StrongIRFET IRFS7437-7PPbF Applications l Brushed Motor drive applications l BLDC Motor drive applications l PWM Inverterized topologies l Battery powered circuits l Half-bridge and full-bridge topologies l Electronic ballast applications l Synchronous rectifier applications l Resonant mode power supplies l OR-ing and redundant power switches l DC/DC and AC/DC converters HEXFET® Power MOSFET D G S VDSS RDS(on) typ. max. ID (Silicon Limited) 40V 1.1m 1.4m 295A ID (Package Limited) 195A c D Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free l Halogen Free S S G S S S D2Pak 7 Pin G D S Gate Drain Source Ordering Information Base Part Number Package Type D2Pak-7PIN 4.0 Complete Part Number IRFS7437-7PPbF IRFS7437TRL7PP Quantity 50 800 300 ID = 100A Limited By Package 250 ID, Drain Current (A) RDS(on), Drain-to -Source On Resistance (m ) IRFS7437-7PPbF Standard Pack Form Tube Tape and Reel Left 3.0 TJ = 125°C 2.0 150 100 50 T J = 25°C 1.0 0 4 6 8 10 12 14 16 18 20 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage www.irf.com 200 25 50 75 100 125 150 175 T C , Case Temperature (°C) Fig 2. Maximum Drain Current vs. Case Temperature 1 September 6, 2012 IRFS7437-7PPbF Absolute Maximum Ratings Max. Units ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM Symbol Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Wire Bond Limited) Pulsed Drain Current Parameter 295 208 195 1040 A PD @TC = 25°C Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) 231 1.5 ± 20 3.5 -55 to + 175 c c d VGS f dv/dt TJ TSTG Single Pulse Avalanche Energy EAS (Thermally limited) EAS (tested) IAR EAR W/°C V V/ns °C x 300 x 10lbf in (1.1N m) Mounting torque, 6-32 or M3 screw Avalanche Characteristics W e 344 508 See Fig. 14, 15, 22a, 22b Single Pulse Avalanche Energy Tested Value l Avalanche Currentd Repetitive Avalanche Energy d mJ A mJ Thermal Resistance Symbol Parameter k RJC RJA Junction-to-Case Junction-to-Ambient (PCB Mount) j Typ. Max. Units ––– ––– 0.65 40 °C/W Static @ TJ = 25°C (unless otherwise specified) Min. Typ. Max. Units V(BR)DSS V(BR)DSS/TJ RDS(on) Symbol Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance 40 ––– ––– VGS(th) IDSS Gate Threshold Voltage Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Internal Gate Resistance 2.2 ––– ––– ––– ––– ––– ––– 0.035 1.1 1.7 ––– ––– ––– ––– ––– 2.2 ––– ––– 1.4 ––– 3.9 1.0 150 100 -100 ––– RG Parameter Notes: Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 195A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140) Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.069mH RG = 50, IAS = 100A, VGS =10V. ISD 100A, di/dt 1288A/μs, VDD V(BR)DSS, TJ 175°C. V V/°C m m V μA nA Conditions VGS = 0V, ID = 250μA Reference to 25°C, ID = 1.0mA VGS = 10V, ID = 100A VGS = 6.0V, ID = 50A VDS = VGS, ID = 150μA VDS = 40V, VGS = 0V VDS = 40V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V g g d Pulse width 400μs; duty cycle 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. When mounted on 1" square PCB (FR-4 or G-10 Material). For recom mended footprint and soldering techniques refer to application note #AN-994. R is measured at TJ approximately 90°C. This value determined from sample failure population, starting TJ = 25°C, L= 0.069mH, RG = 50, IAS = 100A, VGS =10V. 2 September 6, 2012 www.irf.com IRFS7437-7PPbF Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Effective Output Capacitance (Energy Related) Effective Output Capacitance (Time Related) h i Min. Typ. 122 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 150 41 51 99 18 62 78 51 7437 1097 748 1314 1735 Max. Units Min. Typ. Max. Units ––– ––– 285 ––– 225 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– S nC Conditions VDS = 10V, ID = 100A ID = 100A VDS = 20V VGS = 10V ID = 100A, VDS =0V, VGS = 10V VDD = 20V ID = 30A R G = 2.7 VGS = 10V VGS = 0V VDS = 25V ƒ = 1.0 MHz VGS = 0V, VDS = 0V to 32V VGS = 0V, VDS = 0V to 32V g ns pF g i h Diode Characteristics Symbol IS Parameter VSD trr Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Qrr Reverse Recovery Charge IRRM ton Reverse Recovery Current Forward Turn-On Time ISM www.irf.com d c Conditions A MOSFET symbol showing the G ––– ––– 1040 A integral reverse p-n junction diode. ––– 1.0 1.3 V TJ = 25°C, IS = 100A, VGS = 0V ––– 37 ––– ns TJ = 25°C VR = 34V, ––– 38 ––– TJ = 125°C IF = 100A di/dt = 100A/μs ––– 34 ––– nC TJ = 25°C ––– 36 ––– TJ = 125°C ––– 1.8 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) g D S g 3 September 6, 2012 IRFS7437-7PPbF 10000 10000 VGS 15V 10V 8.0V 7.0V 6.5V 6.0V 5.5V 5.0V 1000 BOTTOM 1000 100 5.0V 10 60μs PULSE WIDTH BOTTOM 100 5.0V 60μs PULSE WIDTH Tj = 25°C Tj = 175°C 1 10 0.1 1 10 100 0.1 V DS, Drain-to-Source Voltage (V) 10 100 Fig 4. Typical Output Characteristics 10000 2.0 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) 1 V DS, Drain-to-Source Voltage (V) Fig 3. Typical Output Characteristics 1000 100 TJ = 175°C T J = 25°C 10 VDS = 10V 60μs PULSE WIDTH 1.0 ID = 100A VGS = 10V 1.8 1.6 1.4 1.2 1.0 0.8 0.6 2 3 4 5 6 7 8 9 Fig 6. Normalized On-Resistance vs. Temperature Fig 5. Typical Transfer Characteristics 100000 14.0 VGS, Gate-to-Source Voltage (V) VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd Ciss 10000 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) VGS 15V 10V 8.0V 7.0V 6.5V 6.0V 5.5V 5.0V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP Coss Crss 1000 100 ID= 100A 12.0 VDS= 32V VDS= 20V 10.0 8.0 6.0 4.0 2.0 0.0 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 7. Typical Capacitance vs. Drain-to-Source Voltage 4 September 6, 2012 0 20 40 60 80 100 120 140 160 180 200 QG, Total Gate Charge (nC) Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage www.irf.com IRFS7437-7PPbF 10000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 10000 1000 T J = 175°C 100 T J = 25°C 10 OPERATION IN THIS AREA LIMITED BY RDS(on) 1000 1msec 100 10msec Limited by package 10 DC 1 Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 1.0 0.1 0.1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 1 10 100 V DS, Drain-toSource Voltage (V) VSD, Source-to-Drain Voltage (V) Fig 10. Maximum Safe Operating Area Fig 9. Typical Source-Drain Diode Forward Voltage 1.0 49 Id = 1.0mA 48 0.9 0.8 47 0.7 46 0.6 Energy (μJ) V(BR)DSS , Drain-to-Source Breakdown Voltage (V) 100μsec 45 44 0.5 0.4 0.3 43 0.2 42 0.1 41 0.0 -0.1 40 -5 -60 -40 -20 0 20 40 60 80 100120140160180 0 T J , Temperature ( °C ) 10 15 20 25 30 35 40 VDS, Drain-to-Source Voltage (V) Fig 11. Drain-to-Source Breakdown Voltage RDS(on), Drain-to -Source On Resistance ( m) 5 Fig 12. Typical COSS Stored Energy 10.0 VGS = 6.0V VGS = 7.0V 8.0 VGS = 8.0V VGS =10V 6.0 4.0 2.0 0.0 0 200 400 600 800 1000 1200 ID, Drain Current (A) Fig 13. Typical On-Resistance vs. Drain Current www.irf.com 5 September 6, 2012 IRFS7437-7PPbF Thermal Response ( Z thJC ) °C/W 1 D = 0.50 0.20 0.1 0.10 0.05 0.02 0.01 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 0.0001 1E-006 1E-005 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000 Avalanche Current (A) Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 150°C and Tstart =25°C (Single Pulse) 100 10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming j = 25°C and Tstart = 150°C. 1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current vs.Pulsewidth 350 300 EAR , Avalanche Energy (mJ) Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 100A 250 200 150 100 50 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 16. Maximum Avalanche Energy vs. Temperature 6 September 6, 2012 www.irf.com IRFS7437-7PPbF 12 10 IF = 60A V R = 34V 8 TJ = 25°C TJ = 125°C 4.0 IRRM (A) VGS(th) , Gate threshold Voltage (V) 5.0 3.0 ID = 150μA ID = 1.0mA 2.0 6 4 ID = 1.0A 2 1.0 0 -75 -50 -25 0 25 50 75 100 125 150 175 0 200 T J , Temperature ( °C ) 600 800 1000 Fig. 18 - Typical Recovery Current vs. dif/dt Fig 17. Threshold Voltage vs. Temperature 12 300 10 IF = 100A V R = 34V 8 TJ = 25°C TJ = 125°C QRR (nC) IRRM (A) 400 diF /dt (A/μs) 6 250 IF = 60A V R = 34V 200 TJ = 25°C TJ = 125°C 150 4 100 2 50 0 0 0 200 400 600 800 1000 0 200 diF /dt (A/μs) 400 600 800 1000 diF /dt (A/μs) Fig. 20 - Typical Stored Charge vs. dif/dt Fig. 19 - Typical Recovery Current vs. dif/dt QRR (nC) 300 250 IF = 100A V R = 34V 200 TJ = 25°C TJ = 125°C 150 100 50 0 0 200 400 600 800 1000 diF /dt (A/μs) www.irf.com Fig. 21 - Typical Stored Charge vs. dif/dt 7 September 6, 2012 IRFS7437-7PPbF Driver Gate Drive D.U.T - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test V DD P.W. Period VGS=10V Circuit Layout Considerations Low Stray Inductance Ground Plane Low Leakage Inductance Current Transformer + D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple 5% * VGS = 5V for Logic Level Devices Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG 20V VGS + V - DD IAS A 0.01 tp I AS Fig 22a. Unclamped Inductive Test Circuit RD VDS Fig 22b. Unclamped Inductive Waveforms VDS 90% VGS D.U.T. RG + - VDD V10V GS 10% VGS Pulse Width µs Duty Factor td(on) Fig 23a. Switching Time Test Circuit tr t d(off) Fig 23b. Switching Time Waveforms Id Current Regulator Same Type as D.U.T. Vds Vgs 50K 12V tf .2F .3F D.U.T. + V - DS Vgs(th) VGS 3mA IG ID Current Sampling Resistors Fig 24a. Gate Charge Test Circuit 8 September 6, 2012 Qgs1 Qgs2 Qgd Qgodr Fig 24b. Gate Charge Waveform www.irf.com IRFS7437-7PPbF D2Pak - 7 Pin Package Outline Dimensions are shown in millimeters (inches) Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 9 September 6, 2012 IRFS7437-7PPbF D2Pak - 7 Pin Part Marking Information 14 D2Pak - 7 Pin Tape and Reel Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ 10 September 6, 2012 www.irf.com IRFS7437-7PPbF Qualification information† Qualification level Moisture Sensitivity Level RoHS compliant Industrial†† (per JEDEC JESD47F††† guidelines) MS L1 D2Pak-7PIN (per JE DE C J-S TD-020D†††) Yes Qualification standards can be found at International Rectifiers web site: http://www.irf.com/product-info/reliability/ Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http:www.irf.com/whoto-call/salesrep/ Applicable version of JEDEC standard at the time of product release. Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 101N Sepulveda., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 04/2012 www.irf.com 11 September 6, 2012