IRF1405Z Data Sheet (396 KB, EN)

PD - 97018A
IRF1405ZPbF
IRF1405ZSPbF
IRF1405ZLPbF
Features
l
l
l
l
l
l
HEXFET® Power MOSFET
Advanced Process Technology
Ultra Low On-Resistance
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
Lead-Free
D
VDSS = 55V
RDS(on) = 4.9mΩ
G
Description
ID = 75A
S
This HEXFET® Power MOSFET utilizes the latest
processing techniques to achieve extremely low
on-resistance per silicon area. Additional features
of this design are a 175°C junction operating
temperature, fast switching speed and improved
repetitive avalanche rating. These features combine
to make this design an extremely efficient and
reliable device for use in a wide variety of
applications.
TO-220AB
IRF1405ZPbF
D2Pak
TO-262
IRF1405ZSPbF IRF1405ZLPbF
Absolute Maximum Ratings
Parameter
Max.
Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited)
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V
150
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package Limited)
IDM
Pulsed Drain Current
75
600
PD @TC = 25°C Power Dissipation
230
W
1.5
± 20
W/°C
V
270
mJ
c
Linear Derating Factor
VGS
Gate-to-Source Voltage
EAS (Thermally limited) Single Pulse Avalanche Energy
EAS (Tested )
Single Pulse Avalanche Energy Tested Value
d
c
IAR
Avalanche Current
EAR
Repetitive Avalanche Energy
TJ
Operating Junction and
TSTG
Storage Temperature Range
h
g
A
110
420
See Fig.12a, 12b, 15, 16
A
mJ
-55 to + 175
°C
Soldering Temperature, for 10 seconds
300 (1.6mm from case )
y
Mounting Torque, 6-32 or M3 screw
y
10 lbf in (1.1N m)
Thermal Resistance
Typ.
Max.
RθJC
Junction-to-Case
Parameter
–––
0.65
RθCS
Case-to-Sink, Flat, Greased Surface
0.50
–––
RθJA
Junction-to-Ambient
–––
62
RθJA
Junction-to-Ambient (PCB Mount, steady state)
–––
40
i
Units
°C/W
HEXFET® is a registered trademark of International Rectifier.
www.irf.com
1
07/14/10
IRF1405Z/S/LPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)DSS
Drain-to-Source Breakdown Voltage
∆V(BR)DSS/∆TJ
RDS(on)
Min. Typ. Max. Units
55
–––
–––
Breakdown Voltage Temp. Coefficient
–––
0.049
–––
Static Drain-to-Source On-Resistance
–––
3.7
4.9
VGS(th)
Gate Threshold Voltage
2.0
–––
4.0
gfs
IDSS
Forward Transconductance
IGSS
V
V/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 75A
e
V
VDS = VGS, ID = 250µA
VDS = 25V, ID = 75A
88
–––
–––
S
–––
–––
20
µA
–––
–––
250
Gate-to-Source Forward Leakage
–––
–––
200
Drain-to-Source Leakage Current
Conditions
VGS = 0V, ID = 250µA
VDS = 55V, VGS = 0V
VDS = 55V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
VGS = -20V
Gate-to-Source Reverse Leakage
–––
–––
-200
Qg
Total Gate Charge
–––
120
180
Qgs
Gate-to-Source Charge
–––
31
–––
Qgd
Gate-to-Drain ("Miller") Charge
–––
46
–––
VGS = 10V
td(on)
Turn-On Delay Time
–––
18
–––
VDD = 25V
tr
Rise Time
–––
110
–––
td(off)
Turn-Off Delay Time
–––
48
–––
tf
Fall Time
–––
82
–––
VGS = 10V
LD
Internal Drain Inductance
–––
4.5
–––
Between lead,
LS
Internal Source Inductance
–––
7.5
–––
6mm (0.25in.)
from package
Ciss
Input Capacitance
–––
4780
–––
and center of die contact
VGS = 0V
Coss
Output Capacitance
–––
770
–––
Crss
Reverse Transfer Capacitance
–––
410
–––
Coss
ID = 75A
nC
VDS = 44V
e
ID = 75A
ns
nH
RG = 4.4Ω
e
D
G
S
VDS = 25V
pF
ƒ = 1.0MHz
Output Capacitance
–––
2730
–––
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Coss
Output Capacitance
–––
600
–––
VGS = 0V, VDS = 44V, ƒ = 1.0MHz
Coss eff.
Effective Output Capacitance
–––
910
–––
VGS = 0V, VDS = 0V to 44V
f
Source-Drain Ratings and Characteristics
Parameter
Min. Typ. Max. Units
IS
Continuous Source Current
ISM
(Body Diode)
Pulsed Source Current
–––
–––
600
VSD
(Body Diode)
Diode Forward Voltage
–––
–––
1.3
V
trr
Reverse Recovery Time
–––
30
46
ns
Qrr
Reverse Recovery Charge
–––
30
45
nC
ton
Forward Turn-On Time
c
–––
–––
Conditions
MOSFET symbol
75
A
D
showing the
integral reverse
G
p-n junction diode.
TJ = 25°C, IS = 75A, VGS = 0V
TJ = 25°C, IF = 75A, VDD = 25V
di/dt = 100A/µs
S
e
e
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes:
 Repetitive rating; pulse width limited by
… Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical
max. junction temperature. (See fig. 11).
repetitive avalanche performance.
‚ Limited by TJmax, starting TJ = 25°C, L = 0.10mH
† This value determined from sample failure population.
RG = 25Ω, IAS = 75A, VGS =10V. Part not
100% tested to this value in production.
recommended for use above this value.
‡ This is applied to D2Pak, when mounted on 1" square PCB
ƒ Pulse width ≤ 1.0ms; duty cycle ≤ 2%.
( FR-4 or G-10 Material ). For recommended footprint and
„ Coss eff. is a fixed capacitance that gives the same
soldering techniques refer to application note #AN-994.
charging time as Coss while VDS is rising from 0 to 80%
VDSS .
2
www.irf.com
IRF1405Z/S/LPbF
1000
1000
100
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
TOP
10
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
4.5V
100
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
4.5V
10
20µs PULSE WIDTH
Tj = 175°C
20µs PULSE WIDTH
Tj = 25°C
1
1
0.1
1
10
100
0.1
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
10
100
Fig 2. Typical Output Characteristics
1000
200
T J = 150°C
Gfs, Forward Transconductance (S)
ID, Drain-to-Source Current (Α)
1
VDS, Drain-to-Source Voltage (V)
100
T J = 25°C
10
VDS = 25V
20µs PULSE WIDTH
1
4
6
8
10
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
12
175
150
T J = 25°C
125
100
T J = 175°C
75
50
25
0
0
25
50
75
100 125 150 175 200
ID,Drain-to-Source Current (A)
Fig 4. Typical Forward Transconductance
vs. Drain Current
3
IRF1405Z/S/LPbF
100000
12.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
ID= 75A
VGS, Gate-to-Source Voltage (V)
C rss = C gd
C, Capacitance(pF)
C oss = C ds + C gd
10000
C iss
Coss
1000
Crss
VDS= 44V
VDS= 28V
10.0
8.0
6.0
4.0
2.0
0.0
100
1
10
0
100
60
80
100
120
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
1000.00
10000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
40
QG Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
T J = 175°C
100.00
OPERATION IN THIS AREA
LIMITED BY R DS(on)
1000
10.00
100
T J = 25°C
1.00
100µsec
10
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
0.10
1msec
10msec
1
0.0
0.5
1.0
1.5
2.0
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
20
2.5
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRF1405Z/S/LPbF
150
Limited By Package
125
ID, Drain Current (A)
RDS(on) , Drain-to-Source On Resistance
(Normalized)
2.5
100
75
50
25
0
ID = 75A
VGS = 10V
2.0
1.5
1.0
0.5
25
50
75
100
125
150
175
-60 -40 -20 0
T C , Case Temperature (°C)
20 40 60 80 100 120 140 160 180
T J , Junction Temperature (°C)
Fig 10. Normalized On-Resistance
vs. Temperature
Fig 9. Maximum Drain Current vs.
Case Temperature
1
Thermal Response ( Z thJC )
D = 0.50
0.20
0.1
0.10
0.05
0.02
0.01
0.01
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRF1405Z/S/LPbF
500
DRIVER
L
VDS
D.U.T
RG
VGS
20V
+
V
- DD
IAS
A
0.01Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
EAS , Single Pulse Avalanche Energy (mJ)
15V
ID
TOP
31A
53A
BOTTOM 75A
400
300
200
100
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
I AS
Fig 12c. Maximum Avalanche Energy
vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
QG
10 V
QGS
QGD
VG
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
50KΩ
12V
.2µF
.3µF
D.U.T.
+
V
- DS
VGS(th) Gate threshold Voltage (V)
4.0
3.5
3.0
2.5
ID = 250µA
2.0
1.5
1.0
-75 -50 -25
VGS
0
25
50
75 100 125 150 175 200
T J , Temperature ( °C )
3mA
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
6
Fig 14. Threshold Voltage vs. Temperature
www.irf.com
IRF1405Z/S/LPbF
10000
Avalanche Current (A)
Duty Cycle = Single Pulse
1000
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆ Tj = 25°C due to
avalanche losses
0.01
100
0.05
0.10
10
1
1.0E-08
1.0E-07
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
300
TOP
Single Pulse
BOTTOM 10% Duty Cycle
ID = 75A
250
200
150
100
50
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy
vs. Temperature
www.irf.com
175
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T jmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asT jmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav ) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
7
IRF1405Z/S/LPbF
D.U.T
Driver Gate Drive
ƒ
+
‚
-
„
-
P.W.
Period
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
V DD
• dv/dt controlled by RG
• Driver same type as D.U.T.
• I SD controlled by Duty Factor "D"
• D.U.T. - Device Under Test
D=
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer

RG
Period
P.W.
+
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
ISD
Ripple ≤ 5%
*
VGS = 5V for Logic Level Devices
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V DS
V GS
RG
RD
D.U.T.
+
-V DD
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 18a. Switching Time Test Circuit
VDS
90%
10%
VGS
td(on)
tr
t d(off)
tf
Fig 18b. Switching Time Waveforms
8
www.irf.com
IRF1405Z/S/LPbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
EXAMPLE: THIS IS AN IRF 1010
LOT CODE 1789
ASSEMBLED ON WW 19, 2000
IN THE ASS EMBLY LINE "C"
Note: "P" in assembly line position
indicates "Lead - F ree"
INT ERNAT IONAL
RECTIFIER
LOGO
ASS EMBLY
LOT CODE
PART NUMBER
DATE CODE
YEAR 0 = 2000
WEEK 19
LINE C
Notes:
1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
9
IRF1405Z/S/LPbF
D2Pak (TO-263AB) Package Outline
Dimensions are shown in millimeters (inches)
D2Pak (TO-263AB) Part Marking Information
THIS IS AN IRF530S WITH
LOT CODE 8024
ASSEMBLED ON WW 02, 2000
IN THE ASSEMBLY LINE "L"
INTERNATIONAL
RECTIFIER
LOGO
ASSEMBLY
LOT CODE
PART NUMBER
F530S
DATE CODE
YEAR 0 = 2000
WEEK 02
LINE L
OR
INTERNATIONAL
RECTIFIER
LOGO
ASSEMBLY
LOT CODE
PART NUMBER
F530S
DATE CODE
P = DESIGNATES LEAD - FREE
PRODUCT (OPTIONAL)
YEAR 0 = 2000
WEEK 02
A = ASSEMBLY SITE CODE
Notes:
1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/datasheets/data/auirf1405zs.pdf
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
10
www.irf.com
IRF1405Z/S/LPbF
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
TO-262 Part Marking Information
EXAMPLE: T HIS IS AN IRL3103L
LOT CODE 1789
ASS EMBLED ON WW 19, 1997
IN THE AS SEMBLY LINE "C"
INTERNAT IONAL
RECT IFIER
LOGO
AS S EMBLY
LOT CODE
PART NUMBER
DATE CODE
YEAR 7 = 1997
WEEK 19
LINE C
OR
INT ERNATIONAL
RECTIFIER
LOGO
AS SEMBLY
LOT CODE
PART NUMBER
DATE CODE
P = DES IGNATES LEAD-FREE
PRODUCT (OPTIONAL)
YEAR 7 = 1997
WEEK 19
A = AS S EMBLY S ITE CODE
Notes:
1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/datasheets/data/auirf1405zs.pdf
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
11
IRF1405Z/S/LPbF
D2Pak Tape & Reel Information
Dimensions are shown in millimeters (inches)
TRR
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
11.60 (.457)
11.40 (.449)
0.368 (.0145)
0.342 (.0135)
15.42 (.609)
15.22 (.601)
24.30 (.957)
23.90 (.941)
TRL
10.90 (.429)
10.70 (.421)
1.75 (.069)
1.25 (.049)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
60.00 (2.362)
MIN.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
30.40 (1.197)
MAX.
26.40 (1.039)
24.40 (.961)
3
4
TO-220AB packages are not recommended for Surface Mount Application.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 07/2010
12
www.irf.com