500 Milliwatt Hermetically Sealed Glass Silicon Zener Diodes

MOTOROLA
SEMICONDUCTOR
TECHNICAL DATA
MZ4614
SERIES
500 mW DO-35 Glass
Zener Voltage Regulator Diodes
500 mW
DO-35 GLASS
GENERAL DATA APPLICABLE TO ALL SERIES IN
THIS GROUP
500 Milliwatt
Hermetically Sealed
Glass Silicon Zener Diodes
GLASS ZENER DIODES
500 MILLIWATTS
1.8–200 VOLTS
EA
S
R E T
EP C H
R ON IS
ES T D
EN AC EV
TA T Y ICE
TI OU IS
VE R O
FO ON BS
R S OL
IN EM ET
FO IC E
R ON
M
AT DU
IO C
N TO
R
TE
Specification Features:
• Complete Voltage Range — 1.8 to 200 Volts
• DO-204AH Package — Smaller than Conventional DO-204AA Package
• Double Slug Type Construction
• Metallurgically Bonded Construction
LE
Mechanical Characteristics:
CASE 299
DO-204AH
GLASS
B
SO
CASE: Double slug type, hermetically sealed glass
MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 230°C, 1/16″ from
case for 10 seconds
FINISH: All external surfaces are corrosion resistant with readily solderable leads
POLARITY: Cathode indicated by color band. When operated in zener mode, cathode
will be positive with respect to anode
MOUNTING POSITION: Any
WAFER FAB LOCATION: Phoenix, Arizona
ASSEMBLY/TEST LOCATION: Seoul, Korea
O
MAXIMUM RATINGS (Motorola Devices)*
Rating
Symbol
DC Power Dissipation and TL ≤ 75°C
Lead Length = 3/8″
Derate above TL = 75°C
PD
Operating and Storage Temperature Range
TJ, Tstg
Value
Unit
500
4
mW
mW/°C
– 65 to +200
°C
* Some part number series have lower JEDEC registered ratings.
PD , MAXIMUM POWER DISSIPATION (WATTS)
PL
0.7
HEAT
SINKS
0.6
0.5
0.4
3/8”
3/8”
0.3
0.2
0.1
0
0
20
40
60
80
100
120
140
160
180 200
TL, LEAD TEMPERATURE (°C)
Figure 1. Steady State Power Derating
Motorola TVS/Zener Device Data
500 mW DO-35 Glass Data Sheet
6-1
GENERAL DATA — 500 mW DO-35 GLASS
Designed for 250 mW applications requiring low leakage,
low impedance. Same as 1N4099 through 1N4104 and
1N4614 through 1N4627 except low noise test omitted.
• Voltage Range from 1.8 to 10 Volts
• Zener Impedance and Zener Voltage Specified for LowLevel Operation at IZT = 250 µA
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise specified. IZT = 250 µA and VF = 1 V Max @ IF = 200 mA for all
ELECTRICAL CHARACTERISTICS types)
Type
Number
(Note 1)
Nominal
Zener Voltage
VZ
(Note 2)
(Volts)
Max Zener
Impedance
ZZT
(Note 3)
(Ohms)
Max
Reverse
Current
IR
(µA)
MZ4614
MZ4619
MZ4625
MZ4627
1.8
3
5.1
6.2
1200
1600
1500
1200
7.5
0.8
10
10
Test
Voltage
VR
(Volts)
Max Zener Current
IZM
(Note 4)
(mA)
1
1
3
5
120
85
55
45
R
NOTE 4. MAXIMUM ZENER CURRENT RATINGS (IZM)
TE
NOTE 1. TOLERANCE AND VOLTAGE DESIGNATION
The type numbers shown have a standard tolerance of ±5% on the nominal zener voltage.
@
(Note 5)
Maximum zener current ratings are based on maximum zener voltage of the individual units.
EA
S
R E T
EP C H
R ON IS
ES T D
EN AC EV
TA T Y ICE
TI OU IS
VE R O
FO ON BS
R S OL
IN EM ET
FO IC E
R ON
M
AT DU
IO C
N TO
NOTE 2. ZENER VOLTAGE (VZ) MEASUREMENT
NOTE 3. ZENER IMPEDANCE (ZZT) DERIVATION
NOTE 5. REVERSE LEAKAGE CURRENT IR
Reverse leakage currents are guaranteed and are measured at VR as shown on the table.
NOTE 6. SPECIAL SELECTORS AVAILABLE INCLUDE:
LE
Nominal Zener Voltage is measured with the device junction in the thermal equilibrium with
ambient temperature of 25°C.
A) Tighter voltage tolerances. Contact your nearest Motorola representative for more information.
PL
O
B
SO
The zener impedance is derived from the 60 cycle ac voltage, which results when an ac current having an rms value equal to 10% of the dc zener current (IZT) is superimposed on IZT.
500 mW DO-35 Glass Data Sheet
6-2
Motorola TVS/Zener Device Data
Since the actual voltage available from a given zener diode
is temperature dependent, it is necessary to determine junction temperature under any set of operating conditions in order
to calculate its value. The following procedure is recommended:
Lead Temperature, TL, should be determined from:
TL = θLAPD + TA.
400
L
2.4–60 V
200
62–200 V
100
0
0
0.2
0.4
0.6
LE
SO
B
∆TJL = θJLPD.
For worst-case design, using expected limits of IZ, limits of
PD and the extremes of TJ(∆TJ) may be estimated. Changes in
voltage, VZ, can then be found from:
∆V = θVZTJ.
PL
O
θVZ, the zener voltage temperature coefficient, is found from
Figures 4 and 5.
Under high power-pulse operation, the zener voltage will
vary with time and may also be affected significantly by the
zener resistance. For best regulation, keep current excursions
as low as possible.
Surge limitations are given in Figure 7. They are lower than
would be expected by considering only junction temperature,
as current crowding effects cause temperatures to be extremely high in small spots, resulting in device degradation
should the limits of Figure 7 be exceeded.
0.8
1
L, LEAD LENGTH TO HEAT SINK (INCH)
Figure 2. Typical Thermal Resistance
EA
S
R E T
EP C H
R ON IS
ES T D
EN AC EV
TA T Y ICE
TI OU IS
VE R O
O B
I R , LEAKAGE CURRENT (F
µ A)
O N SO
R S L
IN EM ET
FO IC E
R ON
M
AT DU
IO C
N TO
TJ = TL + ∆TJL.
∆TJL is the increase in junction temperature above the lead
temperature and may be found from Figure 2 for dc power:
L
300
TE
θLA is the lead-to-ambient thermal resistance (°C/W) and PD is
the power dissipation. The value for θLA will vary and depends
on the device mounting method. θLA is generally 30 to 40°C/W
for the various clips and tie points in common use and for
printed circuit board wiring.
The temperature of the lead can also be measured using a
thermocouple placed on the lead as close as possible to the tie
point. The thermal mass connected to the tie point is normally
large enough so that it will not significantly respond to heat
surges generated in the diode as a result of pulsed operation
once steady-state conditions are achieved. Using the measured value of TL, the junction temperature may be determined by:
500
R
APPLICATION NOTE — ZENER VOLTAGE
θ JL , JUNCTION-TO-LEAD THERMAL RESISTANCE (°C/W)
GENERAL DATA — 500 mW DO-35 GLASS
1000
7000
5000
2000
TYPICAL LEAKAGE CURRENT
AT 80% OF NOMINAL
BREAKDOWN VOLTAGE
1000
700
500
200
100
70
50
20
10
7
5
2
1
0.7
0.5
+125°C
0.2
0.1
0.07
0.05
0.02
0.01
0.007
0.005
+25°C
0.002
0.001
3
4
5
6
7
8
9
10
11
12
13
14
15
VZ, NOMINAL ZENER VOLTAGE (VOLTS)
Figure 3. Typical Leakage Current
Motorola TVS/Zener Device Data
500 mW DO-35 Glass Data Sheet
6-3
GENERAL DATA — 500 mW DO-35 GLASS
TEMPERATURE COEFFICIENTS
+10
+8
+6
+4
+2
RANGE
0
VZ @ IZT
(NOTE 2)
–4
2
3
4
5
6
7
8
9
VZ, ZENER VOLTAGE (VOLTS)
10
11
B
140
120
120
130
140
150
20
3
2
1
10
160
+2
VZ @ IZT
(NOTE 2)
170
180
–4
200
3
4
PL
100
70
50
C, CAPACITANCE (pF)
C, CAPACITANCE (pF)
1 V BIAS
20
10
50% OF
VZ BIAS
5
5
6
7
8
Figure 5. Effect of Zener Current
0 V BIAS
50
0.01 mA
VZ, ZENER VOLTAGE (VOLTS)
TA = 25°C
100
100
1 mA
NOTE: BELOW 3 VOLTS AND ABOVE 8 VOLTS
NOTE: CHANGES IN ZENER CURRENT DO NOT
NOTE: AFFECT TEMPERATURE COEFFICIENTS
–2
190
70
20 mA
0
200
TA = 25°C
0 BIAS
30
20
1 VOLT BIAS
10
7
5
50% OF VZ BIAS
3
2
2
1
30
50
VZ, ZENER VOLTAGE (VOLTS)
VZ @ IZ
TA = 25°C
+4
Figure 4c. Range for Units 120 to 200 Volts
500
20
+6
VZ, ZENER VOLTAGE (VOLTS)
1000
VZ @ IZ (NOTE 2)
RANGE
10
7
5
Figure 4b. Range for Units 12 to 100 Volts
LE
160
100
12
SO
180
O
θVZ , TEMPERATURE COEFFICIENT (mV/ °C)
Figure 4a. Range for Units to 12 Volts
200
30
TE
–2
100
70
50
R
θVZ , TEMPERATURE COEFFICIENT (mV/ °C)
+12
EA
S
R E T
EP C H
R ON IS
ES T D
EN AC EV
TA T Y ICE
TI OU IS
VE R COEFFICIENT
O (mV/ °C)
θVZ , TEMPERATURE
O
FO N BS
R S OL
IN EM ET
FO IC E
R ON
M
AT DU
IO C
N TO
θVZ , TEMPERATURE COEFFICIENT (mV/ °C)
(–55°C to +150°C temperature range; 90% of the units are in the ranges indicated.)
1
2
5
10
20
50
100
VZ, ZENER VOLTAGE (VOLTS)
Figure 6a. Typical Capacitance 2.4–100 Volts
500 mW DO-35 Glass Data Sheet
6-4
1
120
140
160
180
190
200
220
VZ, ZENER VOLTAGE (VOLTS)
Figure 6b. Typical Capacitance 120–200 Volts
Motorola TVS/Zener Device Data
Ppk , PEAK SURGE POWER (WATTS)
GENERAL DATA — 500 mW DO-35 GLASS
100
70
50
RECTANGULAR
WAVEFORM
TJ = 25°C PRIOR TO
INITIAL PULSE
11 V–91 V NONREPETITIVE
30
5% DUTY CYCLE
1.8 V–10 V NONREPETITIVE
20
10
7
5
10% DUTY CYCLE
20% DUTY CYCLE
3
2
1
0.01
0.02
0.05
0.1
0.2
0.5
1
2
5
10
20
50
100
200
500
1000
PW, PULSE WIDTH (ms)
R
TE
EA
S
R E T
EP C H
R ON IS
ES T D
EN AC EV
TA T Y ICE
TI OU IS
VE Z R, DYNAMICOIMPEDANCE (OHMS)
I F , FORWARD CURRENT (mA)
Z
FO ON BS
R S OL
IN EM ET
FO IC E
R ON
M
AT DU
IO C
N TO
1000
500
1000
700
500
300
200
LE
RECTANGULAR
WAVEFORM, TJ = 25°C
100
70
50
30
20
10
7
5
3
2
1
0.01
0.1
B
SO
100–200 VOLTS NONREPETITIVE
1
10
47 V
100
27 V
50
20
6.2 V
10
5
2
100
1000
1
0.1
0.2
0.5
PW, PULSE WIDTH (ms)
100
70
50
5 mA
20
20 mA
5
10
20
50
100
MAXIMUM
MINIMUM
500
200
100
50
20
10
7
5
75°C
10
25°C
5 150°C
2
1
2
Figure 8. Effect of Zener Current on
Zener Impedance
1000
TJ = 25°C
iZ(rms) = 0.1 IZ(dc)
f = 60 Hz
PL
ZZ , DYNAMIC IMPEDANCE (OHMS)
IZ = 1 mA
200
1
IZ, ZENER CURRENT (mA)
Figure 7b. Maximum Surge Power DO-204AH
100–200 Volts
1000
700
500
TJ = 25°C
iZ(rms) = 0.1 IZ(dc)
f = 60 Hz
VZ = 2.7 V
200
O
Ppk , PEAK SURGE POWER (WATTS)
Figure 7a. Maximum Surge Power 1.8–91 Volts
0°C
2
1
2
3
5
7
10
20
30
50
70 100
VZ, ZENER VOLTAGE (VOLTS)
Figure 9. Effect of Zener Voltage on Zener Impedance
Motorola TVS/Zener Device Data
1
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1
VF, FORWARD VOLTAGE (VOLTS)
Figure 10. Typical Forward Characteristics
500 mW DO-35 Glass Data Sheet
6-5
GENERAL DATA — 500 mW DO-35 GLASS
20
10
1
0.01
1
2
3
R
TE
0.1
EA
S
R E T
EP C H
R ON IS
ES T D
EN AC EV
TA T Y ICE
TI OU IS
VE R O
FO ON BS
R S OL
IN EM ET
FO IC E
R ON
M
AT DU
IO C
N TO
I Z , ZENER CURRENT (mA)
TA = 25°
4
5
6
7
8
9
10
11
12
13
14
15
16
29
30
LE
VZ, ZENER VOLTAGE (VOLTS)
SO
Figure 11. Zener Voltage versus Zener Current — VZ = 1 thru 16 Volts
TA = 25°
O
1
0.1
PL
I Z , ZENER CURRENT (mA)
B
10
0.01
15
16
17
18
19
20
21
22
23
24
25
26
27
28
VZ, ZENER VOLTAGE (VOLTS)
Figure 12. Zener Voltage versus Zener Current — VZ = 15 thru 30 Volts
500 mW DO-35 Glass Data Sheet
6-6
Motorola TVS/Zener Device Data
GENERAL DATA — 500 mW DO-35 GLASS
TA = 25°
1
0.01
35
40
45
50
55
60
65
70
75
80
85
90
95
EA
S
R E T
EP C H
R ON IS
ES T D
EN AC EV
TA T Y ICE
TI OU IS
VE R O
FO ON BS
R S OL
IN EM ET
FO IC E
R ON
M
AT DU
IO C
N TO
30
R
0.1
TE
I Z , ZENER CURRENT (mA)
10
100
105
250
260
VZ, ZENER VOLTAGE (VOLTS)
SO
LE
Figure 13. Zener Voltage versus Zener Current — VZ = 30 thru 105 Volts
O
1
0.1
PL
I Z , ZENER CURRENT (mA)
B
10
0.01
110
120
130
140
150
160
170
180
190
200
210
220
230
240
VZ, ZENER VOLTAGE (VOLTS)
Figure 14. Zener Voltage versus Zener Current — VZ = 110 thru 220 Volts
Motorola TVS/Zener Device Data
500 mW DO-35 Glass Data Sheet
6-7
GENERAL DATA — 500 mW DO-35 GLASS
Zener Voltage Regulator Diodes — Axial Leaded
500 mW DO-35 Glass
K
EA
S
R E T
EP C H
R ON IS
ES T D
EN AC EV
TA T Y ICE
TI OU IS
VE R O
FO ON BS
R S OL
IN EM ET
FO IC E
R ON
M
AT DU
IO C
N TO
TE
D
F
DIM
A
B
D
F
K
MILLIMETERS
MIN
MAX
3.05
5.08
1.52
2.29
0.46
0.56
—
1.27
25.40
38.10
INCHES
MIN
MAX
0.120 0.200
0.060 0.090
0.018 0.022
—
0.050
1.000 1.500
All JEDEC dimensions and notes apply.
CASE 299-02
DO-204AH
GLASS
B
SO
F
LE
A
K
R
B
NOTES:
1. PACKAGE CONTOUR OPTIONAL WITHIN A AND B
HEAT SLUGS, IF ANY, SHALL BE INCLUDED
WITHIN THIS CYLINDER, BUT NOT SUBJECT TO
THE MINIMUM LIMIT OF B.
2. LEAD DIAMETER NOT CONTROLLED IN ZONE F
TO ALLOW FOR FLASH, LEAD FINISH BUILDUP
AND MINOR IRREGULARITIES OTHER THAN
HEAT SLUGS.
3. POLARITY DENOTED BY CATHODE BAND.
4. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
O
(Refer to Section 10 for Surface Mount, Thermal Data and Footprint Information.)
MULTIPLE PACKAGE QUANTITY (MPQ)
REQUIREMENTS
Tape and Reel
Tape and Ammo
Type No. Suffix
MPQ (Units)
RL, RL2(1)
5K
TA, TA2(1)
5K
PL
Package Option
NOTES: 1. The “2” suffix refers to 26 mm tape spacing.
NOTES: 2. Radial Tape and Reel may be available. Please contact your Motorola
NOTES: 2. representative.
Refer to Section 10 for more information on Packaging Specifications.
500 mW DO-35 Glass Data Sheet
6-8
Motorola TVS/Zener Device Data