IRFI7536GPbF HEXFET® Power MOSFET D Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits G S VDSS RDS(on) typ. max. ID (Silicon Limited) Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free 60V 2.7m: 3.4m: 86A D G D S TO-220 Full-Pak G D S Gate Drain Source Absolute Maximum Ratings Symbol Parameter ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) ID @ TC = 100°C IDM PD @TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) Pulsed Drain Current Maximum Power Dissipation Linear Derating Factor VGS TJ TSTG Gate-to-Source Voltage Operating Junction and Storage Temperature Range c EAS IAR Single Pulse Avalanche Energy (Thermally Limited) Avalanche Current EAR Repetitive Avalanche Energy Symbol RθJC RθJA 1 A 820 75 0.5 W W/°C V °C Avalanche Characteristics Thermal Resistance Units 86 73 ± 20 -55 to + 175 300 (1.6mm from case) 10lbf in (1.1N m) Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 screw c Max. c Parameter ij Junction-to-Case Junction-to-Ambient (PCB Mount) www.irf.com © 2013 International Rectifier x d x 738 See Fig. 14, 15, 22a, 22b mJ A mJ Typ. Max. Units ––– ––– 2.87 65 °C/W Submit Datasheet Feedback Ocotber 16, 2013 IRFI7536GPbF Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) gfs RG IDSS Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Internal Gate Resistance Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Min. Typ. Max. Units 60 ––– ––– 2.0 88 ––– ––– ––– ––– ––– ––– 29 2.7 ––– ––– 0.79 ––– ––– ––– ––– Conditions ––– V VGS = 0V, ID = 250µA ––– mV/°C Reference to 25°C, ID = 1.0mA 3.4 mΩ VGS = 10V, ID = 75A 4.0 V VDS = VGS, ID = 150µA ––– S VDS = 25V, ID = 75A ––– Ω 20 µA VDS = 60V, VGS = 0V VDS = 60V, VGS = 0V, TJ = 125°C 250 100 nA VGS = 20V -100 VGS = -20V c f Dynamic @ TJ = 25°C (unless otherwise specified) Symbol Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Parameter Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Effective Output Capacitance (Energy Related) Effective Output Capacitance (Time Related) Min. Typ. Max. Units ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 130 31 42 88 22 77 55 64 6600 720 400 1080 1400 195 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– nC Conditions ID = 75A VDS = 30V VGS = 10V ID = 75A, VDS =0V, VGS = 10V VDD = 39V ID = 75A RG = 2.7Ω VGS = 10V VGS = 0V VDS = 48V ƒ = 1.0 MHz, See Fig. 5 VGS = 0V, VDS = 0V to 48V , See Fig. 11 VGS = 0V, VDS = 0V to 48V f ns pF f h g Diode Characteristics Symbol Parameter Min. Typ. Max. Units Conditions IS Continuous Source Current ––– ––– 86 A MOSFET symbol ISM (Body Diode) Pulsed Source Current ––– ––– 820 A showing the integral reverse d (Body Diode) Diode Forward Voltage Peak Diode Recovery VSD dv/dt trr e Reverse Recovery Time Qrr Reverse Recovery Charge IRRM Reverse Recovery Current Notes: Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.26mH, RG = 50Ω, IAS = 75A, VGS =10V. Part not recommended for use above this value. ISD ≤ 75A, di/dt ≤ 890A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. Pulse width ≤ 400µs; duty cycle ≤ 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . 2 www.irf.com © 2013 International Rectifier ––– ––– ––– ––– ––– ––– ––– ––– 3.3 43 53 58 65 2.4 1.3 ––– ––– ––– ––– ––– ––– D G p-n junction diode. V TJ = 25°C, IS = 75A, VGS = 0V V/ns TJ = 25°C, IS = 75A, VDS = 60V ns TJ = 25°C VR = 51V, TJ = 125°C IF = 75A di/dt = 100A/µs nC TJ = 25°C TJ = 125°C A TJ = 25°C S f f Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS . Rθ is measured at TJ approximately 90°C. RθJC value shown is at time zero. Submit Datasheet Feedback October 16, 2013 IRFI7536GPbF 1000 1000 VGS 15V 12V 10V 6.0V 5.0V 4.75V 4.50V 4.25V 100 BOTTOM VGS 15V 12V 10V 6.0V 5.0V 4.75V 4.50V 4.25V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 100 4.25V 10 BOTTOM 4.25V 10 ≤60µs PULSE WIDTH ≤60µs PULSE WIDTH Tj = 175°C Tj = 25°C 1 1 0.01 0.1 1 10 100 0.01 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 100 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) 10 100 2.2 T J = 175°C T J = 25°C 10 VDS = 25V ≤60µs PULSE WIDTH 1.0 ID = 75A VGS = 10V 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 2 3 4 5 6 7 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) Fig 4. Normalized On-Resistance vs. Temperature Fig 3. Typical Transfer Characteristics 100000 14.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd VGS, Gate-to-Source Voltage (V) ID= 75A C oss = C ds + C gd C, Capacitance (pF) 1 Fig 2. Typical Output Characteristics 1000 10000 Ciss Coss Crss 1000 12.0 VDS= 48V VDS= 30V 10.0 VDS= 12V 8.0 6.0 4.0 2.0 0.0 100 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage 3 0.1 V DS, Drain-to-Source Voltage (V) www.irf.com © 2013 International Rectifier 0 20 40 60 80 100 120 140 160 180 QG, Total Gate Charge (nC) Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage Submit Datasheet Feedback October 16, 2013 IRFI7536GPbF 10000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 T J = 175°C 100 T J = 25°C 10 OPERATION IN THIS AREA LIMITED BY R (on) DS 1000 1msec 100 10msec 10 DC 1 Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 1.0 0.1 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.1 VSD, Source-to-Drain Voltage (V) 60 40 20 0 75 100 125 150 175 V(BR)DSS , Drain-to-Source Breakdown Voltage (V) ID, Drain Current (A) 80 50 100 72 ID = 1.0mA 70 68 66 64 62 60 -60 -40 -20 0 20 40 60 80 100120140160180 T C , Case Temperature (°C) T J , Temperature ( °C ) Fig 9. Maximum Drain Current vs. Case Temperature Fig 10. Drain-to-Source Breakdown Voltage 2.0 EAS , Single Pulse Avalanche Energy (mJ) 3000 1.8 ID 8.6A 12A BOTTOM 75A TOP 2500 1.6 1.4 Energy (µJ) 10 Fig 8. Maximum Safe Operating Area 100 25 1 VDS, Drain-to-Source Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 2000 1.2 1.0 1500 0.8 1000 0.6 0.4 0.2 0.0 500 0 0 10 20 30 40 50 60 70 VDS, Drain-to-Source Voltage (V) Fig 11. Typical COSS Stored Energy 4 100µsec www.irf.com © 2013 International Rectifier 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) Fig 12. Maximum Avalanche Energy vs. DrainCurrent Submit Datasheet Feedback October 16, 2013 IRFI7536GPbF Thermal Response ( Z thJC ) °C/W 10 D = 0.50 1 0.20 0.10 0.05 0.1 0.02 0.01 0.01 0.001 SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 1E-005 0.0001 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case Avalanche Current (A) 1000 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Tj = 150°C and Tstart =25°C (Single Pulse) 100 10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τj = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 tav (sec) Fig 14. Single Avalanche Event: Pulse Current vs. Pulse Width 800 700 EAR , Avalanche Energy (mJ) Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 75A 600 500 400 300 200 100 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 15. Maximum Avalanche Energy vs. Temperature 5 www.irf.com © 2013 International Rectifier Submit Datasheet Feedback October 16, 2013 4.0 16 3.5 14 3.0 12 IRRM (A) VGS(th) , Gate threshold Voltage (V) IRFI7536GPbF 2.5 2.0 ID = 150µA ID = 1.0mA 1.5 IF = 30A V R = 51V TJ = 25°C TJ = 125°C 10 8 6 ID = 1.0A 4 1.0 2 0.5 -75 -25 25 75 125 0 175 200 600 800 1000 Fig. 17 - Typical Recovery Current vs. dif/dt Fig 16. Threshold Voltage vs. Temperature 500 16 IF = 45A V R = 51V 14 IF = 30A V R = 51V 400 TJ = 25°C TJ = 125°C QRR (nC) 12 IRRM (A) 400 diF /dt (A/µs) T J , Temperature ( °C ) 10 8 TJ = 25°C TJ = 125°C 300 200 6 100 4 2 0 0 200 400 600 800 1000 0 200 400 600 800 1000 diF /dt (A/µs) diF /dt (A/µs) Fig. 19 - Typical Stored Charge vs. dif/dt Fig. 18 - Typical Recovery Current vs. dif/dt 500 IF = 45A V R = 51V QRR (nC) 400 TJ = 25°C TJ = 125°C 300 200 100 0 0 200 400 600 800 1000 diF /dt (A/µs) Fig. 20 - Typical Stored Charge vs. dif/dt 6 www.irf.com © 2013 International Rectifier Submit Datasheet Feedback October 16, 2013 IRFI7536GPbF Driver Gate Drive D.U.T - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG VGS 20V + V - DD IAS A 0.01Ω tp I AS Fig 22a. Unclamped Inductive Test Circuit RD VDS Fig 22b. Unclamped Inductive Waveforms VDS 90% VGS D.U.T. RG + - VDD V10V GS 10% VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % td(on) Fig 23a. Switching Time Test Circuit tr t d(off) Fig 23b. Switching Time Waveforms Id Current Regulator Same Type as D.U.T. Vds Vgs 50KΩ 12V tf .2µF .3µF D.U.T. + V - DS Vgs(th) VGS 3mA IG ID Current Sampling Resistors Fig 24a. Gate Charge Test Circuit 7 www.irf.com © 2013 International Rectifier Qgs1 Qgs2 Qgd Qgodr Fig 24b. Gate Charge Waveform Submit Datasheet Feedback October 16, 2013 IRFI7536GPbF TO-220 Full-Pak Package Outline Dimensions are shown in millimeters (inches) TO-220 Full-Pak Part Marking Information TO-220AB Full-Pak packages are not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ 8 www.irf.com © 2013 International Rectifier Submit Datasheet Feedback October 16, 2013 IRFI7536GPbF Qualification information† Cons umer Qualification level Moisture Sensitivity Level (per JE DE C JE S D47F TSOP-6 RoHS compliant † †† ††† †† ††† guidelines ) MS L1 ††† (per IPC/JE DE C J-S T D-020D Yes ) Qualification standards can be found at International Rectifier’s web site http://www.irf.com/product-info/reliability Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/ Applicable version of JEDEC standard at the time of product release. IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/ 9 www.irf.com © 2013 International Rectifier Submit Datasheet Feedback October 16, 2013