IRLZ44Z Data Sheet (382 KB, EN)

PD - 95539A
IRLZ44ZPbF
IRLZ44ZSPbF
IRLZ44ZLPbF
Features
l
l
l
l
l
l
l
Logic Level
Advanced Process Technology
Ultra Low On-Resistance
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
Lead-Free
HEXFET® Power MOSFET
D
RDS(on) = 13.5mΩ
G
Description
This HEXFET® Power MOSFET utilizes the latest
processing techniques to achieve extremely low
on-resistance per silicon area. Additional features
of this design are a 175°C junction operating
temperature, fast switching speed and improved
repetitive avalanche rating. These features combine
to make this design an extremely efficient and
reliable device for use in a wide variety of
applications.
VDSS = 55V
ID = 51A
S
TO-220AB
IRLZ44ZPbF
D2Pak
IRLZ44ZSPbF
TO-262
IRLZ44ZLPbF
Absolute Maximum Ratings
Parameter
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
Max.
Continuous Drain Current, VGS @ 10V (Silicon Limited)
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current
c
Power Dissipation
VGS
EAS (Thermally limited)
EAS (Tested )
IAR
EAR
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy
Single Pulse Avalanche Energy Tested Value
Avalanche Current
Repetitive Avalanche Energy
TJ
TSTG
Operating Junction and
Storage Temperature Range
d
c
g
i
Parameter
RθJC
Junction-to-Case
RθCS
Case-to-Sink, Flat Greased Surface
RθJA
Junction-to-Ambient
RθJA
Junction-to-Ambient (PCB Mount)
www.irf.com
W
0.53
± 16
78
110
See Fig.12a, 12b, 15, 16
W/°C
V
mJ
A
mJ
°C
Thermal Resistance
ik
A
-55 to + 175
Soldering Temperature, for 10 seconds
Mounting Torque, 6-32 or M3 screw
k
h
Units
51
36
204
80
ik
jk
300 (1.6mm from case )
10 lbf in (1.1N m)
y
y
Typ.
Max.
Units
–––
1.87
°C/W
0.50
–––
–––
62
–––
40
1
10/01/10
IRLZ44Z/S/LPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)DSS
∆V(BR)DSS/∆TJ
RDS(on)
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
VGS(th)
Gate Threshold Voltage
Forward Transconductance
Drain-to-Source Leakage Current
Min. Typ. Max. Units
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
LD
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Internal Drain Inductance
–––
0.05
11
–––
–––
–––
–––
–––
–––
–––
–––
24
7.5
12
14
160
25
42
4.5
–––
–––
13.5
20
22.5
3.0
–––
20
250
200
-200
36
–––
–––
–––
–––
–––
–––
–––
LS
Internal Source Inductance
–––
7.5
–––
6mm (0.25in.)
from package
Ciss
Coss
Crss
Coss
Coss
Coss eff.
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
–––
–––
–––
–––
–––
–––
1620
230
130
860
180
280
–––
–––
–––
–––
–––
–––
S
and center of die contact
VGS = 0V
VDS = 25V
ƒ = 1.0MHz
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
VGS = 0V, VDS = 44V, ƒ = 1.0MHz
VGS = 0V, VDS = 0V to 44V
gfs
IDSS
IGSS
V
V/°C
mΩ
mΩ
mΩ
Conditions
55
–––
–––
–––
–––
1.0
27
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
V
V
µA
nA
nC
ns
nH
pF
VGS = 0V, ID = 250µA
Reference to 25°C, ID = 1mA
VGS = 10V, ID = 31A
VGS = 5.0V, ID = 30A
VGS = 4.5V, ID = 15A
VDS = VGS, ID = 250µA
VDS = 25V, ID = 31A
VDS = 55V, VGS = 0V
VDS = 55V, VGS = 0V, TJ = 125°C
VGS = 16V
VGS = -16V
ID = 31A
VDS = 44V
VGS = 5.0V
VDD = 50V
ID = 31A
RG = 7.5 Ω
VGS = 5.0V
D
Between lead,
e
e
e
e
e
G
f
Source-Drain Ratings and Characteristics
Parameter
Min. Typ. Max. Units
IS
Continuous Source Current
–––
–––
51
ISM
(Body Diode)
Pulsed Source Current
–––
–––
204
VSD
trr
Qrr
ton
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Forward Turn-On Time
–––
–––
–––
–––
21
16
1.3
32
24
2
c
Conditions
MOSFET symbol
A
V
ns
nC
showing the
integral reverse
p-n junction diode.
TJ = 25°C, IS = 31A, VGS = 0V
TJ = 25°C, IF = 31A, VDD = 28V
di/dt = 100A/µs
e
e
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.irf.com
IRLZ44Z/S/LPbF
1000
1000
ID, Drain-to-Source Current (A)
TOP
100
BOTTOM
10
3.0V
1
≤ 60µs PULSE WIDTH
Tj = 25°C
TOP
ID, Drain-to-Source Current (A)
VGS
15V
10V
8.0V
5.0V
4.5V
4.0V
3.5V
3.0V
0.1
100
BOTTOM
10
3.0V
≤ 60µs PULSE WIDTH
Tj = 175°C
1
0.1
1
10
100
0.1
VDS, Drain-to-Source Voltage (V)
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
60
Gfs, Forward Transconductance (S)
1000.0
ID, Drain-to-Source Current (Α)
VGS
15V
10V
8.0V
5.0V
4.5V
4.0V
3.5V
3.0V
T J = 25°C
100.0
T J = 175°C
10.0
VDS = 20V
≤ 60µs PULSE WIDTH
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
10.0
T J = 175°C
40
T J = 25°C
20
VDS = 10V
380µs PULSE WIDTH
0
0
10
20
30
40
50
ID, Drain-to-Source Current (A)
Fig 4. Typical Forward Transconductance
Vs. Drain Current
3
IRLZ44Z/S/LPbF
2500
VGS, Gate-to-Source Voltage (V)
2000
C, Capacitance (pF)
12
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
C oss = C ds + C gd
Ciss
1500
1000
500
Coss
Crss
VDS= 44V
VDS= 28V
VDS= 11V
10
8
6
4
2
0
0
1
ID= 31A
10
0
100
30
40
50
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000
ID, Drain-to-Source Current (A)
1000.0
ISD, Reverse Drain Current (A)
20
QG Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
100.0
T J = 175°C
10.0
T J = 25°C
1.0
VGS = 0V
0.2
0.6
1.0
1.4
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
100µsec
10
1msec
1
Tc = 25°C
Tj = 175°C
Single Pulse
10msec
0.1
0.1
4
10
1.8
1
10
100
1000
VDS , Drain-toSource Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRLZ44Z/S/LPbF
2.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
60
ID , Drain Current (A)
50
40
30
20
10
0
ID = 30A
VGS = 5.0V
2.0
1.5
1.0
0.5
25
50
75
100
125
150
175
-60 -40 -20
T J , Junction Temperature (°C)
0
20 40 60 80 100 120 140 160 180
T J , Junction Temperature (°C)
Fig 10. Normalized On-Resistance
Vs. Temperature
Fig 9. Maximum Drain Current Vs.
Case Temperature
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.1
τJ
0.05
0.02
0.01
R1
R1
τJ
τ1
R2
R2
τ2
τ1
τ2
Ci= τi/Ri
Ci i/Ri
0.01
R3
R3
τ3
τC
τ
τ3
Ri (°C/W) τi (sec)
0.736
0.000345
0.687
0.00147
0.449
0.007058
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRLZ44Z/S/LPbF
DRIVER
L
VDS
D.U.T
RG
20V
VGS
+
V
- DD
IAS
tp
A
0.01Ω
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
EAS, Single Pulse Avalanche Energy (mJ)
320
15V
ID
3.7A
5.7A
BOTTOM 31A
TOP
240
160
80
0
25
50
75
100
125
150
175
Starting T J, Junction Temperature (°C)
I AS
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
QG
QGS
QGD
3.0
VG
Charge
Fig 13a. Basic Gate Charge Waveform
L
DUT
0
1K
VCC
VGS(th) Gate threshold Voltage (V)
10 V
2.5
ID = 250µA
2.0
1.5
1.0
0.5
-75 -50 -25
0
25
50
75
100 125 150 175
T J , Temperature ( °C )
Fig 13b. Gate Charge Test Circuit
6
Fig 14. Threshold Voltage Vs. Temperature
www.irf.com
IRLZ44Z/S/LPbF
1000
Avalanche Current (A)
Duty Cycle = Single Pulse
100
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆ Tj = 25°C due to
avalanche losses. Note: In no
case should Tj be allowed to
exceed Tjmax
0.01
10
0.05
0.10
1
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current Vs.Pulsewidth
EAR , Avalanche Energy (mJ)
100
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = 31A
80
60
40
20
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy
Vs. Temperature
www.irf.com
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T jmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
175
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav ) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
7
IRLZ44Z/S/LPbF
D.U.T
Driver Gate Drive
ƒ
+
„
-
-
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
di/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
‚
D=
Period
P.W.
+
VDD
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 17. Diode Reverse Recovery Test Circuit for N-Channel
HEXFET® Power MOSFETs
V DS
VGS
RG
RD
D.U.T.
+
-VDD
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 18a. Switching Time Test Circuit
VDS
90%
10%
VGS
td(on)
tr
t d(off)
tf
Fig 18b. Switching Time Waveforms
8
www.irf.com
IRLZ44Z/S/LPbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
EXAMPLE: THIS IS AN IRF1010
LOT CODE 1789
ASS EMBLED ON WW 19, 1997
IN THE ASS EMBLY LINE "C"
Note: "P" inass embly line position
indicates "Lead - Free"
INTERNATIONAL
RECT IFIER
LOGO
ASS EMBLY
LOT CODE
PART NUMBER
DATE CODE
YEAR 7 = 1997
WEEK 19
LINE C
TO-220AB packages are not recommended for Surface Mount Application.
Notes:
1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
9
IRLZ44Z/S/LPbF
D2Pak Package Outline
Dimensions are shown in millimeters (inches)
D2Pak Part Marking Information
THIS IS AN IRF530S WITH
LOT CODE 8024
AS S EMBLED ON WW 02, 2000
IN THE AS SEMBLY LINE "L"
INTERNATIONAL
RECTIFIER
LOGO
AS S EMBLY
LOT CODE
PART NUMBER
F530S
DATE CODE
YEAR 0 = 2000
WEEK 02
LINE L
OR
INT ERNAT IONAL
RECTIFIER
LOGO
AS SEMBLY
LOT CODE
PART NUMBER
F530S
DAT E CODE
P = DES IGNATES LEAD - F REE
PRODUCT (OPTIONAL)
YEAR 0 = 2000
WEEK 02
A = AS SEMBLY S ITE CODE
Notes:
1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
10
www.irf.com
IRLZ44Z/S/LPbF
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
TO-262 Part Marking Information
EXAMPLE: THIS IS AN IRL3103L
LOT CODE 1789
AS S EMBLED ON WW 19, 1997
IN THE AS SEMBLY LINE "C"
INTERNATIONAL
RECT IFIER
LOGO
AS SEMBLY
LOT CODE
PART NUMBER
DATE CODE
YEAR 7 = 1997
WEEK 19
LINE C
OR
INT ERNATIONAL
RECTIFIER
LOGO
AS S EMBLY
LOT CODE
PART NUMBER
DAT E CODE
P = DES IGNAT ES LEAD-FREE
PRODUCT (OPTIONAL)
YEAR 7 = 1997
WEEK 19
A = AS S EMBLY S ITE CODE
Notes:
1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
11
IRLZ44Z/S/LPbF
D2Pak Tape & Reel Infomation
TRR
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
11.60 (.457)
11.40 (.449)
0.368 (.0145)
0.342 (.0135)
15.42 (.609)
15.22 (.601)
24.30 (.957)
23.90 (.941)
TRL
10.90 (.429)
10.70 (.421)
1.75 (.069)
1.25 (.049)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
60.00 (2.362)
MIN.
26.40 (1.039)
24.40 (.961)
3
30.40 (1.197)
MAX.
4
Notes:
… Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive
max. junction temperature. (See fig. 11).
avalanche performance.
‚ Limited by TJmax, starting TJ = 25°C, L = 0.166mH † This value determined from sample failure population. 100%
RG = 25Ω, IAS = 31A, VGS =10V. Part not
tested to this value in production.
recommended for use above this value.
‡ This is only applied to TO-220AB pakcage.
ƒ Pulse width ≤ 1.0ms; duty cycle ≤ 2%.
ˆ This is applied to D2Pak, when mounted on 1" square PCB (FR„ Coss eff. is a fixed capacitance that gives the
4 or G-10 Material). For recommended footprint and soldering
same charging time as Coss while VDS is rising
techniques refer to application note #AN-994.
from 0 to 80% VDSS .
‰ Rθ is measured at TJ approximately 90°C
 Repetitive rating; pulse width limited by
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 10/2010
12
www.irf.com