Features • Fast Read Access Time – 120 ns • Dual Voltage Range Operation • • • • • • • • • – Unregulated Battery Power Supply Range, 2.7V to 3.6V or Standard 5V ± 10% Supply Range Pin Compatible with JEDEC Standard AT27C4096 Low Power CMOS Operation – 20 µA Max (Less than 1 µA Typical) Standby for VCC = 3.6V – 36 mW Max Active at 5 MHz for VCC = 3.6V JEDEC Standard Surface Mount Packages – 44-lead PLCC – 40-lead VSOP High Reliability CMOS Technology – 2,000V ESD Protection – 200 mA Latchup Immunity Rapid Programming algorithm – 100 µs/Word (Typical) CMOS and TTL Compatible Inputs and Outputs – JEDEC Standard for LVTTL and LVBO Integrated Product Identification Code Industrial Temperature Range Green (Pb/Halide-free) Packaging Option 1. Description The AT27BV4096 is a high-performance, low-power, low-voltage 4,194,304-bit onetime programmable read-only memory (OTP EPROM) organized as 256K by 16 bits. It requires only one supply in the range of 2.7V to 3.6V in normal read mode operation. The by-16 organization makes this part ideal for portable and handheld 16 and 32 bit microprocessor based systems using either regulated or unregulated battery power. 4-Megabit (256K x 16) Unregulated Battery-Voltage High-Speed OTP EPROM AT27BV4096 Not Recommended for New Designs. Atmel’s innovative design techniques provide fast speeds that rival 5V parts while keeping the low power consumption of a 3V supply. At VCC = 2.7V, any word can be accessed in less than 120 ns. With a typical power dissipation of only 18 mW at 5 MHz and VCC = 3V, the AT27BV4096 consumes less than one fifth the power of a standard 5V EPROM. Standby mode supply current is typically less than 1 µA at 3V. The AT27BV4096 simplifies system design and stretches battery lifetime even further by eliminating the need for power supply regulation. The AT27BV4096 is available in industry-standard JEDEC-approved one-time programmable (OTP) plastic PLCC and VSOP packages. All devices feature two-line control (CE, OE) to give designers the flexibility to prevent bus contention. The AT27BV4096 operating with VCC at 3.0V produces TTL level outputs that are compatible with standard TTL logic devices operating at VCC = 5.0V. At VCC = 2.7V, the part is compatible with JEDEC approved low voltage battery operation (LVBO) interface specifications. The device is also capable of standard 5-volt operation making it ideally suited for dual supply range systems or card products that are pluggable in both 3-volt and 5-volt hosts. 0640E–EPROM–8/07 Atmel’s AT27BV4096 has additional features to ensure high quality and efficient production use. The Rapid Programming Algorithm reduces the time required to program the part and guarantees reliable programming. Programming time is typically only 100 µs/word. The Integrated Product Identification Code electronically identifies the device and manufacturer. This feature is used by industry-standard programming equipment to select the proper programming algorithms and voltages. The AT27BV4096 programs exactly the same way as a standard 5V AT27C4096 and uses the same programming equipment. 2. Pin Configurations Pin Name Function A0 - A17 Addresses O0 - O15 Outputs CE Chip Enable OE Output Enable NC No Connect Note: 2.1 Both GND pins must be connected. 40-lead VSOP Top View Type 1 A9 A10 A11 A12 A13 A14 A15 A16 A17 VCC VPP CE O15 O14 O13 O12 O11 O10 O9 O8 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 GND A8 A7 A6 A5 A4 A3 A2 A1 A0 OE O0 O1 O2 O3 O4 O5 O6 O7 GND 44-lead PLCC Top View 39 38 37 36 35 34 33 32 31 30 29 18 19 20 21 22 23 24 25 26 27 28 7 8 9 10 11 12 13 14 15 16 17 A13 A12 A11 A10 A9 GND NC A8 A7 A6 A5 O3 O2 O1 O0 OE NC A0 A1 A2 A3 A4 O12 O11 O10 O9 O8 GND NC O7 O6 O5 O4 6 5 4 3 2 1 44 43 42 41 40 O13 O14 O15 CE VPP NC VCC A17 A16 A15 A14 2.2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Note: PLCC package pins 1 and 23 are Don’t Connect. 2 AT27BV4096 0640E–EPROM–8/07 AT27BV4096 3. System Considerations Switching between active and standby conditions via the Chip Enable pin may produce transient voltage excursions. Unless accommodated by the system design, these transients may exceed datasheet limits, resulting in device non-conformance. At a minimum, a 0.1 µF high frequency, low inherent inductance, ceramic capacitor should be utilized for each device. This capacitor should be connected between the VCC and Ground terminals of the device, as close to the device as possible. Additionally, to stabilize the supply voltage level on printed circuit boards with large EPROM arrays, a 4.7 µF bulk electrolytic capacitor should be utilized, again connected between the VCC and Ground terminals. This capacitor should be positioned as close as possible to the point where the power supply is connected to the array. 4. Block Diagram 5. Absolute Maximum Ratings* Temperature Under Bias............................... -55° C to +125° C Storage Temperature .................................... -65° C to +150° C Voltage on Any Pin with Respect to Ground .........................................-2.0V to +7.0V(1) Voltage on A9 with Respect to Ground ......................................-2.0V to +14.0V(1) *NOTICE: Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability VPP Supply Voltage with Respect to Ground .......................................-2.0V to +14.0V(1) Note: 1. Minimum voltage is -0.6V DC which may undershoot to -2.0V for pulses of less than 20 ns. Maximum output pin voltage is VCC + 0.75V DC which may be exceeded if certain precautions are observed (consult application notes) and which may overshoot to +7.0V for pulses of less than 20 ns. 3 0640E–EPROM–8/07 6. Operating Modes Mode/Pin CE OE Ai VPP VCC Outputs Read(2) VIL VIL Ai X(1) VCC DOUT X VIH X X VCC High Z VCC High Z Output Disable Standby (2) (2) Rapid Program(3) X X X VIL VIH Ai VPP VCC DIN (3) VIH VIL Ai VPP VCC DOUT (3) VIH VIH X VPP VCC High Z VCC VCC Identification Code PGM Verify PGM Inhibit Product Identification(3)(5) Notes: VIH (5) VH(4) VIL VIL A9 = A0 = VIH or VIL A1 - A17 = VIL 1. X can be VIL or VIH. 2. Read, output disable, and standby modes require, 2.7V ≤VCC ≤3.6V, or 4.5V ≤VCC ≤5.5V. 3. Refer to Programming Characteristics. Programming modes require VCC = 6.5V. 4. VH = 12.0 ± 0.5V. 5. Two identifier bytes may be selected. All Ai inputs are held low (VIL), except A9 which is set to VH and A0 which is toggled low (VIL) to select the Manufacturer’s Identification byte and high (VIH) to select the Device Code byte. 7. DC and AC Operating Conditions for Read Operation AT27BV4096-12 Industrial Operating Temperature (Case) -40° C - 85° C 2.7V to 3.6V VCC Power Supply 4 5V ± 10% AT27BV4096 0640E–EPROM–8/07 AT27BV4096 8. DC and Operating Characteristics for Read Operation Symbol Parameter Condition Min Max Units VCC = 2.7V to 3.6V ILI ILO IPP1 (2) Input Load Current VIN = 0V to VCC ±1 µA Output Leakage Current VOUT = 0V to VCC ±5 µA VPP = VCC 10 µA ISB1 (CMOS), CE = VCC ± 0.3V 20 µA ISB2 (TTL), CE = 2.0 to VCC + 0.5V 100 µA f = 5 MHz, IOUT = 0 mA, CE = VIL, VCC = 3.6V 10 mA VPP (1) Read/Standby Current ISB VCC(1) Standby Current ICC VCC Active Current VIL Input Low Voltage VIH Input High Voltage VOL Output Low Voltage VOH Output High Voltage VCC = 3.0 to 3.6V -0.6 0.8 V VCC = 2.7 to 3.6V -0.6 0.2 x VCC V VCC = 3.0 to 3.6V 2.0 VCC + 0.5 V VCC = 2.7 to 3.6V 0.7 x VCC VCC + 0.5 V IOL = 2.0 mA 0.4 V IOL = 100 µA 0.2 V IOL = 20 µA 0.1 V IOH = -2.0 mA 2.4 V IOH = -100 µA VCC - 0.2 V IOH = -20 µA VCC - 0.1 V VCC = 4.5V to 5.5V ILI ILO IPP1 (2) Input Load Current VIN = 0V to VCC ±1 µA Output Leakage Current VOUT = 0V to VCC ±5 µA VPP = VCC 10 µA ISB1 (CMOS), CE = VCC ± 0.3V 100 µA ISB2 (TTL), CE = 2.0 to VCC + 0.5V 1 mA f = 5 MHz, IOUT = 0 mA, CE = VIL 40 mA VPP (1) Read/Standby Current ISB VCC(1) Standby Current ICC VCC Active Current VIL Input Low Voltage -0.6 0.8 V VIH Input High Voltage 2.0 VCC + 0.5 V VOL Output Low Voltage IOL = 2.1 mA 0.4 V VOH Output High Voltage IOH = -400 µA Notes: 2.4 V 1. VCC must be applied simultaneously with or before VPP, and removed simultaneously with or after VPP. 2. VPP may be connected directly to VCC, except during programming. The supply current would then be the sum of ICC and IPP. 5 0640E–EPROM–8/07 9. AC Characteristics for Read Operation VCC = 2.7V to 3.6V and 4.5V to 5.5V AT27BV4096-12 Symbol Parameter Condition tACC(3) Address to Output Delay tCE(2) tOE (2)(3) Max Units CE = OE = VIL 120 ns CE to Output Delay OE = VIL 120 ns OE to Output Delay CE = VIL 35 ns 30 ns tDF(4)(5) OE or CE High to Output Float, Whichever Occurred First tOH Output Hold from Address, CE or OE, Whichever Occurred First Min 0 ns 10. AC Waveforms for Read Operation(1) Notes: 1. Timing measurement references are 0.8V and 2.0V. Input AC drive levels are 0.45V and 2.4V, unless otherwise specified. 2. OE may be delayed up to tCE - tOE after the falling edge of CE without impact on tCE. 3. OE may be delayed up to tACC - tOE after the address is valid without impact on tACC. 4. This parameter is only sampled and is not 100% tested. 5. Output float is defined as the point when data is no longer driven. 6. When reading a AT27BV4096, a 0.1 µF capacitor is required across VCC and ground to suppress spurious voltage transients. 6 AT27BV4096 0640E–EPROM–8/07 AT27BV4096 11. Input Test Waveforms and Measurement Levels tR, tF < 20 ns (10% to 90%) 12. Output Test Load Note: CL = 100 pF including jig capacitance. 13. Pin Capacitance f = 1 MHz T = 25°C(1) Symbol CIN COUT Note: Typ Max Units Conditions 4 10 pF VIN = 0V 8 12 pF VOUT = 0V 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested. 7 0640E–EPROM–8/07 14. Programming Waveforms(1) Notes: 1. The Input Timing Reference is 0.8V for VIL and 2.0V for VIH. 2. tOE and tDFP are characteristics of the device but must be accommodated by the programmer. 3. When programming the AT27BV4096 a 0.1 µF capacitor is required across VPP and ground to suppress spurious voltage transients. 8 AT27BV4096 0640E–EPROM–8/07 AT27BV4096 15. DC Programming Characteristics TA = 25 ± 5° C, VCC = 6.5 ± 0.25V, VPP = 13.0 ± 0.25V Limits Symbol Parameter Test Conditions ILI Input Load Current VIN = VIL, VIH VIL Input Low Level VIH Input High Level VOL Output Low Voltage IOL = 2.1 mA VOH Output High Voltage IOH = -400 µA ICC2 VCC Supply Current (Program and Verify) IPP2 VPP Supply Current VID A9 Product Identification Voltage Min Max Units ±10 mA -0.6 0.8 V 2.0 VCC + 0.1 V 0.4 V 2.4 V CE = VIL 11.5 50 mA 30 mA 12.5 V Max Units 16. AC Programming Characteristics TA = 25 ± 5° C, VCC = 6.5 ± 0.25V, VPP = 13.0 ± 0.25V Limits Test Conditions(1) Symbol Parameter tAS Address Setup Time 2 µs tCES CE Setup Time 2 µs tOES OE Setup Time 2 µs tDS Data Setup Time 2 µs tAH Address Hold Time 0 µs tDH Data Hold Time 2 µs tDFP OE High to Output Float Delay(2) tVPS VPP Setup Time tVCS VCC Setup Time Input Rise and Fall Times: (10% to 90%) 20 ns Input Pulse Levels: 0.45V to 2.4V 0 Input Timing Reference Level: 0.8V to 2.0V Output Timing Reference Level: 0.8V to 2.0V (3) tPW PGM Program Pulse Width tOE Data Valid from OE tPRT VPP Pulse Rise Time During Programming Notes: Min 130 ns 2 µs 2 µs 47.5 52.5 µs 150 ns 50 ns 1. VCC must be applied simultaneously or before VPP and removed simultaneously or after VPP. 2. This parameter is only sampled and is not 100% tested. Output Float is defined as the point where data is no longer driven – see timing diagram. 3. Program Pulse width tolerance is 50 µsec ± 5%. 17. Atmel’s AT27BV4096 Integrated Product Identification Code(1) Pins A0 O15-O8 O7 O6 O5 O4 O3 O2 O1 O0 Hex Data Manufacturer 0 0 0 0 0 1 1 1 1 0 001E Device Type 1 0 1 1 1 1 0 1 0 0 00F4 Codes Note: 1. The AT27BV4096 has the same Product Identification Code as the AT27C4096. Both are programming compatible. 9 0640E–EPROM–8/07 18. Rapid Programming Algorithm A 50 µs CE pulse width is used to program. The address is set to the first location. VCC is raised to 6.5V and VPP is raised to 13.0V. Each address is first programmed with one 50 µs CE pulse without verification. Then a verification/reprogramming loop is executed for each address. In the event a word fails to pass verification, up to 10 successive 50 µs pulses are applied with a verification after each pulse. If the word fails to verify after 10 pulses have been applied, the part is considered failed. After the word verifies properly, the next address is selected until all have been checked. VPP is then lowered to 5.0V and VCC to 5.0V. All words are read again and compared with the original data to determine if the device passes or fails. START ADDR = FIRST LOCATION VCC = 6.5V VPP = 13.0V PROGRAM ONE 50 µS PULSE INCREMENT ADDRESS NO LAST ADDR.? YES ADDR = FIRST LOCATION INCREMENT ADDRESS X=0 NO LAST ADDR.? PASS VERIFY WORD FAIL INCREMENT X YES PROGRAM ONE 50 µS PULSE X = 10? YES VCC = 5.0V VPP = 5.0V COMPARE ALL WORDS TO ORIGINAL DATA NO FAIL DEVICE FAILED PASS DEVICE PASSED 10 AT27BV4096 0640E–EPROM–8/07 AT27BV4096 19. Ordering Information 19.1 Standard Package ICC (mA) tACC (ns) Active Standby Ordering Code Package Operation Range 120 8 0.02 AT27BV4096-12JI AT27BV4096-12VI 44J 40V Industrial (-40° C to 85° C) Note: Refer to PCN# SC042702. 19.2 Green Package (Pb/Halide-free) ICC (mA) tACC (ns) Active Standby Ordering Code Package Operation Range 120 8 0.02 AT27BV4096-12JU 44J Industrial (-40° C to 85° C) Package Type 44J 44-lead, Plastic J-leaded Chip Carrier (PLCC) 40V 40-lead, Plastic Thin Small Outline Package (VSOP) 11 0640E–EPROM–8/07 20. Packaging Information 20.1 44J – PLCC 1.14(0.045) X 45˚ PIN NO. 1 1.14(0.045) X 45˚ 0.318(0.0125) 0.191(0.0075) IDENTIFIER E1 D2/E2 B1 E B e A2 D1 A1 D A 0.51(0.020)MAX 45˚ MAX (3X) COMMON DIMENSIONS (Unit of Measure = mm) Notes: 1. This package conforms to JEDEC reference MS-018, Variation AC. 2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is .010"(0.254 mm) per side. Dimension D1 and E1 include mold mismatch and are measured at the extreme material condition at the upper or lower parting line. 3. Lead coplanarity is 0.004" (0.102 mm) maximum. SYMBOL MIN NOM MAX A 4.191 – 4.572 A1 2.286 – 3.048 A2 0.508 – – D 17.399 – 17.653 D1 16.510 – 16.662 E 17.399 – 17.653 E1 16.510 – 16.662 D2/E2 14.986 – 16.002 B 0.660 – 0.813 B1 0.330 – 0.533 e NOTE Note 2 Note 2 1.270 TYP 10/04/01 R 12 2325 Orchard Parkway San Jose, CA 95131 TITLE 44J, 44-lead, Plastic J-leaded Chip Carrier (PLCC) DRAWING NO. REV. 44J B AT27BV4096 0640E–EPROM–8/07 AT27BV4096 20.2 40T – VSOP PIN 1 0º ~ 8º c Pin 1 Identifier D1 D L b e L1 A2 E A GAGE PLANE SEATING PLANE COMMON DIMENSIONS (Unit of Measure = mm) A1 MIN NOM MAX A – – 1.20 A1 0.05 – 0.15 A2 0.95 1.00 1.05 D 13.80 14.00 14.20 D1 12.30 12.40 12.50 Note 2 E 9.90 10.00 10.10 Note 2 L 0.50 0.60 0.70 SYMBOL Notes: 1. This package conforms to JEDEC reference MO-142, Variation CA. 2. Dimensions D1 and E do not include mold protrusion. Allowable protrusion on E is 0.15 mm per side and on D1 is 0.25 mm per side. 3. Lead coplanarity is 0.10 mm maximum. L1 0.25 BASIC b 0.17 0.22 0.27 c 0.10 – 0.21 e NOTE 0.50 BASIC 10/18/01 R 2325 Orchard Parkway San Jose, CA 95131 TITLE 40V, 40-lead (10 x 14 mm Package) Plastic Thin Small Outline Package, Type I (VSOP) DRAWING NO. REV. 40V B 13 0640E–EPROM–8/07 Headquarters International Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600 Atmel Asia Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369 Atmel Europe Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-enYvelines Cedex France Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11 Atmel Japan 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581 Technical Support [email protected] Sales Contact www.atmel.com/contacts Product Contact Web Site www.atmel.com Literature Requests www.atmel.com/literature Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. © 2007 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others. 0640E–EPROM–8/07