER3, EXT_TAMPER4, EXT_TAMPER5 Security related tamper detection inputs, if not in use they must be tied to ground. FA_VDD Factory use only, tie to VDD. Table continues on the next page... VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 109 Pinouts Table 79. Special Signal Considerations (continued) Special Signal Comments JTCLK, JTDI, JTDO, JTMS For JTAG the use of external resistors is unnecessary. However, if external resistors are used, the user must ensure that the on-chip pull-up/down configuration is matched. For example, do not use an external pull down on an input that has on-chip pull-up. JTDO is configured with a keeper circuit such that the floating condition is eliminated if an external pull resistor is not present. An external pull resistor on JTDO is detrimental and should be avoided. LVDS0N, LVDS0P Not recommended for application use, intended for clock observation purposes during debug only. RESETB/RESET_OUT Active low input used to generate a system wide reset (except the SRTC). A glitch filter is include to help prevent unexpected resets, a minimum pulse width of 125 nsecs is required to guarantee a reset is detected. XTAL, EXTAL A 24.0 MHz fundamental mode crystal should be connected between XTAL and EXTAL. The crystal must be rated for a drive level of 250 μW or higher. An ESR (equivalent series resistance) of 80 Ω or less is recommended. This clock is used as a reference for USB, so there are strict frequency tolerance and jitter requirements. The crystal can be eliminated if an external 24 MHz oscillator is available in the system. In this case, XTAL must be directly driven by the external oscillator and EXTAL floated. The XTAL signal level must swing from ~0.8 x DECAP_V11_ LDO_OUT to ~0.2 V. XTAL32, EXTAL32 If the user wishes to configure XTAL32 and EXTAL32 as an RTC oscillator, a 32.768 kHz crystal, (≤50 kΩ ESR, 10 pF load) should be connected between XTAL32 and EXTAL32. Keep in mind the capacitors implemented on either side of the crystal are about twice the crystal load capacitor. To hit the exact oscillation frequency, the board capacitors need to be reduced to account for board and chip parasitics. The integrated oscillation amplifier is self biasing, but relatively weak. Care must be taken to limit parasitic leakage from XTAL32 and EXTAL32 to either power or ground (>100 MΩ). This will debias the amplifier and cause a reduction of startup margin. Typically XTAL32 and EXTAL32 should bias to approximately 0.5 V. If it is desired to feed an external low frequency clock into XTAL32 the EXTAL32 pin should be left floating or driven with a complimentary signal. The logic level of this forcing clock should not exceed DECAP_V11_ LDO_OUT level and the frequency should be <100 kHz under typical conditions. In the case where the SIRC is used, it is recommended to connect XTAL32 to ground and leave EXTAL32 floating. VF3xxR, VF5xxR, Rev7, 11/2014. 110 Freescale Semiconductor, Inc. Power Supply Pins 13 Power Supply Pins 13.1 Power Supply Pins Table 80. Power Supply Pins Supply Rail Name 364 MAP BGA 176 LQFP (R-series ONLY) Comment DECAP_V11_ LDO_OUT V12 69 On-chip 1.1V LDO output DECAP_V25_ LDO_OUT T11 65 On-chip 2.5V LDO output (Intended to supply DRAM IO when required) FA_VDD N7 — Factory Use Only (Connect to VDD, internally bonded in LQFP) SDRAMC_ VDD1P5 D5, D11, E4, E7, E9, F5, H5, K5 DRAM not supported in LQFP 1.5V DDR3 DRAM Supply (1.2V for LPDDR2) SDRAMC_ VDD2P5 E6, E10, J5 DRAM not supported in LQFP 2.5V DRAM Supply USB_DCAP Y10 59 USB0_GND V10 61 USB1_GND Y9 USB1 not supported in LQFP VADC_AFE_ BANDGAP U5 41 Video ADC Bandgap Output VBAT V14 VBAT not supported in LQFP On-chip SNVS regulator battery back-up supply option VDD G7, G9, G11, G13, H8, H10, H12, H14, J7, J13, K8, K14, L7, L13, M8, M14, N9, N11, N13, P8, P10, P12, P14 2, 22, 48, 85, 102, 125, 136, 174 1.2V Core Supply (Internally Regulated) VDD33 C12, C15, C18, F18, K3, K17, 10, 21, 52, 83, 95, 108, 127, N3, N17, T17, U16, V8, W18 140, 146, 158, 168 3.3V IO Supply VDDA33_ADC V1 31 3.3V Analog To Digital convertor supply VDD12_AFE T5 36 1.2V Analog Front End supply for Video ADC VDDA33_AFE V3 40 3.3V Analog Front End supply for Video ADC VDD33_ LDOIN T12 68 On-chip 2.5V LDO, 1.1V LDO and SNVS regulators input supply VDDREG P5 24 On-chip HPREG, LPREG, WBREG and ULPREG regulators input supply VREFH_ADC W1 34 ATD High Voltage Reference VREFL_ADC U3 33 ATD Low Voltage Reference On-chip 3V LDO output (Intended to be fed by external USB VBUS supply) Table continues on the next page... VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 111 Functional Assignment Pins Table 80. Power Supply Pins (continued) Supply Rail Name 364 MAP BGA 176 LQFP (R-series ONLY) Comment VSS A1, A20, B3, B5, B8, B11, 1, 13, 20, 25, 45, 67, 74, 82, B13, B16, B19, C2, D17, E5, 96, 107, 139, 144, 157, 175, E8, E11, E14, E19, F2, G8, 176, FLG G10, G12, G14, G17, H4, H7, H9, H11, H13, H19, J2, J8, J9, J10, J11, J12, J14, J18, K7, K9, K10, K11, K12, K13, L8, L9, L10, L11, L12, L14, L19, M2, M4, M7, M9, M10, M11, M12, M13, M18, N8, N10, N12, N14, P7, P9, P11, P13, P19, R2, R18, U7, U19, V11, V13, V17, W6, Y1, Y20 Ground. Connect "Flag pad (FLG)" to the internal GND plane with numerous vias—for both electrical and thermal purposes. VSSA33_ADC V2 32 ATD Ground VSS12_AFE R5 38 Video ADC Ground VSSA33_AFE V4 39 Video ADC Ground VSS_KEL0 U11 66 Ground (VSS and VSS_KEL0 are NOT connected internally) 14 Functional Assignment Pins 14.1 Functional Assignment Pins Table 81. Functional Assignment Pins Signal Name 364 MAP BGA 176 LQFP (R-series ONLY) Power Group ADC0SE8 Y2 — VDDA33_A Analog DC — ADC0SE8 — — ADC0SE9 W2 — VDDA33_A Analog DC — ADC0SE9 — — ADC1SE8 W3 — VDDA33_A Analog DC — ADC1SE8 — — ADC1SE9 Y3 — VDDA33_A Analog DC — ADC1SE9 — — BCTRL T2 26 Analog — BCTRL — — DACO0 U1 29 VDDA33_A Analog DC — DACO0 — — DACO1 U2 30 VDDA33_A Analog DC — DACO1 — — DDR_A[0] C7 — SDRAMC_ DDR VDD2P5 — DDR_A[0] — — VDDREG Pad Type Default Mode (Reset) Default Function Input/ Output Value Table continues on the next page... VF3xxR, VF5xxR, Rev7, 11/2014. 112 Freescale Semiconductor, Inc. Functional Assignment Pins Table 81. Functional Assignment Pins (continued) Signal Name 364 MAP BGA 176 LQFP (R-series ONLY) Power Group Pad Type Default Mode (Reset) Default Function Input/ Output Value DDR_A[1] C11 — SDRAMC_ DDR VDD2P5 — DDR_A[1] — — DDR_A[2] A8 — SDRAMC_ DDR VDD2P5 — DDR_A[2] — — DDR_A[3] B7 — SDRAMC_ DDR VDD2P5 — DDR_A[3] — — DDR_A[4] A6 — SDRAMC_ DDR VDD2P5 — DDR_A[4] — — DDR_A[5] B6 — SDRAMC_ DDR VDD2P5 — DDR_A[5] — — DDR_A[6] A9 — SDRAMC_ DDR VDD2P5 — DDR_A[6] — — DDR_A[7] A7 — SDRAMC_ DDR VDD2P5 — DDR_A[7] — — DDR_A[8] A11 — SDRAMC_ DDR VDD2P5 — DDR_A[8] — — DDR_A[9] B9 — SDRAMC_ DDR VDD2P5 — DDR_A[9] — — DDR_A[10] D7 — SDRAMC_ DDR VDD2P5 — DDR_A[10] — — DDR_A[11] D10 — SDRAMC_ DDR VDD2P5 — DDR_A[11] — — DDR_A[12] C10 — SDRAMC_ DDR VDD2P5 — DDR_A[12] — — DDR_A[13] A10 — SDRAMC_ DDR VDD2P5 — DDR_A[13] — — DDR_A[14] D9 — SDRAMC_ DDR VDD2P5 — DDR_A[14] — — DDR_A[15] B10 — SDRAMC_ DDR VDD2P5 — DDR_A[15] — — DDR_BA[0] C8 — SDRAMC_ DDR VDD2P5 — DDR_BA[0] — — DDR_BA[1] C9 — SDRAMC_ DDR VDD2P5 — DDR_BA[1] — — DDR_BA[2] D8 — SDRAMC_ DDR VDD2P5 — DDR_BA[2] — — DDR_CAS_ b B4 — SDRAMC_ DDR VDD2P5 — DDR_CAS_ — b — DDR_CKE[0 ] A5 — SDRAMC_ DDR VDD2P5 — DDR_CKE[0 — ] — DDR_CLK[0 ] A2 — SDRAMC_ DDR VDD2P5 — DDR_CLK[0 — ] — Table continues on the next page... VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 113 Functional Assignment Pins Table 81. Functional Assignment Pins (continued) Signal Name 364 MAP BGA 176 LQFP (R-series ONLY) Power Group Pad Type Default Mode (Reset) Default Function Input/ Output DDR_CLK_ b[0] B2 — SDRAMC_ DDR VDD2P5 — DDR_CLK_ — b[0] — DDR_CS_b[ 0] C5 — SDRAMC_ DDR VDD2P5 — DDR_CS_b[ — 0] — DDR_D[0] F4 — SDRAMC_ DDR VDD2P5 — DDR_D[0] — — DDR_D[1] H3 — SDRAMC_ DDR VDD2P5 — DDR_D[1] — — DDR_D[2] D4 — SDRAMC_ DDR VDD2P5 — DDR_D[2] — — DDR_D[3] G4 — SDRAMC_ DDR VDD2P5 — DDR_D[3] — — DDR_D[4] F3 — SDRAMC_ DDR VDD2P5 — DDR_D[4] — — DDR_D[5] J3 — SDRAMC_ DDR VDD2P5 — DDR_D[5] — — DDR_D[6] C3 — SDRAMC_ DDR VDD2P5 — DDR_D[6] — — DDR_D[7] G3 — SDRAMC_ DDR VDD2P5 — DDR_D[7] — — DDR_D[8] J1 — SDRAMC_ DDR VDD2P5 — DDR_D[8] — — DDR_D[9] D1 — SDRAMC_ DDR VDD2P5 — DDR_D[9] — — DDR_D[10] H1 — SDRAMC_ DDR VDD2P5 — DDR_D[10] — — DDR_D[11] E2 — SDRAMC_ DDR VDD2P5 — DDR_D[11] — — DDR_D[12] G1 — SDRAMC_ DDR VDD2P5 — DDR_D[12] — — DDR_D[13] C1 — SDRAMC_ DDR VDD2P5 — DDR_D[13] — — DDR_D[14] H2 — SDRAMC_ DDR VDD2P5 — DDR_D[14] — — DDR_D[15] D2 — SDRAMC_ DDR VDD2P5 — DDR_D[15] — — DDR_DQM[ 0] J4 — SDRAMC_ DDR VDD2P5 — DDR_DQM[ — 0] — DDR_DQM[ 1] G2 — SDRAMC_ DDR VDD2P5 — DDR_DQM[ — 1] — DDR_DQS[ 0] D3 — SDRAMC_ DDR VDD2P5 — DDR_DQS[ 0] — — Value Table continues on the next page... VF3xxR, VF5xxR, Rev7, 11/2014. 114 Freescale Semiconductor, Inc. Functional Assignment Pins Table 81. Functional Assignment Pins (continued) Signal Name 364 MAP BGA 176 LQFP (R-series ONLY) Power Group Pad Type Default Mode (Reset) Default Function Input/ Output Value DDR_DQS_ b[0] E3 — SDRAMC_ DDR VDD2P5 — DDR_DQS_ — b[0] — DDR_DQS[ 1] E1 — SDRAMC_ DDR VDD2P5 — DDR_DQS[ 1] — — DDR_DQS_ b[1] F1 — SDRAMC_ DDR VDD2P5 — DDR_DQS_ — b[1] — DDR_ODT[0 ] C4 — SDRAMC_ DDR VDD2P5 — DDR_ODT[0 — ] — DDR_ODT[1 ] B1 — SDRAMC_ DDR VDD2P5 — DDR_ODT[1 — ] — DDR_RAS_ b A4 — SDRAMC_ DDR VDD2P5 — DDR_RAS_ — b — DDR_RESE T D6 — SDRAMC_ DDR VDD2P5 — DDR_RESE — T — DDR_VREF G5 — SDRAMC_ DDR VDD2P5 — DDR_VREF — — DDR_WE_b C6 — SDRAMC_ DDR VDD2P5 — DDR_WE_b — — DDR_ZQ A3 — SDRAMC_ DDR VDD2P5 — DDR_ZQ — — EXT_POR T1 23 VDD33 GPIO — EXT_POR — — EXT_TAMP ER0 T14 — VBAT Analog — EXT_TAMP — ER0 — EXT_TAMP ER1 U14 — VBAT Analog — EXT_TAMP — ER1 — EXT_TAMP ER2/ EXT_WM0_ TAMPER_I N T13 — VBAT Analog — EXT_TAMP — ER2/ EXT_WM0_ TAMPER_I N — EXT_TAMP ER3/ EXT_WM0_ TAMPER_ OUT U13 — VBAT Analog — EXT_TAMP — ER3/ EXT_WM0_ TAMPER_ OUT — EXT_TAMP ER4/ EXT_WM1_ TAMPER_I N U12 — VBAT Analog — EXT_TAMP — ER4/ EXT_WM1_ TAMPER_I N — EXT_TAMP ER5/ EXT_WM1_ TAMPER_ OUT U10 — VBAT Analog — EXT_TAMP — ER5/ EXT_WM1_ TAMPER_ OUT — Table continues on the next page... VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 115 Functional Assignment Pins Table 81. Functional Assignment Pins (continued) Signal Name 364 MAP BGA 176 LQFP (R-series ONLY) Power Group Pad Type Default Mode (Reset) Default Function Input/ Output Value EXTAL Y13 73 DECAP_V1 Analog 1_ LDO_OUT — EXTAL — — EXTAL32 Y12 70 DECAP_V1 Analog 1_ LDO_OUT — EXTAL32 — — JTCLK/ SWCLK K4 3 VDD33 GPIO ALT1 JTAG Input 100K PU JTDI K2 4 VDD33 GPIO ALT1 JTAG Input 100K PU JTDO K1 5 VDD33 GPIO ALT1 JTAG Disabled — JTMS/ SWDIO L1 6 VDD33 GPIO ALT1 JTAG Input 100K PU LVDS0P W14 — DECAP_V2 Analog 5_ LDO_OUT — LVDS0P — — LVDS0N Y14 — DECAP_V2 Analog 5_ LDO_OUT — LVDS0N — — PTA6 N5 19 VDD33 GPIO ALT0 GPIO Disabled PTA7 V15 75 VDD33 GPIO ALT0 GPIO Disabled PTA12 L3 7 VDD33 GPIO ALT0 GPIO Disabled PTA16 Y5 43 VDD33 GPIO ALT0 GPIO Disabled PTA17 Y6 44 VDD33 GPIO ALT0 GPIO Disabled PTA18 V6 46 VDD33 GPIO ALT0 GPIO Disabled PTA19 U6 47 VDD33 GPIO ALT0 GPIO Disabled PTA20 B18 143 VDD33 GPIO ALT0 GPIO Disabled PTA21 D18 145 VDD33 GPIO ALT0 GPIO Disabled PTA22 E17 147 VDD33 GPIO ALT0 GPIO Disabled PTA23 C17 148 VDD33 GPIO ALT0 GPIO Disabled PTA24 R16 — VDD33 GPIO ALT0 GPIO Disabled PTA25 R17 — VDD33 GPIO ALT0 GPIO Disabled PTA26 R19 — VDD33 GPIO ALT0 GPIO Disabled PTA27 R20 — VDD33 GPIO ALT0 GPIO Disabled PTA28 P20 — VDD33 GPIO ALT0 GPIO Disabled PTA29 P18 — VDD33 GPIO ALT0 GPIO Disabled PTA30 P17 — VDD33 GPIO ALT0 GPIO Disabled PTA31 P16 — VDD33 GPIO ALT0 GPIO Disabled PTB0 T6 49 VDD33 GPIO ALT0 GPIO Disabled PTB1 T7 50 VDD33 GPIO ALT3 RCON30 Input Disabled PTB2 V7 51 VDD33 GPIO ALT3 RCON31 Input Disabled Table continues on the next page... VF3xxR, VF5xxR, Rev7, 11/2014. 116 Freescale Semiconductor, Inc. Functional Assignment Pins Table 81. Functional Assignment Pins (continued) Signal Name 364 MAP BGA 176 LQFP (R-series ONLY) Power Group Pad Type Default Mode (Reset) Default Function Input/ Output PTB3 W7 53 VDD33 GPIO ALT0 GPIO Disabled PTB4 Y7 54 VDD33 GPIO ALT0 GPIO Disabled PTB5 Y8 55 VDD33 GPIO ALT0 GPIO Disabled PTB6 W8 56 VDD33 GPIO ALT0 GPIO Disabled PTB7 D13 166 VDD33 GPIO ALT0 GPIO Disabled PTB8 J16 121 VDD33 GPIO ALT0 GPIO Disabled Value PTB9 J19 123 VDD33 GPIO ALT0 GPIO Disabled PTB10 B15 159 VDD33 GPIO ALT0 GPIO Disabled PTB11 D14 164 VDD33 GPIO ALT0 GPIO Disabled PTB12 E13 165 VDD33 GPIO ALT0 GPIO Disabled PTB13 D15 156 VDD33 GPIO ALT0 GPIO Disabled PTB14 B14 162 VDD33 GPIO ALT0 GPIO Disabled PTB15 A14 161 VDD33 GPIO ALT0 GPIO Disabled PTB16 C14 163 VDD33 GPIO ALT0 GPIO Disabled PTB17 A15 160 VDD33 GPIO ALT0 GPIO Disabled PTB18 B12 171 VDD33 GPIO ALT0 GPIO Input Disabled PTB19 C13 167 VDD33 GPIO ALT0 GPIO Input Disabled PTB20 A13 169 VDD33 GPIO ALT0 GPIO Disabled PTB21 E12 173 VDD33 GPIO ALT0 GPIO Disabled PTB22 D12 172 VDD33 GPIO ALT0 GPIO Disabled PTB23 A19 141 VDD33 GPIO ALT3 GPIO Disabled PTB24 A18 142 VDD33 GPIO ALT3 GPIO Disabled PTB25 B17 149 VDD33 GPIO ALT3 GPIO Disabled PTB26 A17 150 VDD33 GPIO ALT3 RCON21 Input Disabled PTB27 U8 57 VDD33 GPIO ALT3 RCON22 Input Disabled PTB28 A16 151 VDD33 GPIO ALT3 RCON23 Input Disabled PTC0 L4 8 VDD33 GPIO ALT7 RCON18 Input Disabled PTC1 L5 9 VDD33 GPIO ALT7 RCON19 Input Disabled PTC2 M5 11 VDD33 GPIO ALT7 RCON20 Input Disabled PTC3 M3 12 VDD33 GPIO ALT0 GPIO Disabled PTC4 L2 14 VDD33 GPIO ALT0 GPIO Disabled PTC5 M1 15 VDD33 GPIO ALT0 GPIO Disabled PTC6 N1 16 VDD33 GPIO ALT0 GPIO Disabled PTC7 N2 17 VDD33 GPIO ALT0 GPIO Disabled PTC8 N4 18 VDD33 GPIO ALT0 GPIO Disabled PTC9 T15 — VDD33 GPIO ALT0 GPIO Disabled PTC10 U15 — VDD33 GPIO ALT0 GPIO Disabled Table continues on the next page... VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 117 Functional Assignment Pins Table 81. Functional Assignment Pins (continued) Signal Name 364 MAP BGA 176 LQFP (R-series ONLY) Power Group Pad Type Default Mode (Reset) Default Function Input/ Output PTC11 P4 — VDD33 GPIO ALT0 GPIO Disabled PTC12 P3 — VDD33 GPIO ALT0 GPIO Disabled PTC13 P1 — VDD33 GPIO ALT0 GPIO Disabled PTC14 R1 — VDD33 GPIO ALT0 GPIO Disabled PTC15 P2 — VDD33 GPIO ALT0 GPIO Disabled PTC16 R3 — VDD33 GPIO ALT0 GPIO Disabled Value PTC17 R4 — VDD33 GPIO ALT0 GPIO Disabled PTC26 D16 153 VDD33 GPIO ALT3 RCON24 Input Disabled PTC27 E16 154 VDD33 GPIO ALT3 RCON25 Input Disabled PTC28 E15 155 VDD33 GPIO ALT3 RCON26 Input Disabled PTC29 C16 152 VDD33 GPIO ALT3 RCON27 Input Disabled PTC30 T8 58 VDD33 GPIO ALT3 RCON28 Input Disabled PTC31 W5 42 VDD33 GPIO ALT3 RCON29 Input Disabled PTD0 Y17 86 VDD33 GPIO ALT0 GPIO Disabled PTD1 Y18 87 VDD33 GPIO ALT0 GPIO Disabled PTD2 V18 88 VDD33 GPIO ALT0 GPIO Disabled PTD3 Y19 89 VDD33 GPIO ALT0 GPIO Disabled PTD4 W19 90 VDD33 GPIO ALT0 GPIO Disabled PTD5 W20 91 VDD33 GPIO ALT0 GPIO Disabled PTD6 V20 92 VDD33 GPIO ALT0 GPIO Disabled PTD7 V19 93 VDD33 GPIO ALT0 GPIO Disabled PTD8 U17 94 VDD33 GPIO ALT0 GPIO Disabled PTD9 U18 97 VDD33 GPIO ALT0 GPIO Disabled PTD10 U20 98 VDD33 GPIO ALT0 GPIO Disabled PTD11 T20 99 VDD33 GPIO ALT0 GPIO Disabled PTD12 T19 100 VDD33 GPIO ALT0 GPIO Disabled PTD13 T18 101 VDD33 GPIO ALT0 GPIO Disabled PTD16 D20 133 VDD33 GPIO ALT0 GPIO Disabled PTD17 E20 132 VDD33 GPIO ALT0 GPIO Disabled PTD18 E18 131 VDD33 GPIO ALT0 GPIO Disabled PTD19 F16 130 VDD33 GPIO ALT0 GPIO Disabled PTD20 F17 129 VDD33 GPIO ALT0 GPIO Disabled PTD21 F19 128 VDD33 GPIO ALT0 GPIO Disabled PTD22 F20 126 VDD33 GPIO ALT0 GPIO Disabled PTD23 G20 124 VDD33 GPIO ALT0 GPIO Disabled PTD24 G19 — VDD33 GPIO ALT0 GPIO Disabled PTD25 G18 — VDD33 GPIO ALT0 GPIO Disabled Table continues on the next page... VF3xxR, VF5xxR, Rev7, 11/2014. 118 Freescale Semiconductor, Inc. Functional Assignment Pins Table 81. Functional Assignment Pins (continued) Signal Name 364 MAP BGA 176 LQFP (R-series ONLY) Power Group Pad Type Default Mode (Reset) Default Function Input/ Output Value PTD26 G16 — VDD33 GPIO ALT0 GPIO Disabled PTD27 H16 — VDD33 GPIO ALT0 GPIO Disabled PTD28 H17 — VDD33 GPIO ALT0 GPIO Disabled PTD29 H18 — VDD33 GPIO ALT0 GPIO Disabled PTD30 H20 — VDD33 GPIO ALT0 GPIO Disabled PTD31 J20 — VDD33 GPIO ALT0 GPIO Disabled PTE0 N16 103 VDD33 GPIO ALT2 BMODE1 Input Disabled PTE1 N18 104 VDD33 GPIO ALT2 BMODE0 Input Disabled PTE2 N19 105 VDD33 GPIO ALT0 GPIO Disabled PTE3 Y15 77 VDD33 GPIO ALT0 GPIO Disabled PTE4 N20 106 VDD33 GPIO ALT0 GPIO Disabled PTE5 T16 80 VDD33 GPIO ALT0 GPIO Disabled PTE6 W16 81 VDD33 GPIO ALT0 GPIO Disabled PTE7 M20 109 VDD33 GPIO ALT3 RCON0 Input Disabled PTE8 M19 110 VDD33 GPIO ALT3 RCON1 Input Disabled PTE9 M17 111 VDD33 GPIO ALT3 RCON2 Input Disabled PTE10 M16 112 VDD33 GPIO ALT3 RCON3 Input Disabled PTE11 L16 113 VDD33 GPIO ALT3 RCON4 Input Disabled PTE12 L17 114 VDD33 GPIO ALT3 RCON5 Input Disabled PTE13 Y16 78 VDD33 GPIO ALT0 GPIO Disabled PTE14 W15 76 VDD33 GPIO ALT0 GPIO Disabled PTE15 L18 115 VDD33 GPIO ALT3 RCON6 Input Disabled PTE16 L20 116 VDD33 GPIO ALT3 RCON7 Input Disabled PTE17 K20 117 VDD33 GPIO ALT3 RCON8 Input Disabled PTE18 K19 118 VDD33 GPIO ALT3 RCON9 Input Disabled PTE19 K18 119 VDD33 GPIO ALT3 RCON10 Input Disabled PTE20 A12 170 VDD33 GPIO ALT3 RCON11 Input Disabled PTE21 V16 79 VDD33 GPIO ALT0 GPIO Disabled PTE22 W17 84 VDD33 GPIO ALT0 GPIO Disabled PTE23 J17 122 VDD33 GPIO ALT3 RCON12 Input Disabled PTE24 D19 134 VDD33 GPIO ALT3 RCON13 Input Disabled PTE25 C19 135 VDD33 GPIO ALT3 RCON14 Input Disabled PTE26 C20 137 VDD33 GPIO ALT3 RCON15 Input Disabled PTE27 B20 138 VDD33 GPIO ALT3 RCON16 Input Disabled PTE28 K16 120 VDD33 GPIO ALT3 RCON17 Input Disabled RESETB/ RESET_OU T T4 28 VDD33 GPIO — RESETB/ — RESET_OU T — Table continues on the next page... VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 119 Functional Assignment Pins Table 81. Functional Assignment Pins (continued) Signal Name 364 MAP BGA 176 LQFP (R-series ONLY) Power Group TEST T3 27 VDD33 USB0_DM T9 62 USB0_DP T10 USB0_VBU S Pad Type GPIO Default Mode (Reset) Default Function Input/ Output Value — TEST — — USB_DCAP Analog — USB0_DM — — 63 USB_DCAP Analog — USB0_DP — — W11 60 USB_DCAP Analog — USB0_VBU — S — USB0_VBU S_ DETECT Y11 64 USB_DCAP Analog — USB0_VBU — S_ DETECT — USB1_DM V9 — USB_DCAP Analog — USB1_DM — — USB1_DP W9 — USB_DCAP Analog — USB1_DP — — USB1_VBU S W10 — USB_DCAP Analog — USB1_VBU — S — USB1_VBU S_ DETECT U9 — USB_DCAP Analog — USB1_VBU — S_ DETECT — VADCSE0 Y4 35 VDDA33_A Analog DC / VDD12_AF E/ VADC_AFE _BANDGAP ? — VADCSE0 — — VADCSE1 U4 37 VDDA33_A Analog DC / VDD12_AF E/ VADC_AFE _BANDGAP ? — VADCSE1 — — VADCSE2 W4 — VDDA33_A Analog DC / VDD12_AF E/ VADC_AFE _BANDGAP ? — VADCSE2 — — VADCSE3 V5 — VDDA33_A Analog DC / VDD12_AF E/ VADC_AFE _BANDGAP ? — VADCSE3 — — XTAL W13 72 DECAP_V1 Analog 1_ LDO_OUT — XTAL — — XTAL32 W12 71 DECAP_V1 Analog 1_ LDO_OUT — XTAL32 — — VF3xxR, VF5xxR, Rev7, 11/2014. 120 Freescale Semiconductor, Inc. Revision History 15 Revision History The following table provides a revision history for this document. Table 82. Revision History Rev. No. Date Substantial Changes Rev1 12/2011 Initial release Rev2 02/2012 Updated feature list Updated VREG electrical specifications Updated LDO_1P1, LDO2P5 tables Updated DDR IO parameters Added DDR memory controller parameters Updated Power sequencing table Added Power supply diagram Updated Recommended operating conditions Replaced DryIce Tamper Electrical Specifications with Voltage and temperature monitor electrical specifications Updated VideoADC electricals. Updated VideoADC supply scheme diagram. Added VideoADC supply_decoupling diagram Added QuadSPI DDR mode electrical specifications Updated Fast internal RC oscillator table Updated Slow internal RC oscillator table Updated Pinouts section Rev3 04/2012 Updated device name throughout the document Minor editorial updates in the feature list Updated VREG electrical specifications Updated LDO electrical specifications Updated Power consumption operating behaviors table Added USB PHY Current Consumption table Updated GPIO parameters Updated DDR parameters Table continues on the next page... VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 121 Revision History Table 82. Revision History (continued) Rev. No. Date Substantial Changes Updated Power sequencing Updated Power supply figure Updated Recommended operating conditions table Removed Reset specifications Updated 12-bit DAC operating requirements Added a note in 12-bit ADC operating conditions section Updated VideoADC Specifications table Updated LCD driver specifications table QuadSPI timing- Replaced VDDE with VDD33 Added notes in DDR3 Timing Parameters and LPDD2 Timing Parameters sections. Updated 24MHz external oscillator electrical characteristics table Updated OSC32K Main Characteristics table Updated Freescale Document Number for 144-pin LQFP Changed pin-name from EXT_POR to TEST2, VBAT to VBB Updated Pinouts section Updated GPIO Mapping Rev4 08/2012 Updated Part identification Editorial changes in USB PHY Current Consumption in Normal Mode, GPIO AC Electrical Characteristics (3.3V power mode) Updated Power sequencing table Updated Power supply diagram Updated AC electrical specification of following modules: DCU, 12-bit DAC, Ethernet, Enhanced Serial Audio Interface (ESAI), SAI/I2S, Flexbus, MLB, DSPI, 24MHz External Oscillator, JTAG, Debug, ESAI, QSPI Updated Thermal Attributes for 364 MAPBGA Updated Freescale document number for 176-pin LQFP and 364 MAPBGA Updated VREG specifications Table continues on the next page... VF3xxR, VF5xxR, Rev7, 11/2014. 122 Freescale Semiconductor, Inc. Revision History Table 82. Revision History (continued) Rev. No. Date Substantial Changes Added WBREG specifications Updated Recommended operating conditions table Updated DAC INL and DNL charts Updated Pinouts Rev 5 April 2013 • Removed references to VF1xxR and refernces to F100 and 144 LQFP and 256 MAPBGA • Replaced references to Auto and IMM by R-series and F-series respectively • In the feature list, the ARM Core frequency changed to 500 MHz for F-series • In the feature list, changed the DRAM controller frequency • Updated Part Nummbering format • Clarified the Fields table as per Marketing • Sample numbers updated • From the VREG electrical specifications tables, deleted pretrimming rows and comments • .In the HPREG electrical characteristics table, add footnote on maximum Output Current Capacity • In the ULPREG electrical characteristics table, clarified max value of Output voltage @ no load and min value of Output voltage @ full load • In the WBREG electrical characteristics table, clarified max value of Output voltage @ no load and min value of Output voltage @ full load • In the LVD electrical specifications table, added typ. values of Upper voltage threshold (value @27oC) and Lower voltage threshold (value @27oC) • In the LVD DIG electrical specifications table, removed pretrimming values and clarified other values • Updated LVD DIG electrical specifications values • Updated LDO_1P1 tables • Updated LDO_2P5 table • Updated Power consumption operating behaviors tables • Updated Absolute maximum ratings table Table continues on the next page... VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 123 Revision History Table 82. Revision History (continued) Rev. No. Date Substantial Changes • Removed Temperature Voltage Monitor section to security RM • Updated VideoADC Specifications table Rev 5 April 2013 Updated pin muxing table with the following changes: • Added MII0 including M AC0.TXDATA[2], MAC0.TXDATA[3], MAC0.RXDATA[2], MAC0.RXDATA[3] , MAC0.TXERR, MAC0.TXCLK, MAC0.RXCLK, MAC0.COL, MAC0.CRS • Following signals muxed on same RMII0 Pins : MII0_MDC, MII0_MDC, MII0_RXD[1], MII0_RXD[0], MII0_RXER, MII0_TXD[1], MII0_TXD[0], MII0_TXEN • Replaced FB_ALE with FB_MUXED_ALE, FB_CS4_b with FB_MUXED_TSIZ0, FB_TSIZ1 with FB_MUXED_TSIZ1, FB_TBST_b with FB_MUXED_TBST_b, FB_BE0_b with FB_MUXED_BE0_b • Removed RCON18,19,20 • Replaced ESAI_SDO2 with ESAI_SDO2/ESAI_SDI3 Replaced ESAI_SDO3 with ESAI_SDO3/ ESAI_SDI2 Replaced ESAI_SDI0 with ESAI_SDO5/ESAI_SDI0 Replaced ESAI_SDI1 with ESAU_SDO4/ESAI_SDI1 • CKO1 additionally muxed at PAD40 Rev 5 May 2013 In the Features, minor editorial updates Added Part Number Format figure Updated the Fields table as per the device part numbers Added Part Numbers table Added External NPN Ballast section In the LVD Dig Electrical Specs, minimum value of Upper Voltage Threshold and Lower Voltage threshold In the FlexBus timing specifications table, clarified the Frequency of operation In the Power consumption, filled TBDs. Updated footnotes Table continues on the next page... VF3xxR, VF5xxR, Rev7, 11/2014. 124 Freescale Semiconductor, Inc. Revision History Table 82. Revision History (continued) Rev. No. Date Substantial Changes Rewritten the EMC radiated emissions operating behaviors table In the GPIO DC Electrical characteristics table: • Vhys test condition changed • Added R_Keeper row In the DDR operating conditions, changed the Vddi Min and Max values In the Power sequencing table, rremoved some rows In the Power Supply section, removed LVDS and removed the note In the Recommended operating conditions table, updated min and max of VDD12_AFE and FA_VDD. Updated Min, Max, and Typ for VDD Added the Recommended Connections for Unused Analog Interfaces table In the 12-bit ADC Characteristics table, updated the typ and max values of TUE, DNL. INL, ZSE, FSE Added Receive and Transmit signal timing specifications for MII interfaces In the DSPI table, clarified the TBDs In PLL 4, PLL 5, PLL 6 electrical characteristics tables, added footnotes In the JTAG electrical table, clarified the TBDs In the pinouts section, added Special Signal table Added Power Supply pins section Added Functional Assignment section Rev 6 Jan 2014 • Added QuadSPI electricals • Changed VBB references to VBAT • In the feature list, clarified that ECC supported for 8-bit mode only, not 16-bit. • Revised the part number format • Revised the field table • Added Absolute Maximum Rating table, which was madde non_cust in the previous version • In the Power Consumption Operating Behavior table, Revised min and max value of IDD_LPS3 and IDD_LPS2. Removed IDD_LPS1 row Table continues on the next page... VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 125 Revision History Table 82. Revision History (continued) Rev. No. Date Substantial Changes • In the USB PHY Current Consumption table, removed the Normal Mode • In the Power Sequence table, revised the Power UP/ Down Order column for USB0_VBUs and USB1_VBUS • In the Recommended operating conditions table, revised the min value of VBAT. Revised the min value of VREFH_ADC Revised the min and max values of SDRAMC_VDD1P5 • In the Recommended Connections for Unused Analog Interfaces section, added the notes. Revised the Recommendation if Unused column • In the 12-bit ADC operating conditions, revised Conditions for Ground voltage. Revised min Ref High Voltage • In the 12-bit DAC operating requirements, revised the min and max value of VREFH_ADC • In the SDHC switching specifications, revised the max value of SD6 • In the 24MHz external oscillator electrical characteristics table, revised the min value of VIH and max value of VIL Rev 7 November 2014 • Updated list of security features on page 1. • In "Part number format" figure, updated explanation for '1'. • In "Fields" table, updated definition of 'R'. • In "Part Numbers" table, added parts SVF331R3K1CKU2, SVF531R3K1CMK4, and SVF532R2K1CMK4. • In "External NPN ballast" section, updated recommendations for transistor selection. • In "DDR parameters" section, updated table footnotes regarding typical condition. • In "Power sequencing" table, added comment regarding SDRAMC_VDD1P5: "In case the Ballast transistor’s collector is connected to the 1.5 V DRAM supply (instead of the 3.3 V VF3xxR, VF5xxR, Rev7, 11/2014. 126 Freescale Semiconductor, Inc. Revision History Table 82. Revision History Rev. No. Date Substantial Changes • • • • • • • supply), turn this 1.5 V supply on before turning on the 3.3V." In "VideoADC specifications" table, added supply current values. In "Receive and Transmit signal timing specifications," added the following note: "See the most current errata document when using the internally generated RXCLK and TXCLK clocks." Updated "QuadSPI timing" section, presenting data based on a negative edge data launch from the device and a negative edge data capture; updated the figure, "QuadSPI Input/Read timing (SDR mode)"; updated the table, "QuadSPI Input/Read timing (SDR mode)." For the "SDHC switching specifcations" table, added the statement, "A load of 50 pF is assumed"; updated max value for SD6, SDHC output delay (output valid). In the "24 MHz oscillator specifications" section, added the statement, "The crystal must be rated for a drive level of 250 μW or higher. An ESR (equivalent series resistance) of 80 Ω or less is recommended to achieve a gain margin of 5." In "Pinouts" section, for the 176LQFP package, added information about exposed pad on the bottom side. In "Special Signal Considerations" table, added that a "fundamentalmode" crystal should be connected between XTAL and EXTAL; updated maximum drive level of crystal rating to 250 μW. VF3xxR, VF5xxR, Rev7, 11/2014. Freescale Semiconductor, Inc. 127 How to Reach Us: Home Page: freescale.com Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions. Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Vybrid is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. ARM and Cortex are registered trademarks of ARM Limited. NEON is the trademark of ARM Limited. © 2012–2013 Freescale Semiconductor, Inc. Document Number VYBRIDRSERIESEC Revision 7, 11/2014