PD - 97777 StrongIRFET IRFP7430PbF Applications l l l l l l l l l HEXFET® Power MOSFET Brushed Motor drive applications BLDC Motor drive applications Battery powered circuits Half-bridge and full-bridge topologies Synchronous rectifier applications Resonant mode power supplies OR-ing and redundant power switches DC/DC and AC/DC converters DC/AC Inverters D G S l l l 40V 1.0m 1.3m 404A ID (Package Limited) 195A c D Benefits l VDSS RDS(on) typ. max. ID (Silicon Limited) Improved Gate, Avalanche and Dynamic dV/dt Ruggedness Fully Characterized Capacitance and Avalanche SOA Enhanced body diode dV/dt and dI/dt Capability Lead-Free G D S TO-247AC IRFP7430PbF G D S Gate Drain Source Ordering Information Base Part Number Package Type TO-247 6.0 Quantity 50 Complete Part Number IRFP7430PbF 500 ID = 100A Limited By Package 400 ID, Drain Current (A) RDS(on), Drain-to -Source On Resistance (m ) IRFP7430PbF Standard Pack Form Tube 4.0 T J = 125°C 2.0 300 200 100 T J = 25°C 0.0 4 6 8 10 12 14 16 18 20 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage www.irf.com 0 25 50 75 100 125 150 175 T C , Case Temperature (°C) Fig 2. Maximum Drain Current vs. Case Temperature 1 04/20/12 IRFP7430PbF Absolute Maximum Ratings Max. Units ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM Symbol Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Wire Bond Limited) Pulsed Drain Current 404 286 195 1524 A PD @TC = 25°C Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Mounting torque, 6-32 or M3 screw 366 2.4 ± 20 -55 to + 175 W/°C V VGS TJ TSTG Parameter d Avalanche Characteristics EAS (Thermally limited) EAS (tested) IAR EAR Single Pulse Avalanche Energy Symbol e Single Pulse Avalanche Energy Tested Value Avalanche Current Repetitive Avalanche Energy d Thermal Resistance RJC RCS RJA c c W °C 300 10lbf in (1.1N m) x x 722 1360 See Fig. 14, 15, 22a, 22b k d Parameter j Junction-to-Case Case-to-Sink, Flat Greased Surface Junction-to-Ambient mJ A mJ Typ. Max. Units ––– 0.24 ––– 0.41 ––– 40 °C/W Static @ TJ = 25°C (unless otherwise specified) Min. Typ. Max. Units V(BR)DSS V(BR)DSS/TJ RDS(on) Symbol Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance 40 ––– ––– VGS(th) IDSS Gate Threshold Voltage Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Internal Gate Resistance 2.2 ––– ––– ––– ––– ––– ––– 0.014 1.0 1.2 ––– ––– ––– ––– ––– 2.1 ––– ––– 1.3 ––– 3.9 1.0 150 100 -100 ––– RG Parameter Notes: Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 195A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140) Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.14mH RG = 50, IAS = 100A, VGS =10V. ISD 100A, di/dt 990A/μs, VDD V(BR)DSS, TJ 175°C. V V/°C m m V μA nA Conditions VGS = 0V, ID = 250μA Reference to 25°C, ID = 1.0mA VGS = 10V, ID = 100A VGS = 6.0V, ID = 50A VDS = VGS, ID = 250μA VDS = 40V, VGS = 0V VDS = 40V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V d g g Pulse width 400μs; duty cycle 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. When mounted on 1" square PCB (FR-4 or G-10 Material). For recom mended footprint and soldering techniques refer to application note #AN-994. R is measured at TJ approximately 90°C. This value determined from sample failure population, starting TJ = 25°C, L= 0.14mH, R G = 50, IAS = 100A, VGS =10V. 2 www.irf.com IRFP7430PbF Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Effective Output Capacitance (Energy Related) Effective Output Capacitance (Time Related) h i Min. Typ. 150 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 300 77 98 202 32 105 160 100 14240 2130 1460 2605 2920 Max. Units Min. Typ. Max. Units ––– ––– 376 ––– ––– 1576 ––– ––– ––– ––– ––– ––– ––– 0.86 2.7 52 52 97 97 2.3 1.2 ––– ––– ––– ––– ––– ––– ––– 460 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– S nC Conditions VDS = 10V, ID = 100A ID = 100A VDS =20V VGS = 10V ID = 100A, VDS =0V, VGS = 10V VDD = 20V ID = 30A R G = 2.7 VGS = 10V VGS = 0V VDS = 25V ƒ = 1.0 MHz VGS = 0V, VDS = 0V to 32V VGS = 0V, VDS = 0V to 32V g ns pF g i h Diode Characteristics Symbol IS Parameter VSD dv/dt trr Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Peak Diode Recovery Reverse Recovery Time Qrr Reverse Recovery Charge IRRM Reverse Recovery Current ISM www.irf.com d f c Conditions D MOSFET symbol showing the G integral reverse A S p-n junction diode. TJ = 25°C, IS = 100A, VGS = 0V V V/ns TJ = 175°C, IS = 100A, VDS = 40V ns TJ = 25°C VR = 34V, TJ = 125°C IF = 100A di/dt = 100A/μs nC TJ = 25°C TJ = 125°C A TJ = 25°C A g g 3 IRFP7430PbF 1000 1000 100 BOTTOM 10 4.5V BOTTOM 100 4.5V 60μs PULSE WIDTH 60μs PULSE WIDTH Tj = 175°C Tj = 25°C 10 1 0.1 1 10 0.1 100 Fig 3. Typical Output Characteristics 100 2.0 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) 10 Fig 4. Typical Output Characteristics 1000 100 T J = 25°C TJ = 175°C 10 VDS = 25V 60μs PULSE WIDTH 1.0 ID = 100A VGS = 10V 1.8 1.6 1.4 1.2 1.0 0.8 0.6 2 3 4 5 6 7 Fig 6. Normalized On-Resistance vs. Temperature Fig 5. Typical Transfer Characteristics 100000 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) 14.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED VGS, Gate-to-Source Voltage (V) C rss = C gd C oss = C ds + C gd C, Capacitance (pF) 1 V DS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) Ciss 10000 Coss Crss 1000 ID= 100A 12.0 VDS= 32V VDS= 20V 10.0 8.0 6.0 4.0 2.0 0.0 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 7. Typical Capacitance vs. Drain-to-Source Voltage 4 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 4.8V 4.5V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 4.8V 4.5V 0 50 100 150 200 250 300 350 400 QG, Total Gate Charge (nC) Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage www.irf.com IRFP7430PbF 10000 T J = 175°C 100 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 10 T J = 25°C 1 OPERATION IN THIS AREA LIMITED BY R DS(on) 1000 100 Limited by package 10msec 10 1 DC Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 0.1 0.1 0.0 0.5 1.0 1.5 2.0 0.1 2.5 1 10 100 VDS, Drain-toSource Voltage (V) VSD, Source-to-Drain Voltage (V) Fig 10. Maximum Safe Operating Area Fig 9. Typical Source-Drain Diode Forward Voltage 2.5 47 Id = 1.0mA VDS= 0V to 32V 46 2.0 45 Energy (μJ) V(BR)DSS , Drain-to-Source Breakdown Voltage (V) 100μsec 1msec 44 43 1.5 1.0 42 0.5 41 40 0.0 0 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Temperature ( °C ) 10 15 20 25 30 35 40 45 VDS, Drain-to-Source Voltage (V) Fig 11. Drain-to-Source Breakdown Voltage RDS(on), Drain-to -Source On Resistance ( m) 5 Fig 12. Typical COSS Stored Energy 6.0 VGS = 5.5V VGS = 6.0V VGS = 7.0V VGS = 8.0V 4.0 VGS =10V 2.0 0.0 0 200 400 600 800 1000 1200 ID, Drain Current (A) Fig 13. Typical On-Resistance vs. Drain Current www.irf.com 5 IRFP7430PbF Thermal Response ( Z thJC ) °C/W 1 D = 0.50 0.1 0.20 0.10 0.05 0.02 0.01 0.01 0.001 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000 Avalanche Current (A) Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 150°C and Tstart =25°C (Single Pulse) 100 10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming j = 25°C and Tstart = 150°C. 1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current vs.Pulsewidth 800 700 EAR , Avalanche Energy (mJ) Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 100A 600 500 400 300 200 100 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) 175 PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 16. Maximum Avalanche Energy vs. Temperature 6 www.irf.com IRFP7430PbF 12 3.5 3.0 2.5 IRRM (A) VGS(th) , Gate threshold Voltage (V) 4.0 ID = 250μA ID = 1.0mA 2.0 ID = 1.0A 10 IF = 60A V R = 34V 8 TJ = 25°C TJ = 125°C 6 4 1.5 2 1.0 0 -75 -50 -25 0 25 50 75 100 125 150 175 0 200 T J , Temperature ( °C ) 600 800 1000 Fig. 18 - Typical Recovery Current vs. dif/dt Fig 17. Threshold Voltage vs. Temperature 12 300 10 IF = 100A V R = 34V 8 TJ = 25°C TJ = 125°C IF = 60A V R = 34V 250 QRR (nC) IRRM (A) 400 diF /dt (A/μs) 6 TJ = 25°C TJ = 125°C 200 150 4 100 2 0 50 0 200 400 600 800 1000 0 200 diF /dt (A/μs) 400 600 800 1000 diF /dt (A/μs) Fig. 20 - Typical Stored Charge vs. dif/dt Fig. 19 - Typical Recovery Current vs. dif/dt 260 IF = 100A V R = 34V QRR (nC) 220 TJ = 25°C TJ = 125°C 180 140 100 60 0 200 400 600 800 1000 diF /dt (A/μs) www.irf.com Fig. 21 - Typical Stored Charge vs. dif/dt 7 IRFP7430PbF Driver Gate Drive D.U.T - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations Low Stray Inductance Ground Plane Low Leakage Inductance Current Transformer + D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple 5% * VGS = 5V for Logic Level Devices Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG 20V VGS + V - DD IAS A 0.01 tp I AS Fig 22a. Unclamped Inductive Test Circuit RD VDS Fig 22b. Unclamped Inductive Waveforms VDS 90% VGS D.U.T. RG + - VDD V10V GS 10% VGS Pulse Width µs Duty Factor td(on) Fig 23a. Switching Time Test Circuit tr t d(off) Fig 23b. Switching Time Waveforms Id Current Regulator Same Type as D.U.T. Vds Vgs 50K 12V tf .2F .3F D.U.T. + V - DS Vgs(th) VGS 3mA IG ID Current Sampling Resistors Fig 24a. Gate Charge Test Circuit 8 Qgs1 Qgs2 Qgd Qgodr Fig 24b. Gate Charge Waveform www.irf.com IRFP7430PbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information (;$03/( 7+,6,6$1,5)3( :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(+ 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 3$57180%(5 ,5)3( + $66(0%/< /27&2'( '$7(&2'( <($5 :((. /,1(+ TO-247AC package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Qualification information† Qualification level Moisture Sensitivity Level RoHS compliant TO-247AC Industrial†† (per JEDEC JESD47F††† guidelines) N/A (per JE DE C J-S TD-020D†††) Yes Qualification standards can be found at International Rectifiers web site: http://www.irf.com/product-info/reliability/ Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http:www.irf.com/whoto-call/salesrep/ Applicable version of JEDEC standard at the time of product release. Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 04/2012 www.irf.com 9