PD - 97046A IRF3805PbF IRF3805SPbF IRF3805LPbF Features l l l l l l HEXFET® Power MOSFET Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Lead-Free D VDSS = 55V RDS(on) = 3.3mΩ G Description This HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating.These features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications. Absolute Maximum Ratings ID = 75A S TO-220AB IRF3805PbF D2Pak IRF3805SPbF Parameter TO-262 IRF3805LPbF Max. Units I D @ TC = 25°C Continuous Drain Current, V GS @ 10V (Silicon Limited) 210 I D @ TC = 100°C Continuous Drain Current, V GS @ 10V (Silicon Limited) 150 I D @ TC = 25°C 75 I DM Continuous Drain Current, V GS @ 10V (Package limited) Pulsed Drain Current 890 P D @TC = 25°C Power Dissipation 300 W 2.0 ± 20 W/°C V 650 mJ c V GS Linear Derating Factor Gate-to-Source Voltage E AS (Thermally limited) Single Pulse Avalanche Energy E AS (Tested ) Single Pulse Avalanche Energy Tested Value I AR Avalanche Current E AR TJ Repetitive Avalanche Energy T STG Storage Temperature Range c d 940 See Fig.12a, 12b, 15, 16 g -55 to + 175 Operating Junction and °C Mounting Torque, 6-32 or M3 screw Thermal Resistance k i Parameter 300 (1.6mm from case ) y Junction-to-Case RθCS Case-to-Sink, Flat Greased Surface RθJA Junction-to-Ambient RθJA Junction-to-Ambient (PCB Mount) i jk y 10 lbf in (1.1N m) Typ. RθJC ik A mJ Soldering Temperature, for 10 seconds www.irf.com h A ––– Max. Units 0.5 °C/W l 0.50 ––– ––– 62 ––– 40 1 07/23/10 IRF3805/S/LPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units V Conditions V(BR)DSS Drain-to-Source Breakdown Voltage 55 ––– ––– VGS = 0V, ID = 250µA ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.051 ––– V/°C Reference to 25°C, ID = 1mA e RDS(on) Static Drain-to-Source On-Resistance ––– 2.6 3.3 mΩ VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V VDS = VGS, ID = 250µA gfs Forward Transconductance 75 ––– ––– V VDS = 25V, ID = 75A IDSS Drain-to-Source Leakage Current ––– ––– 20 µA VDS = 55V, VGS = 0V ––– ––– 250 IGSS Gate-to-Source Forward Leakage ––– ––– 200 nA VGS = 20V VGS = 10V, ID = 75A VDS = 55V, VGS = 0V, TJ = 125°C VGS = -20V Gate-to-Source Reverse Leakage ––– ––– -200 Qg Total Gate Charge ––– 190 290 Qgs Gate-to-Source Charge ––– 52 ––– Qgd Gate-to-Drain ("Miller") Charge ––– 72 ––– VGS = 10V td(on) Turn-On Delay Time ––– 150 ––– VDD = 28V tr Rise Time ––– 20 ––– td(off) Turn-Off Delay Time ––– 93 ––– tf Fall Time ––– 87 ––– VGS = 10V LD Internal Drain Inductance ––– 4.5 ––– Between lead, LS Internal Source Inductance ––– 7.5 ––– 6mm (0.25in.) from package ––– and center of die contact VGS = 0V ID = 75A nC Input Capacitance Coss Crss Coss Coss Coss eff. e ID = 75A ns nH Ciss VDS = 44V RG = 2.6 Ω e D G S ––– 7960 Output Capacitance ––– 1260 ––– Reverse Transfer Capacitance ––– 630 ––– Output Capacitance ––– 4400 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Output Capacitance ––– 980 ––– VGS = 0V, VDS = 44V, ƒ = 1.0MHz Effective Output Capacitance ––– 1550 ––– VGS = 0V, VDS = 0V to 44V VDS = 25V pF ƒ = 1.0MHz f Source-Drain Ratings and Characteristics Parameter Min. Typ. Max. Units Conditions IS Continuous Source Current ––– ––– 75 ISM (Body Diode) Pulsed Source Current ––– ––– 890 VSD (Body Diode) Diode Forward Voltage ––– ––– 1.3 V p-n junction diode. TJ = 25°C, IS = 75A, VGS = 0V trr Reverse Recovery Time ––– 36 54 ns TJ = 25°C, IF = 75A, VDD = 28V Qrr Reverse Recovery Charge ––– 47 71 nC di/dt = 100A/µs ton Forward Turn-On Time 2 c MOSFET symbol A showing the integral reverse e e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.irf.com IRF3805/S/LPbF 1000 1000 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 4.5V 10 BOTTOM 100 4.5V ≤ 60µs PULSE WIDTH Tj = 25°C 10 1 0.1 1 10 0.1 100 1 ≤ 60µs PULSE WIDTH Tj = 175°C 10 100 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000.0 200 Gfs, Forward Transconductance (S) ID, Drain-to-Source Current(Α) VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V TJ = 175°C 100.0 10.0 TJ = 25°C 1.0 VDS = 20V ≤ 60µs PULSE WIDTH TJ = 25°C 160 TJ = 175°C 120 80 40 VDS = 10V 380µs PULSE WIDTH 0.1 4.0 5.0 6.0 7.0 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 8.0 0 0 20 40 60 80 100 120 140 160 180 ID, Drain-to-Source Current (A) Fig 4. Typical Forward Transconductance Vs. Drain Current 3 IRF3805/S/LPbF 14000 VGS, Gate-to-Source Voltage (V) 12000 C, Capacitance (pF) 20 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd 10000 Ciss 8000 6000 4000 Coss 2000 Crss 16 12 8 4 10 0 100 10000 ID, Drain-to-Source Current (A) ISD , Reverse Drain Current (A) 1000.0 TJ = 175°C 100.0 10.0 TJ = 25°C 1.0 VGS = 0V 1.2 1.6 2.0 VSD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 150 200 250 300 OPERATION IN THIS AREA LIMITED BY R DS (on) 1000 100µsec 100 10msec 10 1msec 1 Tc = 25°C Tj = 175°C Single Pulse 0.1 0.1 0.8 100 Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 0.4 50 QG Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) 0.0 VDS = 44V VDS= 28V 0 0 1 ID= 75A 2.4 1 10 100 1000 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRF3805/S/LPbF 2.0 RDS(on) , Drain-to-Source On Resistance (Normalized) 240 LIMITED BY PACKAGE ID , Drain Current (A) 200 160 120 80 40 0 25 50 75 100 125 150 ID = 75A VGS = 10V 1.5 1.0 0.5 175 -60 -40 -20 TC , Case Temperature (°C) 0 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (°C) Fig 10. Normalized On-Resistance Vs. Temperature Fig 9. Maximum Drain Current Vs. Case Temperature 1 Thermal Response ( ZthJC ) D = 0.50 0.1 0.20 0.10 0.05 0.02 0.01 0.01 τJ R1 R1 τJ τ1 R2 R2 τC τ2 τ1 τ2 τ Ri (°C/W) τi (sec) 0.2653 0.001016 0.2347 0.012816 Ci= τi/Ri Ci i/Ri 0.001 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 15V DRIVER L VDS D.U.T RG 20V VGS + V - DD IAS A 0.01Ω tp Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp EAS, Single Pulse Avalanche Energy (mJ) IRF3805/S/LPbF 2000 I D 15A 20A BOTTOM 75A TOP 1600 1200 800 400 0 25 50 75 100 125 150 175 Starting TJ, Junction Temperature (°C) I AS Fig 12c. Maximum Avalanche Energy Vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG QGS QGD 4.5 VG Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 50KΩ 12V .2µF .3µF D.U.T. + V - DS VGS(th) Gate threshold Voltage (V) 10 V 4.0 ID = 250µA 3.5 3.0 2.5 2.0 1.5 -75 -50 -25 VGS 0 25 50 75 100 125 150 175 TJ , Temperature ( °C ) 3mA IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 6 Fig 14. Threshold Voltage Vs. Temperature www.irf.com IRF3805/S/LPbF 10000 Avalanche Current (A) Duty Cycle = Single Pulse 1000 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax 0.01 100 0.05 0.10 10 1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 800 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 75A 600 400 200 0 25 50 75 100 125 150 Starting TJ , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy Vs. Temperature www.irf.com Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 7 IRF3805/S/LPbF D.U.T Driver Gate Drive + • • • • D.U.T. ISD Waveform Reverse Recovery Current + dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period * RG D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - - Period P.W. + VDD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V DS VGS RG RD D.U.T. + -VDD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com IRF3805/S/LPbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) TO-220AB Part Marking Information EXAMPLE: T HIS IS AN IRF1010 LOT CODE 1789 AS S EMBLED ON WW 19, 2000 IN T HE AS S E MBLY LINE "C" Note: "P" in as s embly line pos ition indicates "Lead - Free" INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER DAT E CODE YEAR 0 = 2000 WEEK 19 LINE C TO-220AB package is not recommended for Surface Mount Application Notes: 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 9 IRF3805/S/LPbF D2Pak (TO-263AB) Package Outline Dimensions are shown in millimeters (inches) D2Pak (TO-263AB) Part Marking Information T HIS IS AN IRF530S WITH LOT CODE 8024 ASSEMBLED ON WW 02, 2000 IN THE ASS EMBLY LINE "L" INT ERNAT IONAL RECT IF IER LOGO ASSE MBLY LOT CODE PART NUMBER F 530S DAT E CODE YE AR 0 = 2000 WEE K 02 LINE L OR INT ERNAT IONAL RECT IF IER LOGO ASSE MBLY LOT CODE PART NUMBER F 530S DAT E CODE P = DESIGNATES LEAD - F REE PRODUCT (OPT IONAL) YE AR 0 = 2000 WEEK 02 A = ASS EMBLY SITE CODE Notes: 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 www.irf.com IRF3805/S/LPbF TO-262 Package Outline Dimensions are shown in millimeters (inches) TO-262 Part Marking Information EXAMPLE: T HIS IS AN IRL3103L LOT CODE 1789 AS SEMBLED ON WW 19, 1997 IN T HE AS SEMBLY LINE "C" Note: "P" in ass embly line pos ition indicates "Lead-F ree" INT ERNAT IONAL RE CTIF IER LOGO ASSE MBLY LOT CODE PART NUMBER DAT E CODE YEAR 7 = 1997 WEEK 19 LINE C OR INTE RNAT IONAL RECT IFIER LOGO ASS EMBLY LOT CODE PART NUMBER DATE CODE P = DESIGNAT ES LEAD-FREE PRODUCT (OPTIONAL) YE AR 7 = 1997 WE EK 19 A = ASSEMBLY SIT E CODE Notes: 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 11 IRF3805/S/LPbF D2Pak Tape & Reel Information TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) FEED DIRECTION 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 11.60 (.457) 11.40 (.449) 0.368 (.0145) 0.342 (.0135) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 4.72 (.136) 4.52 (.178) 16.10 (.634) 15.90 (.626) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Notes: Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive max. junction temperature. (See fig. 11). avalanche performance. Limited by TJmax, starting TJ = 25°C, L = 0.23mH This value determined from sample failure population. 100% RG = 25Ω, IAS = 75A, VGS =10V. Part not tested to this value in production. recommended for use above this value. This is only applied to TO-220AB pakcage. Pulse width ≤ 1.0ms; duty cycle ≤ 2%. This is applied to D2Pak, when mounted on 1" square PCB (FR Coss eff. is a fixed capacitance that gives the 4 or G-10 Material). For recommended footprint and soldering same charging time as Coss while VDS is rising techniques refer to application note #AN-994. from 0 to 80% VDSS . Rθ is measured at TJ of approximately 90°C. TO-220 device will have an Rth of 0.45°C/W. Repetitive rating; pulse width limited by Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 07/2010 12 www.irf.com