IRF IRF7314QPBF

PD - 96107A
IRF7314QPbF
HEXFET® Power MOSFET
Benefits
• Advanced Process Technology
• ÿDual P-Channel MOSFET
• ÿUltra Low On-Resistance
• ÿ175°C Operating Temperature
• ÿRepetitive Avalanche Allowed up to Tjmax
• ÿLead-Free
Description
These HEXFET ® Power MOSFET’s in a Dual SO-8
package utilize the lastest processing techniques to
achieve extremely low on-resistance per silicon area.
Additional features of these HEXFET Power MOSFET’s
are a 175°C junction operating temperature, fast
switching speed and improved repetitive avalanche
rating. These benefits combine to make this design an
extremely efficient and reliable device for use in a
wide variety of applications.
VDSS
RDS(on) max
ID
-20V
0.058@VGS = -4.5V
0.098@VGS = -2.7V
-5.2A
-4.42A
S1
1
8
D1
G1
2
7
D1
S2
3
6
D2
G2
4
5
D2
SO-8
Top View
The 175°C rating for the SO-8 package provides
improved thermal performance with increased safe
operating area and dual MOSFET die capability make
it ideal in a variety of power applications. This dual,
surface mount SO-8 can dramatically reduce board
space and is also available in Tape & Reel.
Absolute Maximum Ratings
Parameter
VDS
ID @ TA = 25°C
ID @ TA = 70°C
IDM
PD @TA = 25°C
PD @TA = 70°C
VGS
EAS
IAR
EAR
TJ , TSTG
Max.
Drain-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current
Maximum Power Dissipationƒ
Maximum Power Dissipationƒ
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy‚
Avalanche Current
Repetitive Avalanche Energy
Junction and Storage Temperature Range
-20
-5.2
-4.3
-43
2.4
1.7
16
± 12
610
-5.2
See Fig.14, 15, 16
-55 to + 175
Units
V
A
W
W
mW/°C
V
mJ
A
mJ
°C
Thermal Resistance
Parameter
RθJA
www.irf.com
Max.
Maximum Junction-to-Ambient ƒ
Units
62.5
°C/W
1
08/02/10
IRF7314QPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
∆V(BR)DSS/∆TJ
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
VGS(th)
gfs
Gate Threshold Voltage
Forward Transconductance
IDSS
Drain-to-Source Leakage Current
V(BR)DSS
IGSS
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Min.
-20
–––
–––
–––
-0.7
6.8
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
0.009
0.049
0.082
–––
–––
–––
–––
–––
–––
19
2.1
9.3
18
26
41
38
913
512
260
Max. Units
Conditions
–––
V
VGS = 0V, ID = -250µA
––– V/°C Reference to 25°C, ID = -1mA
0.058
VGS = -4.5V, ID = -5.2A ‚
Ω
0.098
VGS = -2.7V, ID = -4.42A ‚
–––
V
VDS = VGS, ID = -250µA
–––
S
VDS = 10V, ID = -5.2A
-1.0
VDS = -16V, VGS = 0V
µA
-25
VDS = -16V, VGS = 0V, TJ = 150°C
-100
VGS = -12V
nA
100
VGS = 12V
29
ID = -5.2A
3.2
nC
VDS = -16V
14
VGS = -4.5V
–––
VDD = -10V
–––
ID = -1.0A
ns
–––
RG = 6.0Ω
–––
VGS = -4.5V ‚
–––
VGS = 0V
–––
pF
VDS = -15V
–––
ƒ = 1.0MHz
Source-Drain Ratings and Characteristics
IS
ISM
VSD
trr
Qrr
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) 
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Min. Typ. Max. Units
–––
–––
-3.0
–––
–––
-43
–––
–––
–––
–––
44
54
-1.0
66
81
A
V
ns
nC
Conditions
MOSFET symbol
showing the
G
integral reverse
p-n junction diode.
TJ = 25°C, IS = -3.0A, VGS = 0V ‚
TJ = 25°C, IF = -3.0A
di/dt = -100A/µs ‚
D
S
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature.
‚ Starting TJ = 25°C, L = 45mH
RG = 25Ω, IAS = -5.2A.
2
ƒ Surface mounted on FR-4 board, t ≤ 10sec.
„ Pulse width ≤ 300µs; duty cycle ≤ 2%.
www.irf.com
IRF7314QPbF
100
VGS
-7.5V
-5.0V
-4.5V
-3.5V
-3.0V
-2.7V
-2.0V
BOTTOM -1.5V
100
VGS
-7.5V
-5.0V
-4.5V
-3.5V
-3.0V
-2.7V
-2.0V
BOTTOM -1.5V
TOP
10
1
-1.5V
0.1
-ID, Drain-to-Source Current (A)
-ID, Drain-to-Source Current (A)
TOP
10
-1.5V
1
20µs PULSE WIDTH
Tj = 175°C
20µs PULSE WIDTH
Tj = 25°C
0.1
0.01
0.1
1
10
0.1
100
Fig 1. Typical Output Characteristics
R DS(on) , Drain-to-Source On Resistance
(Normalized)
-I D , Drain-to-Source Current (A)
TJ = 25 ° C
TJ = 175 ° C
1
V DS = -15V
20µs PULSE WIDTH
2.0
3.0
4.0
5.0
-VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
100
Fig 2. Typical Output Characteristics
2.0
100
0.1
1.0
10
-VDS, Drain-to-Source Voltage (V)
-VDS, Drain-to-Source Voltage (V)
10
1
ID = -5.2A
1.5
1.0
0.5
0.0
-60 -40 -20 0
VGS = -4.5V
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature ( °C)
Fig 4. Normalized On-Resistance
Vs. Temperature
3
IRF7314QPbF
2000
-VGS , Gate-to-Source Voltage (V)
1600
C, Capacitance (pF)
10
VGS = 0V,
f = 1MHz
Ciss = Cgs + Cgd , Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
1200
Ciss
800
Coss
400
0
Crss
1
10
ID = -5.2A
8
6
4
2
0
100
0
8
100
32
40
1000
OPERATION IN THIS AREA LIMITED
BY RDS(on)
TJ = 175 ° C
-II D , Drain Current (A)
-ISD , Reverse Drain Current (A)
24
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
10
100
TJ = 25 ° C
1
V GS = 0 V
0.5
0.8
1.1
-VSD ,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
16
QG , Total Gate Charge (nC)
-VDS , Drain-to-Source Voltage (V)
0.1
0.2
VDS =-16V
1.4
100us
1ms
10
10ms
TC = 25 ° C
TJ = 175 ° C
Single Pulse
1
0.1
1
10
100
-VDS , Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRF7314QPbF
6.0
RD
VDS
-ID , Drain Current (A)
5.0
VGS
D.U.T.
RG
-
+
4.0
VDD
VGS
3.0
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
2.0
Fig 10a. Switching Time Test Circuit
1.0
td(on)
tr
t d(off)
tf
VGS
0.0
25
50
75
100
125
150
175
10%
TC , Case Temperature ( °C)
90%
Fig 9. Maximum Drain Current Vs.
Case Temperature
VDS
Fig 10b. Switching Time Waveforms
100
Thermal Response (Z thJA )
D = 0.50
0.20
10
0.10
0.05
0.02
1
0.01
PDM
t1
SINGLE PULSE
(THERMAL RESPONSE)
0.1
0.01
0.00001
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJA + TA
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 10. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5
IRF7314QPbF
RDS ( on ) , Drain-to-Source On Resistance Ω
( )
(
RDS(on), Drain-to -Source On ResistanceΩ)
0.080
0.070
0.060
ID = -5.2A
0.050
0.040
0.030
2.0
4.0
6.0
0.430
0.330
VGS = -2.7V
0.230
0.130
VGS = -4.5V
0.030
8.0
0
10
-VGS, Gate -to -Source Voltage (V)
20
30
40
50
-ID , Drain Current ( A )
Fig 11. Typical On-Resistance Vs.
Gate Voltage
Fig 12. Typical On-Resistance Vs.
Drain Current
QG
10 V
1600
QGS
QGD
VG
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
50KΩ
12V
.2µF
.3µF
D.U.T.
+
V
- DS
EAS , Single Pulse Avalanche Energy (mJ)
BOTTOM
Charge
1200
800
400
0
25
VGS
50
75
100
Starting Tj, Junction Temperature
3mA
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
6
ID
-2.1A
-4.4A
-5.2A
TOP
125
150
175
( ° C)
Fig 14. Maximum Avalanche Energy
Vs. Drain Current
www.irf.com
IRF7314QPbF
- Avalanche Current (A)
100
Duty Cycle = Single Pulse
10
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆ Tj = 25°C due to
avalanche losses
0.01
1
0.05
0.10
0.1
0.01
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
1.0E+00
1.0E+01
1.0E+02
tav (sec)
Fig 15. Typical Avalanche Current Vs.Pulsewidth
EAR , Avalanche Energy (mJ)
700
TOP
Single Pulse
BOTTOM 10% Duty Cycle
ID = -5.2A
600
500
400
300
200
100
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy
Vs. Temperature
www.irf.com
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T jmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
175
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav ) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
7
IRF7314QPbF
SO-8 Package Outline
Dimensions are shown in millimeters (inches)
D
5
A
8
6
7
6
5
H
1
2
3
0.25 [.010]
4
A
MAX
MIN
.0532
.0688
1.35
1.75
A1 .0040
e
e1
A1
8X b
0.25 [.010]
A
MAX
0.25
.0098
0.10
b
.013
.020
0.33
0.51
c
.0075
.0098
0.19
0.25
D
.189
.1968
4.80
5.00
E
.1497
.1574
3.80
4.00
e
.050 BASIC
1.27 BASIC
.025 BASIC
0.635 B ASIC
e1
6X
MILLIMETERS
MIN
A
E
INCHES
DIM
B
H
.2284
.2440
5.80
6.20
K
.0099
.0196
0.25
0.50
L
.016
.050
0.40
1.27
y
0°
8°
0°
8°
K x 45°
Cθ
0.10 [.004]
y
8X L
8X c
7
C A B
F OOTPRINT
NOT ES :
1. DIMENS IONING & TOLERANCING PER ASME Y14.5M-1994.
8X 0.72 [.028]
2. CONT ROLLING DIMENS ION: MILLIMET ER
3. DIMENS IONS ARE SHOWN IN MILLIMETERS [INCHES].
4. OUTLINE CONFORMS TO JEDEC OUTLINE MS -012AA.
5 DIMENS ION DOES NOT INCLUDE MOLD PROT RUSIONS .
MOLD PROTRUS IONS NOT TO EXCEED 0.15 [.006].
6 DIMENS ION DOES NOT INCLUDE MOLD PROT RUSIONS .
MOLD PROTRUS IONS NOT TO EXCEED 0.25 [.010].
6.46 [.255]
7 DIMENS ION IS T HE LENGT H OF LEAD FOR SOLDERING TO
A S UBST RAT E.
3X 1.27 [.050]
8X 1.78 [.070]
SO-8 Part Marking
EXAMPLE: T HIS IS AN IRF7101 (MOS FET )
INT ERNAT IONAL
RECT IFIER
LOGO
XXXX
F 7101
DATE CODE (YWW)
P = DES IGNATES LEAD-FREE
PRODUCT (OPT IONAL)
Y = LAS T DIGIT OF T HE YEAR
WW = WEEK
A = AS S EMBLY S IT E CODE
LOT CODE
PART NUMBER
Notes:
1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
8
www.irf.com
IRF7314QPbF
SO-8 Tape and Reel
Dimensions are shown in millimeters (inches)
TERMINAL NUMBER 1
12.3 ( .484 )
11.7 ( .461 )
8.1 ( .318 )
7.9 ( .312 )
FEED DIRECTION
NOTES:
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
330.00
(12.992)
MAX.
14.40 ( .566 )
12.40 ( .488 )
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.08/2010
www.irf.com
9