IRL3705Z Data Sheet (377 KB, EN)

PD - 95579A
IRL3705ZPbF
IRL3705ZSPbF
IRL3705ZLPbF
Features
l
l
l
l
l
l
l
Logic Level
Advanced Process Technology
Ultra Low On-Resistance
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
Lead-Free
HEXFET® Power MOSFET
D
RDS(on) = 8.0mΩ
G
Description
This HEXFET® Power MOSFET utilizes the latest
processing techniques to achieve extremely low
on-resistance per silicon area. Additional features
of this design are a 175°C junction operating
temperature, fast switching speed and improved
repetitive avalanche rating. These features
combine to make this design an extremely efficient
and reliable device for use in a wide variety of
applications.
VDSS = 55V
ID = 75A
S
TO-220AB
D2Pak
IRL3705ZPbF IRL3705ZSPbF
TO-262
IRL3705ZLPbF
Absolute Maximum Ratings
ID @ TC = 25°C
ID @ TC = 100°C
ID @ TC = 25°C
IDM
PD @TC = 25°C
VGS
EAS (Thermally limited)
EAS (Tested )
IAR
EAR
TJ
TSTG
Parameter
Max.
Continuous Drain Current, VGS @ 10V (Silicon Limited)
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V (Package Limited)
Pulsed Drain Current
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy
Single Pulse Avalanche Energy Tested Value
Avalanche Current
Repetitive Avalanche Energy
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting Torque, 6-32 or M3 screw
86
61
75
340
130
0.88
± 16
120
180
See Fig.12a, 12b, 15, 16
c
d
c
h
g
i
Thermal Resistance
Parameter
RθJC
Junction-to-Case
RθCS
Case-to-Sink, Flat Greased Surface
RθJA
Junction-to-Ambient
RθJA
Junction-to-Ambient (PCB Mount)
www.irf.com
i
i
j
Units
A
W
W/°C
V
mJ
A
mJ
-55 to + 175
°C
300 (1.6mm from case )
10 lbf in (1.1N m)
y
y
Typ.
Max.
Units
°C/W
–––
1.14
0.50
–––
–––
62
–––
40
1
10/01/10
IRL3705Z/S/LPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)DSS
∆V(BR)DSS/∆TJ
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
VGS(th)
Gate Threshold Voltage
Forward Transconductance
Drain-to-Source Leakage Current
gfs
IDSS
IGSS
Min. Typ. Max. Units
55
–––
–––
–––
–––
1.0
150
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
0.055
6.5
–––
–––
–––
–––
–––
–––
–––
–––
40
12
21
17
240
26
83
–––
–––
8.0
11
12
3.0
–––
20
250
200
-200
60
–––
–––
–––
–––
–––
–––
–––
4.5
–––
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
LD
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Internal Drain Inductance
LS
Internal Source Inductance
–––
7.5
–––
Ciss
Coss
Crss
Coss
Coss
Coss eff.
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
–––
–––
2880
420
–––
–––
–––
–––
–––
–––
220
1500
330
510
–––
–––
–––
–––
Conditions
V VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 1mA
VGS = 10V, ID = 52A
mΩ VGS = 5.0V, ID = 43A
VGS = 4.5V, ID = 30A
V VDS = VGS, ID = 250µA
V VDS = 25V, ID = 52A
µA VDS = 55V, VGS = 0V
VDS = 55V, VGS = 0V, TJ = 125°C
nA VGS = 16V
VGS = -16V
ID = 43A
nC VDS = 44V
VGS = 5.0V
VDD = 28V
ns ID = 43A
RG = 4.3 Ω
VGS = 5.0V
e
e
e
e
e
nH
pF
Between lead,
6mm (0.25in.)
from package
and center of die contact
VGS = 0V
VDS = 25V
D
G
S
ƒ = 1.0MHz
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
VGS = 0V, VDS = 44V, ƒ = 1.0MHz
VGS = 0V, VDS = 0V to 44V
f
Source-Drain Ratings and Characteristics
Parameter
Min. Typ. Max. Units
IS
Continuous Source Current
–––
–––
75
ISM
(Body Diode)
Pulsed Source Current
–––
–––
340
VSD
trr
Qrr
ton
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Forward Turn-On Time
–––
–––
–––
–––
16
7.4
1.3
24
11
2
c
Conditions
MOSFET symbol
A
V
ns
nC
D
showing the
integral reverse
G
p-n junction diode.
TJ = 25°C, IS = 52A, VGS = 0V
TJ = 25°C, IF = 43A, VDD = 28V
di/dt = 100A/µs
e
S
e
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.irf.com
IRL3705Z/S/LPbF
1000
1000
VGS
12V
10V
8.0V
5.0V
4.5V
3.5V
3.0V
2.8V
ID, Drain-to-Source Current (A)
100
BOTTOM
10
TOP
ID, Drain-to-Source Current (A)
TOP
100
1
2.8V
0.1
BOTTOM
10
2.8V
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 175°C
Tj = 25°C
0.01
0.1
1
1
10
100
0.1
1000
1
10
100
1000
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
120
Gfs, Forward Transconductance (S)
1000
ID, Drain-to-Source Current (Α)
VGS
12V
10V
8.0V
5.0V
4.5V
3.5V
3.0V
2.8V
T J = 175°C
100
10
TJ = 25°C
1
VDS = 15V
≤60µs PULSE WIDTH
0.1
0
2
4
6
8
10
12
14
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
T J = 25°C
100
80
60
T J = 175°C
40
20
V DS = 8.0V
0
16
0
20
40
60
80
100
120
ID,Drain-to-Source Current (A)
Fig 4. Typical Forward Transconductance
vs. Drain Current
3
IRL3705Z/S/LPbF
100000
6.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
ID= 52A
VGS, Gate-to-Source Voltage (V)
C, Capacitance(pF)
C oss = Cds + C gd
10000
Ciss
1000
Coss
Crss
VDS= 44V
VDS= 28V
VDS= 11V
5.0
4.0
3.0
2.0
1.0
100
0.0
1
10
100
0
VDS, Drain-to-Source Voltage (V)
10
20
30
40
QG Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
1000
1000.00
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
TJ = 175°C
100.00
100
T J = 25°C
10.00
100µsec
10
VGS = 0V
10msec
1
1.00
0.0
0.5
1.0
1.5
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
1msec
Tc = 25°C
Tj = 175°C
Single Pulse
2.0
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRL3705Z/S/LPbF
100
90
RDS(on) , Drain-to-Source On Resistance
(Normalized)
2.0
Limited By Package
ID, Drain Current (A)
80
70
60
50
40
30
20
10
0
ID = 43A
VGS = 5.0V
1.5
1.0
0.5
25
50
75
100
125
150
-60 -40 -20 0
175
T C , Case Temperature (°C)
20 40 60 80 100 120 140 160 180
T J , Junction Temperature (°C)
Fig 10. Normalized On-Resistance
vs. Temperature
Fig 9. Maximum Drain Current vs.
Case Temperature
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.05
0.1
τJ
0.02
0.01
0.01
SINGLE PULSE
( THERMAL RESPONSE )
R1
R1
τJ
τ1
R2
R2
τC
τ2
τ1
τ2
Ci= τi/Ri
Ci i/Ri
τ
Ri (°C/W)
0.5413
τi (sec)
0.000384
0.5985
0.002778
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRL3705Z/S/LPbF
DRIVER
L
VDS
D.U.T
RG
20V
VGS
+
V
- DD
IAS
tp
A
0.01Ω
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
EAS , Single Pulse Avalanche Energy (mJ)
500
15V
ID
5.7A
8.5A
BOTTOM 52A
TOP
400
300
200
100
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
I AS
Fig 12c. Maximum Avalanche Energy
vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
QG
QGS
QGD
3.0
VG
Charge
Fig 13a. Basic Gate Charge Waveform
L
DUT
0
1K
VCC
VGS(th) Gate threshold Voltage (V)
10 V
2.5
2.0
ID = 250µA
1.5
1.0
0.5
-75 -50 -25
0
25
50
75 100 125 150 175 200
T J , Temperature ( °C )
Fig 13b. Gate Charge Test Circuit
6
Fig 14. Threshold Voltage vs. Temperature
www.irf.com
IRL3705Z/S/LPbF
100
Duty Cycle = Single Pulse
Avalanche Current (A)
0.01
10
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆ Tj = 25°C due to
avalanche losses
0.05
0.10
1
0.1
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
150
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = 52A
125
100
75
50
25
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy
vs. Temperature
www.irf.com
175
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T jmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav ) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
7
IRL3705Z/S/LPbF
D.U.T
Driver Gate Drive
ƒ
+
‚
„
•
•
•
•
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
*

RG
D=
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
-
Period
P.W.
+
VDD
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V DS
VGS
RG
RD
D.U.T.
+
-VDD
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 18a. Switching Time Test Circuit
VDS
90%
10%
VGS
td(on)
tr
t d(off)
tf
Fig 18b. Switching Time Waveforms
8
www.irf.com
IRL3705Z/S/LPbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
EXAMPLE: T HIS IS AN IRF1010
LOT CODE 1789
AS S EMBLED ON WW 19, 2000
IN THE AS S EMBLY LINE "C"
Note: "P" in as sembly line position
indicates "Lead - Free"
INT ERNAT IONAL
RECT IFIER
LOGO
AS S EMBLY
LOT CODE
PART NUMBER
DAT E CODE
YEAR 0 = 2000
WEEK 19
LINE C
Notes:
1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
9
IRL3705Z/S/LPbF
D2Pak (TO-263AB) Package Outline
Dimensions are shown in millimeters (inches)
D2Pak (TO-263AB) Part Marking Information
T HIS IS AN IRF530S WITH
LOT CODE 8024
AS SEMBLED ON WW 02, 2000
IN T HE ASS EMBLY LINE "L"
INT ERNAT IONAL
RECT IFIER
LOGO
AS SEMBLY
LOT CODE
PART NUMBER
F530S
DATE CODE
YEAR 0 = 2000
WEEK 02
LINE L
OR
INT ERNAT IONAL
RECT IFIER
LOGO
AS S EMBLY
LOT CODE
PART NUMBER
F530S
DAT E CODE
P = DES IGNAT ES LEAD - FREE
PRODUCT (OPTIONAL)
YEAR 0 = 2000
WEEK 02
A = ASS EMBLY SIT E CODE
Notes:
1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
10
www.irf.com
IRL3705Z/S/LPbF
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
TO-262 Part Marking Information
EXAMPLE: T HIS IS AN IRL3103L
LOT CODE 1789
ASS EMBLED ON WW 19, 1997
IN T HE ASS EMBLY LINE "C"
INT ERNATIONAL
RECT IFIER
LOGO
ASS EMBLY
LOT CODE
PART NUMBER
DAT E CODE
YEAR 7 = 1997
WEEK 19
LINE C
OR
INT ERNAT IONAL
RECT IFIER
LOGO
ASS EMBLY
LOT CODE
PART NUMBER
DAT E CODE
P = DESIGNAT ES LEAD-FREE
PRODUCT (OPT IONAL)
YEAR 7 = 1997
WEEK 19
A = ASS EMBLY SIT E CODE
Notes:
1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
11
IRL3705Z/S/LPbF
D2Pak Tape & Reel Information
Dimensions are shown in millimeters (inches)
TRR
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
1.60 (.063)
1.50 (.059)
11.60 (.457)
11.40 (.449)
1.65 (.065)
0.368 (.0145)
0.342 (.0135)
15.42 (.609)
15.22 (.601)
24.30 (.957)
23.90 (.941)
TRL
10.90 (.429)
10.70 (.421)
1.75 (.069)
1.25 (.049)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
60.00 (2.362)
MIN.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
26.40 (1.039)
24.40 (.961)
3
30.40 (1.197)
MAX.
4
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
‚ Limited by TJmax, starting TJ = 25°C,
L = 0.09mH RG = 25Ω, IAS = 52A, VGS =10V.
Part not recommended for use above this
value.
ƒ Pulse width ≤ 1.0ms; duty cycle ≤ 2%.
„ Coss eff. is a fixed capacitance that gives
the same charging time as Coss while VDS
is rising from 0 to 80% VDSS .
… Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive
avalanche performance.
† This value determined from sample failure population. 100%
tested to this value in production.
‡ This is only applied to TO-220AB pakcage.
ˆ This is applied to D2Pak, when mounted on 1" square PCB
(FR- 4 or G-10 Material). For recommended footprint and
soldering techniques refer to application note #AN-994.
‰ Rθ is measured at TJ of approximately 90°C.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 10/2010
12
www.irf.com