SAM9263 - Complete

SAM9263
Atmel | SMART ARM-based Embedded MPU
DATASHEET
Description
The Atmel ® | SMART ARM926-based SAM9263 32-bit microprocessor is
architectured on a 9-layer matrix, allowing a maximum internal bandwidth of nine
32-bit buses. It also features two independent external memory buses, EBI0 and
EBI1, capable of interfacing with a wide range of memory devices and an IDE
hard disk. Two external buses prevent bottlenecks, thus guaranteeing maximum
performance.
The SAM9263 embeds an LCD Controller supported by a Two D Graphics
Accelerator and a 2-channel DMA Controller, and one Image Sensor Interface. It
also integrates several standard peripherals, such as USART, SPI, TWI, Timer
Counters, PWM Generators, Multimedia Card Interface and one CAN Controller.
When coupled with an external GPS engine, the SAM9263 provides the ideal
solution for navigation systems.
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Features
2

ARM926EJ-S™ ARM® Thumb® Processor
̶ DSP Instruction Extensions, Jazelle® Technology for Java® Acceleration
̶ 16 Kbyte Data Cache, 16 Kbyte Instruction Cache, Write Buffer
̶ 220 MIPS at 200 MHz
̶ Memory Management Unit
̶ EmbeddedICE™, Debug Communication Channel Support
̶ Mid-level Implementation Embedded Trace Macrocell™

Bus Matrix
̶ Nine 32-bit-layer Matrix, Allowing a Total of 28.8 Gbps of On-chip Bus Bandwidth
̶ Boot Mode Select Option, Remap Command

Embedded Memories
̶ One 128 Kbyte Internal ROM, Single-cycle Access at Maximum Bus Matrix Speed
̶ One 80 Kbyte Internal SRAM, Single-cycle Access at Maximum Processor or Bus Matrix Speed
̶ One 16 Kbyte Internal SRAM, Single-cycle Access at Maximum Bus Matrix Speed

Dual External Bus Interface (EBI0 and EBI1)
̶ EBI0 Supports SDRAM, Static Memory, ECC-enabled NAND Flash and CompactFlash
̶ EBI1 Supports SDRAM, Static Memory and ECC-enabled NAND Flash

DMA Controller (DMAC)
̶ Acts as one Bus Matrix Master
̶ Embeds 2 Unidirectional Channels with Programmable Priority, Address Generation, Channel Buffering and
Control

Twenty Peripheral DMA Controller Channels (PDC)

LCD Controller (LCDC)
̶ Supports Passive or Active Displays
̶ Up to 24 bits per Pixel in TFT Mode, Up to 16 bits per Pixel in STN Color Mode
̶ Up to 16M Colors in TFT Mode, Resolution Up to 2048x2048, Supports Virtual Screen Buffers

Two D Graphics Accelerator
̶ Line Draw, Block Transfer, Clipping, Commands Queuing

Image Sensor Interface
̶ ITU-R BT. 601/656 External Interface, Programmable Frame Capture Rate
̶ 12-bit Data Interface for Support of High Sensibility Sensors
̶ SAV and EAV Synchronization, Preview Path with Scaler, YCbCr Format

USB 2.0 Full Speed (12 Mbits per second) Host Double Port
̶ Dual On-chip Transceivers
̶ Integrated FIFOs and Dedicated DMA Channels

USB 2.0 Full Speed (12 Mbits per second) Device Port
̶ On-chip Transceiver, 2,432-byte Configurable Integrated DPRAM

Ethernet MAC 10/100 Base-T
̶ Media Independent Interface or Reduced Media Independent Interface
̶ 28-byte FIFOs and Dedicated DMA Channels for Receive and Transmit

Fully-featured System Controller, including
̶ Reset Controller, Shutdown Controller
̶ Twenty 32-bit Battery Backup Registers for a Total of 80 Bytes
̶ Clock Generator and Power Management Controller
̶ Advanced Interrupt Controller and Debug Unit
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
̶
Periodic Interval Timer, Watchdog Timer and Double Real-time Timer

Reset Controller (RSTC)
̶ Based on Two Power-on Reset Cells, Reset Source Identification and Reset Output Control

Shutdown Controller (SHDWC)
̶ Programmable Shutdown Pin Control and Wake-up Circuitry

Clock Generator (CKGR)
̶ 32.768 kHz Low-power Oscillator on Battery Backup Power Supply, Providing a Permanent Slow Clock
̶ 3 to 20 MHz On-chip Oscillator and Two Up to 240 MHz PLLs

Power Management Controller (PMC)
̶ Very Slow Clock Operating Mode, Software Programmable Power Optimization Capabilities
̶ Four Programmable External Clock Signals

Advanced Interrupt Controller (AIC)
̶ Individually Maskable, Eight-level Priority, Vectored Interrupt Sources
̶ Two External Interrupt Sources and One Fast Interrupt Source, Spurious Interrupt Protected

Debug Unit (DBGU)
̶ 2-wire UART and Support for Debug Communication Channel, Programmable ICE Access Prevention
̶ Mode for General Purpose Two-wire UART Serial Communication

Periodic Interval Timer (PIT)
̶ 20-bit Interval Timer plus 12-bit Interval Counter

Watchdog Timer (WDT)
̶ Key-protected, Programmable Only Once, Windowed 16-bit Counter Running at Slow Clock

Two Real-time Timers (RTT)
̶ 32-bit Free-running Backup Counter Running at Slow Clock with 16-bit Prescaler

Five 32-bit Parallel Input/Output Controllers (PIOA, PIOB, PIOC, PIOD and PIOE)
̶ 160 Programmable I/O Lines Multiplexed with Up to Two Peripheral I/Os
̶ Input Change Interrupt Capability on Each I/O Line
̶ Individually Programmable Open-drain, Pull-up Resistor and Synchronous Output

One Part 2.0A and Part 2.0B-compliant CAN Controller
̶ 16 Fully-programmable Message Object Mailboxes, 16-bit Time Stamp Counter

Two Multimedia Card Interface (MCI)
̶ SDCard/SDIO and MultiMediaCard™ Compliant
̶ Automatic Protocol Control and Fast Automatic Data Transfers with PDC
̶ Two SDCard Slots Support on each Controller

Two Synchronous Serial Controllers (SSC)
̶ Independent Clock and Frame Sync Signals for Each Receiver and Transmitter
̶ I²S Analog Interface Support, Time Division Multiplex Support
̶ High-speed Continuous Data Stream Capabilities with 32-bit Data Transfer

One AC97 Controller (AC97C)
̶ 6-channel Single AC97 Analog Front End Interface, Slot Assigner

Three Universal Synchronous/Asynchronous Receiver Transmitters (USART)
̶ Individual Baud Rate Generator, IrDA® Infrared Modulation/Demodulation, Manchester Encoding/Decoding
̶ Support for ISO7816 T0/T1 Smart Card, Hardware Handshaking, RS485 Support

Two Master/Slave Serial Peripheral Interface (SPI)
̶ 8- to 16-bit Programmable Data Length, Four External Peripheral Chip Selects

One Three-channel 16-bit Timer/Counter (TC)
̶ Three External Clock Inputs, Two Multi-purpose I/O Pins per Channel
̶ Double PWM Generation, Capture/Waveform Mode, Up/Down Capability
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
3
4

One 4-channel 16-bit PWM Controller (PWM)

One Two-wire Interface (TWI)
̶ Master Mode Support, All Two-wire Atmel EEPROMs Supported

IEEE® 1149.1 JTAG Boundary Scan on All Digital Pins

Package
̶ 324-ball TFBGA - 15 x 15 x 1.2 mm, 0.8 mm ball pitch
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
SAM9263 Block Diagram
TST
EBI0_
JTAG Boundary Scan
System Controller
HD
HDPA
M
HD A
HDPB
M
B
SLAVE
NT
TDRS
TDI T
TMO
TC S
K
MASTER
TC
TS LK
TPYN
C
TPS0
K –T
BM 0–TPS2
S PK
15
LC
LCDD
0
LCDV –L
S C
LCDH YN DD
S
LCDD YNC 23
O
LCDD TCC
DCEN K
ET C
ETXCK
ECXEN-ER
R - X
ER S- ETX CK
E
ERXE CO ER ERE
R L
FC
ET X0– -ER
K
X E X
EM 0– RX DV
E
EMDC TX 3
3
EF DIO
10
0
SAM9263 Block Diagram
L
Figure 1-1.
RT
JT CK
AG
SE
1.
Transc. Transc.
EBI0
FIQ
IRQ0–IRQ1
AIC
DRXD
DTXD
PCK0–PCK3
DBGU
In-Circuit
Emulator
PDC
PLLRCA
PLLA
PLLRCB
PLLB
XIN
XOUT
ARM926EJ-S Processor
ETM
ICache
16 Kbytes
TCM Interface
PMC
ITCM
MMU
DCache
16 Kbytes
LUT
Bus Interface
DTCM
I
3–20 MHz
Main Osc.
LCD
Controller
10/100 Ethernet
MAC
FIFO
FIFO
DMA
USB
OHCI
FIFO
DMA
DMA
D
SDRAM
Controller
Fast SRAM
80 Kbytes
WDT
Static
Memory
Controller
9-layer Bus Matrix
PIT
VDDCORE
RTT0
32 kHz
XTAL Osc.
XIN32
XOUT32
SHDN
WKUP
RTT1
SHDWC
Backup Section
20 GPBR
VDDBU
POR
RSTC
VDDCORE
ECC
Controller
PIOA
PIOB
PIOC
DMA
SRAM
16 Kbytes
Peripheral
Bridge
PIOD
20-channel
Peripheral
DMA
2D
Graphics
Controller
2-channel
DMA
ROM
128 Kbytes
PIOE
POR
CompactFlash
NAND Flash
EBI1_
EBI1
NAND Flash
NRST
PDC
MCI0
MCI1
USART0
USART1
USART2
TWI
PDC
CAN
SPI0
SPI1
PDC
PWM
TC0
TC1
TC2
AC97C
SDRAM
Controller
DMA
PDC
SSC0
SSC1
USB
Device
Port
Image
Sensor
Interface
SPI0_, SPI1_
D0 ISI_
P
IS –IS CK
I I_
IS _HS D1
I_ Y 1
V N
IS SYNC
I_ C
M
CK
I_
MCI0_, MCI_1
IS
0–
DB
DA C 3
0– DB
DA
CD 3
A
CK
TW
CT TW D
RTS0– CK
C
SC S0– TS
R 2
RD K0– TS
X S 2
TX 0– CK
D0 RD 2
–T X2
XD
2
CA
CANT
X
NR
NP X
NPCS
3
NPCS
2
NPCS
CS1
SP 0
M CK
O
M SI
PW
IS
O
M
0–
PW
TC
M
L
3
TI K0–
O T
A
C
TI 0– L
O T K
B0 IO 2
–T A2
AC IOB
AC97C 2
AC 97 K
F
AC97RS
9 X
TK 7T
X
TF0–T
TD 0– K1
T
RD 0– F1
DM
0 TD
AR RF –R 1
Q RK 0– D1
0_ 0 R
DM –R F1
AR K1
Q
3
DD
DD P
M
Transc.
DB
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
APB
PDC
D0–D15
A0/NBS0
A1/NBS2/NWR2
A2–A15, A18–A20
A16/BA0
A17/BA1
NCS0
NCS1/SDCS
NRD
NWR0/NWE
NWR1/NBS1
NWR3/NBS3
SDCK, SDCKE
RAS, CAS
SDWE, SDA10
NANDOE, NANDWE
A21/NANDALE
A22/NANDCLE
NWAIT
A23–A24
NCS4/CFCS0
NCS5/CFCS1
NCS3/NANDCS
A25/CFRNW
CFCE1–CFCE2
D16–D31
NCS2
Static
Memory
Controller
ECC
Controller
D0–D15
A0/NBS0
A1/NWR2
A2–A15/A18–A20
A16/BA0
A17/BA1
NCS0
NRD
NWR0/NWE
NWR1/NBS1
SDCK
A21/NANDALE
A22/NANDCLE
NWAIT
NWR3/NBS3
NCS1/SDCS
NCS2/NANDCS
D16–D31
SDCKE
RAS, CAS
SDWE, SDA10
NANDOE, NANDWE
5
2.
Signal Description
Table 2-1 gives details on the signal name classified by peripheral.
Table 2-1.
Signal Description List
Signal Name
Function
Type
Active
Level
Comments
Power Supplies
VDDIOM0
EBI0 I/O Lines Power Supply
Power
1.65–3.6 V
VDDIOM1
EBI1 I/O Lines Power Supply
Power
1.65–3.6 V
VDDIOP0
Peripherals I/O Lines Power Supply
Power
2.7–3.6 V
VDDIOP1
Peripherals I/O Lines Power Supply
Power
1.65–3.6 V
VDDBU
Backup I/O Lines Power Supply
Power
1.08–1.32 V
VDDPLL
PLL Power Supply
Power
3.0–3.6 V
VDDOSC
Oscillator Power Supply
Power
3.0–3.6 V
VDDCORE
Core Chip Power Supply
Power
1.08–1.32 V
GND
Ground
Ground
GNDPLL
PLL Ground
Ground
GNDBU
Backup Ground
Ground
Clocks, Oscillators and PLLs
XIN
Main Oscillator Input
Input
XOUT
Main Oscillator Output
XIN32
Slow Clock Oscillator Input
XOUT32
Slow Clock Oscillator Output
PLLRCA
PLL A Filter
Input
PLLRCB
PLL B Filter
Input
PCK0–PCK3
Programmable Clock Output
Output
Input
Output
Output
Shutdown, Wakeup Logic
SHDN
Shutdown Control
WKUP
Wake-up Input
Driven at 0V only. Do not tie
over VDDBU.
Output
Accepts between 0V and
VDDBU.
Input
ICE and JTAG
NTRST
Test Reset Signal
Input
TCK
Test Clock
Input
No pull-up resistor
TDI
Test Data In
Input
No pull-up resistor
TDO
Test Data Out
TMS
Test Mode Select
Input
No pull-up resistor
JTAGSEL
JTAG Selection
Input
Pull-down resistor. Accepts
between 0V and VDDBU.
RTCK
Return Test Clock
6
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Low
Pull-up resistor
Output
Output
Table 2-1.
Signal Description List (Continued)
Signal Name
Function
Active
Level
Type
Comments
Embedded Trace Module - ETM
TSYNC
Trace Synchronization Signal
Output
TCLK
Trace Clock
Output
TPS0–TPS2
Trace ARM Pipeline Status
Output
TPK0–TPK15
Trace Packet Port
Output
Reset/Test
NRST
Microprocessor Reset
I/O
TST
Test Mode Select
Input
BMS
Boot Mode Select
Input
Low
Pull-up resistor
Pull-down resistor
Debug Unit - DBGU
DRXD
Debug Receive Data
Input
DTXD
Debug Transmit Data
Output
Advanced Interrupt Controller - AIC
IRQ0–IRQ1
External Interrupt Inputs
Input
FIQ
Fast Interrupt Input
Input
PIO Controller - PIOA / PIOB / PIOC / PIOD / PIOE
PA0–PA31
Parallel IO Controller A
I/O
Pulled-up input at reset
PB0–PB31
Parallel IO Controller B
I/O
Pulled-up input at reset
PC0–PC31
Parallel IO Controller C
I/O
Pulled-up input at reset
PD0–PD31
Parallel IO Controller D
I/O
Pulled-up input at reset
PE0–PE31
Parallel IO Controller E
I/O
Pulled-up input at reset
Direct Memory Access Controller - DMA
DMARQ0–DMARQ3
DMA Requests
Input
External Bus Interface - EBI0–EBI1
EBIx_D0–EBIx_D31
Data Bus
I/O
EBIx_A0–EBIx_A25
Address Bus
EBIx_NWAIT
External Wait Signal
Pulled-up input at reset
Output
Input
0 at reset
Low
Static Memory Controller - SMC
EBI0_NCS0–EBI0_NCS5,
EBI1_NCS0–EBI1_NCS2
Chip Select Lines
Output
Low
EBIx_NWR0 -EBIx_NWR3
Write Signal
Output
Low
EBIx_NRD
Read Signal
Output
Low
EBIx_NWE
Write Enable
Output
Low
EBIx_NBS0–EBIx_NBS3
Byte Mask Signal
Output
Low
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
7
Table 2-1.
Signal Description List (Continued)
Signal Name
Function
Type
Active
Level
Comments
CompactFlash Support
EBI0_CFCE1–EBI0_CFCE2
CompactFlash Chip Enable
Output
Low
EBI0_CFOE
CompactFlash Output Enable
Output
Low
EBI0_CFWE
CompactFlash Write Enable
Output
Low
EBI0_CFIOR
CompactFlash IO Read
Output
Low
EBI0_CFIOW
CompactFlash IO Write
Output
Low
EBI0_CFRNW
CompactFlash Read Not Write
Output
EBI0_CFCS0–EBI0_CFCS1
CompactFlash Chip Select Lines
Output
Low
NAND Flash Support
EBIx_NANDCS
NAND Flash Chip Select
Output
Low
EBIx_NANDOE
NAND Flash Output Enable
Output
Low
EBIx_NANDWE
NAND Flash Write Enable
Output
Low
SDRAM Controller - SDRAMC
EBIx_SDCK
SDRAM Clock
Output
EBIx_SDCKE
SDRAM Clock Enable
Output
High
EBIx_SDCS
SDRAM Controller Chip Select
Output
Low
EBIx_BA0–EBIx_BA1
Bank Select
Output
EBIx_SDWE
SDRAM Write Enable
Output
Low
EBIx_RAS - EBIx_CAS
Row and Column Signal
Output
Low
EBIx_SDA10
SDRAM Address 10 Line
Output
Multimedia Card Interface - MCI
MCIx_CK
Multimedia Card Clock
Output
MCIx_CDA
Multimedia Card Slot A Command
I/O
MCIx_CDB
Multimedia Card Slot B Command
I/O
MCIx_DA0–MCIx_DA3
Multimedia Card Slot A Data
I/O
MCIx_DB0–MCIx_DB3
Multimedia Card Slot B Data
I/O
Universal Synchronous Asynchronous Receiver Transmitter - USART
SCKx
USARTx Serial Clock
I/O
TXDx
USARTx Transmit Data
I/O
RXDx
USARTx Receive Data
Input
RTSx
USARTx Request To Send
CTSx
USARTx Clear To Send
8
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Output
Input
Table 2-1.
Signal Description List (Continued)
Signal Name
Function
Active
Level
Type
Comments
Synchronous Serial Controller - SSC
TDx
SSCx Transmit Data
Output
RDx
SSCx Receive Data
Input
TKx
SSCx Transmit Clock
I/O
RKx
SSCx Receive Clock
I/O
TFx
SSCx Transmit Frame Sync
I/O
RFx
SSCx Receive Frame Sync
I/O
AC97 Controller - AC97C
AC97RX
AC97 Receive Signal
Input
AC97TX
AC97 Transmit Signal
Output
AC97FS
AC97 Frame Synchronization Signal
Output
AC97CK
AC97 Clock signal
Input
Timer/Counter - TC
TCLKx
TC Channel x External Clock Input
Input
TIOAx
TC Channel x I/O Line A
I/O
TIOBx
TC Channel x I/O Line B
I/O
Pulse Width Modulation Controller - PWM
PWMx
Pulse Width Modulation Output
Output
Serial Peripheral Interface - SPI
SPIx_MISO
Master In Slave Out
I/O
SPIx_MOSI
Master Out Slave In
I/O
SPIx_SPCK
SPI Serial Clock
I/O
SPIx_NPCS0
SPI Peripheral Chip Select 0
I/O
Low
SPIx_NPCS1–SPIx_NPCS3
SPI Peripheral Chip Select
Output
Low
Two-Wire Interface - TWI
TWD
Two-wire Serial Data
I/O
TWCK
Two-wire Serial Clock
I/O
CAN Controllers
CANRX
CAN Input
CANTX
CAN Output
Input
Output
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
9
Table 2-1.
Signal Description List (Continued)
Signal Name
Function
Type
Active
Level
Comments
LCD Controller - LCDC
LCDD0–LCDD23
LCD Data Bus
Output
LCDVSYNC
LCD Vertical Synchronization
Output
LCDHSYNC
LCD Horizontal Synchronization
Output
LCDDOTCK
LCD Dot Clock
Output
LCDDEN
LCD Data Enable
Output
LCDCC
LCD Contrast Control
Output
Ethernet 10/100 - EMAC
ETXCK
Transmit Clock or Reference Clock
Input
MII only, REFCK in RMII
ERXCK
Receive Clock
Input
MII only
ETXEN
Transmit Enable
Output
ETX0–ETX3
Transmit Data
Output
ETX0–ETX1 only in RMII
ETXER
Transmit Coding Error
Output
MII only
ERXDV
Receive Data Valid
Input
RXDV in MII, CRSDV in RMII
ERX0–ERX3
Receive Data
Input
ERX0–ERX1 only in RMII
ERXER
Receive Error
Input
ECRS
Carrier Sense and Data Valid
Input
MII only
ECOL
Collision Detect
Input
MII only
EMDC
Management Data Clock
EMDIO
Management Data Input/Output
EF100
Force 100Mbit/sec.
Output
I/O
Output
High
RMII only
USB Device Port - UDP
DDM
USB Device Port Data -
Analog
DDP
USB Device Port Data +
Analog
USB Host Port - UHP
HDPA
USB Host Port A Data +
Analog
HDMA
USB Host Port A Data -
Analog
HDPB
USB Host Port B Data +
Analog
HDMB
USB Host Port B Data -
Analog
Image Sensor Interface - ISI
ISI_D0–ISI_D11
Image Sensor Data
ISI_MCK
Image Sensor Reference Clock
ISI_HSYNC
Image Sensor Horizontal Synchro
Input
ISI_VSYNC
Image Sensor Vertical Synchro
Input
ISI_PCK
Image Sensor Data Clock
Input
10
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Input
Output
Provided by PCK3
3.
Package and Pinout
The SAM9263 is available in a 324-ball TFBGA Green-compliant package.
3.1
324-ball TFBGA Package Outline
Figure 3-1 shows the orientation of the 324-ball TFBGA package.
A detailed mechanical description is given in Section 47. “SAM9263 Mechanical Characteristics”.
Figure 3-1.
324-ball TFBGA Pinout (Top View)
TOP VIEW
Pin A1 Corner
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
3.2
324-ball TFBGA Package Pinout
Table 3-1.
Pinout for 324-ball TFBGA Package
Pin
Signal Name
Pin
A1
EBI0_D2
A2
Signal Name
Pin
Signal Name
Pin
Signal Name
E10 PC31
K1
PE6
P10 EBI1_NCS0
EBI0_SDCKE
E11 PC22
K2
PD28
P11 EBI1_NWE_NWR0
A3
EBI0_NWE_NWR0
E12 PC15
K3
PE0
P12 EBI1_D4
A4
EBI0_NCS1_SDCS
E13 PC11
K4
PE1
P13 EBI1_D10
A5
EBI0_A19
E14 PC4
K5
PD27
P14 PA3
A6
EBI0_A11
E15 PB30
K6
PD31
P15 PA2
A7
EBI0_A10
E16 PC0
K7
PD29
P16 PE28
A8
EBI0_A5
E17 PB31
K8
PD25
P17 TDI
A9
EBI0_A1_NBS2_NWR2
E18 HDPA
K9
GND
P18 PLLRCB
A10 PD4
F1
PD7
K10 VDDIOM0
R1
XOUT32
A11 PC30
F2
EBI0_D13
K11 GND
R2
TST
A12 PC26
F3
EBI0_D9
K12 VDDIOM0
R3
PA18
A13 PC24
F4
EBI0_D11
K13 PB3/BMS
R4
PA25
A14 PC19
F5
EBI0_D12
K14 PA14
R5
PA30
A15 PC12
F6
EBI0_NCS0
K15 PA15
R6
EBI1_A2
A16 VDDCORE
F7
EBI0_A16_BA0
K16 PB1
R7
EBI1_A14
A17 VDDIOP0
F8
EBI0_A12
K17 PB0
R8
EBI1_A13
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
11
Table 3-1.
Pin
Pinout for 324-ball TFBGA Package (Continued)
Pin
Signal Name
Pin
Pin
Signal Name
A18 DDP
F9
EBI0_A6
K18 PB2
R9
EBI1_A17_BA1
B1
EBI0_D4
F10 PD3
L1
PE10
R10 EBI1_D1
B2
EBI0_NANDOE
F11
PC27
L2
PE4
R11 EBI1_D8
B3
EBI0_CAS
F12 PC18
L3
PE9
R12 EBI1_D12
B4
EBI0_RAS
F13 PC13
L4
PE7
R13 EBI1_D15
B5
EBI0_NBS3_NWR3
F14 PB26
L5
PE5
R14 PE26
B6
EBI0_A22
F15 PB25
L6
PE2
R15 EBI1_SDCK
B7
EBI0_A15
F16 PB29
L7
PE3
R16 PE30
B8
EBI0_A7
F17 PB27
L8
VDDIOP1
R17 TCK
B9
EBI0_A4
F18 HDMA
L9
VDDIOM1
R18 XOUT
B10 PD0
G1
PD17
L10
VDDIOM0
T1
VDDOSC
B11 PC28
G2
PD12
L11
VDDIOP0
T2
VDDIOM1
B12 PC21
G3
PD6
L12
GNDBU
T3
PA19
B13 PC17
G4
EBI0_D14
L13
PA13
T4
PA21
B14 PC9
G5
PD5
L14
PB4
T5
PA26
B15 PC7
G6
PD8
L15
PA9
T6
PA31
B16 PC5
G7
PD10
L16
PA12
T7
EBI1_A7
B17 PB16
G8
GND
L17
PA10
T8
EBI1_A12
B18 DDM
G9
(1)
L18
PA11
T9
EBI1_A18
C1
EBI0_D6
G10 GND
M1
PE18
T10 EBI1_D0
C2
EBI0_D0
G11 GND
M2
PE14
T11
C3
EBI0_NANDWE
G12 GND
M3
PE15
T12 EBI1_D14
C4
EBI0_SDWE
G13 PB21
M4
PE11
T13 PE23
C5
EBI0_SDCK
G14 PB20
M5
PE13
T14 PE25
C6
EBI0_A21
G15 PB23
M6
PE12
T15 PE29
C7
EBI0_A13
G16 PB28
M7
PE8
T16 PE31
C8
EBI0_A8
G17 PB22
M8
VDDBU
T17 GNDPLL
C9
EBI0_A3
G18 PB18
M9
EBI1_A21
T18 XIN
C10 PD2
H1
PD24
M10 VDDIOM1
U1
PA17
C11 PC29
H2
PD13
M11 GND
U2
PA20
C12 PC23
H3
PD15
M12 GND
U3
PA23
C13 PC14
H4
PD9
M13 VDDIOM1
U4
PA24
C14 PC8
H5
PD11
M14 PA6
U5
PA28
C15 PC3
H6
PD14
M15 PA4
U6
EBI1_A0_NBS0
C16 GND
H7
PD16
M16 PA7
U7
EBI1_A5
C17 VDDIOP0
H8
VDDIOM0
M17 PA5
U8
EBI1_A10
C18 HDPB
H9
GND
M18 PA8
U9
EBI1_A16_BA0
12
Signal Name
NC
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Signal Name
EBI1_D7
Table 3-1.
Pinout for 324-ball TFBGA Package (Continued)
Pin
Signal Name
Pin
D1
EBI0_D10
D2
D3
Pin
Signal Name
Pin
H10 VDDCORE
N1
NC
U10 EBI1_NRD
EBI0_D3
H11 GND
N2
NC
U11 EBI1_D3
(1)
H12 PB19
N3
PE19
(1)
NC
Signal Name
Signal Name
U12 EBI1_D13
D4
EBI0_D1
H13 PB17
N4
NC
U13 PE22
D5
EBI0_A20
H14 PB15
N5
PE17
U14 PE27
D6
EBI0_A17_BA1
H15 PB13
N6
PE16
U15 RTCK
D7
EBI0_A18
H16 PB24
N7
EBI1_A6
U16 NTRST
D8
EBI0_A9
H17 PB14
N8
EBI1_A11
U17 VDDPLLA
D9
EBI0_A2
H18 PB12
N9
EBI1_A22
U18 PLLRCA
D10 PD1
J1
PD30
N10 EBI1_D2
V1
VDDCORE
D11 PC25
J2
PD26
N11 EBI1_D6
V2
PA22
D12 PC20
J3
PD22
N12 EBI1_D9
V3
PA27
D13 PC6
J4
PD19
N13 GND
V4
PA29
D14 PC16
J5
PD18
N14 GNDPLL
V5
EBI1_A1_NWR2
D15 PC10
J6
PD23
N15 PA1
V6
EBI1_A3
D16 PC2
J7
PD21
N16 PA0
V7
EBI1_A9
D17 PC1
J8
PD20
N17 TMS
V8
EBI1_A15
D18 HDMB
J9
GND
N18 TDO
V9
EBI1_A20
E1
EBI0_D15
J10
GND
P1
XIN32
V10 EBI1_NBS1_NWR1
E2
EBI0_D7
J11
GND
P2
SHDN
V11 EBI1_D5
E3
EBI0_D5
J12
PB11
P3
PA16
V12 EBI1_D11
E4
EBI0_D8
J13
PB9
P4
WKUP
V13 PE21
E5
EBI0_NBS1_NWR1
J14
PB10
P5
JTAGSEL
V14 PE24
E6
EBI0_NRD
J15
PB5
P6
PE20
V15 NRST
E7
EBI0_A14
J16
PB6
P7
EBI1_A8
V16 GND
E8
EBI0_SDA10
J17
PB7
P8
EBI1_A4
V17 GND
P9
EBI1_A19
V18 VDDPLLB
E9 EBI0_A0_NBS0
J18 PB8
Note:
1. NC pins must be left unconnected.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
13
4.
Power Considerations
4.1
Power Supplies
The SAM9263 device has several types of power supply pins. Some supply pins share common ground (GND)
pins whereas others have separate grounds. See Table 4-1.
Table 4-1.
SAM9263 Power Supply Pins
Pin(s)
Item(s) powered
VDDCORE
Core, including the processor
Embedded memories
Peripherals
VDDIOM0
External Bus Interface 0 I/O lines
VDDIOM1
External Bus Interface 1 I/O lines
VDDIOP0
Peripheral I/O lines
USB transceivers
Range
Typical
1.08–1.32 V
1.2V
1.65–1.95 V(1)
1.8V
3.0–3.6 V
(1)
1.65–1.95 V(1)
3.0–3.6 V
(1)
Ground
3.3V
1.8V
3.3V
2.7–3.6 V
3.3V
GND
VDDIOP1
Peripherals I/O lines involving the Image Sensor Interface
1.65–3.6 V
1.8V
2.5V
3.0V
3.3V
VDDOSC
Main oscillator
3.0–3.6 V
3.3V
VDDBU
Slow Clock oscillator
Part of the System Controller
1.08–1.32 V
1.2V
GNDBU
VDDPLL
PLL cells
3.0–3.6 V
3.3V
GNDPLL
Note:
1.
Desired voltage range selectable by software
The power supplies VDDIOM0, VDDIOM1 and VDDIOP0, VDDIOP1 are identified in the pinout table and the
multiplexing tables. These supplies enable the user to power the device differently for interfacing with memories
and for interfacing with peripherals.
4.2
Power Sequence Requirements
The SAM9260 board design must comply with the guidelines described in Section 4.2.1 “Power-up Sequence” and
Section 4.2.2 “Power-down Sequence” to guarantee reliable operation of the device. Any deviation from these
sequences may lead to preventing the device from booting.
14
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
4.2.1
Power-up Sequence
For the first power-up, VDDCORE is to be established before VDDBU. VDDBU powers the Backup power switch;
it must always be powered to ensure correct behavior.
VDDCORE and VDDBU are controlled by internal POR (Power-on Reset) to guarantee that these power sources
reach their target values prior to the release of POR.

VDDIOM0, VDDIOM1, VDDIOP0, VDDIOP1 and VDDIOP2 must NOT be powered until VDDCORE has
reached a level superior to VT+.

VDDIOP0 must be ≥ VIH (refer to Table 46-2 “DC Characteristics” for more details) within (tRST + T1) after
VDDCORE reached VT+.

VDDIOM0 and VDDIOPM1 must reach VOH (refer to Table 46-2 “DC Characteristics” for more details)
within (tRST + T1 + T2) after VDDCORE has reached VT+
̶
̶
tRST is a POR characteristic
T1 = 3 x tSLCK
̶
T2 = 1 6 x tSLCK
As tSLCK is the period of the external 32.768 kHz oscillator.
̶
tRST = 80 µs
̶
T1 = 91.5 µs
̶
T2 = 488 µs
Figure 4-1.
VDDCORE and VDDIO Constraints at Startup
VDD (V)
VDDIO
VDDIOtyp
VDDIO > VOH
Voh
VDDCORE
VDDCOREtyp
BMS sampling level
VT+
t
T1
T2
tRST
Core Supply POR output
SLCK
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
15
4.2.2
Power-down Sequence
Switch off the VDDIOMx and VDDIOPx power supply prior to or at the same time as VDDCORE.
No power-up or power-down restrictions apply to other power supplies.
4.3
Programmable I/O Lines Power Supplies
The power supply pins VDDIOM0 and VDDIOM1 accept two voltage ranges. This allows the device to reach its
maximum speed, either out of 1.8V or 3.0V external memories.
The maximum speed is 100 MHz on the pin SDCK (SDRAM Clock) loaded with 10 pF. The other signals (control,
address and data signals) do not go over 50 MHz, loaded with 30 pF for power supply at 1.8V and 50 pF for power
supply at 3.3V.
The voltage ranges are determined by programming registers in the Chip Configuration registers located in the
Bus Matrix User Interface.
At reset, the selected voltage defaults to 3.3V nominal and power supply pins can accept either 1.8V or 3.3V.
However, the device cannot reach its maximum speed if the voltage supplied to the pins is only 1.8V without
reprogramming the EBI0 voltage range. The user must be sure to program the EBI0 voltage range before getting
the device out of its Slow Clock Mode.
16
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
5.
I/O Line Considerations
5.1
JTAG Port Pins
TMS, TDI and TCK are Schmitt trigger inputs and have no pull-up resistors.
TDO and RTCK are outputs, driven at up to VDDIOP0, and have no pull-up resistors.
The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level (VDDBU). It integrates
a permanent pull-down resistor of about 15 kΩ to GNDBU, so that it can be left unconnected for normal operations.
The NTRST signal is described in Section 5.3.
All JTAG signals except JTAGSEL (VDDBU) are supplied with VDDIOP0.
5.2
Test Pin
The TST pin is used for manufacturing test purposes when asserted high. It integrates a permanent pull-down
resistor of about 15 kΩ to GNDBU, so that it can be left unconnected for normal operations. Driving this line at a
high level leads to unpredictable results.
This pin is supplied with VDDBU.
5.3
Reset Pins
NRST is an open-drain output integrating a non-programmable pull-up resistor. It can be driven with voltage at up
to VDDIOP0.
NTRST is an input which allows reset of the JTAG Test Access port. It has no action on the processor.
As the product integrates power-on reset cells, which manage the processor and the JTAG reset, the NRST and
NTRST pins can be left unconnected.
The NRST and NTRST pins both integrate a permanent pull-up resistor of 100 kΩ minimum to VDDIOP0.
The NRST signal is inserted in the Boundary Scan.
5.4
PIO Controllers
All the I/O lines managed by the PIO Controllers integrate a programmable pull-up resistor of 100 kΩ typical.
Programming of this pull-up resistor is performed independently for each I/O line through the PIO Controllers.
After reset, all the I/O lines default as inputs with pull-up resistors enabled, except those which are multiplexed with
the External Bus Interface signals that require to be enabled as Peripheral at reset. This is explicitly indicated in
the column “Reset State” of the PIO Controller multiplexing tables on page 39 and following.
5.5
Shutdown Logic Pins
The SHDN pin is a tri-state output only pin, which is driven by the Shutdown Controller. There is no internal pull-up.
An external pull-up to VDDBU is needed and its value must be higher than 1 MΩ. The resistor value is calculated
according to the regulator enable implementation and the SHDN level.
The pin WKUP is an input-only. It can accept voltages only between 0V and VDDBU.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
17
6.
Processor and Architecture
6.1
ARM926EJ-S Processor

RISC Processor based on ARM v5TEJ Harvard Architecture with Jazelle technology for Java acceleration

Two Instruction Sets
̶
ARM High-performance 32-bit Instruction Set
̶
Thumb High Code Density 16-bit Instruction Set

DSP Instruction Extensions

5-stage Pipeline Architecture



̶
Instruction Fetch (F)
̶
Instruction Decode (D)
̶
Execute (E)
̶
Data Memory (M)
̶
Register Write (W)
16 Kbyte Data Cache, 16 Kbyte Instruction Cache
̶
Virtually-addressed 4-way Associative Cache
̶
Eight words per line
̶
Write-through and Write-back Operation
̶
Pseudo-random or Round-robin Replacement
Write Buffer
̶
Main Write Buffer with 16-word Data Buffer and 4-address Buffer
̶
DCache Write-back Buffer with 8-word Entries and a Single Address Entry
̶
Software Control Drain
Standard ARM v4 and v5 Memory Management Unit (MMU)
Access Permission for Sections
̶
Access Permission for large pages and small pages can be specified separately for each quarter of
the page
̶
̶

6.2
Bus Interface Unit (BIU)
̶
Arbitrates and Schedules AHB Requests
̶
Separate Masters for both instruction and data access providing complete Matrix system flexibility
̶
Separate Address and Data Buses for both the 32-bit instruction interface and the 32-bit data interface
̶
On Address and Data Buses, data can be 8-bit (Bytes), 16-bit (Half-words) or 32-bit (Words)
Bus Matrix

9-layer Matrix, handling requests from 9 masters

Programmable Arbitration strategy

18
16 embedded domains
̶
Fixed-priority Arbitration
̶
Round-Robin Arbitration, either with no default master, last accessed default master or fixed default
master
Burst Management
̶
Breaking with Slot Cycle Limit Support
̶
Undefined Burst Length Support
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16

One Address Decoder provided per Master
̶


6.2.1
Three different slaves may be assigned to each decoded memory area: one for internal boot, one for
external boot, one after remap
Boot Mode Select
̶
Non-volatile Boot Memory can be internal or external
̶
Selection is made by BMS pin sampled at reset
Remap Command
̶
Allows Remapping of an Internal SRAM in Place of the Boot Non-Volatile Memory
̶
Allows Handling of Dynamic Exception Vectors
Matrix Masters
The Bus Matrix of the SAM9263 manages nine masters, thus each master can perform an access concurrently
with others to an available slave peripheral or memory.
Each master has its own decoder, which is defined specifically for each master.
Table 6-1.
6.2.2
List of Bus Matrix Masters
Master 0
OHCI USB Host Controller
Master 1
Image Sensor Interface
Master 2
Two D Graphic Controller
Master 3
DMA Controller
Master 4
Ethernet MAC
Master 5
LCD Controller
Master 6
Peripheral DMA Controller
Master 7
ARM926 Data
Master 8
ARM926 Instruction
Matrix Slaves
The Bus Matrix of the SAM9263 manages eight slaves. Each slave has its own arbiter, thus allowing to program a
different arbitration per slave.
The LCD Controller, the DMA Controller, the USB OTG and the USB Host have a user interface mapped as a
slave on the Matrix. They share the same layer, as programming them does not require a high bandwidth.
Table 6-2.
List of Bus Matrix Slaves
Slave 0
Internal ROM
Slave 1
Internal 80 Kbyte SRAM
Slave 2
Internal 16 Kbyte SRAM
LCD Controller User Interface
Slave 3
DMA Controller User Interface
USB Host User Interface
Slave 4
External Bus Interface 0
Slave 5
External Bus Interface 1
Slave 6
Peripheral Bridge
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
19
6.2.3
Master to Slave Access
In most cases, all the masters can access all the slaves. However, some paths do not make sense, for example,
allowing access from the Ethernet MAC to the Internal Peripherals. Thus, these paths are forbidden or simply not
wired, and are shown as “–” in Table 6-3.
Table 6-3.
Masters to Slaves Access
Master
0
1
2
3
4
5
6
7&8
Slave
OHCI USB
Host
Controller
Image
Sensor
Interface
Two D
Graphics
Controller
DMA
Controller
Ethernet
MAC
LCD
Controller
Peripheral
DMA
Controller
ARM926
Data &
Instruction
0
Internal ROM
X
X
X
X
X
X
X
X
1
Internal 80 Kbyte
SRAM
X
X
X
X
X
X
X
X
2
Internal 16 Kbyte
SRAM Bank
X
X
X
X
X
X
X
X
LCD Controller
User Interface
–
–
–
–
–
–
–
X
DMA Controller
User Interface
–
–
–
–
–
–
–
X
USB Host User
Interface
–
–
–
–
–
–
–
X
4
External Bus
Interface 0
X
X
X
X
X
X
X
X
5
External Bus
Interface 1
X
X
X
X
X
X
X
X
6
Peripheral Bridge
-
-
-
X
-
-
X
X
3
6.3
Peripheral DMA Controller

Acts as one Matrix Master

Allows data transfers between a peripheral and memory without any intervention of the processor

Next Pointer support, removes heavy real-time constraints on buffer management.

Twenty channels
̶
Two for each USART
̶
Two for the Debug Unit
̶
Two for each Serial Synchronous Controller
̶
Two for each Serial Peripheral Interface
̶
Two for the AC97C Controller
̶
One for each Multimedia Card Interface
The Peripheral DMA Controller handles transfer requests from the channel according to the following priorities (low
to high priorities):
20
̶
DBGU Transmit Channel
̶
USART2 Transmit Channel
̶
USART1 Transmit Channel
̶
USART0 Transmit Channel
̶
AC97C Transmit Channel
̶
SPI1 Transmit Channel
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
6.4
̶
SPI0 Transmit Channel
̶
SSC1 Transmit Channel
̶
SSC0 Transmit Channel
̶
DBGU Receive Channel
̶
USART2 Receive Channel
̶
USART1 Receive Channel
̶
USART0 Receive Channel
̶
AC97C Receive Channel
̶
SPI1 Receive Channel
̶
SPI0 Receive Channel
̶
SSC1 Receive Channel
̶
SSC0 Receive Channel
̶
MCI1 Transmit/Receive Channel
̶
MCI0 Transmit/Receive Channel
DMA Controller

Acts as one Matrix Master

Embeds 2 unidirectional channels with programmable priority

Address Generation
̶
Source/destination address programming
̶
Address increment, decrement or no change
̶
DMA chaining support for multiple non-contiguous data blocks through use of linked lists
̶
Scatter support for placing fields into a system memory area from a contiguous transfer. Writing a
stream of data into non-contiguous fields in system memory.
̶
Gather support for extracting fields from a system memory area into a contiguous transfer
̶


User enabled auto-reloading of source, destination and control registers from initially programmed
values at the end of a block transfer
̶
Auto-loading of source, destination and control registers from system memory at end of block transfer
in block chaining mode
̶
Unaligned system address to data transfer width supported in hardware
Channel Buffering
̶
Two 8-word FIFOs
̶
Automatic packing/unpacking of data to fit FIFO width
Channel Control
̶
Programmable multiple transaction size for each channel
̶


Support for cleanly disabling a channel without data loss
̶
Suspend DMA operation
̶
Programmable DMA lock transfer support.
Transfer Initiation
̶
Supports four external DMA Requests
̶
Support for software handshaking interface. Memory mapped registers can be used to control the flow
of a DMA transfer in place of a hardware handshaking interface
Interrupt
̶
Programmable interrupt generation on DMA transfer completion, Block transfer completion,
Single/Multiple transaction completion or Error condition
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
21
6.5
Debug and Test Features




22
ARM926 Real-time In-circuit Emulator
̶
Two real-time Watchpoint Units
̶
Two Independent Registers: Debug Control Register and Debug Status Register
̶
Test Access Port Accessible through JTAG Protocol
̶
Debug Communications Channel
Debug Unit
̶
Two-pin UART
̶
Debug Communication Channel Interrupt Handling
̶
Chip ID Register
Embedded Trace Macrocell: ETM9™
̶
Medium+ Level Implementation
̶
Half-rate Clock Mode
̶
Four Pairs of Address Comparators
̶
Two Data Comparators
̶
Eight Memory Map Decoder Inputs
̶
Two 16-bit Counters
̶
One 3-stage Sequencer
̶
One 45-byte FIFO
IEEE1149.1 JTAG Boundary-scan on All Digital Pins
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
7.
Memories
Figure 7-1.
SAM9263 Memory Mapping
Internal Memory Mapping
Address Memory Space
0x0000 0000
0x0000 0000
Internal Memories
Boot Memory (1)
0x0010 0000
256 Mbytes
ITCM (2)
0x0020 0000
0x0FFF FFFF
DTCM (2)
0x1000 0000
EBI0
Chip Select 0
0x0030 0000
256 Mbytes
SRAM (2)
0x0040 0000
ROM
0x1FFF FFFF
0x2000 0000
0x2FFF FFFF
EBI0
Chip Select 1/
EBI0 SDRAMC
0x0050 0000
16K SRAM0
256 Mbytes
0x0060 0000
LCD Controller
EBI0
Chip Select 2
0x0080 0000
256 Mbytes
DMAC
0x0090 0000
0x3FFF FFFF
EBI0
Chip Select 3/
NANDFlash
0x5FFF FFFF
0x6000 0000
0x6FFF FFFF
0x7000 0000
256 Mbytes
USB HOST
0x00B0 0000
Reserved
EBI0
Chip Select 4/
Compact Flash
Slot 0
EBI0
Chip Select 5/
Compact Flash
Slot 1
Peripheral Mapping
256 Mbytes
0xF000 0000
Reserved
16 Kbytes
UDP
16 Kbytes
0xFFF7 8000
256 Mbytes
0xFFF7 C000
System Controller Mapping
0xFFFF C000
TCO, TC1, TC2
16 Kbytes
MCI0
16 Kbytes
0xFFFF E000
MCI1
16 Kbytes
0xFFFF E200
TWI
16 Kbytes
0xFFFF E400
USART0
16 Kbytes
0xFFFF E600
USART1
16 Kbytes
USART2
16 Kbytes
Reserved
0xFFF8 0000
EBI1
Chip Select 0
256 Mbytes
0xFFF8 8000
EBI1
Chip Select 1/
EBI1 SDRAMC
256 Mbytes
EBI1
Chip Select 2/
NANDFlash
256 Mbytes
0xFFF9 4000
0xFFF9 8000
0x9FFF FFFF
0xA000 0000
SSC0
16 Kbytes
SSC1
16 Kbytes
AC97C
16 Kbytes
SPI0
16 Kbytes
SPI1
16 Kbytes
CAN0
16 Kbytes
0xFFFA 8000
0xFFFF EA00
0xFFFF EC00
0xFFFF F200
512 bytes
PWM
0xFFFF F800
512 bytes
AIC
512 bytes
PIOA
512 bytes
PIOB
512 bytes
PIOC
512 bytes
PIOD
512 bytes
512 bytes
PMC
256 bytes
0xFFFF FD00
RSTC
16 bytes
0xFFFF FD10
SHDWC
16 bytes
RTT0
16 bytes
16 Kbytes
0xFFFB C000
EMAC
16 Kbytes
Reserved
16 Kbytes
0xFFFC 0000
0xFFFC 4000
ISI
16 Kbytes
2DGE
16 Kbytes
0xFFFC 8000
0xFFFF FD20
0xFFFF FD30
PIT
16 bytes
0xFFFF FD40
WDT
16 bytes
RTT1
16 bytes
GPBR
80 bytes
0xFFFF FD50
0xFFFF FD60
0xFFFC C000
Reserved
0xFFFF C000
0xFFFF FFFF
DBGU
PIOE
0xFFFF FC00
SYSC
512 bytes
0xFFFF F600
0xFFFB 8000
0xEFFF FFFF
MATRIX
0xFFFF F400
0xFFFF FA00
0xFFFF FFFF
512 bytes
SMC1
0xFFFF F000
0xFFFB 0000
256 Mbytes
512 bytes
SDRAMC1
CCFG
0xFFFA C000
Reserved
Internal Peripherals
512 bytes
ECC1
0xFFFF E800
0xFFFA 4000
0xF000 0000
512 bytes
SMC0
0xFFFF EE00
0xFFFA 0000
1,280 Mbytes
SDRAMC0
0xFFFF ED10
0xFFF9 C000
Undefined
(Abort)
512 bytes
0xFFF8 C000
0xFFF9 0000
0x9000 0000
ECC0
0xFFF8 4000
0x7FFF FFFF
0x8000 0000
0x8FFF FFFF
Reserved
0x00A0 0000
0x4FFF FFFF
0x5000 0000
Reserved
0x0070 0000
0x3000 0000
0x4000 0000
Notes:
(1) Can be ROM, EBI0_NCS0 or SRAM
depending on BMS and REMAP
(2) Software programmable
16 Kbytes
0xFFFF FDB0
Reserved
0xFFFF FFFF
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
23
A first level of address decoding is performed by the Bus Matrix, i.e., the implementation of the Advanced High
Performance Bus (AHB) for its master and slave interfaces with additional features.
Decoding breaks up the 4G bytes of address space into 16 banks of 256M bytes. The banks 1 to 9 are directed to
the EBI0 that associates these banks to the external chip selects EBI0_NCS0 to EBI0_NCS5 and EBI1_NCS0 to
EBI1_NCS2. The bank 0 is reserved for the addressing of the internal memories, and a second level of decoding
provides 1M bytes of internal memory area. Bank 15 is reserved for the peripherals and provides access to the
Advanced Peripheral Bus (APB).
Other areas are unused and performing an access within them provides an abort to the master requesting such an
access.
Each master has its own bus and its own decoder, thus allowing a different memory mapping for each master.
However, in order to simplify the mappings, all the masters have a similar address decoding.
Regarding Master 0 and Master 1 (ARM926 Instruction and Data), three different slaves are assigned to the
memory space decoded at address 0x0: one for internal boot, one for external boot and one after remap. Refer to
Table 7-1 “Internal Memory Mapping” for details.
A complete memory map is presented in Figure 7-1 on page 24.
7.1
Embedded Memories

128 Kbyte ROM
̶


Single Cycle Access at full matrix speed
One 80 Kbyte Fast SRAM
̶
Single Cycle Access at full matrix speed
̶
Supports ARM926EJ-S TCM interface at full processor speed
̶
Allows internal Frame Buffer for up to 1/4 VGA 8 bpp screen
16 Kbyte Fast SRAM
̶
7.1.1
Single Cycle Access at full matrix speed
Internal Memory Mapping
Table 7-1 summarizes the Internal Memory Mapping, depending on the Remap status and the BMS state at reset.
Table 7-1.
Internal Memory Mapping
REMAP = 0
Address
BMS = 1
BMS = 0
REMAP = 1
0x0000 0000
ROM
EBI0_NCS0
SRAM C
7.1.1.1 Internal 80 Kbyte Fast SRAM
The SAM9263 device embeds a high-speed 80 Kbyte SRAM. This internal SRAM is split into three areas. Its
memory mapping is presented in Figure 7-1 on page 24.
24

Internal SRAM A is the ARM926EJ-S Instruction TCM. The user can map this SRAM block anywhere in the
ARM926 instruction memory space using CP15 instructions and the TCR configuration register located in
the Chip Configuration User Interface. This SRAM block is also accessible by the ARM926 Data Master and
by the AHB Masters through the AHB bus at address 0x0010 0000.

Internal SRAM B is the ARM926EJ-S Data TCM. The user can map this SRAM block anywhere in the
ARM926 data memory space using CP15 instructions. This SRAM block is also accessible by the ARM926
Data Master and by the AHB Masters through the AHB bus at address 0x0020 0000.

Internal SRAM C is only accessible by all the AHB Masters. After reset and until the Remap Command is
performed, this SRAM block is accessible through the AHB bus at address 0x0030 0000 by all the AHB
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Masters. After Remap, this SRAM block also becomes accessible through the AHB bus at address 0x0 by
the ARM926 Instruction and the ARM926 Data Masters.
Within the 80 Kbytes of SRAM available, the amount of memory assigned to each block is software programmable
as a multiple of 16 Kbytes as shown in Table 7-2. This table provides the size of the Internal SRAM C according to
the size of the internal SRAM A and the internal SRAM B.
Table 7-2.
Internal SRAM Block Size
Internal SRAM A (ITCM) Size
Internal SRAM C
Internal SRAM B
(DTCM) size
0
16 Kbytes
32 Kbytes
0
80 Kbytes
64 Kbytes
48 Kbytes
16 Kbytes
64 Kbytes
48 Kbytes
32 Kbytes
32 Kbytes
48 Kbytes
32 Kbytes
16 Kbytes
Note that among the five 16 Kbyte blocks making up the Internal SRAM, one is permanently assigned to Internal
SRAM C.
At reset, the whole memory (80 Kbytes) is assigned to Internal SRAM C.
The memory blocks assigned to SRAM A, SRAM B and SRAM C areas are not contiguous and when the user
dynamically changes the Internal SRAM configuration, the new 16 Kbyte block organization may affect the
previous configuration from a software point of view.
Table 7-3 illustrates different configurations and the related 16 Kbyte blocks assignments (RB0 to RB4).
Table 7-3.
16 Kbyte Block Allocation
Configuration examples and related 16 Kbyte block assignments
ITCM = 0 KB
DTCM = 0 KB
AHB = 80 KB (1)
ITCM = 32 KB
DTCM = 32 KB
AHB = 16 KB
ITCM = 16 KB
DTCM = 32 KB
AHB = 32 KB
ITCM = 32 KB
DTCM = 16 KB
AHB = 32 KB
ITCM = 16 KB
DTCM = 16 KB
AHB = 48 KB
RB1
RB1
RB1
Decoded Area
Address
Internal SRAM A
(ITCM)
0x0010 0000
RB1
0x0010 4000
RB0
Internal SRAM B
(DTCM)
0x0020 0000
RB3
RB3
0x0020 4000
RB2
RB2
RB4
Internal SRAM C
(AHB)
Note:
0x0030 0000
RB4
0x0030 4000
RB3
0x0030 8000
RB2
0x0030 C000
RB1
0x0031 0000
1. Configuration after reset.
RB0
RB3
RB3
RB4
RB4
RB4
RB0
RB2
RB2
RB0
RB0
When accessed from the Bus Matrix, the internal 80 Kbytes of Fast SRAM is single cycle accessible at full matrix
speed (MCK). When accessed from the processor’s TCM Interface, they are also single cycle accessible at full
processor speed.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
25
7.1.1.2 Internal 16 Kbyte Fast SRAM
The SAM9263 integrates a 16 Kbyte SRAM, mapped at address 0x0050 0000. This SRAM is single cycle
accessible at full Bus Matrix speed.
7.1.2
Boot Strategies
The system always boots at address 0x0. To ensure maximum boot possibilities, the memory layout can be
changed with two parameters. After reset, the ROM is mapped at both addresses 0x0000_0000 and
0x0040_0000.
REMAP allows the user to layout the internal SRAM bank to 0x0. This is done by software once the system has
booted. Refer to Section 19. “SAM9263 Bus Matrix” for more details.
When REMAP = 0, BMS allows the user to layout at address 0x0 either the ROM or an external memory. This is
done via hardware at reset.
Note:
Memory blocks not affected by these parameters can always be seen at their specified base addresses. See the
complete memory map presented in Figure 7-1 on page 24.
The SAM9263 Bus Matrix manages a boot memory that depends on the level on the pin BMS at reset. The internal
memory area mapped between address 0x0 and 0x000F FFFF is reserved to this effect.
If BMS is detected at 1, the boot memory is the embedded ROM.
If BMS is detected at 0, the boot memory is the memory connected on the Chip Select 0 of the External Bus
Interface.
7.1.2.1 BMS = 1, Boot on Embedded ROM
The system boots on Boot Program.

Boot at slow clock

Auto baudrate detection

Downloads and runs an application from external storage media into internal SRAM

Downloaded code size depends on embedded SRAM size

Automatic detection of valid application

Bootloader on a non-volatile memory

̶
SD Card
̶
NAND Flash
̶
SPI DataFlash and Serial Flash connected on NPCS0 of the SPI0
Interface with SAM-BA® Graphic User Interface to enable code loading via:
̶
Serial communication on a DBGU
̶
USB Bulk Device Port
7.1.2.2 BMS = 0, Boot on External Memory

Boot at slow clock

Boot with the default configuration for the Static Memory Controller, byte select mode, 16-bit data bus,
Read/Write controlled by Chip Select, allows boot on 16-bit non-volatile memory.
The customer-programmed software must perform a complete configuration.
To speed up the boot sequence when booting at 32 kHz EBI0 CS0 (BMS = 0) the user must:
26
1.
Program the PMC (main oscillator enable or bypass mode).
2.
Program and Start the PLL.
3.
Reprogram the SMC setup, cycle, hold, mode timings registers for CS0 to adapt them to the new clock.
4.
Switch the main clock to the new value.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
7.2
External Memories
The external memories are accessed through the External Bus Interfaces 0 and 1. Each Chip Select line has a 256
Mbyte memory area assigned.
Refer to Figure 7-1 on page 24.
7.2.1
External Bus Interfaces
The SAM9263 features two External Bus Interfaces to offer more bandwidth to the system and to prevent
bottlenecks while accessing external memories.
7.2.1.1 External Bus Interface 0

Integrates three External Memory Controllers:
̶
Static Memory Controller
̶
SDRAM Controller
̶
ECC Controller

Additional logic for NAND Flash and CompactFlash

Optional Full 32-bit External Data Bus

Up to 26-bit Address Bus (up to 64 Mbytes linear per chip select)

Up to 6 Chip Selects, Configurable Assignment:

̶
Static Memory Controller on NCS0
̶
SDRAM Controller or Static Memory Controller on NCS1
̶
Static Memory Controller on NCS2
̶
Static Memory Controller on NCS3, Optional NAND Flash support
̶
Static Memory Controller on NCS4–NCS5, Optional CompactFlash support
Optimized for Application Memory Space
7.2.1.2 External Bus Interface 1

̶
Static Memory Controller
̶
SDRAM Controller
̶
ECC Controller

Additional logic for NAND Flash

Optional Full 32-bit External Data Bus

Up to 23-bit Address Bus (up to 8 Mbytes linear)

Up to 3 Chip Selects, Configurable Assignment:

7.2.2
Integrates three External Memory Controllers:
̶
Static Memory Controller on NCS0
̶
SDRAM Controller or Static Memory Controller on NCS1
̶
Static Memory Controller on NCS2, Optional NAND Flash support
Allows supporting an external Frame Buffer for the embedded LCD Controller without impacting processor
performance.
Static Memory Controller

8-, 16- or 32-bit Data Bus

Multiple Access Modes supported
̶
Byte Write or Byte Select Lines
̶
Asynchronous read in Page Mode supported (4- up to 32-byte page size)
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
27



7.2.3
Multiple device adaptability
̶
Compliant with LCD Module
̶
Control signals programmable setup, pulse and hold time for each Memory Bank
Multiple Wait State Management
̶
Programmable Wait State Generation
̶
External Wait Request
̶
Programmable Data Float Time
Slow Clock mode supported
SDRAM Controller

Supported devices
̶



Standard and Low-power SDRAM (Mobile SDRAM)
Numerous configurations supported
̶
2K, 4K, 8K Row Address Memory Parts
̶
SDRAM with two or four Internal Banks
̶
SDRAM with 16- or 32-bit Data Path
Programming facilities
̶
Word, half-word, byte access
̶
Automatic page break when Memory Boundary has been reached
̶
Multibank Ping-pong Access
̶
Timing parameters specified by software
̶
Automatic refresh operation, refresh rate is programmable
Energy-saving capabilities
̶

Self-refresh, power down and deep power down modes supported
Error detection
̶
7.2.4

SDRAM Power-up Initialization by software

CAS Latency of 1, 2 and 3 supported

Auto Precharge Command not used
Error Correction Code Controller

Tracking the accesses to a NAND Flash device by triggering on the corresponding chip select

Single-bit error correction and two-bit random detection

Automatic Hamming Code Calculation while writing

Automatic Hamming Code Calculation while reading
̶
28
Refresh Error Interrupt
ECC value available in a register
̶
Error Report, including error flag, correctable error flag and word address being detected erroneous
̶
Support 8- or 16-bit NAND Flash devices with 512-, 1024-, 2048- or 4096-byte pages
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
8.
System Controller
The System Controller is a set of peripherals that allow handling of key elements of the system, such as power,
resets, clocks, time, interrupts, watchdog, etc.
The System Controller User Interface also embeds registers that are used to configure the Bus Matrix and a set of
registers for the chip configuration. The chip configuration registers can be used to configure:
̶
̶
EBI0 and EBI1 chip select assignment and voltage range for external memories
ARM Processor Tightly Coupled Memories
The System Controller peripherals are all mapped within the highest 16 Kbytes of address space, between
addresses 0xFFFF C000 and 0xFFFF FFFF.
However, all the registers of the System Controller are mapped on the top of the address space. This allows all the
registers of the System Controller to be addressed from a single pointer by using the standard ARM instruction set,
as the Load/Store instructions have an indexing mode of ± 4 Kbytes.
Figure 8-1 on page 31 shows the System Controller block diagram.
Figure 7-1 on page 24 shows the mapping of the User Interfaces of the System Controller peripherals.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
29
8.1
System Controller Block Diagram
Figure 8-1.
SAM9263 System Controller Block Diagram
System Controller
VDDCORE Powered
irq0–irq1
fiq
nirq
nfiq
Advanced
Interrupt
Controller
periph_irq[2..29]
pit_irq
rtt0_irq
rtt1_irq
wdt_irq
dbgu_irq
pmc_irq
rstc_irq
MCK
periph_nreset
int
PCK
dbgu_txd
debug
MCK
debug
periph_nreset
Periodic
Interval Timer
pit_irq
Watchdog
Timer
wdt_irq
jtag_nreset
SLCK
debug
idle
proc_nreset
NRST
periph_nreset
VDDCORE
Reset
Controller
periph_nreset
proc_nreset
backup_nreset
battery_save
VDDBU
VDDBU
POR
VDDBU Powered
SLCK
SLCK
backup_nreset
SLCK
backup_nreset
Real-time
Timer 0
rtt0_irq
Real-time
Timer 1
rtt1_irq
rtt0_alarm
rtt1_alarm
Shutdown
Controller
WKUP
Voltage
Controller
UHPCK
rtt0_alarm
rtt1_alarm
20 General-Purpose
Backup Registers
SLCK
periph_clk[2..29]
pck[0–3]
int
PLLRCA
PLLRCB
PLLA
PLLB
USB Device
Port
battery_save
backup_nreset
Main
Oscillator
periph_nreset
periph_irq[24]
SHDN
Slow Clock
Oscillator
UDPCK
periph_clk[24]
SLCK
XOUT
Bus Matrix
rstc_irq
por_ntrst
jtag_nreset
VDDCORE
POR
XIN
Boundary Scan
TAP Controller
MCK
wdt_fault
WDRPROC
XOUT32
ARM926EJ-S
proc_nreset
dbgu_irq
Debug Unit
dbgu_rxd
XIN32
ntrst
por_ntrst
MAINCK
PLLACK
Power
Management
Controller
PCK
OTGCK
UDPCK
periph_clk[29]
periph_nreset
USB Host
Port
periph_irq[29]
periph_clk[26]
periph_nreset
LCD
Controller
periph_irq[26]
MCK
PLLBCK
pmc_irq
periph_nreset
periph_clk[7..27]
idle
periph_nreset
periph_nreset
periph_clk[2..6]
dbgu_rxd
PA0–PA31
PB0–PB31
PC0–PC31
PD0–PD31
PE0–PE31
30
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
PIO
Controllers
periph_irq[2..6]
irq0–irq1
fiq
dbgu_txd
Embedded
Peripherals
periph_irq[7..27]
in
out
enable
8.2
Reset Controller

Based on two Power-on-Reset cells
̶

One on VDDBU and one on VDDCORE
Status of the last reset
̶

Either general reset (VDDBU rising), wake-up reset (VDDCORE rising), software reset, user reset or
watchdog reset
Controls the internal resets and the NRST pin output
̶
8.3
Allows shaping a reset signal for the external devices
Shutdown Controller
See SHDWC Section 17.2 “Embedded Characteristics”.
8.4
Clock Generator

Embeds the low-power 32.768 kHz Slow Clock Oscillator

Embeds the Main Oscillator
̶

Provides the permanent Slow Clock SLCK to the system
̶
Oscillator bypass feature
̶
Supports 3 to 20 MHz crystals
Embeds 2 PLLs
̶
Output 80 to 240 MHz clocks
̶
Integrates an input divider to increase output accuracy
̶
1 MHz Minimum input frequency
Figure 8-2.
Clock Generator Block Diagram
Clock Generator
XIN32
Slow Clock
Oscillator
Slow Clock
SLCK
Main
Oscillator
Main Clock
MAINCK
PLLRCA
PLL and
Divider A
PLLA Clock
PLLACK
PLLRCB
PLL and
Divider B
PLLB Clock
PLLBCK
XOUT32
XIN
XOUT
Status
Control
Power
Management
Controller
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
31
8.5
Power Management Controller


Provides:
̶
the Processor Clock PCK
̶
the Master Clock MCK, in particular to the Matrix and the memory interfaces
̶
the USB Device Clock UDPCK
̶
the USB Host Clock UHPCK
̶
independent peripheral clocks, typically at the frequency of MCK
̶
four programmable clock outputs: PCK0 to PCK3
Five flexible operating modes:
̶
Normal Mode with processor and peripherals running at a programmable frequency
̶
Idle Mode with processor stopped while waiting for an interrupt
̶
Slow Clock Mode with processor and peripherals running at low frequency
̶
Standby Mode, mix of Idle and Backup Mode, with peripherals running at low frequency, processor
stopped waiting for an interrupt
̶
Backup Mode with Main Power Supplies off, VDDBU powered by a battery
Figure 8-3.
SAM9263 Power Management Controller Block Diagram
Processor
Clock
Controller
int
Master Clock Controller
SLCK
MAINCK
PLLACK
PLLBCK
PCK
Idle Mode
Divider
/1,/2,/4
Prescaler
/1,/2,/4,...,/64
MCK
Peripherals
Clock Controller
periph_clk[..]
ON/OFF
Programmable Clock Controller
SLCK
MAINCK
PLLACK
PLLBCK
ON/OFF
Prescaler
/1,/2,/4,...,/64
pck[..]
USB Clock Controller
PLLBCK
Divider
/1,/2,/4
ON/OFF
UDPCK
UHPCK
8.6
Periodic Interval Timer
See PIT Section 15.2 “Embedded Characteristics”.
8.7
Watchdog Timer
See WDT Section 16.2 “Embedded Characteristics”.
8.8
Real-time Timer

32
Two Real-time Timers, allowing backup of time with different accuracies (See RTT Section 14.2 “Embedded
Characteristics”.)
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
8.9
General-purpose Backup Registers

8.10
Backup Power Switch

8.11
Twenty 32-bit general-purpose backup registers
Automatic switch of VDDBU to VDDCORE guaranteeing very low power consumption on VDDBU while
VDDCORE is present
Advanced Interrupt Controller

Controls the interrupt lines (nIRQ and nFIQ) of the ARM Processor

Thirty-two individually maskable and vectored interrupt sources
̶
Source 0 is reserved for the Fast Interrupt Input (FIQ)
̶
Source 1 is reserved for system peripherals (PIT, RTT, PMC, DBGU, etc.)
̶
Programmable Edge-triggered or Level-sensitive Internal Sources
̶
Programmable Positive/Negative Edge-triggered or High/Low Level-sensitive

Four External Sources plus the Fast Interrupt signal

8-level Priority Controller

̶
Drives the Normal Interrupt of the processor
̶
Handles priority of the interrupt sources 1 to 31
̶
Higher priority interrupts can be served during service of lower priority interrupt
Vectoring
̶
Optimizes Interrupt Service Routine Branch and Execution
̶
One 32-bit Vector Register per interrupt source
̶
Interrupt Vector Register reads the corresponding current Interrupt Vector

Protect Mode

Fast Forcing
̶
̶
Easy debugging by preventing automatic operations when protect models are enabled
8.12
Permits redirecting any normal interrupt source on the Fast Interrupt of the processor
Debug Unit
See DBGU Section 29.2 “Embedded Characteristics”.
8.13
8.14
Chip Identification

Chip ID: 0x019607A0

JTAG ID: 0x05B0C03F

ARM926 TAP ID: 0x0792603F
PIO Controllers

Five PIO Controllers, PIOA to PIOE, controlling a total of 160 I/O Lines

Each PIO Controller controls up to 32 programmable I/O Lines
̶
PIOA has 32 I/O Lines
̶
PIOB has 32 I/O Lines
̶
PIOC has 32 I/O Lines
̶
PIOD has 32 I/O Lines
̶
PIOE has 32 I/O Lines
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
33

Fully programmable through Set/Clear Registers

Multiplexing of two peripheral functions per I/O Line

For each I/O Line (whether assigned to a peripheral or used as general-purpose I/O)

34
̶
Input change interrupt
̶
Glitch filter
̶
Multi-drive option enables driving in open drain
̶
Programmable pull-up on each I/O line
̶
Pin data status register, supplies visibility of the level on the pin at any time
Synchronous output, provides Set and Clear of several I/O lines in a single write
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
9.
Peripherals
9.1
User Interface
The peripherals are mapped in the upper 256 Mbytes of the address space between the addresses 0xFFFA 0000
and 0xFFFC FFFF. Each User Peripheral is allocated 16 Kbytes of address space.
A complete memory map is presented in Figure 7-1 on page 24.
9.2
Peripheral Identifiers
Table 9-1 defines the Peripheral Identifiers. A peripheral identifier is required for the control of the peripheral
interrupt with the Advanced Interrupt Controller and for the control of the peripheral clock with the Power
Management Controller.
Table 9-1.
SAM9263 Peripheral Identifiers
Peripheral ID
Peripheral Mnemonic
Peripheral Name
External Interrupt
0
AIC
Advanced Interrupt Controller
1
SYSC
System Controller Peripherals
2
PIOA
Parallel I/O Controller A
3
PIOB
Parallel I/O Controller B
4
PIOC to PIOE
Parallel I/O Controller C, D and E
5
Reserved
6
Reserved
7
US0
USART 0
8
US1
USART 1
9
US2
USART 2
10
MCI0
Multimedia Card Interface 0
11
MCI1
Multimedia Card Interface 1
12
CAN
CAN Controller
13
TWI
Two-Wire Interface
14
SPI0
Serial Peripheral Interface 0
15
SPI1
Serial Peripheral Interface 1
16
SSC0
Synchronous Serial Controller 0
17
SSC1
Synchronous Serial Controller 1
18
AC97C
AC97 Controller
19
TC0, TC1, TC2
Timer/Counter 0, 1 and 2
20
PWM
Pulse Width Modulation Controller
21
EMAC
Ethernet MAC
22
Reserved
23
2DGE
2D Graphic Engine
24
UDP
USB Device Port
25
ISI
Image Sensor Interface
FIQ
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
35
Table 9-1.
SAM9263 Peripheral Identifiers (Continued)
Peripheral ID
Note:
9.2.1
Peripheral Mnemonic
Peripheral Name
External Interrupt
26
LCDC
LCD Controller
27
DMA
DMA Controller
28
Reserved
29
UHP
USB Host Port
30
AIC
Advanced Interrupt Controller
IRQ0
31
AIC
Advanced Interrupt Controller
IRQ1
Setting AIC, SYSC, UHP and IRQ0–1 bits in the clock set/clear registers of the PMC has no effect.
Peripheral Interrupts and Clock Control
9.2.1.1 System Interrupt
The System Interrupt in Source 1 is the wired-OR of the interrupt signals coming from:

the SDRAM Controller

the Debug Unit

the Periodic Interval Timer

the Real-Time Timer

the Watchdog Timer

the Reset Controller

the Power Management Controller
The clock of these peripherals cannot be deactivated and Peripheral ID 1 can only be used within the Advanced
Interrupt Controller.
9.2.1.2 External Interrupts
All external interrupt signals, i.e., the Fast Interrupt signal FIQ or the Interrupt signals IRQ0 to IRQ1, use a
dedicated Peripheral ID. However, there is no clock control associated with these peripheral IDs.
9.2.1.3 Timer Counter Interrupts
The three Timer Counter channels interrupt signals are OR-wired together to provide the interrupt source 19 of the
Advanced Interrupt Controller. This forces the programmer to read all Timer Counter status registers before
branching the right Interrupt Service Routine.
The Timer Counter channels clocks cannot be deactivated independently. Switching off the clock of the Peripheral
19 disables the clock of the three channels.
9.3
Peripherals Signals Multiplexing on I/O Lines
The SAM9263 device features five PIO controllers (PIOA, PIOB, PIOC, PIOD and PIOE) which multiplex the I/O
lines of the peripheral set.
Each PIO Controller controls up to 32 lines. Each line can be assigned to one of two peripheral functions, A or B.
The multiplexing tables define how the I/O lines of the peripherals A and B are multiplexed on the PIO Controllers.
The two columns “Function” and “Comments” have been inserted in this table for the user’s own comments; they
may be used to track how pins are defined in an application.
Note that some peripheral functions which are output only may be duplicated within both tables.
The column “Reset State” indicates whether the PIO Line resets in I/O mode or in peripheral mode. If I/O is
specified, the PIO Line resets in input with the pull-up enabled, so that the device is maintained in a static state as
36
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
soon as the reset is released. As a result, the bit corresponding to the PIO Line in the register PIO_PSR
(Peripheral Status Register) resets low.
If a signal name is specified in the “Reset State” column, the PIO Line is assigned to this function and the
corresponding bit in PIO_PSR resets high. This is the case of pins controlling memories, in particular the address
lines, which require the pin to be driven as soon as the reset is released. Note that the pull-up resistor is also
enabled in this case.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
37
9.3.1
PIO Controller A Multiplexing
Table 9-2.
Multiplexing on PIO Controller A
PIO Controller A
Application Usage
I/O Line
Peripheral A
Peripheral B
Reset
State
Power
Supply
PA0
MCI0_DA0
SPI0_MISO
I/O
VDDIOP0
PA1
MCI0_CDA
SPI0_MOSI
I/O
VDDIOP0
SPI0_SPCK
I/O
VDDIOP0
PA2
PA3
MCI0_DA1
SPI0_NPCS1
I/O
VDDIOP0
PA4
MCI0_DA2
SPI0_NPCS2
I/O
VDDIOP0
PA5
MCI0_DA3
SPI0_NPCS0
I/O
VDDIOP0
PA6
MCI1_CK
PCK2
I/O
VDDIOP0
PA7
MCI1_CDA
I/O
VDDIOP0
PA8
MCI1_DA0
I/O
VDDIOP0
PA9
MCI1_DA1
I/O
VDDIOP0
PA10
MCI1_DA2
I/O
VDDIOP0
PA11
MCI1_DA3
I/O
VDDIOP0
PA12
MCI0_CK
I/O
VDDIOP0
PA13
CANTX
PCK0
I/O
VDDIOP0
PA14
CANRX
IRQ0
I/O
VDDIOP0
PA15
TCLK2
IRQ1
I/O
VDDIOP0
PA16
MCI0_CDB
EBI1_D16
I/O
VDDIOM1
PA17
MCI0_DB0
EBI1_D17
I/O
VDDIOM1
PA18
MCI0_DB1
EBI1_D18
I/O
VDDIOM1
PA19
MCI0_DB2
EBI1_D19
I/O
VDDIOM1
PA20
MCI0_DB3
EBI1_D20
I/O
VDDIOM1
PA21
MCI1_CDB
EBI1_D21
I/O
VDDIOM1
PA22
MCI1_DB0
EBI1_D22
I/O
VDDIOM1
PA23
MCI1_DB1
EBI1_D23
I/O
VDDIOM1
PA24
MCI1_DB2
EBI1_D24
I/O
VDDIOM1
PA25
MCI1_DB3
EBI1_D25
I/O
VDDIOM1
PA26
TXD0
EBI1_D26
I/O
VDDIOM1
PA27
RXD0
EBI1_D27
I/O
VDDIOM1
PA28
RTS0
EBI1_D28
I/O
VDDIOM1
PA29
CTS0
EBI1_D29
I/O
VDDIOM1
PA30
SCK0
EBI1_D30
I/O
VDDIOM1
PA31
DMARQ0
EBI1_D31
I/O
VDDIOM1
38
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Function
Comments
9.3.2
PIO Controller B Multiplexing
Table 9-3.
Multiplexing on PIO Controller B
PIO Controller B
Application Usage
I/O Line
Peripheral A
Peripheral B
Reset
State
Power
Supply
PB0
AC97FS
TF0
I/O
VDDIOP0
PB1
AC97CK
TK0
I/O
VDDIOP0
PB2
AC97TX
TD0
I/O
VDDIOP0
PB3
AC97RX
RD0
I/O
VDDIOP0
PB4
TWD
RK0
I/O
VDDIOP0
PB5
TWCK
RF0
I/O
VDDIOP0
PB6
TF1
DMARQ1
I/O
VDDIOP0
PB7
TK1
PWM0
I/O
VDDIOP0
PB8
TD1
PWM1
I/O
VDDIOP0
PB9
RD1
LCDCC
I/O
VDDIOP0
PB10
RK1
PCK1
I/O
VDDIOP0
PB11
RF1
SPI0_NPCS3
I/O
VDDIOP0
PB12
SPI1_MISO
I/O
VDDIOP0
PB13
SPI1_MOSI
I/O
VDDIOP0
PB14
SPI1_SPCK
I/O
VDDIOP0
PB15
SPI1_NPCS0
I/O
VDDIOP0
PB16
SPI1_NPCS1
PCK1
I/O
VDDIOP0
PB17
SPI1_NPCS2
TIOA2
I/O
VDDIOP0
PB18
SPI1_NPCS3
TIOB2
I/O
VDDIOP0
PB19
I/O
VDDIOP0
PB20
I/O
VDDIOP0
PB21
I/O
VDDIOP0
PB22
I/O
VDDIOP0
PB23
I/O
VDDIOP0
I/O
VDDIOP0
PB25
I/O
VDDIOP0
PB26
I/O
VDDIOP0
PB24
DMARQ3
PB27
PWM2
I/O
VDDIOP0
PB28
TCLK0
I/O
VDDIOP0
PB29
PWM3
I/O
VDDIOP0
PB30
I/O
VDDIOP0
PB31
I/O
VDDIOP0
Function
Comments
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
39
9.3.3
PIO Controller C Multiplexing
Table 9-4.
Multiplexing on PIO Controller C
PIO Controller C
Application Usage
Reset
State
Power
Supply
LCDVSYNC
I/O
VDDIOP0
PC1
LCDHSYNC
I/O
VDDIOP0
PC2
LCDDOTCK
I/O
VDDIOP0
PC3
LCDDEN
PWM1
I/O
VDDIOP0
PC4
LCDD0
LCDD3
I/O
VDDIOP0
PC5
LCDD1
LCDD4
I/O
VDDIOP0
PC6
LCDD2
LCDD5
I/O
VDDIOP0
PC7
LCDD3
LCDD6
I/O
VDDIOP0
PC8
LCDD4
LCDD7
I/O
VDDIOP0
PC9
LCDD5
LCDD10
I/O
VDDIOP0
PC10
LCDD6
LCDD11
I/O
VDDIOP0
PC11
LCDD7
LCDD12
I/O
VDDIOP0
PC12
LCDD8
LCDD13
I/O
VDDIOP0
PC13
LCDD9
LCDD14
I/O
VDDIOP0
PC14
LCDD10
LCDD15
I/O
VDDIOP0
PC15
LCDD11
LCDD19
I/O
VDDIOP0
PC16
LCDD12
LCDD20
I/O
VDDIOP0
PC17
LCDD13
LCDD21
I/O
VDDIOP0
PC18
LCDD14
LCDD22
I/O
VDDIOP0
PC19
LCDD15
LCDD23
I/O
VDDIOP0
PC20
LCDD16
ETX2
I/O
VDDIOP0
PC21
LCDD17
ETX3
I/O
VDDIOP0
PC22
LCDD18
ERX2
I/O
VDDIOP0
PC23
LCDD19
ERX3
I/O
VDDIOP0
PC24
LCDD20
ETXER
I/O
VDDIOP0
PC25
LCDD21
ERXDV
I/O
VDDIOP0
PC26
LCDD22
ECOL
I/O
VDDIOP0
PC27
LCDD23
ERXCK
I/O
VDDIOP0
PC28
PWM0
TCLK1
I/O
VDDIOP0
PC29
PCK0
PWM2
I/O
VDDIOP0
PC30
DRXD
I/O
VDDIOP0
PC31
DTXD
I/O
VDDIOP0
I/O Line
Peripheral A
PC0
40
Peripheral B
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Function
Comments
9.3.4
PIO Controller D Multiplexing
Table 9-5.
Multiplexing on PIO Controller D
PIO Controller D
Application Usage
I/O Line
Peripheral A
Peripheral B
Reset
State
Power
Supply
PD0
TXD1
SPI0_NPCS2
I/O
VDDIOP0
PD1
RXD1
SPI0_NPCS3
I/O
VDDIOP0
PD2
TXD2
SPI1_NPCS2
I/O
VDDIOP0
PD3
RXD2
SPI1_NPCS3
I/O
VDDIOP0
PD4
FIQ
DMARQ2
I/O
VDDIOP0
PD5
EBI0_NWAIT
RTS2
I/O
VDDIOM0
PD6
EBI0_NCS4/CFCS0
CTS2
I/O
VDDIOM0
PD7
EBI0_NCS5/CFCS1
RTS1
I/O
VDDIOM0
PD8
EBI0_CFCE1
CTS1
I/O
VDDIOM0
PD9
EBI0_CFCE2
SCK2
I/O
VDDIOM0
SCK1
I/O
VDDIOM0
PD10
PD11
EBI0_NCS2
TSYNC
I/O
VDDIOM0
PD12
EBI0_A23
TCLK
A23
VDDIOM0
PD13
EBI0_A24
TPS0
A24
VDDIOM0
PD14
EBI0_A25_CFRNW
TPS1
A25
VDDIOM0
PD15
EBI0_NCS3/NANDCS
TPS2
I/O
VDDIOM0
PD16
EBI0_D16
TPK0
I/O
VDDIOM0
PD17
EBI0_D17
TPK1
I/O
VDDIOM0
PD18
EBI0_D18
TPK2
I/O
VDDIOM0
PD19
EBI0_D19
TPK3
I/O
VDDIOM0
PD20
EBI0_D20
TPK4
I/O
VDDIOM0
PD21
EBI0_D21
TPK5
I/O
VDDIOM0
PD22
EBI0_D22
TPK6
I/O
VDDIOM0
PD23
EBI0_D23
TPK7
I/O
VDDIOM0
PD24
EBI0_D24
TPK8
I/O
VDDIOM0
PD25
EBI0_D25
TPK9
I/O
VDDIOM0
PD26
EBI0_D26
TPK10
I/O
VDDIOM0
PD27
EBI0_D27
TPK11
I/O
VDDIOM0
PD28
EBI0_D28
TPK12
I/O
VDDIOM0
PD29
EBI0_D29
TPK13
I/O
VDDIOM0
PD30
EBI0_D30
TPK14
I/O
VDDIOM0
PD31
EBI0_D31
TPK15
I/O
VDDIOM0
Function
Comments
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
41
9.3.5
PIO Controller E Multiplexing
Table 9-6.
Multiplexing on PIO Controller E
PIO Controller E
Application Usage
Reset
State
Power
Supply
ISI_D0
I/O
VDDIOP1
PE1
ISI_D1
I/O
VDDIOP1
PE2
ISI_D2
I/O
VDDIOP1
PE3
ISI_D3
I/O
VDDIOP1
PE4
ISI_D4
I/O
VDDIOP1
PE5
ISI_D5
I/O
VDDIOP1
PE6
ISI_D6
I/O
VDDIOP1
PE7
ISI_D7
I/O
VDDIOP1
PE8
ISI_PCK
TIOA1
I/O
VDDIOP1
PE9
ISI_HSYNC
TIOB1
I/O
VDDIOP1
PE10
ISI_VSYNC
PWM3
I/O
VDDIOP1
PE11
PCK3
I/O
VDDIOP1
PE12
ISI_D8
I/O
VDDIOP1
PE13
ISI_D9
I/O
VDDIOP1
PE14
ISI_D10
I/O
VDDIOP1
PE15
ISI_D11
I/O
VDDIOP1
PE16
I/O
VDDIOP1
PE17
I/O
VDDIOP1
I/O Line
Peripheral A
PE0
Peripheral B
PE18
TIOA0
I/O
VDDIOP1
PE19
TIOB0
I/O
VDDIOP1
PE20
EBI1_NWAIT
I/O
VDDIOM1
PE21
ETXCK
EBI1_NANDWE
I/O
VDDIOM1
PE22
ECRS
EBI1_NCS2/NANDCS
I/O
VDDIOM1
PE23
ETX0
EB1_NANDOE
I/O
VDDIOM1
PE24
ETX1
EBI1_NWR3/NBS3
I/O
VDDIOM1
PE25
ERX0
EBI1_NCS1/SDCS
I/O
VDDIOM1
PE26
ERX1
I/O
VDDIOM1
PE27
ERXER
EBI1_SDCKE
I/O
VDDIOM1
PE28
ETXEN
EBI1_RAS
I/O
VDDIOM1
PE29
EMDC
EBI1_CAS
I/O
VDDIOM1
PE30
EMDIO
EBI1_SDWE
I/O
VDDIOM1
PE31
EF100
EBI1_SDA10
I/O
VDDIOM1
42
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Function
Comments
9.4
System Resource Multiplexing
9.4.1
LCD Controller
The LCD Controller can interface with several LCD panels. It supports 4 bits per pixel (bpp), 8 bpp or 16 bpp
without limitation. Interfacing 24 bpp TFT panels prevents using the Ethernet MAC. 16 bpp TFT panels are
interfaced through peripheral B functions, as color data is output on LCDD3 to LCDD7, LCDD11 to LCDD15 and
LCDD19 to LCDD23. Intensity bit is output on LCDD10. Using the peripheral B does not prevent using MAC lines.
16 bpp STN panels are interfaced through peripheral A and color data is output on LCDD0 to LCDD15, thus MAC
lines can be used on peripheral B.
Mapping the LCD signals on peripheral A and peripheral B makes is possible to use 24 bpp TFT panels in 24 bits
(peripheral A) or 16 bits (peripheral B) by reprogramming the PIO controller and thus without hardware
modification.
9.4.2
ETM™
Using the ETM prevents the use of the EBI0 in 32-bit mode. Only 16-bit mode (EBI0_D0 to EBI0_D15) is available,
makes EBI0 unable to interface CompactFlash and NAND Flash cards, reduces EBI0’s address bus width which
makes it unable to address memory ranges bigger than 0x7FFFFF and finally it makes impossible to use
EBI0_NCS2 and EBI0_NCS3.
9.4.3
EBI1
Using the following features prevents using EBI1 in 32-bit mode:
9.4.4

the second slots of MCI0 and/or MCI1

USART0

DMA request 0 (DMARQ0)
Ethernet 10/100MAC
Using the following features of EBI1 prevents using Ethernet 10/100MAC:
9.4.5

SDRAM

NAND (unless NANDCS, NANDOE and NANDWE are managed by PIO)

SMC 32 bits (SMC 16 bits is still available)

NCS1, NCS2 are not available in SMC mode
SSC
Using SSC0 prevents using the AC97 Controller and Two-wire Interface.
Using SSC1 prevents using DMA Request 1, PWM0, PWM1, LCDCC and PCK1.
9.4.6
USART
Using USART2 prevents using EBI0’s NWAIT signal, Chip Select 4 and CompactFlash Chip Enable 2.
Using USART1 prevents using EBI0’s Chip Select 5 and CompactFlash Chip Enable1.
9.4.7
NAND Flash
Using the NAND Flash interface on EBI1 prevents using Ethernet MAC.
9.4.8
CompactFlash
Using the CompactFlash interface prevents using NCS4 and/or NCS5 to access other parallel devices.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
43
9.4.9
SPI0 and MCI Interface
SPI0 signals and MCI0 signals are multiplexed, as the DataFlash Card is hardware-compatible with the SDCard.
Only one can be used at a time.
9.4.10 Interrupts
Using IRQ0 prevents using the CAN controller.
Using FIQ prevents using DMA Request 2.
9.4.11 Image Sensor Interface
Using ISI in 8-bit data mode prevents using timers TIOA1, TIOB1.
9.4.12 Timers
Using TIOA2 and TIOB2, in this order, prevents using SPI1’s Chip Selects [2–3].
44
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
9.5
Embedded Peripherals Overview
9.5.1
Serial Peripheral Interface



9.5.2
Supports communication with serial external devices
̶
Four chip selects with external decoder support allow communication with up to 15 peripherals
̶
Serial memories, such as DataFlash and 3-wire EEPROMs
̶
Serial peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and Sensors
̶
External co-processors
Master or slave serial peripheral bus interface
̶
8- to 16-bit programmable data length per chip select
̶
Programmable phase and polarity per chip select
̶
Programmable transfer delays between consecutive transfers and between clock and data per chip
select
̶
Programmable delay between consecutive transfers
̶
Selectable mode fault detection
Very fast transfers supported
̶
Transfers with baud rates up to MCK
̶
The chip select line may be left active to speed up transfers on the same device
Two-wire Interface
See TWI Section 32.2 “Embedded Characteristics”.
9.5.3
USART

Programmable Baud Rate Generator

5- to 9-bit full-duplex synchronous or asynchronous serial communications
̶
1, 1.5 or 2 stop bits in Asynchronous Mode or 1 or 2 stop bits in Synchronous Mode
̶
Parity generation and error detection
̶
Framing error detection, overrun error detection
̶
MSB- or LSB-first
̶
Optional break generation and detection
̶
By 8 or by-16 over-sampling receiver frequency
̶
Hardware handshaking RTS-CTS
̶
Receiver time-out and transmitter timeguard
̶
Optional Multi-drop Mode with address generation and detection
̶
Optional Manchester Encoding

RS485 with driver control signal

ISO7816, T = 0 or T = 1 Protocols for interfacing with smart cards
̶

NACK handling, error counter with repetition and iteration limit
IrDA modulation and demodulation
̶

Communication at up to 115.2 Kbps
Test Modes
̶
Remote Loopback, Local Loopback, Automatic Echo
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
45
9.5.4
9.5.5
Serial Synchronous Controller

Provides serial synchronous communication links used in audio and telecom applications (with CODECs in
Master or Slave Modes, I2S, TDM Buses, Magnetic Card Reader, etc.)

Contains an independent receiver and transmitter and a common clock divider

Offers a configurable frame sync and data length

Receiver and transmitter can be programmed to start automatically or on detection of different event on the
frame sync signal

Receiver and transmitter include a data signal, a clock signal and a frame synchronization signal
AC97 Controller

Compatible with AC97 Component Specification V2.2

Can interface with a single analog front end

Three independent RX Channels and three independent TX Channels
̶
One RX and one TX channel dedicated to the AC97 analog front end control
̶
One RX and one TX channel for data transfers, associated with a PDC
̶
One RX and one TX channel for data transfers with no PDC

Time Slot Assigner that can assign up to 12 time slots to a channel

Channels support mono or stereo up to 20-bit sample length
̶
9.5.6
Variable sampling rate AC97 Codec Interface (48 kHz and below)
Timer Counter
See TC Section 38.2 “Embedded Characteristics”.
9.5.7
Pulse Width Modulation Controller



9.5.8
Multimedia Card Interface

9.5.9
Two double-channel Multimedia Card Interfaces, allowing concurrent transfers with 2 cards (See MCI
Section 39.2 “Embedded Characteristics”.)
CAN Controller



46
4 channels, one 16-bit counter per channel
Common clock generator, providing thirteen different clocks
̶
Modulo n counter providing eleven clocks
̶
Two independent Linear Dividers working on modulo n counter outputs
Independent channel programming
̶
Independent Enable Disable commands
̶
Independent clock selection
̶
Independent period and duty cycle, with double bufferization
̶
Programmable selection of the output waveform polarity
̶
Programmable center or left aligned output waveform
Fully compliant with 16-mailbox CAN 2.0A and 2.0B CAN Controllers
Bit rates up to 1Mbit/s
Object-oriented mailboxes, each with the following properties:
̶
CAN Specification 2.0 Part A or 2.0 Part B programmable for each message
̶
Object Configurable as receive (with overwrite or not) or transmit
̶
Local Tag and Mask Filters up to 29-bit Identifier/Channel
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
̶
32 bits access to Data registers for each mailbox data object
Uses a 16-bit time stamp on receive and transmit message
̶
̶
Hardware concatenation of ID unmasked bitfields to speedup family ID processing
16-bit internal timer for Time Stamping and Network synchronization
Programmable reception buffer length up to 16 mailbox object
Priority Management between transmission mailboxes
Autobaud and listening mode
Low power mode and programmable wake-up on bus activity or by the application
Data, Remote, Error and Overload Frame handling
̶
̶
̶
̶
̶
̶
9.5.10 USB Host Port
See UHP Section 41.2 “Embedded Characteristics”.
9.5.11 USB Device Port

USB V2.0 full-speed compliant, 12 Mbits per second

Embedded USB V2.0 full-speed transceiver

Embedded 2,432-byte dual-port RAM for endpoints

Suspend/Resume logic

Ping-pong mode (two memory banks) for isochronous and bulk endpoints

Six general-purpose endpoints
̶
Endpoint 0 and 3: 64 bytes, no ping-pong mode
̶
Endpoint 1 and 2: 64 bytes, ping-pong mode
̶
Endpoint 4 and 5: 512 bytes, ping-pong mode
9.5.12 LCD Controller

Single and Dual scan color and monochrome passive STN LCD panels supported

Single scan active TFT LCD panels supported

4-bit single scan, 8-bit single or dual scan, 16-bit dual scan STN interfaces supported

Up to 24-bit single scan TFT interfaces supported

Up to 16 gray levels for mono STN and up to 4096 colors for color STN displays

1, 2 bits per pixel (palletized), 4 bits per pixel (non-palletized) for mono STN

1, 2, 4, 8 bits per pixel (palletized), 16 bits per pixel (non-palletized) for color STN

1, 2, 4, 8 bits per pixel (palletized), 16, 24 bits per pixel (non-palletized) for TFT

Single clock domain architecture

Resolution supported up to 2048x2048

2D DMA Controller for management of virtual Frame Buffer
̶

Allows management of frame buffer larger than the screen size and moving the view over this virtual
frame buffer
Automatic resynchronization of the frame buffer pointer to prevent flickering
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
47
9.5.13 Two D Graphics Controller

Acts as one Matrix Master

Commands are passed through the APB User Interface

Operates directly in the frame buffer of the LCD Controller

̶
Line draw
̶
Block transfer
̶
Clipping
Commands queuing through a FIFO
9.5.14 Ethernet 10/100 MAC
See EMAC Section 40.2 “Embedded Characteristics”.
9.5.15 Image Sensor Interface
48

ITU-R BT. 601/656 8-bit mode external interface support

Support for ITU-R BT.656-4 SAV and EAV synchronization

Vertical and horizontal resolutions up to 2048 x 2048

Preview Path up to 640*480

Support for packed data formatting for YCbCr 4:2:2 formats

Preview scaler to generate smaller size image

Programmable frame capture rate
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
10.
ARM926EJ-S Processor Overview
10.1
Overview
The ARM926EJ-S processor is a member of the ARM9s family of general-purpose microprocessors. The
ARM926EJ-S implements ARM architecture version 5TEJ and is targeted at multi-tasking applications where full
memory management, high performance, low die size and low power are all important features.
The ARM926EJ-S processor supports the 32-bit ARM and 16-bit Thumb instruction sets, enabling the user to
trade off between high performance and high code density. It also supports 8-bit Java instruction set and includes
features for efficient execution of Java bytecode, providing a Java performance similar to a JIT (Just-In-Time
compilers), for the next generation of Java-powered wireless and embedded devices. It includes an enhanced
multiplier design for improved DSP performance.
The ARM926EJ-S processor supports the ARM debug architecture and includes logic to assist in both hardware
and software debug.
The ARM926EJ-S provides a complete high performance processor subsystem, including:
50

an ARM9EJ-S™ integer core

a Memory Management Unit (MMU)

separate instruction and data AMBA™ AHB bus interfaces

separate instruction and data TCM interfaces
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
10.2
Block Diagram
Figure 10-1.
ARM926EJ-S Internal Functional Block Diagram
ARM926EJ-S
TCM
Interface
Coprocessor
Interface
ETM
Interface
DEXT
Droute
Data
AHB
Interface
AHB
DCACHE
WDATA
Bus
Interface
Unit
RDATA
ARM9EJ-S
DA
MMU
EmbeddedICE
-RT
Processor
Instruction
AHB
Interface
IA
AHB
INSTR
ICE
Interface
ICACHE
Iroute
IEXT
10.3
ARM9EJ-S Processor
10.3.1 ARM9EJ-S Operating States
The ARM9EJ-S processor can operate in three different states, each with a specific instruction set:

ARM state: 32-bit, word-aligned ARM instructions.

Thumb state: 16-bit, halfword-aligned Thumb instructions.

Jazelle state: variable length, byte-aligned Jazelle instructions.
In Jazelle state, all instruction Fetches are in words.
10.3.2 Switching State
The operating state of the ARM9EJ-S core can be switched between:

ARM state and Thumb state using the BX and BLX instructions, and loads to the PC

ARM state and Jazelle state using the BXJ instruction
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
51
All exceptions are entered, handled and exited in ARM state. If an exception occurs in Thumb or Jazelle states, the
processor reverts to ARM state. The transition back to Thumb or Jazelle states occurs automatically on return from
the exception handler.
10.3.3 Instruction Pipelines
The ARM9EJ-S core uses two kinds of pipelines to increase the speed of the flow of instructions to the processor.
A five-stage (five clock cycles) pipeline is used for ARM and Thumb states. It consists of Fetch, Decode, Execute,
Memory and Writeback stages.
A six-stage (six clock cycles) pipeline is used for Jazelle state It consists of Fetch, Jazelle/Decode (two clock
cycles), Execute, Memory and Writeback stages.
10.3.4 Memory Access
The ARM9EJ-S core supports byte (8-bit), half-word (16-bit) and word (32-bit) access. Words must be aligned to
four-byte boundaries, half-words must be aligned to two-byte boundaries and bytes can be placed on any byte
boundary.
Because of the nature of the pipelines, it is possible for a value to be required for use before it has been placed in
the register bank by the actions of an earlier instruction. The ARM9EJ-S control logic automatically detects these
cases and stalls the core or forward data.
10.3.5 Jazelle Technology
The Jazelle technology enables direct and efficient execution of Java byte codes on ARM processors, providing
high performance for the next generation of Java-powered wireless and embedded devices.
The new Java feature of ARM9EJ-S can be described as a hardware emulation of a JVM (Java Virtual Machine).
Java mode will appear as another state: instead of executing ARM or Thumb instructions, it executes Java byte
codes. The Java byte code decoder logic implemented in ARM9EJ-S decodes 95% of executed byte codes and
turns them into ARM instructions without any overhead, while less frequently used byte codes are broken down
into optimized sequences of ARM instructions. The hardware/software split is invisible to the programmer, invisible
to the application and invisible to the operating system. All existing ARM registers are re-used in Jazelle state and
all registers then have particular functions in this mode.
Minimum interrupt latency is maintained across both ARM state and Java state. Since byte codes execution can
be restarted, an interrupt automatically triggers the core to switch from Java state to ARM state for the execution of
the interrupt handler. This means that no special provision has to be made for handling interrupts while executing
byte codes, whether in hardware or in software.
10.3.6 ARM9EJ-S Operating Modes
In all states, there are seven operation modes:

User mode is the usual ARM program execution state. It is used for executing most application programs

Fast Interrupt (FIQ) mode is used for handling fast interrupts. It is suitable for high-speed data transfer or
channel process

Interrupt (IRQ) mode is used for general-purpose interrupt handling

Supervisor mode is a protected mode for the operating system

Abort mode is entered after a data or instruction prefetch abort

System mode is a privileged user mode for the operating system

Undefined mode is entered when an undefined instruction exception occurs
Mode changes may be made under software control, or may be brought about by external interrupts or exception
processing. Most application programs execute in User Mode. The non-user modes, known as privileged modes,
are entered in order to service interrupts or exceptions or to access protected resources.
52
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
10.3.7 ARM9EJ-S Registers
The ARM9EJ-S core has a total of 37 registers:

31 general-purpose 32-bit registers

Six 32-bit status registers
Table 10-1 shows all the registers in all modes.
Table 10-1.
ARM9EJ-S Modes and Registers Layout
User and
System Mode
Supervisor
Mode
Abort Mode
Undefined Mode
Interrupt Mode
Fast Interrupt
Mode
R0
R0
R0
R0
R0
R0
R1
R1
R1
R1
R1
R1
R2
R2
R2
R2
R2
R2
R3
R3
R3
R3
R3
R3
R4
R4
R4
R4
R4
R4
R5
R5
R5
R5
R5
R5
R6
R6
R6
R6
R6
R6
R7
R7
R7
R7
R7
R7
R8
R8
R8
R8
R8
R8_FIQ
R9
R9
R9
R9
R9
R9_FIQ
R10
R10
R10
R10
R10
R10_FIQ
R11
R11
R11
R11
R11
R11_FIQ
R12
R12
R12
R12
R12
R12_FIQ
R13
R13_SVC
R13_ABORT
R13_UNDEF
R13_IRQ
R13_FIQ
R14
R14_SVC
R14_ABORT
R14_UNDEF
R14_IRQ
R14_FIQ
PC
PC
PC
PC
PC
PC
CPSR
CPSR
CPSR
CPSR
CPSR
CPSR
SPSR_SVC
SPSR_ABORT
SPSR_UNDEF
SPSR_IRQ
SPSR_FIQ
Mode-specific banked registers
The ARM state register set contains 16 directly-accessible registers, r0 to r15, and an additional register, the
Current Program Status Register (CPSR). Registers r0 to r13 are general-purpose registers used to hold either
data or address values. Register r14 is used as a Link register that holds a value (return address) of r15 when BL
or BLX is executed. Register r15 is used as a program counter (PC), whereas the Current Program Status
Register (CPSR) contains condition code flags and the current mode bits.
In privileged modes (FIQ, Supervisor, Abort, IRQ, Undefined), mode-specific banked registers (r8 to r14 in FIQ
mode or r13 to r14 in the other modes) become available. The corresponding banked registers r14_fiq, r14_svc,
r14_abt, r14_irq, r14_und are similarly used to hold the values (return address for each mode) of r15 (PC) when
interrupts and exceptions arise, or when BL or BLX instructions are executed within interrupt or exception routines.
There is another register called Saved Program Status Register (SPSR) that becomes available in privileged
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
53
modes instead of CPSR. This register contains condition code flags and the current mode bits saved as a result of
the exception that caused entry to the current (privileged) mode.
In all modes and due to a software agreement, register r13 is used as stack pointer.
The use and the function of all the registers described above should obey ARM Procedure Call Standard (APCS)
which defines:

constraints on the use of registers

stack conventions

argument passing and result return
The Thumb state register set is a subset of the ARM state set. The programmer has direct access to:

Eight general-purpose registers r0–r7

Stack pointer, SP

Link register, LR (ARM r14)

PC

CPSR
There are banked registers SPs, LRs and SPSRs for each privileged mode (for more details see the ARM9EJ-S
Technical Reference Manual, ref. DDI0222B, revision r1p2 page 2-12).
10.3.7.1 Status Registers
The ARM9EJ-S core contains one CPSR, and five SPSRs for exception handlers to use. The program status
registers:

hold information about the most recently performed ALU operation

control the enabling and disabling of interrupts

set the processor operation mode
Figure 10-2.
Status Register Format
31 30 29 28 27
24
N Z C V Q
J
7 6 5
Reserved
Jazelle state bit
Reserved
Sticky Overflow
Overflow
Carry/Borrow/Extend
Zero
Negative/Less than
I F T
0
Mode
Mode bits
Thumb state bit
FIQ disable
IRQ disable
Figure 10-2 shows the status register format, where:

N: Negative, Z: Zero, C: Carry, and V: Overflow are the four ALU flags

The Sticky Overflow (Q) flag can be set by certain multiply and fractional arithmetic instructions like QADD,
QDADD, QSUB, QDSUB, SMLAxy, and SMLAWy needed to achieve DSP operations.
The Q flag is sticky in that, when set by an instruction, it remains set until explicitly cleared by an MSR
instruction writing to the CPSR. Instructions cannot execute conditionally on the status of the Q flag.

The J bit in the CPSR indicates when the ARM9EJ-S core is in Jazelle state, where:

54
̶
J = 0: The processor is in ARM or Thumb state, depending on the T bit
̶
J = 1: The processor is in Jazelle state.
Mode: five bits to encode the current processor mode
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
10.3.7.2 Exceptions
Exception Types and Priorities
The ARM9EJ-S supports five types of exceptions. Each type drives the ARM9EJ-S in a privileged mode. The types
of exceptions are:

Fast interrupt (FIQ)

Normal interrupt (IRQ)

Data and Prefetched aborts (Abort)

Undefined instruction (Undefined)

Software interrupt and Reset (Supervisor)
When an exception occurs, the banked version of R14 and the SPSR for the exception mode are used to save the
state.
More than one exception can happen at a time, therefore the ARM9EJ-S takes the arisen exceptions according to
the following priority order:

Reset (highest priority)

Data Abort

FIQ

IRQ

Prefetch Abort

BKPT, Undefined instruction, and Software Interrupt (SWI) (Lowest priority)
The BKPT, or Undefined instruction, and SWI exceptions are mutually exclusive.
There is one exception in the priority scheme though, when FIQs are enabled and a Data Abort occurs at the same
time as an FIQ, the ARM9EJ-S core enters the Data Abort handler, and proceeds immediately to FIQ vector. A
normal return from the FIQ causes the Data Abort handler to resume execution. Data Aborts must have higher
priority than FIQs to ensure that the transfer error does not escape detection.
Exception Modes and Handling
Exceptions arise whenever the normal flow of a program must be halted temporarily, for example, to service an
interrupt from a peripheral.
When handling an ARM exception, the ARM9EJ-S core performs the following operations:
1.
Preserves the address of the next instruction in the appropriate Link Register that corresponds to the new
mode that has been entered. When the exception entry is from:
̶
̶
ARM and Jazelle states, the ARM9EJ-S copies the address of the next instruction into LR (current
PC(r15) + 4 or PC + 8 depending on the exception).
Thumb state, the ARM9EJ-S writes the value of the PC into LR, offset by a value (current PC + 2, PC
+ 4 or PC + 8 depending on the exception) that causes the program to resume from the correct place
on return.
2.
Copies the CPSR into the appropriate SPSR.
3.
Forces the CPSR mode bits to a value that depends on the exception.
4.
Forces the PC to fetch the next instruction from the relevant exception vector.
The register r13 is also banked across exception modes to provide each exception handler with private stack
pointer.
The ARM9EJ-S can also set the interrupt disable flags to prevent otherwise unmanageable nesting of exceptions.
When an exception has completed, the exception handler must move both the return value in the banked LR
minus an offset to the PC and the SPSR to the CPSR. The offset value varies according to the type of exception.
This action restores both PC and the CPSR.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
55
The fast interrupt mode has seven private registers r8 to r14 (banked registers) to reduce or remove the
requirement for register saving which minimizes the overhead of context switching.
The Prefetch Abort is one of the aborts that indicates that the current memory access cannot be completed. When
a Prefetch Abort occurs, the ARM9EJ-S marks the prefetched instruction as invalid, but does not take the
exception until the instruction reaches the Execute stage in the pipeline. If the instruction is not executed, for
example because a branch occurs while it is in the pipeline, the abort does not take place.
The breakpoint (BKPT) instruction is a new feature of ARM9EJ-S that is destined to solve the problem of the
Prefetch Abort. A breakpoint instruction operates as though the instruction caused a Prefetch Abort.
A breakpoint instruction does not cause the ARM9EJ-S to take the Prefetch Abort exception until the instruction
reaches the Execute stage of the pipeline. If the instruction is not executed, for example because a branch occurs
while it is in the pipeline, the breakpoint does not take place.
56
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
10.3.8 ARM Instruction Set Overview
The ARM instruction set is divided into:

Branch instructions

Data processing instructions

Status register transfer instructions

Load and Store instructions

Coprocessor instructions

Exception-generating instructions
ARM instructions can be executed conditionally. Every instruction contains a 4-bit condition code field (bits[31:28]).
Table 10-2 gives the ARM instruction mnemonic list.
Table 10-2.
ARM Instruction Mnemonic List
Mnemonic
Operation
Mnemonic
Operation
MOV
Move
MVN
Move Not
ADD
Add
ADC
Add with Carry
SUB
Subtract
SBC
Subtract with Carry
RSB
Reverse Subtract
RSC
Reverse Subtract with Carry
CMP
Compare
CMN
Compare Negated
TST
Test
TEQ
Test Equivalence
AND
Logical AND
BIC
Bit Clear
EOR
Logical Exclusive OR
ORR
Logical (inclusive) OR
MUL
Multiply
MLA
Multiply Accumulate
SMULL
Sign Long Multiply
UMULL
Unsigned Long Multiply
SMLAL
Signed Long Multiply Accumulate
UMLAL
Unsigned Long Multiply Accumulate
MSR
Move to Status Register
MRS
Move From Status Register
B
Branch
BL
Branch and Link
BX
Branch and Exchange
SWI
Software Interrupt
LDR
Load Word
STR
Store Word
LDRSH
Load Signed Halfword
LDRSB
Load Signed Byte
LDRH
Load Half Word
STRH
Store Half Word
LDRB
Load Byte
STRB
Store Byte
LDRBT
Load Register Byte with Translation
STRBT
Store Register Byte with Translation
LDRT
Load Register with Translation
STRT
Store Register with Translation
LDM
Load Multiple
STM
Store Multiple
SWP
Swap Word
SWPB
Swap Byte
MCR
Move To Coprocessor
MRC
Move From Coprocessor
LDC
Load To Coprocessor
STC
Store From Coprocessor
CDP
Coprocessor Data Processing
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
57
10.3.9 New ARM Instruction Set
Table 10-3.
New ARM Instruction Mnemonic List
Mnemonic
Operation
Mnemonic
Operation
BXJ
Branch and exchange to Java
MRRC
Move double from coprocessor
Branch, Link and exchange
MCR2
Alternative move of ARM reg to coprocessor
SMLAxy
Signed Multiply Accumulate 16 * 16 bit
MCRR
Move double to coprocessor
SMLAL
Signed Multiply Accumulate Long
CDP2
Alternative Coprocessor Data Processing
SMLAWy
Signed Multiply Accumulate 32 * 16 bit
BKPT
Breakpoint
SMULxy
Signed Multiply 16 * 16 bit
PLD
Soft Preload, Memory prepare to load from
address
SMULWy
Signed Multiply 32 * 16 bit
STRD
Store Double
QADD
Saturated Add
STC2
Alternative Store from Coprocessor
QDADD
Saturated Add with Double
LDRD
Load Double
QSUB
Saturated subtract
LDC2
Alternative Load to Coprocessor
QDSUB
Saturated Subtract with double
CLZ
Count Leading Zeroes
BLX
Note:
58
(1)
1. A Thumb BLX contains two consecutive Thumb instructions, and takes four cycles.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
10.3.10 Thumb Instruction Set Overview
The Thumb instruction set is a re-encoded subset of the ARM instruction set.
The Thumb instruction set is divided into:

Branch instructions

Data processing instructions

Load and Store instructions

Load and Store multiple instructions

Exception-generating instruction
Table 10-4 gives the Thumb instruction mnemonic list.
Table 10-4.
Thumb Instruction Mnemonic List
Mnemonic
Operation
Mnemonic
Operation
MOV
Move
MVN
Move Not
ADD
Add
ADC
Add with Carry
SUB
Subtract
SBC
Subtract with Carry
CMP
Compare
CMN
Compare Negated
TST
Test
NEG
Negate
AND
Logical AND
BIC
Bit Clear
EOR
Logical Exclusive OR
ORR
Logical (inclusive) OR
LSL
Logical Shift Left
LSR
Logical Shift Right
ASR
Arithmetic Shift Right
ROR
Rotate Right
MUL
Multiply
BLX
Branch, Link, and Exchange
B
Branch
BL
Branch and Link
BX
Branch and Exchange
SWI
Software Interrupt
LDR
Load Word
STR
Store Word
LDRH
Load Half Word
STRH
Store Half Word
LDRB
Load Byte
STRB
Store Byte
LDRSH
Load Signed Halfword
LDRSB
Load Signed Byte
LDMIA
Load Multiple
STMIA
Store Multiple
PUSH
Push Register to stack
POP
Pop Register from stack
BCC
Conditional Branch
BKPT
Breakpoint
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
59
10.4
CP15 Coprocessor
Coprocessor 15, or System Control Coprocessor CP15, is used to configure and control all the items in the list
below:

ARM9EJ-S

Caches (ICache, DCache and write buffer)

TCM

MMU

Other system options
To control these features, CP15 provides 16 additional registers. See Table 10-5.
Table 10-5.
CP15 Registers
Register
Read/Unpredictable
ID Code
0
Cache type(1)
Read/Unpredictable
0
(1)
TCM status
Read/Unpredictable
1
Control
Read/write
2
Translation Table Base
Read/write
3
Domain Access Control
Read/write
4
Reserved
None
Data fault Status
(1)
Read/write
(1)
5
Instruction fault status
Read/write
6
Fault Address
Read/write
7
Cache Operations
Read/Write
8
TLB operations
Unpredictable/Write
(2)
9
Cache lockdown
Read/write
9
TCM region
Read/write
10
TLB lockdown
Read/write
11
Reserved
None
12
Reserved
None
13
FCSE PID(1)
Read/write
13
(1)
Context ID
Read/Write
14
Reserved
None
15
Test configuration
Read/Write
1.
2.
60
Read/Write
(1)
0
5
Notes:
Name
Register locations 0, 5, and 13 each provide access to more than one register. The register accessed depends on
the value of the opcode_2 field.
Register location 9 provides access to more than one register. The register accessed depends on the value of the
CRm field.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
10.4.1 CP15 Registers Access
CP15 registers can only be accessed in privileged mode by:

MCR (Move to Coprocessor from ARM Register) instruction is used to write an ARM register to CP15.

MRC (Move to ARM Register from Coprocessor) instruction is used to read the value of CP15 to an ARM
register.
Other instructions like CDP, LDC, STC can cause an undefined instruction exception.
The assembler code for these instructions is:
MCR/MRC{cond} p15, opcode_1, Rd, CRn, CRm, opcode_2.
The MCR, MRC instructions bit pattern is shown below:
31
30
29
28
cond
23
22
21
opcode_1
15
20
13
12
Rd
6
26
25
24
1
1
1
0
19
18
17
16
L
14
7
27
5
opcode_2
4
CRn
11
10
9
8
1
1
1
1
3
2
1
0
1
CRm
• CRm[3:0]: Specified Coprocessor Action
Determines specific coprocessor action. Its value is dependent on the CP15 register used. For details, refer to CP15 specific register behavior.
• opcode_2[7:5]
Determines specific coprocessor operation code. By default, set to 0.
• Rd[15:12]: ARM Register
Defines the ARM register whose value is transferred to the coprocessor. If R15 is chosen, the result is unpredictable.
• CRn[19:16]: Coprocessor Register
Determines the destination coprocessor register.
• L: Instruction Bit
0: MCR instruction
1: MRC instruction
• opcode_1[23:20]: Coprocessor Code
Defines the coprocessor specific code. Value is c15 for CP15.
• cond [31:28]: Condition
For more details, see Chapter 2 in ARM926EJ-S TRM, ref. DDI0198B.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
61
10.5
Memory Management Unit (MMU)
The ARM926EJ-S processor implements an enhanced ARM architecture v5 MMU to provide virtual memory
features required by operating systems like Symbian OS®, WindowsCE, and Linux. These virtual memory features
are memory access permission controls and virtual to physical address translations.
The Virtual Address generated by the CPU core is converted to a Modified Virtual Address (MVA) by the FCSE
(Fast Context Switch Extension) using the value in CP15 register13. The MMU translates modified virtual
addresses to physical addresses by using a single, two-level page table set stored in physical memory. Each entry
in the set contains the access permissions and the physical address that correspond to the virtual address.
The first level translation tables contain 4096 entries indexed by bits [31:20] of the MVA. These entries contain a
pointer to either a 1 MB section of physical memory along with attribute information (access permissions, domain,
etc.) or an entry in the second level translation tables; coarse table and fine table.
The second level translation tables contain two subtables, coarse table and fine table. An entry in the coarse table
contains a pointer to both large pages and small pages along with access permissions. An entry in the fine table
contains a pointer to large, small and tiny pages.
Table 10-6 shows the different attributes of each page in the physical memory.
Table 10-6.
Mapping Details
Mapping Name
Mapping Size
Access Permission By
Subpage Size
Section
1 Mbyte
Section
–
Large Page
64 Kbytes
4 separated subpages
16 Kbytes
Small Page
4 Kbytes
4 separated subpages
1 Kbyte
Tiny Page
1 Kbyte
Tiny Page
–
The MMU consists of:

Access control logic

Translation Look-aside Buffer (TLB)

Translation table walk hardware
10.5.1 Access Control Logic
The access control logic controls access information for every entry in the translation table. The access control
logic checks two pieces of access information: domain and access permissions. The domain is the primary access
control mechanism for a memory region; there are 16 of them. It defines the conditions necessary for an access to
proceed. The domain determines whether the access permissions are used to qualify the access or whether they
should be ignored.
The second access control mechanism is access permissions that are defined for sections and for large, small and
tiny pages. Sections and tiny pages have a single set of access permissions whereas large and small pages can
be associated with 4 sets of access permissions, one for each subpage (quarter of a page).
10.5.2 Translation Look-aside Buffer (TLB)
The Translation Look-aside Buffer (TLB) caches translated entries and thus avoids going through the translation
process every time. When the TLB contains an entry for the MVA (Modified Virtual Address), the access control
logic determines if the access is permitted and outputs the appropriate physical address corresponding to the
MVA. If access is not permitted, the MMU signals the CPU core to abort.
If the TLB does not contain an entry for the MVA, the translation table walk hardware is invoked to retrieve the
translation information from the translation table in physical memory.
62
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
10.5.3 Translation Table Walk Hardware
The translation table walk hardware is a logic that traverses the translation tables located in physical memory, gets
the physical address and access permissions and updates the TLB.
The number of stages in the hardware table walking is one or two depending whether the address is marked as a
section-mapped access or a page-mapped access.
There are three sizes of page-mapped accesses and one size of section-mapped access. Page-mapped accesses
are for large pages, small pages and tiny pages. The translation process always begins with a level one fetch. A
section-mapped access requires only a level one fetch, but a page-mapped access requires an additional level two
fetch. For further details on the MMU, please refer to chapter 3 in ARM926EJ-S Technical Reference Manual, ref.
DDI0198B.
10.5.4 MMU Faults
The MMU generates an abort on the following types of faults:

Alignment faults (for data accesses only)

Translation faults

Domain faults

Permission faults
The access control mechanism of the MMU detects the conditions that produce these faults. If the fault is a result
of memory access, the MMU aborts the access and signals the fault to the CPU core.The MMU retains status and
address information about faults generated by the data accesses in the data fault status register and fault address
register. It also retains the status of faults generated by instruction fetches in the instruction fault status register.
The fault status register (register 5 in CP15) indicates the cause of a data or prefetch abort, and the domain
number of the aborted access when it happens. The fault address register (register 6 in CP15) holds the MVA
associated with the access that caused the Data Abort. For further details on MMU faults, please refer to chapter 3
in ARM926EJ-S Technical Reference Manual, ref. DDI0198B.
10.6
Caches and Write Buffer
The ARM926EJ-S contains a 16 KB Instruction Cache (ICache), a 16 KB Data Cache (DCache), and a write
buffer. Although the ICache and DCache share common features, each still has some specific mechanisms.
The caches (ICache and DCache) are four-way set associative, addressed, indexed and tagged using the
Modified Virtual Address (MVA), with a cache line length of eight words with two dirty bits for the DCache. The
ICache and DCache provide mechanisms for cache lockdown, cache pollution control, and line replacement.
A new feature is now supported by ARM926EJ-S caches called allocate on read-miss commonly known as
wrapping. This feature enables the caches to perform critical word first cache refilling. This means that when a
request for a word causes a read-miss, the cache performs an AHB access. Instead of loading the whole line
(eight words), the cache loads the critical word first, so the processor can reach it quickly, and then the remaining
words, no matter where the word is located in the line.
The caches and the write buffer are controlled by the CP15 register 1 (Control), CP15 register 7 (cache
operations) and CP15 register 9 (cache lockdown).
10.6.1 Instruction Cache (ICache)
The ICache caches fetched instructions to be executed by the processor. The ICache can be enabled by writing 1
to I bit of the CP15 Register 1 and disabled by writing 0 to this same bit.
When the MMU is enabled, all instruction fetches are subject to translation and permission checks. If the MMU is
disabled, all instructions fetches are cachable, no protection checks are made and the physical address is flat-
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
63
mapped to the modified virtual address. With the MVA use disabled, context switching incurs ICache cleaning
and/or invalidating.
When the ICache is disabled, all instruction fetches appear on external memory (AHB) (see Tables 4-1 and 4-2 in
page 4-4 in ARM926EJ-S TRM, ref. DDI0198B).
On reset, the ICache entries are invalidated and the ICache is disabled. For best performance, ICache should be
enabled as soon as possible after reset.
10.6.2 Data Cache (DCache) and Write Buffer
ARM926EJ-S includes a DCache and a write buffer to reduce the effect of main memory bandwidth and latency on
data access performance. The operations of DCache and write buffer are closely connected.
10.6.2.1 DCache
The DCache needs the MMU to be enabled. All data accesses are subject to MMU permission and translation
checks. Data accesses that are aborted by the MMU do not cause linefills or data accesses to appear on the
AMBA ASB interface. If the MMU is disabled, all data accesses are noncachable, nonbufferable, with no protection
checks, and appear on the AHB bus. All addresses are flat-mapped, VA = MVA = PA, which incurs DCache
cleaning and/or invalidating every time a context switch occurs.
The DCache stores the Physical Address Tag (PA Tag) from which every line was loaded and uses it when writing
modified lines back to external memory. This means that the MMU is not involved in write-back operations.
Each line (8 words) in the DCache has two dirty bits, one for the first four words and the other one for the second
four words. These bits, if set, mark the associated half-lines as dirty. If the cache line is replaced due to a linefill or
a cache clean operation, the dirty bits are used to decide whether all, half or none is written back to memory.
DCache can be enabled or disabled by writing either 1 or 0 to bit C in register 1 of CP15 (see Tables 4-3 and 4-4
on page 4-5 in ARM926EJ-S TRM, ref. DDI0222B).
The DCache supports write-through and write-back cache operations, selected by memory region using the C and
B bits in the MMU translation tables.
The DCache contains an eight data word entry, single address entry write-back buffer used to hold write-back data
for cache line eviction or cleaning of dirty cache lines.
The Write Buffer can hold up to 16 words of data and four separate addresses. DCache and Write Buffer
operations are closely connected as their configuration is set in each section by the page descriptor in the MMU
translation table.
10.6.2.2 Write Buffer
The ARM926EJ-S contains a write buffer that has a 16-word data buffer and a four-address buffer. The write buffer
is used for all writes to a bufferable region, write-through region and write-back region. It also allows to avoid
stalling the processor when writes to external memory are performed. When a store occurs, data is written to the
write buffer at core speed (high speed). The write buffer then completes the store to external memory at bus speed
(typically slower than the core speed). During this time, the ARM9EJ-S processor can preform other tasks.
DCache and Write Buffer support write-back and write-through memory regions, controlled by C and B bits in each
section and page descriptor within the MMU translation tables.
Write-though Operation
When a cache write hit occurs, the DCache line is updated. The updated data is then written to the write buffer
which transfers it to external memory.
When a cache write miss occurs, a line, chosen by round robin or another algorithm, is stored in the write buffer
which transfers it to external memory.
64
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Write-back Operation
When a cache write hit occurs, the cache line or half line is marked as dirty, meaning that its contents are not upto-date with those in the external memory.
When a cache write miss occurs, a line, chosen by round robin or another algorithm, is stored in the write buffer
which transfers it to external memory.
10.7
Tightly-Coupled Memory Interface
10.7.1 TCM Description
The ARM926EJ-S processor features a Tightly-Coupled Memory (TCM) interface, which enables separate
instruction and data TCMs (ITCM and DTCM) to be directly reached by the processor. TCMs are used to store
real-time and performance critical code, they also provide a DMA support mechanism. Unlike AHB accesses to
external memories, accesses to TCMs are fast and deterministic and do not incur bus penalties.
The user has the possibility to independently configure each TCM size with values within the following ranges,
[0KB, 64 KB] for ITCM size and [0KB, 64 KB] for DTCM size.
TCMs can be configured by two means: HMATRIX TCM register and TCM region register (register 9) in CP15 and
both steps should be performed. HMATRIX TCM register sets TCM size whereas TCM region register (register 9)
in CP15 maps TCMs and enables them.
The data side of the ARM9EJ-S core is able to access the ITCM. This is necessary to enable code to be loaded
into the ITCM, for SWI and emulated instruction handlers, and for accesses to PC-relative literal pools.
10.7.2 Enabling and Disabling TCMs
Prior to any enabling step, the user should configure the TCM sizes in HMATRIX TCM register. Then enabling
TCMs is performed by using TCM region register (register 9) in CP15. The user should use the same sizes as
those put in HMATRIX TCM register. For further details and programming tips, please refer to chapter 2.3 in
ARM926EJ-S TRM, ref. DDI0222B.
10.7.3 TCM Mapping
The TCMs can be located anywhere in the memory map, with a single region available for ITCM and a separate
region available for DTCM. The TCMs are physically addressed and can be placed anywhere in physical address
space. However, the base address of a TCM must be aligned to its size, and the DTCM and ITCM regions must
not overlap. TCM mapping is performed by using TCM region register (register 9) in CP15. The user should input
the right mapping address for TCMs.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
65
10.8
Bus Interface Unit
The ARM926EJ-S features a Bus Interface Unit (BIU) that arbitrates and schedules AHB requests. The BIU
implements a multi-layer AHB, based on the AHB-Lite protocol, that enables parallel access paths between
multiple AHB masters and slaves in a system. This is achieved by using a more complex interconnection matrix
and gives the benefit of increased overall bus bandwidth, and a more flexible system architecture.
The multi-master bus architecture has a number of benefits:

It allows the development of multi-master systems with an increased bus bandwidth and a flexible
architecture.

Each AHB layer becomes simple because it only has one master, so no arbitration or master-to-slave
muxing is required. AHB layers, implementing AHB-Lite protocol, do not have to support request and grant,
nor do they have to support retry and split transactions.

The arbitration becomes effective when more than one master wants to access the same slave
simultaneously.
10.8.1 Supported Transfers
The ARM926EJ-S processor performs all AHB accesses as single word, bursts of four words, or bursts of eight
words. Any ARM9EJ-S core request that is not 1, 4, 8 words in size is split into packets of these sizes. Note that
the Atmel bus is AHB-Lite protocol compliant, hence it does not support split and retry requests.
Table 10-7 gives an overview of the supported transfers and different kinds of transactions they are used for.
Table 10-7.
HBurst[2:0]
Supported Transfers
Description
Operation
Single transfer of word, half word, or byte:
Single
Single transfer

data write (NCNB, NCB, WT, or WB that has missed in DCache)

data read (NCNB or NCB)

NC instruction fetch (prefetched and non-prefetched)

page table walk read
Incr4
Four-word incrementing burst
Half-line cache write-back, Instruction prefetch, if enabled. Four-word burst NCNB,
NCB, WT, or WB write.
Incr8
Eight-word incrementing burst
Full-line cache write-back, eight-word burst NCNB, NCB, WT, or WB write.
Wrap8
Eight-word wrapping burst
Cache linefill
10.8.2 Thumb Instruction Fetches
All instructions fetches, regardless of the state of ARM9EJ-S core, are made as 32-bit accesses on the AHB. If the
ARM9EJ-S is in Thumb state, then two instructions can be fetched at a time.
10.8.3 Address Alignment
The ARM926EJ-S BIU performs address alignment checking and aligns AHB addresses to the necessary
boundary. 16-bit accesses are aligned to halfword boundaries, and 32-bit accesses are aligned to word
boundaries.
66
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
11.
SAM9263 Debug and Test
11.1
Overview
The SAM9263 features a number of complementary debug and test capabilities. A common JTAG/ICE (In-Circuit
Emulator) port is used for standard debugging functions, such as downloading code and single-stepping through
programs. An ETM (Embedded Trace Macrocell) provides more sophisticated debug features such as address
and data comparators, half-rate clock mode, counters, sequencer and FIFO. The Debug Unit provides a two-pin
UART that can be used to upload an application into internal SRAM. It manages the interrupt handling of the
internal COMMTX and COMMRX signals that trace the activity of the Debug Communication Channel.
A set of dedicated debug and test input/output pins gives direct access to these capabilities from a PC-based test
environment.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
67
11.2
Block Diagram
Figure 11-1.
Debug and Test Block Diagram
TMS
TCK
TDI
NTRST
ICE/JTAG
TAP
Boundary
Port
JTAGSEL
TDO
RTCK
POR
Reset
and
Test
TST
ARM9EJ-S
ICE-RT
PIO
TPK0-TPK15
ETM
TPS0-TPS2
TSYNC
2
TCLK
ARM926EJ-S
DTXD
PDC
DBGU
DRXD
TAP: Test Access Port
68
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
11.3
Application Examples
11.3.1 Debug Environment
Figure 11-2 shows a complete debug environment example. The ICE/JTAG interface is used for standard
debugging functions, such as downloading code and single-stepping through the program. The Trace Port
interface is used for tracing information. A software debugger running on a personal computer provides the user
interface for configuring a Trace Port interface utilizing the ICE/JTAG interface.
Figure 11-2.
Application Debug and Trace Environment Example
Host Debugger
ICE/JTAG
Interface
ICE/JTAG
Connector
Trace Port
Interface
Trace
Connector
RS232
Connector
AT91SAM9263
Terminal
AT91SAM9263-based Application
11.3.2 Test Environment
Figure 11-3 shows a test environment example. Test vectors are sent and interpreted by the tester. In this
example, the “board in test” is designed using a number of JTAG-compliant devices. These devices can be
connected to form a single scan chain.
Figure 11-3.
Application Test Environment Example
Test Adaptor
Tester
JTAG
Interface
ICE/JTAG
Connector
Chip n
AT91SAM9263
Chip 2
Chip 1
AT91SAM9263-based Application Board In Test
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
69
11.4
Debug and Test Pin Description
Table 11-1.
Debug and Test Pin List
Pin Name
Function
Type
Active Level
Input
Low
Input/Output
Low
Input
High
Reset/Test
NTRST
Test Reset Signal
NRST
Microprocessor Reset
TST
Test Mode Select
ICE and JTAG
TCK
Test Clock
Input
TDI
Test Data In
Input
TDO
Test Data Out
TMS
Test Mode Select
RTCK
Returned Test Clock
JTAGSEL
JTAG Selection
Output
Input
Output
Input
ETM
TSYNC
Trace Synchronization Signal
Output
TCLK
Trace Clock
Output
TPS0–TPS2
Trace ARM Pipeline Status
Output
TPK0–TPK15
Trace Packet Port
Output
Debug Unit
70
DRXD
Debug Receive Data
Input
DTXD
Debug Transmit Data
Output
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
11.5
Functional Description
11.5.1 Test Pin
One dedicated pin, TST, is used to define the device operating mode. The user must make sure that this pin is tied
at low level to ensure normal operating conditions. Other values associated with this pin are reserved for
manufacturing test.
11.5.2 Embedded In-circuit Emulator
The ARM9EJ-S Embedded In-Circuit Emulator-RT is supported via the ICE/JTAG port. It is connected to a host
computer via an ICE interface. Debug support is implemented using an ARM9EJ-S core embedded within the
ARM926EJ-S. The internal state of the ARM926EJ-S is examined through an ICE/JTAG port which allows
instructions to be serially inserted into the pipeline of the core without using the external data bus. Therefore, when
in debug state, a store-multiple (STM) can be inserted into the instruction pipeline. This exports the contents of the
ARM9EJ-S registers. This data can be serially shifted out without affecting the rest of the system.
There are two scan chains inside the ARM9EJ-S processor which support testing, debugging, and programming of
the Embedded ICE-RT. The scan chains are controlled by the ICE/JTAG port.
Embedded ICE mode is selected when JTAGSEL is low. It is not possible to switch directly between ICE and
JTAG operations. A chip reset must be performed after JTAGSEL is changed.
For further details on the Embedded In-Circuit-Emulator-RT, see the ARM document ARM9EJ-S Technical
Reference Manual (DDI 0222A).
11.5.3 JTAG Signal Description
TMS is the Test Mode Select input which controls the transitions of the test interface state machine.
TDI is the Test Data Input line which supplies the data to the JTAG registers (Boundary Scan Register, Instruction
Register, or other data registers).
TDO is the Test Data Output line which is used to serially output the data from the JTAG registers to the equipment
controlling the test. It carries the sampled values from the boundary scan chain (or other JTAG registers) and
propagates them to the next chip in the serial test circuit.
NTRST (optional in IEEE Standard 1149.1) is a Test-ReSeT input which is mandatory in ARM cores and used to
reset the debug logic. On Atmel ARM926EJ-S-based cores, NTRST is a Power-On Reset output. It is asserted on
power on. If necessary, the user can also reset the debug logic with the NTRST pin assertion during 2.5 MCK
periods.
TCK is the Test ClocK input which enables the test interface. TCK is pulsed by the equipment controlling the test
and not by the tested device. It can be pulsed at any frequency. Note the maximum JTAG clock rate on
ARM926EJ-S cores is 1/6th the clock of the CPU. This gives 5.45 kHz maximum initial JTAG clock rate for an
ARM9E running from the 32.768 kHz slow clock.
RTCK is the Return Test Clock. Not an IEEE Standard 1149.1 signal added for a better clock handling by
emulators. From some ICE Interface probes, this return signal can be used to synchronize the TCK clock and take
not care about the given ratio between the ICE Interface clock and system clock equal to 1/6th. This signal is only
available in JTAG ICE Mode and not in boundary scan mode.
11.5.4 Debug Unit
The Debug Unit provides a two-pin (DXRD and TXRD) USART that can be used for several debug and trace
purposes and offers an ideal means for in-situ programming solutions and debug monitor communication.
Moreover, the association with two peripheral data controller channels permits packet handling of these tasks with
processor time reduced to a minimum.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
71
The Debug Unit also manages the interrupt handling of the COMMTX and COMMRX signals that come from the
ICE and that trace the activity of the Debug Communication Channel. The Debug Unit allows blockage of access
to the system through the ICE interface.
A specific register, the Debug Unit Chip ID Register, gives information about the product version and its internal
configuration.
The SAM9263 Debug Unit Chip ID value is 0x0196 07A0 on 32-bit width.
For further details on the Debug Unit, see Section 29. “Debug Unit (DBGU)” on page 398.
11.5.5 Embedded Trace Macrocell (ETM)
The SAM9263 features an Embedded Trace Macrocell (ETM), which is closely connected to the ARM926EJ-S
Processor. The Embedded Trace is a standard Medium+ level implementation and contains the following
resources:

Four pairs of address comparators

Two data comparators

Eight memory map decoder inputs

Two 16-bits counters

One 3-stage sequencer

Four external inputs

One external output

One 45-byte FIFO
The Embedded Trace Macrocell of the SAM9263 works in half-rate clock mode and thus integrates a clock divider.
This allows the maximum frequency of all the trace port signals not to exceed one half of the ARM926EJ-S clock
speed.
The Embedded Trace Macrocell input and output resources are not used in the SAM9263.
The Embedded Trace is a real-time trace module with the capability of tracing the ARM9EJ-S instruction and data.
For further details on Embedded Trace Macrocell, see the ARM documents:

ETM9 (Rev2p2) Technical Reference Manual (DDI 0157F)

Embedded Trace Macrocell Specification (IHI 0014J)
11.5.5.1 Trace Port
The Trace Port is made up of the following pins:

TSYNC - the synchronization signal (Indicates the start of a branch sequence on the trace packet port.)

TCLK - the Trace Port clock, half-rate of the ARM926EJ-S processor clock.

TPS0 to TPS2 - indicate the processor state at each trace clock edge.

TPK0 to TPK15 - the Trace Packet data value.
The trace packet information (address, data) is associated with the processor state indicated by TPS. Some
processor states have no additional data associated with the Trace Packet Port (i.e., failed condition code of an
instruction). The packet is 8-bits wide, and up to two packets can be output per cycle.
72
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Figure 11-4.
ETM9 Block
TPS-TPS0
ARM926EJ-S
Bus Tracker
Trace
Control
FIFO
TPK15-TPK0
TSYNC
Trace Enable, View Data
TAP
Controller
Trigger, Sequencer, Counters
Scan Chain 6
TDO
TDI
TMS
TCK
ETM9
11.5.5.2 Implementation Details
This section gives an overview of the Embedded Trace resources.
Three-state Sequencer
The sequencer has three possible next states (one dedicated to itself and two others) and can change on every
clock cycle. The sate transition is controlled with internal events. If the user needs multiple-stage trigger schemes,
the trigger event is based on a sequencer state.
Address Comparator
In single mode, address comparators compare either the instruction address or the data address against the userprogrammed address.
In range mode, the address comparators are arranged in pairs to form a virtual address range resource.
Details of the address comparator programming are:

The first comparator is programmed with the range start address.

The second comparator is programmed with the range end address.

The resource matches if the address is within the following range:

Unpredictable behavior occurs if the two address comparators are not configured in the same way.
̶
(address > = range start address) AND (address < range end address)
Data Comparator
Each full address comparator is associated with a specific data comparator. A data comparator is used to observe
the data bus only when load and store operations occur.
A data comparator has both a value register and a mask register, therefore it is possible to compare only certain
bits of a preprogrammed value against the data bus.
Memory Decoder Inputs
The eight memory map decoder inputs are connected to custom address decoders. The address decoders divide
the memory into regions of on-chip SRAM, on-chip ROM, and peripherals. The address decoders also optimize
the ETM9 trace trigger.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
73
Table 11-2.
ETM Memory Map Inputs Layout
Product Resource
Area
Access Type
Start Address
End Address
SRAM
Internal
Data
0x0000 0000
0x002F FFFF
SRAM
Internal
Fetch
0x0000 0000
0x002F FFFF
ROM
Internal
Data
0x0040 0000
0x004F FFFF
ROM
Internal
Fetch
0x0040 0000
0x004F FFFF
External Bus Interface
External
Data
0x1000 0000
0x9FFF FFFF
External Bus Interface
External
Fetch
0x1000 0000
0x9FFF FFFF
User Peripherals
Internal
Data
0xF000 0000
0xFFFF BFFF
System Peripherals
Internal
Data
0xFFFF C000
0xFFFF FFFF
FIFO
A 45-byte FIFO is used to store data tracing. The FIFO is used to separate the pipeline status from the trace
packet. So, the FIFO can be used to buffer trace packets.
A FIFO overflow is detected by the embedded trace macrocell when the FIFO is full or when the FIFO has less
bytes than the user-programmed number.
Half-rate Clocking Mode
The ETM9 is implemented in half-rate mode that allows both rising and falling edge data tracing of the trace clock.
The half-rate mode is implemented to maintain the signal clock integrity of high speed systems (up to 100 MHz).
Figure 11-5.
Half-rate Clocking Mode
ARM920T Clock
Trace Clock
TraceData
Half-rate Clocking Mode
Care must be taken on the choice of the trace capture system as it needs to support half-rate clock functionality.
11.5.5.3 Application Board Restriction
The TCLK signal needs to be set with care, some timing parameters are required. See “ETM Timings” for more
details.
The specified target system connector is the AMP Mictor connector.
The connector must be oriented on the application board as described below in Figure 11-6. The view of the PCB
is shown from above with the trace connector mounted near the edge of the board. This allows the Trace Port
Analyzer to minimize the physical intrusiveness of the interconnected target.
74
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Figure 11-6.
AMP Mictor Connector Orientation
AT91SAM9263-based
Application Board
38 37
2
1
Pin 1Chamfer
11.5.6 IEEE 1149.1 JTAG Boundary Scan
IEEE 1149.1 JTAG Boundary Scan allows pin-level access independent of the device packaging technology.
IEEE 1149.1 JTAG Boundary Scan is enabled when JTAGSEL is high. The SAMPLE, EXTEST and BYPASS
functions are implemented. In ICE debug mode, the ARM processor responds with a non-JTAG chip ID that
identifies the processor to the ICE system. This is not IEEE 1149.1 JTAG-compliant.
It is not possible to switch directly between JTAG and ICE operations. A chip reset must be performed after
JTAGSEL is changed.
A Boundary-scan Descriptor Language (BSDL) file is provided to set up test.
11.5.6.1 JTAG Boundary Scan Register
The Boundary Scan Register (BSR) contains 664 bits that correspond to active pins and associated control
signals.
Each SAM9263 input/output pin corresponds to a 3-bit register in the BSR. The OUTPUT bit contains data that
can be forced on the pad. The INPUT bit facilitates the observability of data applied to the pad. The CONTROL bit
selects the direction of the pad.
Table 11-3.
Bit
Number
SAM9263 JTAG Boundary Scan Register
Pin Name
Pin Type
663
662
Associated
BSR Cells
INPUT
PA19
IN/OUT
OUTPUT
661
CONTROL
660
INPUT
659
PA20
IN/OUT
OUTPUT
658
CONTROL
657
INPUT
656
PA21
IN/OUT
OUTPUT
655
CONTROL
654
INPUT
653
652
PA22
IN/OUT
OUTPUT
CONTROL
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
75
Table 11-3.
Bit
Number
SAM9263 JTAG Boundary Scan Register (Continued)
Pin Name
Pin Type
651
650
Associated
BSR Cells
INPUT
PA23
IN/OUT
OUTPUT
649
CONTROL
648
INPUT
647
PA24
IN/OUT
OUTPUT
646
CONTROL
645
INPUT
644
PA25
IN/OUT
OUTPUT
643
CONTROL
642
INPUT
641
PA26
IN/OUT
OUTPUT
640
CONTROL
639
INPUT
638
PA27
IN/OUT
OUTPUT
637
CONTROL
636
INPUT
635
PA28
IN/OUT
OUTPUT
634
CONTROL
633
INPUT
632
PA29
IN/OUT
OUTPUT
631
CONTROL
630
INPUT
629
PA30
IN/OUT
OUTPUT
628
CONTROL
627
INPUT
626
PA31
IN/OUT
625
OUTPUT
CONTROL
624
EBI1_A0_NBS0
623
EBI1_A[7:0]
OUT
OUTPUT
CONTROL
622
INPUT
EBI1_A1_NWR2
IN/OUT
621
OUTPUT
620
EBI1_A2
OUT
OUTPUT
619
EBI1_A3
OUT
OUTPUT
618
EBI1_A4
OUT
OUTPUT
617
EBI1_A5
OUT
OUTPUT
616
EBI1_A6
OUT
OUTPUT
76
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Table 11-3.
Bit
Number
SAM9263 JTAG Boundary Scan Register (Continued)
Pin Name
Pin Type
Associated
BSR Cells
615
EBI1_A7
OUT
OUTPUT
614
EBI1_A8
OUT
OUTPUT
613
EBI1_A[15:8]
612
EBI1_A9
OUT
OUTPUT
611
EBI1_A10
OUT
OUTPUT
610
EBI1_A11
OUT
OUTPUT
609
EBI1_A12
OUT
OUTPUT
608
EBI1_A13
OUT
OUTPUT
607
EBI1_A14
OUT
OUTPUT
606
EBI1_A15
OUT
OUTPUT
605
EBI1_A16_BA0
OUT
OUTPUT
604
EBI1_A[22:16]
603
EBI1_A17
OUT
OUTPUT
602
EBI1_A18
OUT
OUTPUT
601
EBI1_A19
OUT
OUTPUT
600
EBI1_A20
OUT
OUTPUT
599
EBI1_A21
OUT
OUTPUT
598
EBI1_A22
OUT
OUTPUT
597
EBI1_NCS0
OUT
OUTPUT
596
EBI1_NCS0/EBI1_NRD/EBI1_NWR_NWR0/EBI1_NWR_NWR1
595
EBI1_NRD
CONTROL
CONTROL
CONTROL
OUT
594
OUTPUT
INPUT
EBI1_NWR_NWR0
IN/OUT
593
OUTPUT
592
INPUT
EBI1_NWR_NWR1
IN/OUT
591
OUTPUT
590
INPUT
589
EBI1_D0
IN/OUT
OUTPUT
588
CONTROL
587
INPUT
586
EBI1_D1
IN/OUT
OUTPUT
585
CONTROL
584
INPUT
583
582
EBI1_D2
IN/OUT
OUTPUT
CONTROL
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
77
Table 11-3.
Bit
Number
SAM9263 JTAG Boundary Scan Register (Continued)
Pin Name
Pin Type
581
580
Associated
BSR Cells
INPUT
EBI1_D3
IN/OUT
OUTPUT
579
CONTROL
578
INPUT
577
EBI1_D4
IN/OUT
OUTPUT
576
CONTROL
575
INPUT
574
EBI1_D5
IN/OUT
OUTPUT
573
CONTROL
572
INPUT
571
EBI1_D6
IN/OUT
OUTPUT
570
CONTROL
569
INPUT
568
EBI1_D7
IN/OUT
OUTPUT
567
CONTROL
566
INPUT
565
EBI1_D8
IN/OUT
OUTPUT
564
CONTROL
563
INPUT
562
EBI1_D9
IN/OUT
OUTPUT
561
CONTROL
560
INPUT
559
EBI1_D10
IN/OUT
OUTPUT
558
CONTROL
557
INPUT
556
EBI1_D11
IN/OUT
OUTPUT
555
CONTROL
554
INPUT
553
EBI1_D12
IN/OUT
OUTPUT
552
CONTROL
551
INPUT
550
EBI1_D13
IN/OUT
OUTPUT
549
CONTROL
548
INPUT
547
EBI1_D14
546
78
IN/OUT
OUTPUT
CONTROL
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Table 11-3.
Bit
Number
SAM9263 JTAG Boundary Scan Register (Continued)
Pin Name
Pin Type
545
544
Associated
BSR Cells
INPUT
EBI1_D15
IN/OUT
OUTPUT
543
CONTROL
542
INPUT
541
PE20
IN/OUT
OUTPUT
540
CONTROL
539
INPUT
538
PE21
IN/OUT
OUTPUT
537
CONTROL
536
INPUT
535
PE22
IN/OUT
OUTPUT
534
CONTROL
533
INPUT
532
PE23
IN/OUT
OUTPUT
531
CONTROL
530
INPUT
529
PE24
IN/OUT
OUTPUT
528
CONTROL
527
INPUT
526
PE26
IN/OUT
OUTPUT
525
CONTROL
524
INPUT
523
PE25
IN/OUT
OUTPUT
522
CONTROL
521
INPUT
520
PE27
IN/OUT
519
CONTROL
518
517
internal
EBI1_SDK
516
OUT
OUTPUT
internal
515
514
OUTPUT
INPUT
PE28
IN/OUT
OUTPUT
513
CONTROL
512
INPUT
511
510
PE29
IN/OUT
OUTPUT
CONTROL
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
79
Table 11-3.
Bit
Number
SAM9263 JTAG Boundary Scan Register (Continued)
Pin Name
Pin Type
509
508
Associated
BSR Cells
INPUT
PE30
IN/OUT
OUTPUT
507
CONTROL
506
INPUT
505
PE31
IN/OUT
504
OUTPUT
CONTROL
503
OUTPUT
RTCK
OUT
502
CONTROL
501
INPUT
500
PA0
IN/OUT
OUTPUT
499
CONTROL
498
INPUT
497
PA1
IN/OUT
OUTPUT
496
CONTROL
495
INPUT
494
PA2
IN/OUT
OUTPUT
493
CONTROL
492
INPUT
491
PA3
IN/OUT
OUTPUT
490
CONTROL
489
INPUT
488
PA4
IN/OUT
OUTPUT
487
CONTROL
486
INPUT
485
PA5
IN/OUT
OUTPUT
484
CONTROL
483
INPUT
482
PA6
IN/OUT
OUTPUT
481
CONTROL
480
INPUT
479
PA7
IN/OUT
OUTPUT
478
CONTROL
477
INPUT
476
PA8
475
80
IN/OUT
OUTPUT
CONTROL
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Table 11-3.
Bit
Number
SAM9263 JTAG Boundary Scan Register (Continued)
Pin Name
Pin Type
474
473
Associated
BSR Cells
INPUT
PA9
IN/OUT
OUTPUT
472
CONTROL
471
INPUT
470
PA10
IN/OUT
OUTPUT
469
CONTROL
468
INPUT
467
PA11
IN/OUT
OUTPUT
466
CONTROL
465
INPUT
464
PA12
IN/OUT
OUTPUT
463
CONTROL
462
INPUT
461
PA13
IN/OUT
OUTPUT
460
CONTROL
459
INPUT
458
PA14
IN/OUT
OUTPUT
457
CONTROL
456
INPUT
455
PA15
IN/OUT
OUTPUT
454
CONTROL
453
INPUT
452
PB0
IN/OUT
OUTPUT
451
CONTROL
450
INPUT
449
PB1
IN/OUT
OUTPUT
448
CONTROL
447
INPUT
446
PB2
IN/OUT
OUTPUT
445
CONTROL
444
INPUT
443
PB3
IN/OUT
OUTPUT
442
CONTROL
441
INPUT
440
439
PB4
IN/OUT
OUTPUT
CONTROL
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
81
Table 11-3.
Bit
Number
SAM9263 JTAG Boundary Scan Register (Continued)
Pin Name
Pin Type
438
437
Associated
BSR Cells
INPUT
PB5
IN/OUT
OUTPUT
436
CONTROL
435
INPUT
434
PB6
IN/OUT
OUTPUT
433
CONTROL
432
INPUT
431
PB7
IN/OUT
OUTPUT
430
CONTROL
429
INPUT
428
PB8
IN/OUT
OUTPUT
427
CONTROL
426
INPUT
425
PB9
IN/OUT
OUTPUT
424
CONTROL
423
INPUT
422
PB10
IN/OUT
OUTPUT
421
CONTROL
420
INPUT
419
PB11
IN/OUT
OUTPUT
418
CONTROL
417
INPUT
416
PB12
IN/OUT
OUTPUT
415
CONTROL
414
INPUT
413
PB13
IN/OUT
OUTPUT
412
CONTROL
411
INPUT
410
PB14
IN/OUT
OUTPUT
409
CONTROL
408
INPUT
407
PB15
IN/OUT
OUTPUT
406
CONTROL
405
INPUT
404
PB16
403
82
IN/OUT
OUTPUT
CONTROL
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Table 11-3.
Bit
Number
SAM9263 JTAG Boundary Scan Register (Continued)
Pin Name
Pin Type
402
401
Associated
BSR Cells
INPUT
PB17
IN/OUT
OUTPUT
400
CONTROL
399
INPUT
398
PB18
IN/OUT
OUTPUT
397
CONTROL
396
INPUT
395
PB19
IN/OUT
OUTPUT
394
CONTROL
393
INPUT
392
PB20
IN/OUT
OUTPUT
391
CONTROL
390
INPUT
389
PB21
IN/OUT
OUTPUT
388
CONTROL
387
INPUT
386
PB22
IN/OUT
OUTPUT
385
CONTROL
384
INPUT
383
PB23
IN/OUT
OUTPUT
382
CONTROL
381
INPUT
380
PB24
IN/OUT
OUTPUT
379
CONTROL
378
INPUT
377
PB25
IN/OUT
OUTPUT
376
CONTROL
375
INPUT
374
PB26
IN/OUT
OUTPUT
373
CONTROL
372
INPUT
371
PB27
IN/OUT
OUTPUT
370
CONTROL
369
INPUT
368
367
PB28
IN/OUT
OUTPUT
CONTROL
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
83
Table 11-3.
Bit
Number
SAM9263 JTAG Boundary Scan Register (Continued)
Pin Name
Pin Type
366
365
Associated
BSR Cells
INPUT
PB29
IN/OUT
OUTPUT
364
CONTROL
363
INPUT
362
PB30
IN/OUT
OUTPUT
361
CONTROL
360
INPUT
359
PB31
IN/OUT
OUTPUT
358
CONTROL
357
INPUT
356
PC0
IN/OUT
OUTPUT
355
CONTROL
354
INPUT
353
PC1
IN/OUT
OUTPUT
352
CONTROL
351
INPUT
350
PC2
IN/OUT
OUTPUT
349
CONTROL
348
INPUT
347
PC3
IN/OUT
OUTPUT
346
CONTROL
345
INPUT
344
PC4
IN/OUT
OUTPUT
343
CONTROL
342
INPUT
341
PC5
IN/OUT
OUTPUT
340
CONTROL
339
INPUT
338
PC6
IN/OUT
OUTPUT
337
CONTROL
336
INPUT
335
PC7
IN/OUT
OUTPUT
334
CONTROL
333
INPUT
332
PC8
331
84
IN/OUT
OUTPUT
CONTROL
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Table 11-3.
Bit
Number
SAM9263 JTAG Boundary Scan Register (Continued)
Pin Name
Pin Type
330
329
Associated
BSR Cells
INPUT
PC9
IN/OUT
OUTPUT
328
CONTROL
327
INPUT
326
PC10
IN/OUT
OUTPUT
325
CONTROL
324
INPUT
323
PC11
IN/OUT
OUTPUT
322
CONTROL
321
INPUT
320
PC12
IN/OUT
OUTPUT
319
CONTROL
318
INPUT
317
PC13
IN/OUT
OUTPUT
316
CONTROL
315
INPUT
314
PC14
IN/OUT
OUTPUT
313
CONTROL
312
INPUT
311
PC15
IN/OUT
OUTPUT
310
CONTROL
309
INPUT
308
PC16
IN/OUT
OUTPUT
307
CONTROL
306
INPUT
305
PC17
IN/OUT
OUTPUT
304
CONTROL
303
INPUT
302
PC18
IN/OUT
OUTPUT
301
CONTROL
300
INPUT
299
PC19
IN/OUT
OUTPUT
298
CONTROL
297
INPUT
296
295
PC20
IN/OUT
OUTPUT
CONTROL
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
85
Table 11-3.
Bit
Number
SAM9263 JTAG Boundary Scan Register (Continued)
Pin Name
Pin Type
294
293
Associated
BSR Cells
INPUT
PC21
IN/OUT
OUTPUT
292
CONTROL
291
INPUT
290
PC22
IN/OUT
OUTPUT
289
CONTROL
288
INPUT
287
PC23
IN/OUT
OUTPUT
286
CONTROL
285
INPUT
284
PC24
IN/OUT
OUTPUT
283
CONTROL
282
INPUT
281
PC25
IN/OUT
OUTPUT
280
CONTROL
279
INPUT
278
PC26
IN/OUT
OUTPUT
277
CONTROL
276
INPUT
275
PC27
IN/OUT
OUTPUT
274
CONTROL
273
INPUT
272
PC28
IN/OUT
OUTPUT
271
CONTROL
270
INPUT
269
PC29
IN/OUT
OUTPUT
268
CONTROL
267
INPUT
266
PC30
IN/OUT
OUTPUT
265
CONTROL
264
INPUT
263
PC31
IN/OUT
OUTPUT
262
CONTROL
261
INPUT
260
PD0
259
86
IN/OUT
OUTPUT
CONTROL
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Table 11-3.
Bit
Number
SAM9263 JTAG Boundary Scan Register (Continued)
Pin Name
Pin Type
258
257
Associated
BSR Cells
INPUT
PD1
IN/OUT
OUTPUT
256
CONTROL
255
INPUT
254
PD2
IN/OUT
OUTPUT
253
CONTROL
252
INPUT
251
PD3
IN/OUT
OUTPUT
250
CONTROL
249
INPUT
248
PD4
IN/OUT
247
OUTPUT
CONTROL
246
N.C.
OUT
OUTPUT
245
EBI0_A0_NBS0
OUT
OUTPUT
244
EBI0_A[7:0]
CONTROL
243
INPUT
EBI0_A1_NBS2_NWR2
IN/OUT
242
OUTPUT
241
EBI0_A2
OUT
OUTPUT
240
EBI0_A3
OUT
OUTPUT
239
EBI0_A4
OUT
OUTPUT
238
EBI0_A5
OUT
OUTPUT
237
EBI0_A6
OUT
OUTPUT
236
EBI0_A7
OUT
OUTPUT
235
EBI0_A8
OUT
OUTPUT
234
EBI0_A[15:8]
233
EBI0_A9
OUT
OUTPUT
232
EBI0_A10
OUT
OUTPUT
231
EBI0_SDA10
OUT
OUTPUT
230
EBI0_SDA10/SDCKE/RAS/CAS/SDWE/NANDOE/NANDWE
229
EBI0_A11
OUT
OUTPUT
228
EBI0_A12
OUT
OUTPUT
227
EBI0_A13
OUT
OUTPUT
226
EBI0_A14
OUT
OUTPUT
225
EBI0_A15
OUT
OUTPUT
224
EBI0_A16_BA0
OUT
OUTPUT
223
EBI0_A[22:16]
CONTROL
CONTROL
CONTROL
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
87
Table 11-3.
Bit
Number
SAM9263 JTAG Boundary Scan Register (Continued)
Pin Name
Pin Type
Associated
BSR Cells
222
EBI0_A17_BA1
OUT
OUTPUT
221
EBI0_A18
OUT
OUTPUT
220
EBI0_A19
OUT
OUTPUT
219
EBI0_A20
OUT
OUTPUT
218
EBI0_A21
OUT
OUTPUT
217
EBI0_A22
OUT
OUTPUT
216
EBI0_NCS0
OUT
OUTPUT
215
EBI0_NCS0/EBI0_NCS1_SDCS/EBI0_NRD/EBI0_NWR_NWR0/EBI0_NBS1_NWR1/
EBI0_NBS3_NWR3
214
EBI0_NCS1_SDCS
OUT
OUTPUT
213
EBI0_NRD
OUT
OUTPUT
CONTROL
212
INPUT
EBI0_NWR_NWR0
IN/OUT
211
OUTPUT
210
INPUT
EBI0_NBS1_NWR1
IN/OUT
209
OUTPUT
208
INPUT
EBI0_NBS3_NWR3
IN/OUT
207
OUTPUT
206
205
internal
EBI0_SDCK
204
OUT
OUTPUT
internal
203
EBI0_SDCKE
OUT
OUTPUT
202
EBI0_RAS
OUT
OUTPUT
201
EBI0_CAS
OUT
OUTPUT
200
EBI0_SDWE
OUT
OUTPUT
199
EBI0_NANDOE
OUT
OUTPUT
198
EBI0_NANDWE
OUT
OUTPUT
197
196
INPUT
EBI0_D0
IN/OUT
OUTPUT
195
CONTROL
194
INPUT
193
EBI0_D1
IN/OUT
OUTPUT
192
CONTROL
191
INPUT
190
EBI0_D2
189
88
IN/OUT
OUTPUT
CONTROL
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Table 11-3.
Bit
Number
SAM9263 JTAG Boundary Scan Register (Continued)
Pin Name
Pin Type
188
187
Associated
BSR Cells
INPUT
EBI0_D3
IN/OUT
OUTPUT
186
CONTROL
185
INPUT
184
EBI0_D4
IN/OUT
OUTPUT
183
CONTROL
182
INPUT
181
EBI0_D5
IN/OUT
OUTPUT
180
CONTROL
179
INPUT
178
EBI0_D6
IN/OUT
OUTPUT
177
CONTROL
176
INPUT
175
EBI0_D7
IN/OUT
OUTPUT
174
CONTROL
173
INPUT
172
EBI0_D8
IN/OUT
OUTPUT
171
CONTROL
170
INPUT
169
EBI0_D9
IN/OUT
OUTPUT
168
CONTROL
167
INPUT
166
EBI0_D10
IN/OUT
OUTPUT
165
CONTROL
164
INPUT
163
EBI0_D11
IN/OUT
OUTPUT
162
CONTROL
161
INPUT
160
EBI0_D12
IN/OUT
OUTPUT
159
CONTROL
158
INPUT
157
EBI0_D13
IN/OUT
OUTPUT
156
CONTROL
155
INPUT
154
153
EBI0_D14
IN/OUT
OUTPUT
CONTROL
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
89
Table 11-3.
Bit
Number
SAM9263 JTAG Boundary Scan Register (Continued)
Pin Name
Pin Type
152
151
Associated
BSR Cells
INPUT
EBI0_D15
IN/OUT
OUTPUT
150
CONTROL
149
INPUT
148
PD5
IN/OUT
OUTPUT
147
CONTROL
146
INPUT
145
PD6
IN/OUT
OUTPUT
144
CONTROL
143
INPUT
142
PD12
IN/OUT
OUTPUT
141
CONTROL
140
INPUT
139
PD7
IN/OUT
OUTPUT
138
CONTROL
137
INPUT
136
PD8
IN/OUT
OUTPUT
135
CONTROL
134
INPUT
133
PD9
IN/OUT
OUTPUT
132
CONTROL
131
INPUT
130
PD10
IN/OUT
OUTPUT
129
CONTROL
128
INPUT
127
PD11
IN/OUT
OUTPUT
126
CONTROL
125
INPUT
124
PD13
IN/OUT
OUTPUT
123
CONTROL
122
INPUT
121
PD14
IN/OUT
OUTPUT
120
CONTROL
119
INPUT
118
PD15
117
90
IN/OUT
OUTPUT
CONTROL
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Table 11-3.
Bit
Number
SAM9263 JTAG Boundary Scan Register (Continued)
Pin Name
Pin Type
116
115
Associated
BSR Cells
INPUT
PD16
IN/OUT
OUTPUT
114
CONTROL
113
INPUT
112
PD17
IN/OUT
OUTPUT
111
CONTROL
110
INPUT
109
PD18
IN/OUT
OUTPUT
108
CONTROL
107
INPUT
106
PD19
IN/OUT
OUTPUT
105
CONTROL
104
INPUT
103
PD20
IN/OUT
OUTPUT
102
CONTROL
101
INPUT
100
PD21
IN/OUT
OUTPUT
99
CONTROL
98
INPUT
97
PD22
IN/OUT
OUTPUT
96
CONTROL
95
INPUT
94
PD23
IN/OUT
OUTPUT
93
CONTROL
92
INPUT
91
PD24
IN/OUT
OUTPUT
90
CONTROL
89
INPUT
88
PD25
IN/OUT
OUTPUT
87
CONTROL
86
INPUT
85
PD26
IN/OUT
OUTPUT
84
CONTROL
83
INPUT
82
81
PD27
IN/OUT
OUTPUT
CONTROL
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
91
Table 11-3.
Bit
Number
SAM9263 JTAG Boundary Scan Register (Continued)
Pin Name
Pin Type
80
79
INPUT
PD28
IN/OUT
OUTPUT
78
CONTROL
77
INPUT
76
PD29
IN/OUT
OUTPUT
75
CONTROL
74
INPUT
73
PD30
IN/OUT
OUTPUT
72
CONTROL
71
INPUT
70
PD31
IN/OUT
OUTPUT
69
CONTROL
68
INPUT
67
PE0
IN/OUT
OUTPUT
66
CONTROL
65
INPUT
64
PE1
IN/OUT
OUTPUT
63
CONTROL
62
INPUT
61
PE2
IN/OUT
OUTPUT
60
CONTROL
59
INPUT
58
PE3
IN/OUT
OUTPUT
57
CONTROL
56
INPUT
55
PE4
IN/OUT
OUTPUT
54
CONTROL
53
INPUT
52
PE5
IN/OUT
OUTPUT
51
CONTROL
50
INPUT
49
PE6
IN/OUT
OUTPUT
48
CONTROL
47
INPUT
46
PE7
45
92
Associated
BSR Cells
IN/OUT
OUTPUT
CONTROL
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Table 11-3.
Bit
Number
SAM9263 JTAG Boundary Scan Register (Continued)
Pin Name
Pin Type
44
43
Associated
BSR Cells
INPUT
PE8
IN/OUT
OUTPUT
42
CONTROL
41
INPUT
40
PE9
IN/OUT
OUTPUT
39
CONTROL
38
INPUT
37
PE10
IN/OUT
OUTPUT
36
CONTROL
35
INPUT
34
PE11
IN/OUT
OUTPUT
33
CONTROL
32
INPUT
31
PE12
IN/OUT
OUTPUT
30
CONTROL
29
INPUT
28
PE13
IN/OUT
OUTPUT
27
CONTROL
26
INPUT
25
PE14
IN/OUT
OUTPUT
24
CONTROL
23
INPUT
22
PE15
IN/OUT
OUTPUT
21
CONTROL
20
INPUT
19
PE16
IN/OUT
OUTPUT
18
CONTROL
17
INPUT
16
PE17
IN/OUT
OUTPUT
15
CONTROL
14
INPUT
13
PE18
IN/OUT
OUTPUT
12
CONTROL
11
INPUT
10
09
PE19
IN/OUT
OUTPUT
CONTROL
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
93
Table 11-3.
Bit
Number
SAM9263 JTAG Boundary Scan Register (Continued)
Pin Name
Pin Type
08
07
INPUT
PA16
IN/OUT
OUTPUT
06
CONTROL
05
INPUT
04
PA17
IN/OUT
OUTPUT
03
CONTROL
02
INPUT
01
PA18
00
94
Associated
BSR Cells
IN/OUT
OUTPUT
CONTROL
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
11.5.7 ID Code Register
Access: Read-only
31
30
29
28
27
VERSION
23
22
26
25
24
PART NUMBER
21
20
19
18
17
16
10
9
8
PART NUMBER
15
14
13
12
11
PART NUMBER
7
6
MANUFACTURER IDENTITY
5
4
3
2
1
MANUFACTURER IDENTITY
0
1
• MANUFACTURER IDENTITY[11:1]
Set to 0x01F.
Bit[0] Required by IEEE Std. 1149.1.
Set to 0x1.
JTAG ID Code value is 0x05B0_C03F.
• PART NUMBER[27:12]: Product Part Number
Product part Number is 0x5B0C
• VERSION[31:28]: Product Version Number
Set to 0x0.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
95
12.
SAM9263 Boot Program
12.1
Overview
The Boot Program integrates different programs permitting download and/or upload into the different memories of
the product.
First, it initializes the Debug Unit serial port (DBGU) and the USB Device Port.
Then the SD Card Boot program is executed. It looks for a boot.bin file in the root directory of a FAT12/16/32
formatted SD Card. If such a file is found, code is downloaded into the internal SRAM. This is followed by a remap
and a jump to the first address of the SRAM.
If the SD Card is not formatted or if boot.bin file is not found, NAND Flash Boot program is then executed.
The NAND Flash Boot program looks for a sequence of seven valid ARM exception vectors. If such a sequence is
found, code is downloaded into the internal SRAM. This is followed by a remap and a jump to the first address of
the SRAM.
If no valid ARM vector sequence is found, the DataFlash Boot program is executed. It looks for a sequence of
seven valid ARM exception vectors in a DataFlash connected to the SPI. All these vectors must be B-branch or
LDR load register instructions except for the sixth vector. This vector is used to store the size of the image to
download.
If a valid sequence is found, code is downloaded into the internal SRAM. This is followed by a remap and a jump to
the first address of the SRAM.
If no boot.bin file is found, SAM-BA Boot is then executed. It waits for transactions either on the USB device, or on
the DBGU serial port.
96
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
12.2
Flow Diagram
The Boot Program implements the algorithm in Figure 12-1.
Figure 12-1.
Boot Program Algorithm Flow Diagram
Start
Main Oscillator Bypass
No
Enable
Main Oscillator
Yes
Download from
SD Card (MCI)
Run
SD Card Boot
Yes
Download from
NandFlash
Run
NandFlash Boot
Yes
Download from
DataFlash (NPCS0)
Run
DataFlash Boot
Yes
Input Frequency
Table
SD Card Boot
No
Timeout < 1 s
NandFlash Boot
No
Timeout < 1 s
SPI DataFlash Boot
No
No
Timeout < 1 s
USB Enumeration
Successful ?
No
Character(s) received
on DBGU ?
SAM-BA Boot
Yes
Run SAM-BA Boot
Yes
Run SAM-BA Boot
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
97
12.3
Device Initialization
Initialization follows the steps described below:
1.
Stack setup for ARM supervisor mode
2.
External Clock Detection
3.
Switch Master Clock on Main Oscillator
4.
C variable initialization
5.
Main oscillator frequency detection
6.
PLL setup: PLLB is initialized to generate a 48 MHz clock necessary to use the USB Device. A register
located in the Power Management Controller (PMC) determines the frequency of the main oscillator and
thus the correct factor for the PLLB.
Table 12-1 defines the crystals supported by the Boot Program.
Table 12-1.
Crystals Supported by Software Auto-detection (MHz)
3.0
3.2768
3.6864
3.84
4.0
4.433619
4.608
4.9152
5.0
5.24288
6.0
6.144
6.4
6.5536
7.159090
7.3728
7.864320
8.0
9.8304
10.0
11.05920
12.0
12.288
13
13.56
14.31818
14.7456
16.0
16.367667
17.734470
18.432
20.0
24
25
26
28.224
32
33
40
7.
Initialization of the DBGU serial port (115200 bauds, 8, N, 1)
8.
Enable the User Reset
9.
Jump to SD Card Boot sequence. If SD Card Boot succeeds, perform a remap and jump to 0x0.
10. Jump to NAND Flash Boot sequence. If NAND Flash Boot succeeds, perform a remap and jump to 0x0.
11. Jump to DataFlash Boot sequence through NPCS0. If DataFlash Boot succeeds, perform a remap and jump
to 0x0.
12. Activation of the Instruction Cache
13. Jump to SAM-BA Boot sequence
14. Disable the WatchDog
15. Initialization of the USB Device Port
Figure 12-2.
Remap Action after Download Completion
0x0000_0000
0x0000_0000
Internal
ROM
Internal
SRAM
REMAP
0x0030_0000
0x0040_0000
Internal
SRAM
98
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Internal
ROM
12.4
DataFlash Boot
The DataFlash Boot program searches for a valid application in the SPI DataFlash memory. If a valid application is
found, this application is loaded into internal SRAM and executed by branching at address 0x0000_0000 after
remap. This application may be the application code or a second-level bootloader.
All the calls to functions are PC relative and do not use absolute addresses.
12.4.1 Valid Image Detection
The DataFlash Boot software looks for a valid application by analyzing the first 28 bytes corresponding to the ARM
exception vectors. These bytes must implement ARM instructions for either branch or load PC with PC relative
addressing.
The sixth vector, at offset 0x14, contains the size of the image to download. The user must replace this vector with
his own vector (see ”Structure of ARM Vector 6”).
Figure 12-3.
LDR Opcode
31
1
28 27
1
Figure 12-4.
1
0
24 23
1
I
P
U
20 19
0
W
1
16 15
Rn
12 11
Rd
0
Addressing Mode
B Opcode
31
1
0
28 27
1
1
0
1
24 23
0
1
0
0
Offset (24 bits)
Unconditional instruction: 0xE for bits 31 to 28.
Load PC with PC relative addressing instruction:
̶
Rn = Rd = PC = 0xF
̶
I==1
̶
P==1
̶
U offset added (U==1) or subtracted (U==0)
̶
W==1
12.4.2 Structure of ARM Vector 6
The ARM exception vector 6 is used to store information needed by the DataFlash boot program. This information
is described below.
Figure 12-5.
Structure of the ARM Vector 6
31
0
Size of the code to download in bytes
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
99
12.4.2.1 Example
An example of valid vectors follows:
Address
Value
00
ea000006
04
eafffffe
08
ea00002f
0c
eafffffe
10
eafffffe
14
00001000
18
eafffffe
Code
B 0x20
B 0x04
B _main
B 0x0c
B 0x10
Code size = 4096 bytes (less than or equal to 72 Kbytes)
B 0x18
The size of the image to load into SRAM is contained in the location of the sixth ARM vector. Thus the user must
replace this vector by the correct vector for his application.
12.4.3 DataFlash Boot Sequence
The DataFlash boot program performs device initialization followed by the download procedure.
The DataFlash boot program supports the DataFlash devices listed in Table 12-2. The table summarizes the
parameters to include in the ARM vector 6 for all devices.
Table 12-2.
DataFlash Devices
Device
Density
Page Size (bytes)
Number of Pages
AT45DB011
1 Mbit
264
512
AT45DB021
2 Mbits
264
1024
AT45DB041
4 Mbits
264
2048
AT45DB081
8 Mbits
264
4096
AT45DB161
16 Mbits
528
4096
AT45DB321
32 Mbits
528
8192
AT45DB642
64 Mbits
1056
8192
The DataFlash has a Status Register that determines all the parameters required to access the device. The
DataFlash boot is configured to be compatible with the future design of the DataFlash.
100
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Figure 12-6.
Serial DataFlash Download
Start
Send status command
Is status OK ?
No
Jump to next boot
solution
Yes
Read the first 7 instructions (28 bytes).
Decode the sixth ARM vector
7 vectors
(except vector 6) are LDR
or Branch instruction
No
Yes
Read the DataFlash into the internal SRAM.
(code size to read in vector 6)
Restore the reset value for the peripherals.
Set the PC to 0 and perform the REMAP
to jump to the downloaded application
End
12.5
SD Card Boot
The SD Card Boot program searches for a valid application in the SD Card memory.
(Boot ROM does not support high capacity SDCards.)
It looks for a boot.bin file in the root directory of a FAT12/16/32 formatted SD Card. If a valid file is found, this
application is loaded into internal SRAM and executed by branching at address 0x0000_0000 after remap. This
application may be the application code or a second-level bootloader.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
101
12.6
NAND Flash Boot
The NAND Flash Boot program searches for a valid application in the NAND Flash memory. The first block must
be guaranteed by the manufacturer. There is no ECC check. If a valid application is found, this application is
loaded into internal SRAM and executed by branching at address 0x0000_0000 after remap. See “DataFlash
Boot” on page 99 for more information on Valid Image Detection.
12.6.1 Supported NAND Flash Devices
Any 8-bit or 16-bit NAND Flash device connected on EBI0 is supported.
12.7
SAM-BA Boot
If no valid DataFlash device has been found during the DataFlash boot sequence, the SAM-BA boot program is
performed.
The SAM-BA boot principle is to:
̶
Check if USB Device enumeration has occurred.
̶
Check if character(s) have been received on the DBGU.
̶
Once the communication interface is identified, the application runs in an infinite loop waiting for
different commands as in Table 12-3.
Table 12-3.
Command
Action
Argument(s)
Example
O
write a byte
Address, Value#
O200001,CA#
o
read a byte
Address,#
o200001,#
H
write a half word
Address, Value#
H200002,CAFE#
h
read a half word
Address,#
h200002,#
W
write a word
Address, Value#
W200000,CAFEDECA#
w
read a word
Address,#
w200000,#
S
send a file
Address,#
S200000,#
R
receive a file
Address, NbOfBytes#
R200000,1234#
G
go
Address#
G200200#
V
display version
No argument
V#

Write commands: Write a byte (O), a halfword (H) or a word (W) to the target.
̶
̶
̶


Note:
102
Commands Available through the SAM-BA Boot
Address: Address in hexadecimal.
Value: Byte, halfword or word to write in hexadecimal.
Output: ‘>’.
Read commands: Read a byte (o), a halfword (h) or a word (w) from the target.
̶
Address: Address in hexadecimal
̶
Output: The byte, halfword or word read in hexadecimal following by ‘>’
Send a file (S): Send a file to a specified address
̶
Address: Address in hexadecimal
̶
Output: ‘>’.
There is a time-out on this command which is reached when the prompt ‘>’ appears before the end of the command
execution.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16

Receive a file (R): Receive data into a file from a specified address
̶
̶
NbOfBytes: Number of bytes in hexadecimal to receive
̶


Address: Address in hexadecimal
Output: ‘>’
Go (G): Jump to a specified address and execute the code
̶
Address: Address to jump in hexadecimal
̶
Output: ‘>’
Get Version (V): Return the SAM-BA boot version
̶
Output: ‘>’
12.7.1 DBGU Serial Port
Communication is performed through the DBGU serial port initialized to 115200 Baud, 8, n, 1.
The Send and Receive File commands use the Xmodem protocol to communicate. Any terminal performing this
protocol can be used to send the application file to the target. The size of the binary file to send depends on the
SRAM size embedded in the product. In all cases, the size of the binary file must be lower than the SRAM size
because the Xmodem protocol requires some SRAM memory to work.
12.7.2 Xmodem Protocol
The Xmodem protocol supported is the 128-byte length block. This protocol uses a two-character CRC-16 to
guarantee detection of a maximum bit error.
Xmodem protocol with CRC is accurate provided both sender and receiver report successful transmission. Each
block of the transfer looks like:
<SOH><blk #><255-blk #><--128 data bytes--><checksum> in which:
̶
<SOH> = 01 hex
̶
<blk #> = binary number, starts at 01, increments by 1, and wraps 0FFH to 00H (not to 01)
̶
<255-blk #> = 1’s complement of the blk#.
̶
<checksum> = 2 bytes CRC16
Figure 12-7 shows a transmission using this protocol.
Figure 12-7.
Xmodem Transfer Example
Host
Device
C
SOH 01 FE Data[128] CRC CRC
ACK
SOH 02 FD Data[128] CRC CRC
ACK
SOH 03 FC Data[100] CRC CRC
ACK
EOT
ACK
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
103
12.7.3 USB Device Port
A 48 MHz USB clock is necessary to use the USB Device port. It has been programmed earlier in the device
initialization procedure with PLLB configuration.
The device uses the USB communication device class (CDC) drivers to take advantage of the installed PC RS-232
software to talk over the USB. The CDC class is implemented in all releases of Windows ® , beginning with
Windows 98SE. The CDC document, available at www.usb.org, describes a way to implement devices such as
ISDN modems and virtual COM ports.
The Vendor ID is Atmel’s vendor ID 0x03EB. The product ID is 0x6124. These references are used by the host
operating system to mount the correct driver. On Windows systems, the INF files contain the correspondence
between vendor ID and product ID.
Atmel provides an INF example to see the device as a new serial port and also provides another custom driver
used by the SAM-BA application: atm6124.sys. Refer to the document USB Basic Application, literature number
6123, for more details.
12.7.3.1 Enumeration Process
The USB protocol is a master/slave protocol. This is the host that starts the enumeration sending requests to the
device through the control endpoint. The device handles standard requests as defined in the USB Specification.
Table 12-4.
Handled Standard Requests
Request
Definition
GET_DESCRIPTOR
Returns the current device configuration value.
SET_ADDRESS
Sets the device address for all future device access.
SET_CONFIGURATION
Sets the device configuration.
GET_CONFIGURATION
Returns the current device configuration value.
GET_STATUS
Returns status for the specified recipient.
SET_FEATURE
Used to set or enable a specific feature.
CLEAR_FEATURE
Used to clear or disable a specific feature.
The device also handles some class requests defined in the CDC class.
Table 12-5.
Handled Class Requests
Request
Definition
SET_LINE_CODING
Configures DTE rate, stop bits, parity and number of character bits.
GET_LINE_CODING
Requests current DTE rate, stop bits, parity and number of character bits.
SET_CONTROL_LINE_STATE
RS-232 signal used to tell the DCE device the DTE device is now present.
Unhandled requests are STALLed.
12.7.3.2 Communication Endpoints
There are two communication endpoints and endpoint 0 is used for the enumeration process. Endpoint 1 is a 64byte Bulk OUT endpoint and endpoint 2 is a 64-byte Bulk IN endpoint. SAM-BA Boot commands are sent by the
host through the endpoint 1. If required, the message is split by the host into several data payloads by the host
driver.
If the command requires a response, the host can send IN transactions to pick up the response.
104
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
12.8
Hardware and Software Constraints

SAM-BA boot disposes of two blocks of internal SRAM. The first block is available for user code. Its size is
73728 bytes. The second block is used for variables and stacks.
Table 12-6.
User Area Address
Start Address
End Address
Size (bytes)
0x3000000
0x312000
73728

The SD Card(1), NAND Flash and DataFlash downloaded code size must be inferior to 72 K bytes.

The code is always downloaded from the DataFlash or NAND Flash device address 0x0000_0000 to the
address 0x0000_0000 of the internal SRAM (after remap).

The downloaded code must be position-independent or linked at address 0x0000_0000.

The DataFlash must be connected to NPCS0 of the SPI.

USB requirements:
̶
Note:
Crystal or Input Frequencies supported by Software Auto-detection. See Table 12-1 on page 98 for
more informations.
1.
Boot ROM does not support high capacity SDCards.
The MCI, the SPI and NAND Flash drivers use several PIOs in alternate functions to communicate with devices.
Care must be taken when these PIOs are used by the application. The devices connected could be unintentionally
driven at boot time, and electrical conflicts between peripherals output pins and the connected devices may
appear.
To assure correct functionality, it is recommended to plug in critical devices to other pins.
Table 12-7 contains a list of pins that are driven during the boot program execution. These pins are driven during
the boot sequence for a period of less than 1 second if no correct boot program is found.
For the DataFlash driven by the SPCK signal at 8 MHz, the time to download 72 Kbytes is reduced to 200 ms.
Before performing the jump to the application in internal SRAM, all the PIOs and peripherals used in the boot
program are set to their reset state.
Table 12-7.
Pins Driven during Boot Program Execution
Peripheral
Pin
PIO Line
MCI1
MCCK
PIOA6
MCI1
MCCDA
PIOA7
MCI1
MCDA0
PIOA8
MCI1
MCDA1
PIOA9
MCI1
MCDA2
PIOA10
MCI1
MCDA3
PIOA11
SPI0
MOSI
PIOA1
SPI0
MISO
PIOA0
SPI0
SPCK
PIOA2
SPI0
NPCS0
PIOA5
PIOD
NANDCS
PIOD15
DBGU
DRXD
PIOC30
DBGU
DTXD
PIOC31
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
105
13.
Reset Controller (RSTC)
13.1
Overview
The Reset Controller (RSTC), based on power-on reset cells, handles all the resets of the system without any
external components. It reports which reset occurred last.
The Reset Controller also drives independently or simultaneously the external reset and the peripheral and
processor resets.
13.2
Block Diagram
Figure 13-1.
Reset Controller Block Diagram
Reset Controller
Main Supply
POR
Backup Supply
POR
rstc_irq
Startup
Counter
Reset
State
Manager
proc_nreset
user_reset
NRST
nrst_out
NRST
Manager
periph_nreset
exter_nreset
backup_neset
WDRPROC
wd_fault
SLCK
106
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
13.3
Functional Description
13.3.1 Reset Controller Overview
The Reset Controller is made up of an NRST Manager, a Startup Counter and a Reset State Manager. It runs at
Slow Clock and generates the following reset signals:

proc_nreset: Processor reset line. It also resets the Watchdog Timer.

backup_nreset: Affects all the peripherals powered by VDDBU.

periph_nreset: Affects the whole set of embedded peripherals.

nrst_out: Drives the NRST pin.
These reset signals are asserted by the Reset Controller, either on external events or on software action. The
Reset State Manager controls the generation of reset signals and provides a signal to the NRST Manager when an
assertion of the NRST pin is required.
The NRST Manager shapes the NRST assertion during a programmable time, thus controlling external device
resets.
The startup counter waits for the complete crystal oscillator startup. The wait delay is given by the crystal oscillator
startup time maximum value that can be found in the section Crystal Oscillator Characteristics in the Electrical
Characteristics section of the product documentation.
The Reset Controller Mode Register (RSTC_MR), allowing the configuration of the Reset Controller, is powered
with VDDBU, so that its configuration is saved as long as VDDBU is on.
13.3.2 NRST Manager
The NRST Manager samples the NRST input pin and drives this pin low when required by the Reset State
Manager. Figure 13-2 shows the block diagram of the NRST Manager.
Figure 13-2.
NRST Manager
RSTC_MR
URSTIEN
RSTC_SR
URSTS
NRSTL
rstc_irq
RSTC_MR
URSTEN
Other
interrupt
sources
user_reset
NRST
RSTC_MR
ERSTL
nrst_out
External Reset Timer
exter_nreset
13.3.2.1 NRST Signal or Interrupt
The NRST Manager samples the NRST pin at Slow Clock speed. When the line is detected low, a User Reset is
reported to the Reset State Manager.
However, the NRST Manager can be programmed to not trigger a reset when an assertion of NRST occurs.
Writing the bit URSTEN at 0 in RSTC_MR disables the User Reset trigger.
The level of the pin NRST can be read at any time in the bit NRSTL (NRST level) in RSTC_SR. As soon as the pin
NRST is asserted, the bit URSTS in RSTC_SR is set. This bit clears only when RSTC_SR is read.
The Reset Controller can also be programmed to generate an interrupt instead of generating a reset. To do so, the
bit URSTIEN in RSTC_MR must be written at 1.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
107
13.3.2.2 NRST External Reset Control
The Reset State Manager asserts the signal ext_nreset to assert the NRST pin. When this occurs, the “nrst_out”
signal is driven low by the NRST Manager for a time programmed by the field ERSTL in RSTC_MR. This assertion
duration, named EXTERNAL_RESET_LENGTH, lasts 2(ERSTL+1) Slow Clock cycles. This gives the approximate
duration of an assertion between 60 µs and 2 seconds. Note that ERSTL at 0 defines a two-cycle duration for the
NRST pulse.
This feature allows the Reset Controller to shape the NRST pin level, and thus to guarantee that the NRST line is
driven low for a time compliant with potential external devices connected on the system reset.
As the field is within RSTC_MR, which is backed-up, this field can be used to shape the system power-up reset for
devices requiring a longer startup time than the Slow Clock Oscillator.
13.3.3 BMS Sampling
The product matrix manages a boot memory that depends on the level on the BMS pin at reset. The BMS signal is
sampled three slow clock cycles after the Core Power-On-Reset output rising edge.
Figure 13-3.
BMS Sampling
SLCK
Core Supply
POR output
BMS Signal
proc_nreset
108
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
XXX
H or L
BMS sampling delay
= 3 cycles
13.3.4 Reset States
The Reset State Manager handles the different reset sources and generates the internal reset signals. It reports
the reset status in the field RSTTYP of the Status Register (RSTC_SR). The update of the field RSTTYP is
performed when the processor reset is released.
13.3.4.1 General Reset
A general reset occurs when VDDBU and VDDCORE are powered on. The backup supply POR cell output rises
and is filtered with a Startup Counter, which operates at Slow Clock. The purpose of this counter is to make sure
the Slow Clock oscillator is stable before starting up the device. The length of startup time is hardcoded to comply
with the Slow Clock Oscillator startup time.
After this time, the processor clock is released at Slow Clock and all the other signals remain valid for three cycles
for proper processor and logic reset. Then, all the reset signals are released and the field RSTTYP in RSTC_SR
reports a General Reset. As the RSTC_MR is reset, the NRST line rises 2 cycles after the backup_nreset, as
ERSTL defaults at value 0x0.
When VDDBU is detected low by the Backup Supply POR Cell, all resets signals are immediately asserted, even if
the Main Supply POR Cell does not report a Main Supply shutdown.
VDDBU only activates the backup_nreset signal.
The backup_nreset must be released so that any other reset can be generated by VDDCORE (Main Supply POR
output).
Figure 13-4 shows how the General Reset affects the reset signals.
Figure 13-4.
General Reset State
SLCK
Any
Freq.
MCK
Backup Supply
POR output
Startup Time
Main Supply
POR output
backup_nreset
Processor Startup
= 2 cycles
proc_nreset
RSTTYP
XXX
0x0 = General Reset
XXX
periph_nreset
NRST
(nrst_out)
EXTERNAL RESET LENGTH
= 2 cycles
BMS Sampling
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
109
13.3.4.2 Wake-up Reset
The Wake-up Reset occurs when the Main Supply is down. When the Main Supply POR output is active, all the
reset signals are asserted except backup_nreset. When the Main Supply powers up, the POR output is
resynchronized on Slow Clock. The processor clock is then re-enabled during three Slow Clock cycles, depending
on the requirements of the ARM processor.
At the end of this delay, the processor and other reset signals rise. The field RSTTYP in RSTC_SR is updated to
report a Wake-up Reset.
The “nrst_out” remains asserted for EXTERNAL_RESET_LENGTH cycles. As RSTC_MR is backed-up, the
programmed number of cycles is applicable.
When the Main Supply is detected falling, the reset signals are immediately asserted. This transition is
synchronous with the output of the Main Supply POR.
Figure 13-5.
Wake-up State
SLCK
Any
Freq.
MCK
Main Supply
POR output
backup_nreset
Resynch.
2 cycles
Processor Startup
= 2 cycles
proc_nreset
RSTTYP
XXX
periph_nreset
NRST
(nrst_out)
EXTERNAL RESET LENGTH
= 4 cycles (ERSTL = 1)
110
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
0x1 = WakeUp Reset
XXX
13.3.4.3 User Reset
The User Reset is entered when a low level is detected on the NRST pin and the bit URSTEN in RSTC_MR is at 1.
The NRST input signal is resynchronized with SLCK to insure proper behavior of the system.
The User Reset is entered as soon as a low level is detected on NRST. The Processor Reset and the Peripheral
Reset are asserted.
The User Reset is left when NRST rises, after a two-cycle resynchronization time and a three-cycle processor
startup. The processor clock is re-enabled as soon as NRST is confirmed high.
When the processor reset signal is released, the RSTTYP field of the Status Register (RSTC_SR) is loaded with
the value 0x4, indicating a User Reset.
The NRST Manager guarantees that the NRST line is asserted for EXTERNAL_RESET_LENGTH Slow Clock
cycles, as programmed in the field ERSTL. However, if NRST does not rise after EXTERNAL_RESET_LENGTH
because it is driven low externally, the internal reset lines remain asserted until NRST actually rises.
Figure 13-6.
User Reset State
SLCK
MCK
Any
Freq.
NRST
Resynch.
2 cycles
Resynch.
2 cycles
Processor Startup
= 2 cycles
proc_nreset
RSTTYP
Any
XXX
0x4 = User Reset
periph_nreset
NRST
(nrst_out)
>= EXTERNAL RESET LENGTH
13.3.4.4 Software Reset
The Reset Controller offers several commands used to assert the different reset signals. These commands are
performed by writing the Control Register (RSTC_CR) with the following bits at 1:

PROCRST: Writing PROCRST at 1 resets the processor and the watchdog timer.

PERRST: Writing PERRST at 1 resets all the embedded peripherals, including the memory system, and, in
particular, the Remap Command. The Peripheral Reset is generally used for debug purposes.
Except for Debug purposes, PERRST must always be used in conjunction with PROCRST (PERRST and
PROCRST set both at 1 simultaneously.)

EXTRST: Writing EXTRST at 1 asserts low the NRST pin during a time defined by the field ERSTL in the
Mode Register (RSTC_MR).
The software reset is entered if at least one of these bits is set by the software. All these commands can be
performed independently or simultaneously. The software reset lasts three Slow Clock cycles.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
111
The internal reset signals are asserted as soon as the register write is performed. This is detected on the Master
Clock (MCK). They are released when the software reset is left, i.e.; synchronously to SLCK.
If EXTRST is set, the nrst_out signal is asserted depending on the programming of the field ERSTL. However, the
resulting falling edge on NRST does not lead to a User Reset.
If and only if the PROCRST bit is set, the Reset Controller reports the software status in the field RSTTYP of the
Status Register (RSTC_SR). Other Software Resets are not reported in RSTTYP.
As soon as a software operation is detected, the bit SRCMP (Software Reset Command in Progress) is set in the
Status Register (RSTC_SR). It is cleared as soon as the software reset is left. No other software reset can be
performed while the SRCMP bit is set, and writing any value in RSTC_CR has no effect.
Figure 13-7.
Software Reset
SLCK
MCK
Any
Freq.
Write RSTC_CR
Resynch. Processor Startup
1 cycle
= 2 cycles
proc_nreset
if PROCRST=1
RSTTYP
Any
XXX
0x3 = Software Reset
periph_nreset
if PERRST=1
NRST
(nrst_out)
if EXTRST=1
EXTERNAL RESET LENGTH
8 cycles (ERSTL=2)
SRCMP in RSTC_SR
13.3.4.5 Watchdog Reset
The Watchdog Reset is entered when a watchdog fault occurs. This state lasts three Slow Clock cycles.
When in Watchdog Reset, assertion of the reset signals depends on the WDRPROC bit in WDT_MR:

If WDRPROC is 0, the Processor Reset and the Peripheral Reset are asserted. The NRST line is also
asserted, depending on the programming of the field ERSTL. However, the resulting low level on NRST
does not result in a User Reset state.

If WDRPROC = 1, only the processor reset is asserted.
The Watchdog Timer is reset by the proc_nreset signal. As the watchdog fault always causes a processor reset if
WDRSTEN is set, the Watchdog Timer is always reset after a Watchdog Reset, and the Watchdog is enabled by
default and with a period set to a maximum.
When the WDRSTEN in WDT_MR bit is reset, the watchdog fault has no impact on the reset controller.
112
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Figure 13-8.
Watchdog Reset
SLCK
MCK
Any
Freq.
wd_fault
Processor Startup
= 2 cycles
proc_nreset
RSTTYP
Any
XXX
0x2 = Watchdog Reset
periph_nreset
Only if
WDRPROC = 0
NRST
(nrst_out)
EXTERNAL RESET LENGTH
8 cycles (ERSTL=2)
13.3.5 Reset State Priorities
The Reset State Manager manages the following priorities between the different reset sources, given in
descending order:

Backup Reset

Wake-up Reset

Watchdog Reset

Software Reset

User Reset
Particular cases are listed below:

When in User Reset:
̶
̶
A watchdog event is impossible because the Watchdog Timer is being reset by the proc_nreset signal.


A software reset is impossible, since the processor reset is being activated.
When in Software Reset:
̶
A watchdog event has priority over the current state.
̶
The NRST has no effect.
When in Watchdog Reset:
̶
The processor reset is active and so a Software Reset cannot be programmed.
̶
A User Reset cannot be entered.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
113
13.3.6 Reset Controller Status Register
The Reset Controller status register (RSTC_SR) provides several status fields:

RSTTYP field: This field gives the type of the last reset, as explained in previous sections.

SRCMP bit: This field indicates that a Software Reset Command is in progress and that no further software
reset should be performed until the end of the current one. This bit is automatically cleared at the end of the
current software reset.

NRSTL bit: The NRSTL bit of the Status Register gives the level of the NRST pin sampled on each MCK
rising edge.

URSTS bit: A high-to-low transition of the NRST pin sets the URSTS bit of the RSTC_SR. This transition is
also detected on the Master Clock (MCK) rising edge (see Figure 13-9). If the User Reset is disabled
(URSTEN = 0) and if the interruption is enabled by the URSTIEN bit in the RSTC_MR, the URSTS bit
triggers an interrupt. Reading the RSTC_SR status register resets the URSTS bit and clears the interrupt.
Figure 13-9.
Reset Controller Status and Interrupt
MCK
read
RSTC_SR
Peripheral Access
2 cycle
resynchronization
NRST
NRSTL
URSTS
rstc_irq
if (URSTEN = 0) and
(URSTIEN = 1)
114
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
2 cycle
resynchronization
13.4
Reset Controller (RSTC) User Interface
Table 13-1.
Register Mapping
Offset
Register
Name
0x00
Control Register
0x04
0x08
Note:
Access
Reset
Back-up Reset
RSTC_CR
Write-only
–
–
Status Register
RSTC_SR
Read-only
0x0000_0001
0x0000_0000
Mode Register
RSTC_MR
Read/Write
–
0x0000_0000
1. The reset value of RSTC_SR either reports a General Reset or a Wake-up Reset depending on last rising power supply.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
115
13.4.1 Reset Controller Control Register
Name:
RSTC_CR
Address:
0xFFFFFD00
Access:
Write-only
31
30
29
28
27
26
25
24
KEY
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
8
–
7
–
6
–
5
–
4
–
3
EXTRST
2
PERRST
1
–
0
PROCRST
• PROCRST: Processor Reset
0: No effect.
1: If KEY is correct, resets the processor.
• PERRST: Peripheral Reset
0: No effect.
1: If KEY is correct, resets the peripherals.
• EXTRST: External Reset
0: No effect.
1: If KEY is correct, asserts the NRST pin.
• KEY: Password
Should be written at value 0xA5. Writing any other value in this field aborts the write operation.
116
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
13.4.2 Reset Controller Status Register
Name:
RSTC_SR
Address:
0xFFFFFD04
Access:
Read-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
SRCMP
16
NRSTL
15
–
14
–
13
–
12
–
11
–
10
9
RSTTYP
8
7
–
6
–
5
–
4
–
3
–
2
–
1
–
0
URSTS
• URSTS: User Reset Status
0: No high-to-low edge on NRST happened since the last read of RSTC_SR.
1: At least one high-to-low transition of NRST has been detected since the last read of RSTC_SR.
• RSTTYP: Reset Type
Reports the cause of the last processor reset. Reading this RSTC_SR does not reset this field.
RSTTYP
Reset Type
Comments
0
0
0
General Reset
Both VDDCORE and VDDBU rising
0
0
1
Wake Up Reset
VDDCORE rising
0
1
0
Watchdog Reset
Watchdog fault occurred
0
1
1
Software Reset
Processor reset required by the software
1
0
0
User Reset
NRST pin detected low
• NRSTL: NRST Pin Level
Registers the NRST Pin Level at Master Clock (MCK).
• SRCMP: Software Reset Command in Progress
0: No software command is being performed by the reset controller. The reset controller is ready for a software command.
1: A software reset command is being performed by the reset controller. The reset controller is busy.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
117
13.4.3 Reset Controller Mode Register
Name:
RSTC_MR
Address:
0xFFFFFD08
Access:
Read/Write
31
30
29
28
27
26
25
24
17
–
16
9
8
1
–
0
URSTEN
KEY
23
–
22
–
21
–
20
–
19
–
18
–
15
–
14
–
13
–
12
–
11
10
7
–
6
–
5
4
URSTIEN
3
–
ERSTL
2
–
• URSTEN: User Reset Enable
0: The detection of a low level on the pin NRST does not generate a User Reset.
1: The detection of a low level on the pin NRST triggers a User Reset.
• URSTIEN: User Reset Interrupt Enable
0: USRTS bit in RSTC_SR at 1 has no effect on rstc_irq.
1: USRTS bit in RSTC_SR at 1 asserts rstc_irq if URSTEN = 0.
• ERSTL: External Reset Length
This field defines the external reset length. The external reset is asserted during a time of 2(ERSTL+1) Slow Clock cycles.
This allows assertion duration to be programmed between 60 µs and 2 seconds.
• KEY: Password
Should be written at value 0xA5. Writing any other value in this field aborts the write operation.
118
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
14.
Real-time Timer (RTT)
14.1
Description
The Real-time Timer is built around a 32-bit counter and used to count elapsed seconds. It generates a periodic
interrupt and/or triggers an alarm on a programmed value.
14.2
14.3
Embedded Characteristics
̶
Real-time Timer 32-bit free-running back-up Counter
̶
Integrates a 16-bit programmable prescaler running on slow clock
̶
Alarm Register capable of generating a wake-up of the system through the Shutdown Controller
Block Diagram
Figure 14-1.
Real-time Timer
RTT_MR
RTTRST
RTT_MR
RTPRES
RTT_MR
SLCK
RTTINCIEN
reload
16-bit
Divider
set
0
RTT_MR
RTTRST
RTT_SR
1
RTTINC
reset
0
rtt_int
32-bit
Counter
read
RTT_SR
RTT_MR
ALMIEN
RTT_VR
reset
CRTV
RTT_SR
ALMS
set
rtt_alarm
=
RTT_AR
ALMV
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
119
14.4
Functional Description
The Real-time Timer is used to count elapsed seconds. It is built around a 32-bit counter fed by Slow Clock divided
by a programmable 16-bit value. The value can be programmed in the field RTPRES of the Real-time Mode
Register (RTT_MR).
Programming RTPRES at 0x00008000 corresponds to feeding the real-time counter with a 1 Hz signal (if the Slow
Clock is 32.768 kHz). The 32-bit counter can count up to 232 seconds, corresponding to more than 136 years, then
roll over to 0.
The Real-time Timer can also be used as a free-running timer with a lower time-base. The best accuracy is
achieved by writing RTPRES to 3. Programming RTPRES to 1 or 2 is possible, but may result in losing status
events because the status register is cleared two Slow Clock cycles after read. Thus if the RTT is configured to
trigger an interrupt, the interrupt occurs during 2 Slow Clock cycles after reading RTT_SR. To prevent several
executions of the interrupt handler, the interrupt must be disabled in the interrupt handler and re-enabled when the
status register is clear.
The Real-time Timer value (CRTV) can be read at any time in the register RTT_VR (Real-time Value Register). As
this value can be updated asynchronously from the Master Clock, it is advisable to read this register twice at the
same value to improve accuracy of the returned value.
The current value of the counter is compared with the value written in the alarm register RTT_AR (Real-time Alarm
Register). If the counter value matches the alarm, the bit ALMS in RTT_SR is set. The alarm register is set to its
maximum value, corresponding to 0xFFFF_FFFF, after a reset.
The bit RTTINC in RTT_SR is set each time the Real-time Timer counter is incremented. This bit can be used to
start a periodic interrupt, the period being one second when the RTPRES is programmed with 0x8000 and Slow
Clock equal to 32.768 kHz.
Reading the RTT_SR status register resets the RTTINC and ALMS fields.
Writing the bit RTTRST in RTT_MR immediately reloads and restarts the clock divider with the new programmed
value. This also resets the 32-bit counter.
Note:
120
Because of the asynchronism between the Slow Clock (SCLK) and the System Clock (MCK):
1) The restart of the counter and the reset of the RTT_VR current value register is effective only 2 slow clock cycles
after the write of the RTTRST bit in the RTT_MR.
2) The status register flags reset is taken into account only 2 slow clock cycles after the read of the RTT_SR (Status
Register).
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Figure 14-2.
RTT Counting
APB cycle
APB cycle
MCK
RTPRES - 1
Prescaler
0
RTT
0
...
ALMV-1
ALMV
ALMV+1
ALMV+2
ALMV+3
RTTINC (RTT_SR)
ALMS (RTT_SR)
APB Interface
read RTT_SR
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
121
14.5
Real-time Timer (RTT) User Interface
Table 14-1.
Register Mapping
Offset
Register
Name
Access
Reset
0x00
Mode Register
RTT_MR
Read/Write
0x0000_8000
0x04
Alarm Register
RTT_AR
Read/Write
0xFFFF_FFFF
0x08
Value Register
RTT_VR
Read-only
0x0000_0000
0x0C
Status Register
RTT_SR
Read-only
0x0000_0000
122
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
14.5.1 Real-time Timer Mode Register
Name:
RTT_MR
Address:
0xFFFFFD20 (0), 0xFFFFFD50 (1)
Access:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
RTTRST
17
RTTINCIEN
16
ALMIEN
15
14
13
12
11
10
9
8
3
2
1
0
RTPRES
7
6
5
4
RTPRES
• RTPRES: Real-time Timer Prescaler Value
Defines the number of SLCK periods required to increment the Real-time timer. RTPRES is defined as follows:
RTPRES = 0: The prescaler period is equal to 216.
RTPRES ≠ 0: The prescaler period is equal to RTPRES.
• ALMIEN: Alarm Interrupt Enable
0: The bit ALMS in RTT_SR has no effect on interrupt.
1: The bit ALMS in RTT_SR asserts interrupt.
• RTTINCIEN: Real-time Timer Increment Interrupt Enable
0: The bit RTTINC in RTT_SR has no effect on interrupt.
1: The bit RTTINC in RTT_SR asserts interrupt.
• RTTRST: Real-time Timer Restart
1: Reloads and restarts the clock divider with the new programmed value. This also resets the 32-bit counter.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
123
14.5.2 Real-time Timer Alarm Register
Name:
RTT_AR
Address:
0xFFFFFD24 (0), 0xFFFFFD54 (1)
Access:
Read/Write
31
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
ALMV
23
22
21
20
ALMV
15
14
13
12
ALMV
7
6
5
4
ALMV
• ALMV: Alarm Value
Defines the alarm value (ALMV + 1) compared with the Real-time Timer.
124
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
14.5.3 Real-time Timer Value Register
Name:
RTT_VR
Address:
0xFFFFFD28 (0), 0xFFFFFD58 (1)
Access:
Read-only
31
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
CRTV
23
22
21
20
CRTV
15
14
13
12
CRTV
7
6
5
4
CRTV
• CRTV: Current Real-time Value
Returns the current value of the Real-time Timer.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
125
14.5.4 Real-time Timer Status Register
Name:
RTT_SR
Address:
0xFFFFFD2C (0), 0xFFFFFD5C (1)
Access:
Read-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
–
6
–
5
–
4
–
3
–
2
–
1
RTTINC
0
ALMS
• ALMS: Real-time Alarm Status
0: The Real-time Alarm has not occurred since the last read of RTT_SR.
1: The Real-time Alarm occurred since the last read of RTT_SR.
• RTTINC: Real-time Timer Increment
0: The Real-time Timer has not been incremented since the last read of the RTT_SR.
1: The Real-time Timer has been incremented since the last read of the RTT_SR.
126
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
15.
Periodic Interval Timer (PIT)
15.1
Description
The Periodic Interval Timer (PIT) provides the operating system’s scheduler interrupt. It is designed to offer
maximum accuracy and efficient management, even for systems with long response time.
15.2
15.3
Embedded Characteristics

Includes a 20-bit Periodic Counter, with less than 1 µs accuracy

Includes a 12-bit Interval Overlay Counter

Real Time OS or Linux®/Windows CE® compliant tick generator
Block Diagram
Figure 15-1.
Periodic Interval Timer
PIT_MR
PIV
=?
PIT_MR
PITIEN
set
0
PIT_SR
PITS
pit_irq
reset
0
MCK
Prescaler
0
0
1
12-bit
Adder
1
read PIT_PIVR
20-bit
Counter
MCK/16
CPIV
PIT_PIVR
CPIV
PIT_PIIR
PICNT
PICNT
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
127
15.4
Functional Description
The Periodic Interval Timer aims at providing periodic interrupts for use by operating systems.
The PIT provides a programmable overflow counter and a reset-on-read feature. It is built around two counters: a
20-bit CPIV counter and a 12-bit PICNT counter. Both counters work at Master Clock /16.
The first 20-bit CPIV counter increments from 0 up to a programmable overflow value set in the field PIV of the
Mode Register (PIT_MR). When the counter CPIV reaches this value, it resets to 0 and increments the Periodic
Interval Counter, PICNT. The status bit PITS in the Status Register (PIT_SR) rises and triggers an interrupt,
provided the interrupt is enabled (PITIEN in PIT_MR).
Writing a new PIV value in PIT_MR does not reset/restart the counters.
When CPIV and PICNT values are obtained by reading the Periodic Interval Value Register (PIT_PIVR), the
overflow counter (PICNT) is reset and the PITS is cleared, thus acknowledging the interrupt. The value of PICNT
gives the number of periodic intervals elapsed since the last read of PIT_PIVR.
When CPIV and PICNT values are obtained by reading the Periodic Interval Image Register (PIT_PIIR), there is
no effect on the counters CPIV and PICNT, nor on the bit PITS. For example, a profiler can read PIT_PIIR without
clearing any pending interrupt, whereas a timer interrupt clears the interrupt by reading PIT_PIVR.
The PIT may be enabled/disabled using the PITEN bit in the PIT_MR (disabled on reset). The PITEN bit only
becomes effective when the CPIV value is 0. Figure 15-2 illustrates the PIT counting. After the PIT Enable bit is
reset (PITEN = 0), the CPIV goes on counting until the PIV value is reached, and is then reset. PIT restarts
counting, only if the PITEN is set again.
The PIT is stopped when the core enters debug state.
Figure 15-2.
Enabling/Disabling PIT with PITEN
APB cycle
APB cycle
MCK
15
restarts MCK Prescaler
MCK Prescaler 0
PITEN
CPIV
0
1
PICNT
PIV - 1
0
PIV
1
PITS (PIT_SR)
APB Interface
read PIT_PIVR
128
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
1
0
0
15.5
Periodic Interval Timer (PIT) User Interface
Table 15-1.
Register Mapping
Offset
Register
Name
Access
Reset
0x00
Mode Register
PIT_MR
Read/Write
0x000F_FFFF
0x04
Status Register
PIT_SR
Read-only
0x0000_0000
0x08
Periodic Interval Value Register
PIT_PIVR
Read-only
0x0000_0000
0x0C
Periodic Interval Image Register
PIT_PIIR
Read-only
0x0000_0000
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
129
15.5.1 Periodic Interval Timer Mode Register
Name:
PIT_MR
Address:
0xFFFFFD30
Access:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
PITIEN
24
PITEN
23
–
22
–
21
–
20
–
19
18
17
16
15
14
13
12
PIV
11
10
9
8
3
2
1
0
PIV
7
6
5
4
PIV
• PIV: Periodic Interval Value
Defines the value compared with the primary 20-bit counter of the Periodic Interval Timer (CPIV). The period is equal to
(PIV + 1).
• PITEN: Period Interval Timer Enabled
0: The Periodic Interval Timer is disabled when the PIV value is reached.
1: The Periodic Interval Timer is enabled.
• PITIEN: Periodic Interval Timer Interrupt Enable
0: The bit PITS in PIT_SR has no effect on interrupt.
1: The bit PITS in PIT_SR asserts interrupt.
130
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
15.5.2 Periodic Interval Timer Status Register
Name:
PIT_SR
Address:
0xFFFFFD34
Access:
Read-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
–
6
–
5
–
4
–
3
–
2
–
1
–
0
PITS
• PITS: Periodic Interval Timer Status
0: The Periodic Interval timer has not reached PIV since the last read of PIT_PIVR.
1: The Periodic Interval timer has reached PIV since the last read of PIT_PIVR.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
131
15.5.3 Periodic Interval Timer Value Register
Name:
PIT_PIVR
Address:
0xFFFFFD38
Access:
Read-only
31
30
29
28
27
26
25
24
19
18
17
16
PICNT
23
22
21
20
PICNT
15
14
CPIV
13
12
11
10
9
8
3
2
1
0
CPIV
7
6
5
4
CPIV
Reading this register clears PITS in PIT_SR.
• CPIV: Current Periodic Interval Value
Returns the current value of the periodic interval timer.
• PICNT: Periodic Interval Counter
Returns the number of occurrences of periodic intervals since the last read of PIT_PIVR.
132
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
15.5.4 Periodic Interval Timer Image Register
Name:
PIT_PIIR
Address:
0xFFFFFD3C
Access:
Read-only
31
30
29
28
27
26
25
24
19
18
17
16
PICNT
23
22
21
20
PICNT
15
14
CPIV
13
12
11
10
9
8
3
2
1
0
CPIV
7
6
5
4
CPIV
• CPIV: Current Periodic Interval Value
Returns the current value of the periodic interval timer.
• PICNT: Periodic Interval Counter
Returns the number of occurrences of periodic intervals since the last read of PIT_PIVR.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
133
16.
Watchdog Timer (WDT)
16.1
Description
The Watchdog Timer can be used to prevent system lock-up if the software becomes trapped in a deadlock. It
features a 12-bit down counter that allows a watchdog period of up to 16 seconds (slow clock at 32.768 kHz). It
can generate a general reset or a processor reset only. In addition, it can be stopped while the processor is in
debug mode or idle mode.
16.2
16.3
Embedded Characteristics

16-bit key-protected only-once-Programmable Counter

Windowed, prevents the processor being in a dead-lock on the watchdog access
Block Diagram
Figure 16-1.
Watchdog Timer Block Diagram
write WDT_MR
WDT_MR
WDV
WDT_CR
WDRSTT
reload
1
0
12-bit Down
Counter
WDT_MR
WDD
reload
Current
Value
1/128
SLCK
<= WDD
WDT_MR
WDRSTEN
= 0
wdt_fault
(to Reset Controller)
set
set
read WDT_SR
or
reset
134
WDERR
reset
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
WDUNF
reset
wdt_int
WDFIEN
WDT_MR
16.4
Functional Description
The Watchdog Timer can be used to prevent system lock-up if the software becomes trapped in a deadlock. It is
supplied with VDDCORE. It restarts with initial values on processor reset.
The Watchdog is built around a 12-bit down counter, which is loaded with the value defined in the field WDV of the
Mode Register (WDT_MR). The Watchdog Timer uses the Slow Clock divided by 128 to establish the maximum
Watchdog period to be 16 seconds (with a typical Slow Clock of 32.768 kHz).
After a Processor Reset, the value of WDV is 0xFFF, corresponding to the maximum value of the counter with the
external reset generation enabled (field WDRSTEN at 1 after a Backup Reset). This means that a default
Watchdog is running at reset, i.e., at power-up. The user must either disable it (by setting the WDDIS bit in
WDT_MR) if he does not expect to use it or must reprogram it to meet the maximum Watchdog period the
application requires.
The Watchdog Mode Register (WDT_MR) can be written only once. Only a processor reset resets it. Writing the
WDT_MR reloads the timer with the newly programmed mode parameters.
In normal operation, the user reloads the Watchdog at regular intervals before the timer underflow occurs, by
writing the Control Register (WDT_CR) with the bit WDRSTT to 1. The Watchdog counter is then immediately
reloaded from WDT_MR and restarted, and the Slow Clock 128 divider is reset and restarted. The WDT_CR is
write-protected. As a result, writing WDT_CR without the correct hard-coded key has no effect. If an underflow
does occur, the “wdt_fault” signal to the Reset Controller is asserted if the bit WDRSTEN is set in the Mode
Register (WDT_MR). Moreover, the bit WDUNF is set in the Watchdog Status Register (WDT_SR).
To prevent a software deadlock that continuously triggers the Watchdog, the reload of the Watchdog must occur
while the Watchdog counter is within a window between 0 and WDD, WDD is defined in the WatchDog Mode
Register WDT_MR.
Any attempt to restart the Watchdog while the Watchdog counter is between WDV and WDD results in a
Watchdog error, even if the Watchdog is disabled. The bit WDERR is updated in the WDT_SR and the “wdt_fault”
signal to the Reset Controller is asserted.
Note that this feature can be disabled by programming a WDD value greater than or equal to the WDV value. In
such a configuration, restarting the Watchdog Timer is permitted in the whole range [0; WDV] and does not
generate an error. This is the default configuration on reset (the WDD and WDV values are equal).
The status bits WDUNF (Watchdog Underflow) and WDERR (Watchdog Error) trigger an interrupt, provided the bit
WDFIEN is set in the mode register. The signal “wdt_fault” to the reset controller causes a Watchdog reset if the
WDRSTEN bit is set as already explained in the reset controller programmer Datasheet. In that case, the
processor and the Watchdog Timer are reset, and the WDERR and WDUNF flags are reset.
If a reset is generated or if WDT_SR is read, the status bits are reset, the interrupt is cleared, and the “wdt_fault”
signal to the reset controller is deasserted.
Writing the WDT_MR reloads and restarts the down counter.
While the processor is in debug state or in idle mode, the counter may be stopped depending on the value
programmed for the bits WDIDLEHLT and WDDBGHLT in the WDT_MR.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
135
Figure 16-2.
Watchdog Behavior
Watchdog Error
Watchdog Underflow
if WDRSTEN is 1
FFF
if WDRSTEN is 0
Normal behavior
WDV
Forbidden
Window
WDD
Permitted
Window
0
Watchdog
Fault
136
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
WDT_CR = WDRSTT
16.5
Watchdog Timer (WDT) User Interface
Table 16-1.
Register Mapping
Offset
Register
Name
Access
Reset
0x00
Control Register
WDT_CR
Write-only
–
0x04
Mode Register
WDT_MR
Read/Write Once
0x3FFF_2FFF
0x08
Status Register
WDT_SR
Read-only
0x0000_0000
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
137
16.5.1 Watchdog Timer Control Register
Name:
WDT_CR
Address:
0xFFFFFD40
Access:
Write-only
31
30
29
28
27
26
25
24
KEY
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
–
6
–
5
–
4
–
3
–
2
–
1
–
0
WDRSTT
• WDRSTT: Watchdog Restart
0: No effect.
1: Restarts the Watchdog.
• KEY: Password
Should be written at value 0xA5. Writing any other value in this field aborts the write operation.
138
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
16.5.2 Watchdog Timer Mode Register
Name:
WDT_MR
Address:
0xFFFFFD44
Access:
Read/Write Once
31
23
30
29
WDIDLEHLT
28
WDDBGHLT
27
21
20
19
18
11
10
22
26
25
24
17
16
9
8
1
0
WDD
WDD
15
WDDIS
14
13
12
WDRPROC
WDRSTEN
WDFIEN
7
6
5
4
WDV
3
2
WDV
• WDV: Watchdog Counter Value
Defines the value loaded in the 12-bit Watchdog Counter.
• WDFIEN: Watchdog Fault Interrupt Enable
0: A Watchdog fault (underflow or error) has no effect on interrupt.
1: A Watchdog fault (underflow or error) asserts interrupt.
• WDRSTEN: Watchdog Reset Enable
0: A Watchdog fault (underflow or error) has no effect on the resets.
1: A Watchdog fault (underflow or error) triggers a Watchdog reset.
• WDRPROC: Watchdog Reset Processor
0: If WDRSTEN is 1, a Watchdog fault (underflow or error) activates all resets.
1: If WDRSTEN is 1, a Watchdog fault (underflow or error) activates the processor reset.
• WDD: Watchdog Delta Value
Defines the permitted range for reloading the Watchdog Timer.
If the Watchdog Timer value is less than or equal to WDD, writing WDT_CR with WDRSTT = 1 restarts the timer.
If the Watchdog Timer value is greater than WDD, writing WDT_CR with WDRSTT = 1 causes a Watchdog error.
• WDDBGHLT: Watchdog Debug Halt
0: The Watchdog runs when the processor is in debug state.
1: The Watchdog stops when the processor is in debug state.
• WDIDLEHLT: Watchdog Idle Halt
0: The Watchdog runs when the system is in idle mode.
1: The Watchdog stops when the system is in idle state.
• WDDIS: Watchdog Disable
0: Enables the Watchdog Timer.
1: Disables the Watchdog Timer.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
139
16.5.3 Watchdog Timer Status Register
Name:
WDT_SR
Address:
0xFFFFFD48
Access:
Read-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
–
6
–
5
–
4
–
3
–
2
–
1
WDERR
0
WDUNF
• WDUNF: Watchdog Underflow
0: No Watchdog underflow occurred since the last read of WDT_SR.
1: At least one Watchdog underflow occurred since the last read of WDT_SR.
• WDERR: Watchdog Error
0: No Watchdog error occurred since the last read of WDT_SR.
1: At least one Watchdog error occurred since the last read of WDT_SR.
140
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
17.
Shutdown Controller (SHDWC)
17.1
Description
The Shutdown Controller controls the power supplies VDDIO and VDDCORE and the wake-up detection on
debounced input lines.
17.2
Embedded Characteristics

17.3
Shutdown and Wake-up logic
̶
Software programmable assertion of the SHDN pin
̶
Deassertion Programmable on a WKUP pin level change or on alarm
Block Diagram
Figure 17-1.
Shutdown Controller Block Diagram
SLCK
Shutdown Controller
read SHDW_SR
SHDW_MR
CPTWK0
reset
WAKEUP0
WKMODE0
SHDW_SR
set
WKUP0
read SHDW_SR
Wake-up
reset
RTTWKEN
SHDW_MR
RTT Alarm
RTTWK
SHDW_SR
set
SHDW_CR
SHDW
17.4
SHDN
Shutdown
I/O Lines Description
Table 17-1.
17.5
Shutdown
Output
Controller
I/O Lines Description
Name
Description
Type
WKUP0
Wake-up 0 input
Input
SHDN
Shutdown output
Output
Product Dependencies
17.5.1 Power Management
The Shutdown Controller is continuously clocked by Slow Clock. The Power Management Controller has no effect
on the behavior of the Shutdown Controller.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
141
17.6
Functional Description
The Shutdown Controller manages the main power supply. To do so, it is supplied with VDDBU and manages
wake-up input pins and one output pin, SHDN.
A typical application connects the pin SHDN to the shutdown input of the DC/DC Converter providing the main
power supplies of the system, and especially VDDCORE and/or VDDIO. The wake-up inputs (WKUP0) connect to
any push-buttons or signal that wake up the system.
The software is able to control the pin SHDN by writing the Shutdown Control Register (SHDW_CR) with the bit
SHDW at 1. The shutdown is taken into account only 2 slow clock cycles after the write of SHDW_CR. This
register is password-protected and so the value written should contain the correct key for the command to be
taken into account. As a result, the system should be powered down.
A level change on WKUP0 is used as wake-up. Wake-up is configured in the Shutdown Mode Register
(SHDW_MR). The transition detector can be programmed to detect either a positive or negative transition or any
level change on WKUP0. The detection can also be disabled. Programming is performed by defining WKMODE0.
Moreover, a debouncing circuit can be programmed for WKUP0. The debouncing circuit filters pulses on WKUP0
shorter than the programmed number of 16 SLCK cycles in CPTWK0 of the SHDW_MR. If the programmed level
change is detected on a pin, a counter starts. When the counter reaches the value programmed in the
corresponding field, CPTWK0, the SHDN pin is released. If a new input change is detected before the counter
reaches the corresponding value, the counter is stopped and cleared. WAKEUP0 of the Status Register
(SHDW_SR) reports the detection of the programmed events on WKUP0 with a reset after the read of SHDW_SR.
The Shutdown Controller can be programmed so as to activate the wake-up using the RTT alarm (the detection of
the rising edge of the RTT alarm is synchronized with SLCK). This is done by writing the SHDW_MR using the
RTTWKEN fields. When enabled, the detection of the RTT alarm is reported in the RTTWK bit of the SHDW_SR
Status register. It is reset after the read of SHDW_SR. When using the RTT alarm to wake up the system, the user
must ensure that the RTT alarm status flag is cleared before shutting down the system. Otherwise, no rising edge
of the status flag may be detected and the wake-up fails.
142
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
17.7
Shutdown Controller (SHDWC) User Interface
Table 17-2.
Register Mapping
Offset
Register
Name
Access
Reset
0x00
Shutdown Control Register
SHDW_CR
Write-only
–
0x04
Shutdown Mode Register
SHDW_MR
Read/Write
0x0000_0303
0x08
Shutdown Status Register
SHDW_SR
Read-only
0x0000_0000
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
143
17.7.1 Shutdown Control Register
Name:
SHDW_CR
Address:
0xFFFFFD10
Access:
Write-only
31
30
29
28
27
26
25
24
KEY
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
–
6
–
5
–
4
–
3
–
2
–
1
–
0
SHDW
• SHDW: Shutdown Command
0: No effect.
1: If KEY is correct, asserts the SHDN pin.
• KEY: Password
Should be written at value 0xA5. Writing any other value in this field aborts the write operation.
144
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
17.7.2 Shutdown Mode Register
Name:
SHDW_MR
Address:
0xFFFFFD14
Access:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
RTTWKEN
15
14
13
12
11
–
10
–
9
–
8
–
5
4
3
–
2
–
1
CPTWK1
7
6
CPTWK0
0
WKMODE0
• WKMODE0: Wake-up Mode 0
Value
Wake-up Input Transition Selection
0
0
None. No detection is performed on the wake-up input
0
1
Low to high level
1
0
High to low level
1
1
Both levels change
• CPTWK0: Counter on Wake-up 0
Defines the number of 16 Slow Clock cycles, the level detection on the corresponding input pin shall last before the wakeup event occurs. Because of the internal synchronization of WKUP0, the SHDN pin is released
(CPTWK × 16 + 1) Slow Clock cycles after the event on WKUP.
• RTTWKEN: Real-time Timer Wake-up Enable
0: The RTT Alarm signal has no effect on the Shutdown Controller.
1: The RTT Alarm signal forces the de-assertion of the SHDN pin.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
145
17.7.3 Shutdown Status Register
Name:
SHDW_SR
Address:
0xFFFFFD18
Access:
Read-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
RTTWK
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
–
6
–
5
–
4
–
3
–
2
–
1
–
0
WAKEUP0
• WAKEUP0: Wake-up 0 Status
0: No wake-up event occurred on the corresponding wake-up input since the last read of SHDW_SR.
1: At least one wake-up event occurred on the corresponding wake-up input since the last read of SHDW_SR.
• RTTWK: Real-time Timer Wake-up
0: No wake-up alarm from the RTT occurred since the last read of SHDW_SR.
1: At least one wake-up alarm from the RTT occurred since the last read of SHDW_SR.
146
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
18.
General Purpose Backup Registers (GPBR)
18.1
Overview
The System Controller embeds 20 general-purpose backup registers.
18.2
General Purpose Backup Registers (GPBR) User Interface
Table 18-1.
Offset
0x0
...
0x4C
Register Mapping
Register
Name
General Purpose Backup Register 0
SYS_GPBR0
...
...
General Purpose Backup Register 19
SYS_GPBR 19
Access
Reset
Read/Write
–
...
...
Read/Write
–
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
147
18.2.1 General Purpose Backup Register x
Name:
SYS_GPBRx
Address:
0xFFFFFD60 [0], 0xFFFFFD64 [1], 0xFFFFFD68 [2], 0xFFFFFD6C [3], 0xFFFFFD70 [4],
0xFFFFFD74 [5], 0xFFFFFD78 [6], 0xFFFFFD7C [7], 0xFFFFFD80 [8], 0xFFFFFD84 [9],
0xFFFFFD88 [10], 0xFFFFFD8C [11], 0xFFFFFD90 [12], 0xFFFFFD94 [13], 0xFFFFFD98 [14],
0xFFFFFD9C [15], 0xFFFFFDA0 [16], 0xFFFFFDA4 [17], 0xFFFFFDA8 [18], 0xFFFFFDAC [19]
Access:
Read/Write
31
30
29
28
27
26
25
24
18
17
16
10
9
8
2
1
0
GPBR_VALUEx
23
22
21
20
19
GPBR_VALUEx
15
14
13
12
11
GPBR_VALUEx
7
6
5
4
3
GPBR_VALUEx
• GPBR_VALUEx: Value of GPBR x
148
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
19.
SAM9263 Bus Matrix
19.1
Description
Bus Matrix implements a multi-layer AHB, based on AHB-Lite protocol, that enables parallel access paths between
multiple AHB masters and slaves in a system, which increases the overall bandwidth. Bus Matrix interconnects 9
AHB Masters to 7 AHB Slaves. The normal latency to connect a master to a slave is one cycle except for the
default master of the accessed slave which is connected directly (zero cycle latency).
The Bus Matrix user interface is compliant with ARM Advanced Peripheral Bus and provides a Chip Configuration
User Interface with registers that allow the Bus Matrix to support application specific features.
19.2
Memory Mapping
Bus Matrix provides one decoder for every AHB Master Interface. The decoder offers each AHB Master several
memory mappings. In fact, depending on the product, each memory area may be assigned to several slaves.
Booting at the same address while using different AHB slaves (i.e., external RAM, internal ROM or internal Flash,
etc.) becomes possible.
The Bus Matrix user interface provides Master Remap Control Register (MATRIX_MRCR) that allows to perform
remap action for every master independently.
19.3
Special Bus Granting Techniques
The Bus Matrix provides some speculative bus granting techniques in order to anticipate access requests from
some masters. This mechanism allows to reduce latency at first accesses of a burst or single transfer. The bus
granting mechanism allows to set a default master for every slave.
At the end of the current access, if no other request is pending, the slave remains connected to its associated
default master. A slave can be associated with three kinds of default masters: no default master, last access
master and fixed default master.
19.3.1 No Default Master
At the end of the current access, if no other request is pending, the slave is disconnected from all masters. No
Default Master, suits low power mode.
19.3.2 Last Access Master
At the end of the current access, if no other request is pending, the slave remains connected to the last master that
performed an access request.
19.3.3 Fixed Default Master
At the end of the current access, if no other request is pending, the slave connects to its fixed default master.
Unlike last access master, the fixed master doesn’t change unless the user modifies it by a software action (field
FIXED_DEFMSTR of the related MATRIX_SCFG).
To change from one kind of default master to another, the Bus Matrix user interface provides the Slave
Configuration Registers, one for each slave, that allow to set a default master for each slave. The Slave
Configuration Register contains two fields:
DEFMSTR_TYPE and FIXED_DEFMSTR. The 2-bit DEFMSTR_TYPE field allows to choose the default master
type (no default, last access master, fixed default master) whereas the 4-bit FIXED_DEFMSTR field allows to
choose a fixed default master provided that DEFMSTR_TYPE is set to fixed default master. Please refer to the
Bus Matrix user interface description.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
149
19.4
Arbitration
The Bus Matrix provides an arbitration mechanism that allows to reduce latency when conflict cases occur,
basically when two or more masters try to access the same slave at the same time. One arbiter per AHB slave is
provided, allowing to arbitrate each slave differently.
The Bus Matrix provides to the user the possibility to choose between 2 arbitration types, and this for each slave:
1.
Round-Robin Arbitration (the default)
2.
Fixed Priority Arbitration
This choice is given through the field ARBT of the Slave Configuration Registers (MATRIX_SCFG).
Each algorithm may be complemented by selecting a default master configuration for each slave.
When a re-arbitration has to be done, it is realized only under some specific conditions detailed in the following
paragraph.
19.4.1 Arbitration rules
Each arbiter has the ability to arbitrate between two or more different master’s requests. In order to avoid burst
breaking and also to provide the maximum throughput for slave interfaces, arbitration may only take place during
the following cycles:
1.
Idle Cycles: when a slave is not connected to any master or is connected to a master which is not currently
accessing it.
2.
Single Cycles: when a slave is currently doing a single access.
3.
End of Burst Cycles: when the current cycle is the last cycle of a burst transfer. For defined length burst,
predicted end of burst matches the size of the transfer but is managed differently for undefined length burst.
(See Section 19.4.1.1 “Undefined Length Burst Arbitration”.)
4.
Slot Cycle Limit: when the slot cycle counter has reach the limit value indicating that the current master
access is too long and must be broken.(See Section 19.4.1.2 “Slot Cycle Limit Arbitration”.)
19.4.1.1 Undefined Length Burst Arbitration
In order to avoid too long slave handling during undefined length bursts (INCR), the Bus Matrix provides specific
logic in order to re-arbitrate before the end of the INCR transfer.
A predicted end of burst is used as for defined length burst transfer, which is selected between the following:
1.
Infinite: no predicted end of burst is generated and therefore INCR burst transfer will never be broken.
2.
Four beat bursts: predicted end of burst is generated at the end of each four beat boundary inside INCR
transfer.
3.
Eight beat bursts: predicted end of burst is generated at the end of each eight beat boundary inside INCR
transfer.
4.
Sixteen beat bursts: predicted end of burst is generated at the end of each sixteen beat boundary inside
INCR transfer.
This selection can be done through the field ULBT of the Master Configuration Registers (MATRIX_MCFG).
19.4.1.2 Slot Cycle Limit Arbitration
The Bus Matrix contains specific logic to break too long accesses such as very long bursts on a very slow slave
(e.g. an external low speed memory). At the beginning of the burst access, a counter is loaded with the value
previously written in the SLOT_CYCLE field of the related Slave Configuration Register (MATRIX_SCFG) and
decreased at each clock cycle. When the counter reaches zero, the arbiter has the ability to re-arbitrate at the end
of the current byte, half word or word transfer.
150
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
19.4.2 Round-Robin Arbitration
This algorithm allows the Bus Matrix arbiters to dispatch the requests from different masters to the same slave in a
round-robin manner. If two or more master’s requests arise at the same time, the master with the lowest number is
first serviced then the others are serviced in a round-robin manner.
There are three round-robin algorithm implemented:

Round-Robin arbitration without default master

Round-Robin arbitration with last access master

Round-Robin arbitration with fixed default master
19.4.2.1 Round-Robin Arbitration without Default Master
This is the main algorithm used by Bus Matrix arbiters. It allows the Bus Matrix to dispatch requests from different
masters to the same slave in a pure round-robin manner. At the end of the current access, if no other request is
pending, the slave is disconnected from all masters. This configuration incurs one latency cycle for the first access
of a burst. Arbitration without default master can be used for masters that perform significant bursts.
19.4.2.2 Round-Robin Arbitration with Last Access Master
This is a biased round-robin algorithm used by Bus Matrix arbiters. It allows the Bus Matrix to remove the one
latency cycle for the last master that accessed the slave. In fact, at the end of the current transfer, if no other
master request is pending, the slave remains connected to the last master that performs the access. Other non
privileged masters will still get one latency cycle if they want to access the same slave. This technique can be used
for masters that mainly perform single accesses.
19.4.2.3 Round-Robin Arbitration with Fixed Default Master
This is another biased round-robin algorithm, it allows the Bus Matrix arbiters to remove the one latency cycle for
the fixed default master per slave. At the end of the current access, the slave remains connected to its fixed default
master. Every request attempted by this fixed default master will not cause any latency whereas other non
privileged masters will still get one latency cycle. This technique can be used for masters that mainly perform
single accesses.
19.4.3 Fixed Priority Arbitration
This algorithm allows the Bus Matrix arbiters to dispatch the requests from different masters to the same slave by
using the fixed priority defined by the user. If two or more master’s requests are active at the same time, the
master with the highest priority number is serviced first. If two or more master’s requests with the same priority are
active at the same time, the master with the highest number is serviced first.
For each slave, the priority of each master may be defined through the Priority Registers for Slaves
(MATRIX_PRAS and MATRIX_PRBS).
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
151
19.5
Bus Matrix User Interface
Table 19-1.
Register Mapping
Offset
Register
Name
0x0000
Master Configuration Register 0
0x0004
Reset
MATRIX_MCFG0
Read/Write
0x00000000
Master Configuration Register 1
MATRIX_MCFG1
Read/Write
0x00000000
0x0008
Master Configuration Register 2
MATRIX_MCFG2
Read/Write
0x00000000
0x000C
Master Configuration Register 3
MATRIX_MCFG3
Read/Write
0x00000000
0x0010
Master Configuration Register 4
MATRIX_MCFG4
Read/Write
0x00000000
0x0014
Master Configuration Register 5
MATRIX_MCFG5
Read/Write
0x00000000
0x0018
Master Configuration Register 6
MATRIX_MCFG6
Read/Write
0x00000000
0x001C
Master Configuration Register 7
MATRIX_MCFG7
Read/Write
0x00000000
0x0020
Master Configuration Register 8
MATRIX_MCFG8
Read/Write
0x00000000
Reserved
–
–
–
0x0040
Slave Configuration Register 0
MATRIX_SCFG0
Read/Write
0x00010010
0x0044
Slave Configuration Register 1
MATRIX_SCFG1
Read/Write
0x00050010
0x0048
Slave Configuration Register 2
MATRIX_SCFG2
Read/Write
0x00000010
0x004C
Slave Configuration Register 3
MATRIX_SCFG3
Read/Write
0x00000010
0x0050
Slave Configuration Register 4
MATRIX_SCFG4
Read/Write
0x00000010
0x0054
Slave Configuration Register 5
MATRIX_SCFG5
Read/Write
0x00000010
0x0058
Slave Configuration Register 6
MATRIX_SCFG6
Read/Write
0x00000010
Reserved
–
–
–
0x0024–0x003C
0x0060–0x007C
0x0080
Priority Register A for Slave 0
MATRIX_PRAS0
Write-only
–
0x0084
Priority Register B for Slave 0
MATRIX_PRBS0
Write-only
–
0x0088
Priority Register A for Slave 1
MATRIX_PRAS1
Write-only
–
0x008C
Priority Register B for Slave 1
MATRIX_PRBS1
Write-only
–
0x0090
Priority Register A for Slave 2
MATRIX_PRAS2
Write-only
–
0x0094
Priority Register B for Slave 2
MATRIX_PRBS2
Write-only
–
0x0098
Priority Register A for Slave 3
MATRIX_PRAS3
Write-only
–
0x009C
Priority Register B for Slave 3
MATRIX_PRBS3
Write-only
–
0x00A0
Priority Register A for Slave 4
MATRIX_PRAS4
Write-only
–
0x00A4
Priority Register B for Slave 4
MATRIX_PRBS4
Write-only
–
0x00A8
Priority Register A for Slave 5
MATRIX_PRAS5
Write-only
–
0x00AC
Priority Register B for Slave 5
MATRIX_PRBS5
Write-only
–
0x00B0
Priority Register A for Slave 6
MATRIX_PRAS6
Write-only
–
0x00B4
Priority Register B for Slave 6
MATRIX_PRBS6
Write-only
–
Reserved
–
–
–
Master Remap Control Register
MATRIX_MRCR
Read/Write
0x00000000
Reserved
–
–
–
0x00C0–0x00FC
0x0100
0x0104–0x010C
152
Access
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
19.5.1 Bus Matrix Master Configuration Registers
Name:
MATRIX_MCFG0...MATRIX_MCFG8
Address:
0xFFFFEC00
Access:
Read/Write
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
2
1
0
7
6
5
4
3
–
–
–
–
–
ULBT
• ULBT: Undefined Length Burst Type
0: Infinite Length Burst
No predicted end of burst is generated and therefore INCR bursts coming from this master cannot be broken.
1: Single Access
The undefined length burst is treated as a succession of single accesses, allowing rearbitration at each beat of the INCR
burst.
2: Four-beat Burst
The undefined length burst is split into four-beat burst allowing rearbitration at each four-beat burst end.
3: Eight-beat Burst
The undefined length burst is split into eight-beat burst allowing rearbitration at each eight-beat burst end.
4: Sixteen-beat Burst
The undefined length burst is split into sixteen-beat burst allowing rearbitration at each sixteen-beat burst end.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
153
19.5.2 Bus Matrix Slave Configuration Registers
Name:
MATRIX_SCFG0...MATRIX_SCFG6
Address:
0xFFFFEC40
Access:
Read/Write
31
30
29
28
27
26
–
–
–
–
–
–
23
22
21
20
19
18
–
FIXED_DEFMSTR
25
24
ARBT
17
16
DEFMSTR_TYPE
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
SLOT_CYCLE
• SLOT_CYCLE: Maximum Number of Allowed Cycles for a Burst
When the SLOT_CYCLE limit is reached for a burst, it may be broken by another master trying to access this slave.
This limit has been placed to avoid locking a very slow slave when very long bursts are used.
Note that an unreasonably small value breaks every burst and the Bus Matrix then arbitrates without performing any data
transfer. 16 cycles is a reasonable value for SLOT_CYCLE.
• DEFMASTR_TYPE: Default Master Type
0: No Default Master
At the end of current slave access, if no other master request is pending, the slave is disconnected from all masters.
This results in a one-cycle latency for the first access of a burst transfer or for a single access.
1: Last Default Master
At the end of current slave access, if no other master request is pending, the slave remains connected to the last master
that accessed it.
This results in not having the one cycle latency when the last master tries access to the slave again.
2: Fixed Default Master
At the end of the current slave access, if no other master request is pending, the slave connects to the fixed master the
number of which has been written in the FIXED_DEFMSTR field.
This results in not having the one cycle latency when the fixed master tries access to the slave again.
• FIXED_DEFMSTR: Fixed Default Master
This is the number of the Default Master for this slave. Only used if DEFMASTR_TYPE is 2. Specifying the number of a
master which is not connected to the selected slave is equivalent to setting DEFMASTR_TYPE to 0.
• ARBT: Arbitration Type
0: Round-Robin Arbitration
1: Fixed Priority Arbitration
2: Reserved
3: Reserved
154
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
19.5.3 Bus Matrix Priority Registers A For Slaves
Name:
MATRIX_PRAS0...MATRIX_PRAS6
Address:
0xFFFFEC80 [0], 0xFFFFEC88 [1], 0xFFFFEC90 [2], 0xFFFFEC98 [3], 0xFFFFECA0 [4], 0xFFFFECA8 [5],
0xFFFFECB0 [6]
Access:
Write-only
31
30
–
–
23
22
–
–
15
14
–
–
7
6
–
–
29
28
M7PR
21
20
M5PR
13
12
M3PR
5
4
M1PR
27
26
–
–
19
18
–
–
11
10
–
–
3
2
–
–
25
24
M6PR
17
16
M4PR
9
8
M2PR
1
0
M0PR
• MxPR: Master x Priority
Fixed priority of Master x for accessing to the selected slave.The higher the number, the higher the priority.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
155
19.5.4 Bus Matrix Priority Registers B For Slaves
Name:
MATRIX_PRBS0...MATRIX_PRBS6
Address:
0xFFFFEC84 [0], 0xFFFFEC8C [1], 0xFFFFEC94 [2], 0xFFFFEC9C [3], 0xFFFFECA4 [4],
0xFFFFECAC [5], 0xFFFFECB4 [6]
Access:
Write-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
1
7
6
5
4
3
2
–
–
–
–
–
–
0
M8PR
• M8PR: Master 8 Priority
Fixed priority of Master 8 for accessing to the selected slave. The higher the number, the higher the priority.
156
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
19.5.5 Bus Matrix Master Remap Control Register
Name:
MATRIX_MRCR
Address:
0xFFFFED00
Access:
Read/Write
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
RCB8
7
6
5
4
3
2
1
0
RCB7
RCB6
RCB5
RCB4
RCB3
RCB2
RCB1
RCB0
• RCBx: Remap Command Bit for AHB Master x
0: Disable remapped address decoding for the selected Master.
1: Enable remapped address decoding for the selected Master.
RCBx
Master
RCB0
ARM926 Instruction
RCB1
ARM926 Data
RCB2
Peripheral DMA Controller
RCB3
LCD Controller
RCB4
Ethernet EMAC
RCB5
DMA Controller
RCB6
Two D Graphic Controller
RCB7
Image Sensor Interface
RCB8
OHCI USB Host Controller
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
157
19.6
Chip Configuration User Interface
Table 19-2.
Register Mapping (Chip Configuration User Interface)
Offset
Register
0x0110
Reserved
0x0114
Bus Matrix TCM Configuration Register
0x0118–0x011C
–
MATRIX_TCMR
–
Access
Reset
–
–
Read/Write
0x00000000
–
–
0x0120
EBI0 Chip Select Assignment Register
EBI0_CSA
Read/Write
0x00010000
0x0124
EBI1 Chip Select Assignment Register
EBI1_CSA
Read/Write
0x00010000
–
–
0x0128–0x01FC
158
Reserved
Name
Reserved
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
–
19.6.1 Bus Matrix TCM Configuration Register
Name:
MATRIX_TCR
Access:
Read/Write
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
DTCM_SIZE
ITCM_SIZE
• ITCM_SIZE: Size of ITCM Enabled Memory Block
0000: 0 KB (No ITCM Memory)
0101: 16 KB
0110: 32 KB
Others: Reserved
• DTCM_SIZE: Size of DTCM Enabled Memory Block
0000: 0 KB (No DTCM Memory)
0101: 16 KB
0110: 32 KB
Others: Reserved
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
159
19.6.2 EBI0 Chip Select Assignment Register
Name:
EBI0_CSA
Access:
Read/Write
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
VDDIOMSEL
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
EBI0_DBPUC
7
6
5
4
3
2
1
0
–
–
EBI0_CS5A
EBI0_CS4A
EBI0_CS3A
–
EBI0_CS1A
–
• EBI0_CS1A: EBI0 Chip Select 1 Assignment
0: EBI0 Chip Select 1 is assigned to the Static Memory Controller.
1: EBI0 Chip Select 1 is assigned to the SDRAM Controller.
• EBI0_CS3A: EBI0 Chip Select 3 Assignment
0: EBI0 Chip Select 3 is only assigned to the Static Memory Controller and EBI0_NCS3 behaves as defined by the SMC.
1: EBI0 Chip Select 3 is assigned to the Static Memory Controller and the SmartMedia Logic is activated.
• EBI0_CS4A: EBI0 Chip Select 4 Assignment
0: EBI0 Chip Select 4 is only assigned to the Static Memory Controller and EBI0_NCS4 behaves as defined by the SMC.
1: EBI0 Chip Select 4 is assigned to the Static Memory Controller and the CompactFlash Logic (first slot) is activated.
• EBI0_CS5A: EBI0 Chip Select 5 Assignment
0: EBI0 Chip Select 5 is only assigned to the Static Memory Controller and EBI0_NCS5 behaves as defined by the SMC.
1: EBI0 Chip Select 5 is assigned to the Static Memory Controller and the CompactFlash Logic (second slot) is activated.
• EBI0_DBPUC: EBI0 Data Bus Pull-Up Configuration
0: EBI0 D0–D15 Data Bus bits are internally pulled-up to the VDDIOM0 power supply.
1: EBI0 D0–D15 Data Bus bits are not internally pulled-up.
• VDDIOMSEL: Memory voltage selection
0: Memories are 1.8V powered.
1: Memories are 3.3V powered.
160
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
19.6.3 EBI1 Chip Select Assignment Register
Name:
EBI1_CSA
Access:
Read/Write
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
VDDIOMSEL
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
EBI1_DBPUC
7
6
5
4
3
2
1
0
–
–
–
–
EBI1_CS2A
–
EBI1_CS1A
–
• EBI1_CS1A: EBI1 Chip Select 1 Assignment
0: EBI1 Chip Select 1 is assigned to the Static Memory Controller.
1: EBI1 Chip Select 1 is assigned to the SDRAM Controller.
• EBI1_CS2A: EBI1 Chip Select 2 Assignment
0: EBI1 Chip Select 2 is only assigned to the Static Memory Controller and EBI1_NCS2 behaves as defined by the SMC.
1: EBI1 Chip Select 2 is assigned to the Static Memory Controller and the SmartMedia Logic is activated.
• EBI1_DBPUC: EBI1 Data Bus Pull-Up Configuration
0: EBI1 D0–D15 Data Bus bits are internally pulled-up to the VDDIOM1 power supply.
1: EBI1 D0–D15 Data Bus bits are not internally pulled-up.
• VDDIOMSEL: Memory voltage selection
0: Memories are 1.8V powered.
1: Memories are 3.3V powered.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
161
20.
External Bus Interface (EBI)
20.1
Overview
The External Bus Interface (EBI) is designed to ensure the successful data transfer between several external
devices and the embedded Memory Controller of an ARM-based device. The Static Memory, SDRAM and ECC
Controllers are all featured external Memory Controllers on the EBI. These external Memory Controllers are
capable of handling several types of external memory and peripheral devices, such as SRAM, PROM, EPROM,
EEPROM, Flash, and SDRAM.
The EBI0 also supports the CompactFlash and the NAND Flash protocols via integrated circuitry that greatly
reduces the requirements for external components. Furthermore, the EBI0 handles data transfers with up to six
external devices, each assigned to six address spaces defined by the embedded Memory Controller. Data
transfers are performed through a 16-bit or 32-bit data bus, an address bus of up to 26 bits, up to six chip select
lines (NCS[5:0]) and several control pins that are generally multiplexed between the different external Memory
Controllers.
The EBI1 also supports the NAND Flash protocols via integrated circuitry that greatly reduces the requirements for
external components. Furthermore, the EBI1 handles data transfers with up to three external devices, each
assigned to three address spaces defined by the embedded Memory Controller. Data transfers are performed
through a 16-bit or 32-bit data bus, an address bus of up to 23 bits, up to three chip select lines (NCS[2:0]) and
several control pins that are generally multiplexed between the different external Memory Controllers.
162
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
20.2
Block Diagram
20.2.1 External Bus Interface 0
Figure 20-1 shows the organization of the External Bus Interface 0.
Figure 20-1.
Organization of the External Bus Interface 0
External Bus Interface 0
Bus Matrix
D[15:0]
AHB
A0/NBS0
SDRAM
Controller
A1/NWR2/NBS2
A[15:2], A[20:18]
A16/BA0
A17/BA1
MUX
Logic
Static
Memory
Controller
NCS0
NCS1/SDCS
NCS3/NANDCS
NRD/CFOE
NWR0/NWE/CFWE
NWR1/NBS1/CFIOR
NWR3/NBS3/CFIOW
SDCK
SDCKE
CompactFlash
Logic
RAS
CAS
SDWE
SDA10
NAND Flash
Logic
NANDOE
NANDWE
A21/NANDALE
A22/NANDCLE
ECC
Controller
D[31:16]
PIO
Address Decoders
Chip Select
Assignor
A[25:23]
CFRNW
NCS4/CFCS0
NCS5/CFCS1
NCS2
User Interface
NWAIT
CFCE1
CFCE2
APB
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
163
20.2.2 External Bus Interface 1
Figure 20-2 shows the organization of the External Bus Interface 1.
Figure 20-2.
Organization of the External Bus Interface 1
External Bus Interface 1
Bus Matrix
AHB
SDRAM
Controller
D[15:0]
A0/NBS0
MUX
Logic
Static
Memory
Controller
A1/NWR2/NBS2
A[15:2], A[20:18]
A16/BA0
A17/BA1
NCS0
NRD
NWR0/NWE
NWR1/NBS1
A21/NANDALE
NAND Flash
Logic
A22/NANDCLE
SDWE
SDA10
ECC
Controller
NANDOE
NANDWE
D[31:16]
PIO
Address Decoders
Chip Select
Assignor
NWR3/NBS3
NCS1/SDCS
NCS2/NANDCS
SDCK
SDCKE
User Interface
NWAIT
RAS
CAS
APB
164
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
20.3
I/O Lines Description
Table 20-1.
EBI0 I/O Lines Description
Name
Function
Type
Active Level
EBI
EBI0_D0–EBI0_D31
Data Bus
I/O
EBI0_A0–EBI0_A25
Address Bus
EBI0_NWAIT
External Wait Signal
Output
Input
Low
SMC
EBI0_NCS0–EBI0_NCS5
Chip Select Lines
Output
Low
EBI0_NWR0–EBI0_NWR3
Write Signals
Output
Low
EBI0_NRD
Read Signal
Output
Low
EBI0_NWE
Write Enable
Output
Low
EBI0_NBS0–EBI0_NBS3
Byte Mask Signals
Output
Low
EBI for CompactFlash Support
EBI0_CFCE1–EBI0_CFCE2
CompactFlash Chip Enable
Output
Low
EBI0_CFOE
CompactFlash Output Enable
Output
Low
EBI0_CFWE
CompactFlash Write Enable
Output
Low
EBI0_CFIOR
CompactFlash I/O Read Signal
Output
Low
EBI0_CFIOW
CompactFlash I/O Write Signal
Output
Low
EBI0_CFRNW
CompactFlash Read Not Write Signal
Output
EBI0_CFCS0–EBI0_CFCS1
CompactFlash Chip Select Lines
Output
Low
EBI for NAND Flash Support
EBI0_NANDCS
NAND Flash Chip Select Line
Output
Low
EBI0_NANDOE
NAND Flash Output Enable
Output
Low
EBI0_NANDWE
NAND Flash Write Enable
Output
Low
SDRAM Controller
EBI0_SDCK
SDRAM Clock
Output
EBI0_SDCKE
SDRAM Clock Enable
Output
High
EBI0_SDCS
SDRAM Controller Chip Select Line
Output
Low
EBI0_BA0–EBI0_BA1
Bank Select
Output
EBI0_SDWE
SDRAM Write Enable
Output
Low
EBI0_RAS - EBI0_CAS
Row and Column Signal
Output
Low
EBI0_NWR0–EBI0_NWR3
Write Signals
Output
Low
EBI0_NBS0–EBI0_NBS3
Byte Mask Signals
Output
Low
EBI0_SDA10
SDRAM Address 10 Line
Output
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
165
Table 20-2.
EBI1 I/O Lines Description
Name
Function
Type
Active Level
EBI
EBI1_D0–EBI1_D31
Data Bus
I/O
EBI1_A0–EBI1_A22
Address Bus
EBI1_NWAIT
External Wait Signal
Output
Input
Low
SMC
EBI1_NCS0–EBI1_NCS2
Chip Select Lines
Output
Low
EBI1_NWR0–EBI1_NWR3
Write Signals
Output
Low
EBI1_NRD
Read Signal
Output
Low
EBI1_NWE
Write Enable
Output
Low
EBI1_NBS0–EBI1_NBS3
Byte Mask Signals
Output
Low
EBI for NAND Flash Support
EBI1_NANDCS
NAND Flash Chip Select Line
Output
Low
EBI1_NANDOE
NAND Flash Output Enable
Output
Low
EBI1_NANDWE
NAND Flash Write Enable
Output
Low
SDRAM Controller
EBI1_SDCK
SDRAM Clock
Output
EBI1_SDCKE
SDRAM Clock Enable
Output
High
EBI1_SDCS
SDRAM Controller Chip Select Line
Output
Low
EBI1_BA0–EBI1_BA1
Bank Select
Output
EBI1_SDWE
SDRAM Write Enable
Output
Low
EBI1_RAS - EBI1_CAS
Row and Column Signal
Output
Low
EBI1_NWR0–EBI1_NWR3
Write Signals
Output
Low
EBI1_NBS0–EBI1_NBS3
Byte Mask Signals
Output
Low
EBI1_SDA10
SDRAM Address 10 Line
Output
The connection of some signals through the MUX logic is not direct and depends on the memory controller in use
at the moment.
Table 20-3 on page 167 details the connections between the two memory controllers and the EBI pins.
166
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Table 20-3.
EBIx Pins and Memory Controllers I/O Lines Connections
EBIx Pins(1)
SDRAMC I/O Lines
SMC I/O Lines
EBIx_NWR1/NBS1/CFIOR
NBS1
NWR1/NUB
EBIx_A0/NBS0
Not Supported
SMC_A0/NLB
EBIx_A1/NBS2/NWR2
Not Supported
SMC_A1
EBIx_A[11:2]
SDRAMC_A[9:0]
SMC_A[11:2]
EBIx_SDA10
SDRAMC_A10
Not Supported
EBIx_A12
Not Supported
SMC_A12
EBIx_A[14:13]
SDRAMC_A[12:11]
SMC_A[14:13]
EBIx_A[22:15]
Not Supported
SMC_A[22:15]
EBIx_A[25:23](2)
Not Supported
SMC_A[25:23]
D[31:0]
D[31:0]
EBIx_D[31:0]
Notes: 1. x indicates 0 or 1
2. Only for EBI0
20.3.1 Hardware Interface
Table 20-4 details the connections to be applied between the EBI pins and the external devices for each Memory
Controller.
Table 20-4.
EBI Pins and External Static Devices Connections
Pins of the SMC Interfaced Device
8-bit Static
Device
2 x 8-bit
Static
Devices
16-bit Static
Device
4 x 8-bit
Static
Devices
2 x 16-bit
Static
Devices
32-bit Static
Device
D0–D7
D0–D7
D0–D7
D0–D7
D0–D7
D0–D7
D0–D7
D8–D15
–
D8–D15
D8–D15
D8–D15
D8–15
D8–15
D16–D23
–
–
–
D16–D23
D16–D23
D16–D23
D24–D31
–
–
–
D24–D31
D24–D31
D24–D31
Signals:
EBI0_, EBI1_
BE0(6)
A0/NBS0
A0
–
NLB
–
A1/NWR2/NBS2
A1
A0
A0
WE(2)
NLB(4)
BE2(6)
A2–A22
A[2:22]
A[1:21]
A[1:21]
A[0:20]
A[0:20]
A[0:20]
A23–A25(5)
A[23:25]
A[22:24]
A[22:24]
A[21:23]
A[21:23]
A[21:23]
CS
CS
CS
CS
CS
CS
CS
CS
CS
CS
CS
CS
CS
CS
CS
CS
CS
CS
NCS2/NANDCS(7)
CS
CS
CS
CS
CS
CS
(5)
NCS0
NCS1/SDCS
NCS2
(5)
NLB
(3)
CS
CS
CS
CS
CS
CS
(5)
CS
CS
CS
CS
CS
CS
(5)
NCS5/CFCS1
CS
CS
CS
CS
CS
CS
NRD/CFOE
OE
OE
OE
OE
OE
OE
WE
WE
NCS3/NANDCS
NCS4/CFCS0
NWR0/NWE
NWR1/NBS1
WE
–
WE
(1)
WE
(1)
WE
NUB
(2)
WE
WE
(2)
NUB
(3)
BE1(6)
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
167
Table 20-4.
EBI Pins and External Static Devices Connections (Continued)
Pins of the SMC Interfaced Device
Signals:
EBI0_, EBI1_
8-bit Static
Device
2 x 8-bit
Static
Devices
16-bit Static
Device
4 x 8-bit
Static
Devices
NWR3/NBS3
–
–
–
WE(2)
Notes: 1. NWR1 enables upper byte writes. NWR0 enables lower byte writes.
2. NWRx enables corresponding byte x writes. (x = 0, 1, 2 or 3)
3. NBS0 and NBS1 enable respectively lower and upper bytes of the lower 16-bit word.
4. NBS2 and NBS3 enable respectively lower and upper bytes of the upper 16-bit word.
5. EBI0 signals only
6. BEx: Byte x Enable (x = 0, 1, 2 or 3)
7. EBI1 signals only
Table 20-5.
2 x 16-bit
Static
Devices
32-bit Static
Device
NUB(4)
BE3(6)
EBI Pins and External Devices Connections
Pins of the Interfaced Device
SDRAMC
SMC
SDRAM
CompactFlash
(EBI0 only)
CompactFlash
True IDE Mode
(EBI0 only)
NAND Flash
D0–D7
D0–D7
D0–D7
D0–D7
I/O0–I/O7
D8–D15
D8–D15
D8–15
D8–15
I/O8–I/O15(6)
D16–D31
D16–D31
–
–
–
A0/NBS0
DQM0
A0
A0
–
A1/NWR2/NBS2
DQM2
A1
A1
–
A2–A10
A[0:8]
A[2:10]
A[2:10]
–
A11
A9
–
–
–
SDA10
A10
–
–
–
–
–
–
–
A[11:12]
–
–
–
–
–
–
–
A16/BA0
BA0
–
–
–
A17/BA1
BA1
–
–
–
A18–A20
–
–
–
–
A21/NANDALE
–
–
–
ALE
A22/NANDCLE
–
REG
REG
CLE
–
–
Signals:
EBI0_, EBI1_
A12
A13–A14
A15
A23–A24
(3)
–
–
NCS0
–
–
–
–
CS
–
–
–
–
–
–
–
–
–
–
–
A25
NCS1/SDCS
NCS2
(3)
NCS2/NANDCS
168
(4)
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
(1)
–
(3)
CFRNW
(1)
CFRNW
–
Table 20-5.
EBI Pins and External Devices Connections (Continued)
Pins of the Interfaced Device
SDRAMC
SMC
SDRAM
CompactFlash
(EBI0 only)
CompactFlash
True IDE Mode
(EBI0 only)
NAND Flash
–
–
–
CE(5)
NCS4/CFCS0(3)
–
CFCS0(1)
CFCS0(1)
–
NCS5/CFCS1(3)
–
CFCS1(1)
CFCS1(1)
–
NANDOE
–
–
–
OE
NANDWE
–
–
–
WE
NRD/CFOE
–
OE
–
–
NWR0/NWE/CFWE
–
WE
WE
–
NWR1/NBS1/CFIOR
DQM1
IOR
IOR
–
NWR3/NBS3/CFIOW
Signals:
EBI0_, EBI1_
NCS3/NANDCS
(3)
DQM3
IOW
IOW
–
(3)
CFCE1
–
CE1
CS0
–
CFCE2(3)
–
CE2
CS1
–
SDCK
CLK
–
–
–
SDCKE
CKE
–
–
–
RAS
RAS
–
–
–
CAS
CAS
–
–
–
WE
–
–
–
SDWE
(7)
–
WAIT
WAIT
–
(2)
–
CD1 or CD2
CD1 or CD2
–
Pxx(2)
–
–
–
CE(5)
NWAIT
Pxx
Pxx(2)
–
–
–
RDY
Notes: 1. Not directly connected to the CompactFlash slot. Permits the control of the bidirectional buffer between the EBI data bus
and the CompactFlash slot.
2. Any PIO line
3. EBI0 signals only
4. EBI1 signals only
5. CE connection depends on the NAND Flash.
For standard NAND Flash devices, it must be connected to any free PIO line.
For "CE don't care" NAND Flash devices, it can be either connected to NCS3/NANDCS or to any free PIO line.
6. I/O8–I/O15 pins used only for 16-bit NAND Flash device.
7. EBI0_NWAIT signal is multiplexed with PD5. EBI1_NWAIT signal is multiplexed with PE20.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
169
20.3.2 Connection Examples
Figure 20-3 shows an example of connections between the EBI and external devices.
Figure 20-3.
EBI Connections to Memory Devices
EBI
D0-D31
RAS
CAS
SDCK
SDCKE
SDWE
A0/NBS0
NWR1/NBS1
A1/NWR2/NBS2
NWR3/NBS3
NRD/NOE
NWR0/NWE
D0-D7
2M x 8
SDRAM
D8-D15
D0-D7
CS
CLK
CKE
SDWE WE
RAS
CAS
DQM
NBS0
A0-A9, A11
A10
BA0
BA1
2M x 8
SDRAM
D0-D7
CS
CLK
CKE
SDWE
WE
RAS
CAS
DQM
NBS1
A2-A11, A13
SDA10
A16/BA0
A17/BA1
A0-A9, A11
A10
BA0
BA1
A2-A11, A13
SDA10
A16/BA0
A17/BA1
SDA10
A2-A15
A16/BA0
A17/BA1
A18-A25
D16-D23 D0-D7
NCS0
NCS1/SDCS
NCS2
NCS3
NCS4
NCS5
CS
CLK
CKE
SDWE WE
RAS
CAS
DQM
2M x 8
SDRAM
A0-A9, A11
A10
BA0
BA1
D24-D31
2M x 8
SDRAM
D0-D7
CS
CLK
CKE
SDWE
WE
RAS
CAS
DQM
NBS3
A2-A11, A13
SDA10
A16/BA0
A17/BA1
A0-A9, A11
A10
BA0
BA1
A2-A11, A13
SDA10
A16/BA0
A17/BA1
NBS2
128K x 8
SRAM
D0-D7
NRD/NOE
A0/NWR0/NBS0
170
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
D0-D7
A0-A16
128K x 8
SRAM
A1-A17
D8-D15
D0-D7
CS
CS
OE
WE
OE
WE
NRD/NOE
NWR1/NBS1
A0-A16
A1-A17
20.4
Product Dependencies
20.4.1 I/O Lines
The pins used for interfacing the External Bus Interface may be multiplexed with the PIO lines. The programmer
must first program the PIO controller to assign the External Bus Interface pins to their peripheral function. If I/O
lines of the External Bus Interface are not used by the application, they can be used for other purposes by the PIO
Controller.
20.5
Functional Description
The EBI transfers data between the internal AHB Bus (handled by the Bus Matrix) and the external memories or
peripheral devices. It controls the waveforms and the parameters of the external address, data and control buses
and is composed of the following elements:

the Static Memory Controller (SMC)

the SDRAM Controller (SDRAMC)

the ECC Controller (ECC)

a chip select assignment feature that assigns an AHB address space to the external devices

a multiplex controller circuit that shares the pins between the different Memory Controllers

programmable CompactFlash support logic (EBI0 only)

programmable NAND Flash support logic
20.5.1 Bus Multiplexing
The EBI0 and EBI1 offers a complete set of control signals that share the 32-bit data lines, the address lines of up
to 26 bits and the control signals through a multiplex logic operating in function of the memory area requests.
Multiplexing is specifically organized in order to guarantee the maintenance of the address and output control lines
at a stable state while no external access is being performed. Multiplexing is also designed to respect the data float
times defined in the Memory Controllers. Furthermore, refresh cycles of the SDRAM are executed independently
by the SDRAM Controller without delaying the other external Memory Controller accesses.
20.5.2 Pull-up Control
The chip select assignment registers EBI0_CSA and EBI1_CSA in the Chip Configuration User Interface permit
enabling of on-chip pull-up resistors on the data bus lines not multiplexed with the PIO Controller lines. The pull-up
resistors are enabled after reset. Setting the corresponding EBIx_CSA.EBIx_DBPUC bit disables the pull-up
resistors on the lines D0–D15. Enabling the pull-up resistor on the lines D16–D31 can be performed by
programming the appropriate PIO controller.
20.5.3 Static Memory Controller
For information on the Static Memory Controller, refer to Section 21. “Static Memory Controller (SMC)”.
20.5.4 SDRAM Controller
For information on the SDRAM Controller, refer to Section 22. “SDRAM Controller (SDRAMC)”.
20.5.5 ECC Controller
For information on the ECC Controller, refer to Section 23. “Error Correction Code Controller (ECC)”.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
171
20.5.6 CompactFlash Support (EBI0 only)
The External Bus Interface 0 integrates circuitry that interfaces to CompactFlash devices.
The CompactFlash logic is driven by the Static Memory Controller (SMC) on the NCS4 and/or NCS5 address
space. Programming the EBI0_CS4A and/or EBI0_CS5A bit(s) of the EBI0 Chip Select Assignment Register to the
appropriate value enables this logic. For details on this register, refer to Section 19.6 “Chip Configuration User
Interface”. Access to an external CompactFlash device is then made by accessing the address space reserved to
NCS4 and/or NCS5 (i.e., between 0x5000 0000 and 0x5FFF FFFF for NCS4 and between 0x6000 0000 and
0x6FFF FFFF for NCS5).
All CompactFlash modes (Attribute Memory, Common Memory, I/O and True IDE) are supported but the signals
_IOIS16 (I/O and True IDE modes) and _ATA SEL (True IDE mode) are not handled.
20.5.6.1 I/O Mode, Common Memory Mode, Attribute Memory Mode and True IDE Mode
Within the NCS4 and/or NCS5 address space, the current transfer address is used to distinguish I/O mode,
common memory mode, attribute memory mode and True IDE mode.
The different modes are accessed through a specific memory mapping as illustrated on Figure 20-4. A[23:21] bits
of the transfer address are used to select the desired mode as described in Table 20-6.
Figure 20-4.
CompactFlash Memory Mapping
True IDE Alternate Mode Space
Offset 0x00E0 0000
True IDE Mode Space
Offset 0x00C0 0000
CF Address Space
I/O Mode Space
Offset 0x0080 0000
Common Memory Mode Space
Offset 0x0040 0000
Attribute Memory Mode Space
Offset 0x0000 0000
Note:
The A22 pin is used to drive the REG signal of the CompactFlash Device (except in True IDE mode).
Table 20-6.
172
CompactFlash Mode Selection
A[23:21]
Mode Base Address
000
Attribute Memory
010
Common Memory
100
I/O Mode
110
True IDE Mode
111
Alternate True IDE Mode
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
20.5.6.2 CFCE1 and CFCE2 Signals
To cover all types of access, the SMC must be alternatively set to drive 8-bit data bus or 16-bit data bus. The odd
byte access on the D[7:0] bus is only possible when the SMC is configured to drive 8-bit memory devices on the
corresponding NCS pin (NCS4 or NCS5). The DBW field in the SMC Mode Register corresponding to the NCS4
and/or NCS5 address space must be set as shown in Table 20-7 to enable the required access type.
NBS1 and NBS0 are the byte selection signals from SMC and are available when the SMC is set in Byte Select
mode on the corresponding Chip Select.
The CFCE1 and CFCE2 waveforms are identical to the corresponding NCSx waveform. For details on these
waveforms and timings, refer to Section 21. “Static Memory Controller (SMC)”.
Table 20-7.
CFCE1 and CFCE2 Truth Table
Mode
CFCE2
CFCE1
DBW
Comment
SMC Access Mode
NBS1
NBS0
16 bits
Access to Even Byte on D[7:0]
Byte Select
NBS1
NBS0
16bits
1
0
8 bits
NBS1
NBS0
16 bits
1
0
8 bits
Task File
1
0
8 bits
Data Register
1
0
16 bits
0
1
Don’t Care
Access to Even Byte on D[7:0]
0
1
8 bits
Access to Odd Byte on D[7:0]
1
1
–
–
Attribute Memory
Common Memory
I/O Mode
Access to Even Byte on D[7:0]
Access to Odd Byte on D[15:8]
Byte Select
Access to Odd Byte on D[7:0]
Access to Even Byte on D[7:0]
Access to Odd Byte on D[15:8]
Byte Select
Access to Odd Byte on D[7:0]
True IDE Mode
Access to Even Byte on D[7:0]
Access to Odd Byte on D[7:0]
Access to Even Byte on D[7:0]
Access to Odd Byte on D[15:8]
Byte Select
Alternate True IDE Mode
Control Register
Alternate Status Read
Drive Address
Standby Mode or Address Space is not
assigned to CF
Don’t Care
–
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
173
20.5.6.3 Read/Write Signals
In I/O mode and True IDE mode, the CompactFlash logic drives the read and write command signals of the SMC
on CFIOR and CFIOW signals, while the CFOE and CFWE signals are deactivated. Likewise, in common memory
mode and attribute memory mode, the SMC signals are driven on the CFOE and CFWE signals, while the CFIOR
and CFIOW are deactivated. Figure 20-5 demonstrates a schematic representation of this logic.
Attribute memory mode, common memory mode and I/O mode are supported by setting the address setup and
hold time on the NCS4 (and/or NCS5) chip select to the appropriate values.
Figure 20-5.
CompactFlash Read/Write Control Signals
External Bus Interface
SMC
CompactFlash Logic
A23
1
1
0
1
0
0
CFOE
CFWE
1
1
A22
NRD_NOE
NWR0_NWE
0
1
1
Table 20-8.
CompactFlash Mode Selection
Mode Base Address
CFOE
CFWE
CFIOR
CFIOW
NRD
NWR0_NWE
1
1
I/O Mode
1
1
NRD
NWR0_NWE
True IDE Mode
0
1
NRD
NWR0_NWE
Attribute Memory
Common Memory
174
CFIOR
CFIOW
1
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
20.5.6.4 Multiplexing of CompactFlash Signals on EBI Pins
Table 20-9 and Table 20-10 illustrate the multiplexing of the CompactFlash logic signals with other EBI signals on
the EBI pins. The EBI pins in Table 20-9 are strictly dedicated to the CompactFlash interface as soon as the
EBI0_CS4A and/or EBI0_CS5A (bit)s of the EBI0 Chip Select Assignment Register in the Chip Configuration User
Interface is set. These pins must not be used to drive any other memory devices.
The EBI pins in Table 20-10 remain shared between all memory areas when the corresponding CompactFlash
interface is enabled (EBI0_CS4A = 1 and/or EBI0_CS5A = 1).
Table 20-9.
Dedicated CompactFlash Interface Multiplexing
CompactFlash Signals
Pins
CS4A = 1
NCS4/CFCS0
CFCS0
NCS5/CFCS1
Table 20-10.
CS5A = 1
EBI Signals
CS4A = 0
CS5A = 0
NCS4
CFCS1
NCS5
Shared CompactFlash Interface Multiplexing
Access to CompactFlash Device
Access to Other EBI Devices
CompactFlash Signals
EBI Signals
NRD/CFOE
CFOE
NRD
NWR0/NWE/CFWE
CFWE
NWR0/NWE
NWR1/NBS1/CFIOR
CFIOR
NWR1/NBS1
NWR3/NBS3/CFIOW
CFIOW
NWR3/NBS3
A25/CFRNW
CFRNW
A25
Pins
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
175
20.5.6.5 Application Example
Figure 20-6 illustrates an example of a CompactFlash application. CFCS0 and CFRNW signals are not directly
connected to the CompactFlash slot 0, but do control the direction and the output enable of the buffers between
the EBI and the CompactFlash Device. The timing of the CFCS0 signal is identical to the NCS4 signal. Moreover,
the CFRNW signal remains valid throughout the transfer, as does the address bus. The CompactFlash _WAIT
signal is connected to the NWAIT input of the Static Memory Controller. For details on these waveforms and
timings, refer to Section 21. “Static Memory Controller (SMC)”.
Figure 20-6.
CompactFlash Application Example
EBI
CompactFlash Connector
D[15:0]
D[15:0]
DIR /OE
A25/CFRNW
NCS4/CFCS0
_CD1
CD (PIO)
_CD2
/OE
176
A[10:0]
A[10:0]
A22/REG
_REG
NOE/CFOE
_OE
NWE/CFWE
_WE
NWR1/CFIOR
_IORD
NWR3/CFIOW
_IOWR
CFCE1
_CE1
CFCE2
_CE2
NWAIT
_WAIT
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
20.5.7 NAND Flash Support
External Bus Interfaces 0 and 1 integrate circuitry that interfaces to NAND Flash devices.
20.5.7.1 External Bus Interface 0
The NAND Flash logic is driven by the Static Memory Controller on the NCS3 address space. Programming the
EBI0_CS3A bit in the EBI0 Chip Select Assignment Register to the appropriate value enables the NAND Flash
logic. For details on this register, refer to Section 19.6 “Chip Configuration User Interface”. Access to an external
NAND Flash device is then made by accessing the address space reserved to NCS3 (i.e., between 0x4000 0000
and 0x4FFF FFFF).
The NAND Flash Logic drives the read and write command signals of the SMC on the NANDOE and NANDWE
signals when the NCS3 signal is active. NANDOE and NANDWE are invalidated as soon as the transfer address
fails to lie in the NCS3 address space. See Figure 20-7 for more information. For details on these waveforms, refer
to Section 21. “Static Memory Controller (SMC)”.
Figure 20-7.
NAND Flash Signal Multiplexing on EBI Pins
SMC
NAND Flash Logic
NCSx
NRD
NANDOE
NANDWE
NANDOE
NANDWE
NWR0_NWE
20.5.7.2 External Bus Interface 1
The NAND Flash logic is driven by the Static Memory Controller on the NCS2 address space. Programming the
EBI1_CS2A bit in the EBI1 Chip Select Assignment Register to the appropriate value enables the NAND Flash
logic. For details on this register, refer to Section 19.6 “Chip Configuration User Interface”. Access to an external
NAND Flash device is then made by accessing the address space reserved to NCS2 (i.e., between 0x9000 0000
and 0x9FFF FFFF).
The NAND Flash Logic drives the read and write command signals of the SMC on the NANDOE and NANDWE
signals when the NCS2 signal is active. NANDOE and NANDWE are invalidated as soon as the transfer address
fails to lie in the NCS2 address space. See Figure 20-7 for more information. For details on these waveforms, refer
to Section 21. “Static Memory Controller (SMC)”.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
177
20.5.7.3 NAND Flash Signals
The address latch enable and command latch enable signals on the NAND Flash device are driven by address bits
A22 and A21 of the EBI address bus. The command, address or data words on the data bus of the NAND Flash
device are distinguished by using their address within the NCSx address space. The chip enable (CE) signal of the
device and the ready/busy (R/B) signals are connected to PIO lines. The CE signal then remains asserted even
when NCSx is not selected, preventing the device from returning to standby mode.
Figure 20-8.
NAND Flash Application Example
D[7:0]
AD[7:0]
A[22:21]
ALE
CLE
NCSx/NANDCS
Not Connected
EBI
NAND Flash
NANDOE
NANDWE
Note:
178
NOE
NWE
PIO
CE
PIO
R/B
The External Bus Interfaces 0 and 1 are also able to support 16-bit devices.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
20.6
Implementation Examples
The following hardware configurations are given for illustration only. The user should refer to the memory
manufacturer website to check current device availability.
20.6.1 16-bit SDRAM
20.6.1.1 Hardware Configuration - 16-bit SDRAM
D[0..15]
A[0..14]
(Not used A12)
U1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A13
SDA10
BA0
BA1
SDA10
BA0
BA1
A14
23
24
25
26
29
30
31
32
33
34
22
35
20
21
36
40
SDCKE
SDCK
A0
CFIOR_NBS1_NWR1
CAS
RAS
SDWE
SDCS_NCS1
SDCKE
37
SDCK
38
1%6
1%6
15
39
CAS
RAS
17
18
SDWE
16
19
A0 MT48LC16M16A2 DQ0
A1
DQ1
A2
DQ2
A3
DQ3
A4
DQ4
A5
DQ5
A6
DQ6
A7
DQ7
A8
DQ8
A9
DQ9
A10
DQ10
A11
DQ11
DQ12
BA0
DQ13
BA1
DQ14
DQ15
A12
N.C
VDD
VDD
CKE
VDD
VDDQ
CLK
VDDQ
VDDQ
DQML
VDDQ
DQMH
VSS
CAS
VSS
RAS
VSS
VSSQ
VSSQ
WE
VSSQ
CS
VSSQ
2
4
5
7
8
10
11
13
42
44
45
47
48
50
51
53
1
14
27
3
9
43
49
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
3V3
C1
C2
C3
C4
C5
C6
C7
100NF
100NF
100NF
100NF
100NF
100NF
100NF
28
41
54
6
12
46
52
256 Mbits
TSOP54 PACKAGE
20.6.1.2 Software Configuration - 16-bit SDRAM
The following configuration has to be performed:

Assign the EBI CS1 to the SDRAM controller by setting the corresponding bit EBIx_CS1A in the EBIx Chip
Select Assignment Register located in the bus matrix memory space.

Initialize the SDRAM Controller depending on the SDRAM device and system bus frequency.
The Data Bus Width is to be programmed to 16 bits.
EBI1 SDCS, SDWE, SDCKE, SDA10, RAS and CAS signals are multiplexed with PIO lines and thus the dedicated
PIOs must be programmed in peripheral mode in the PIO controller.
The SDRAM initialization sequence is described in Section 22.4.1 “SDRAM Device Initialization”.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
179
20.6.2 32-bit SDRAM
20.6.2.1 Hardware Configuration - 32-bit SDRAM
D[0..31]
A[0..14]
(Not used A12)
U1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A13
SDA10
BA0
BA1
SDA10
BA0
BA1
A14
23
24
25
26
29
30
31
32
33
34
22
35
20
21
36
40
SDCKE
SDCK
A0
CFIOR_NBS1_NWR1
CAS
RAS
SDWE
SDCKE
37
SDCK
38
1%6
1%6
15
39
CAS
RAS
17
18
SDWE
16
19
SDCS_NCS1
U2
A0 MT48LC16M16A2 DQ0
A1
DQ1
A2
DQ2
A3
DQ3
A4
DQ4
A5
DQ5
A6
DQ6
A7
DQ7
A8
DQ8
A9
DQ9
A10
DQ10
A11
DQ11
DQ12
BA0
DQ13
BA1
DQ14
DQ15
A12
N.C
VDD
VDD
CKE
VDD
VDDQ
CLK
VDDQ
VDDQ
DQML
VDDQ
DQMH
VSS
CAS
VSS
RAS
VSS
VSSQ
VSSQ
WE
VSSQ
CS
VSSQ
2
4
5
7
8
10
11
13
42
44
45
47
48
50
51
53
1
14
27
3
9
43
49
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
3V3
28
41
54
6
12
46
52
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
SDA10
A13
BA0
BA1
A14
C1
C2
C3
C4
C5
C6
C7
100NF
100NF
100NF
100NF
100NF
100NF
100NF
A1
CFIOW_NBS3_NWR3
256 Mbits
23
24
25
26
29
30
31
32
33
34
22
35
20
21
36
40
SDCKE
37
SDCK
38
1%6
1%6
15
39
CAS
RAS
17
18
SDWE
16
19
A0 MT48LC16M16A2 DQ0
A1
DQ1
A2
DQ2
A3
DQ3
A4
DQ4
A5
DQ5
A6
DQ6
A7
DQ7
A8
DQ8
A9
DQ9
A10
DQ10
A11
DQ11
DQ12
BA0
DQ13
BA1
DQ14
DQ15
A12
N.C
VDD
VDD
CKE
VDD
VDDQ
CLK
VDDQ
VDDQ
DQML
VDDQ
DQMH
VSS
CAS
VSS
RAS
VSS
VSSQ
VSSQ
WE
VSSQ
CS
VSSQ
2
4
5
7
8
10
11
13
42
44
45
47
48
50
51
53
1
14
27
3
9
43
49
D16
D17
D18
D19
D20
D21
D22
D23
D24
D25
D26
D27
D28
D29
D30
D31
3V3
C8
C9
C10
C11
C12
C13
C14
100NF
100NF
100NF
100NF
100NF
100NF
100NF
28
41
54
6
12
46
52
256 Mbits
TSOP54 PACKAGE
20.6.2.2 Software Configuration - 32-bit SDRAM
The following configuration has to be performed:

Assign the EBI CS1 to the SDRAM controller by setting the corresponding bit EBIx_CS1A in the EBIx Chip
Select Assignment Register located in the bus matrix memory space.

Initialize the SDRAM Controller depending on the SDRAM device and system bus frequency.
The Data Bus Width is to be programmed to 32 bits. The data lines D[16..31] are multiplexed with PIO lines and
thus the dedicated PIOs must be programmed in peripheral mode in the PIO controller.
EBI1 SDCS, SDWE, SDCKE, SDA10, RAS and CAS signals are multiplexed with PIO lines and thus the dedicated
PIOs must be programmed in peripheral mode in the PIO controller.
The SDRAM initialization sequence is described in Section 22.4.1 “SDRAM Device Initialization”.
180
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
20.6.3 8-bit NAND Flash
20.6.3.1 Hardware Configuration - 8-bit NAND Flash
D[0..7]
U1
CLE
ALE
NANDOE
NANDWE
(ANY PIO)
(ANY PIO)
R1
3V3
R2
10K
16
17
8
18
9
CLE
ALE
RE
WE
CE
7
R/B
19
WP
10K
1
2
3
4
5
6
10
11
14
15
20
21
22
23
24
25
26
K9F2G08U0M
N.C
N.C
N.C
N.C
N.C
N.C
N.C
N.C
N.C
N.C
N.C
N.C
N.C
N.C
N.C
N.C
N.C
I/O0
I/O1
I/O2
I/O3
I/O4
I/O5
I/O6
I/O7
29
30
31
32
41
42
43
44
N.C
N.C
N.C
N.C
N.C
N.C
PRE
N.C
N.C
N.C
N.C
N.C
48
47
46
45
40
39
38
35
34
33
28
27
VCC
VCC
37
12
VSS
VSS
36
13
2 Gb
D0
D1
D2
D3
D4
D5
D6
D7
3V3
C2
100NF
C1
100NF
TSOP48 PACKAGE
20.6.3.2 Software Configuration - 8-bit NAND Flash
The following configuration has to be performed:

Assign the EBI0 CS3/EBI1 CS2 to the NAND Flash by setting the corresponding bit EBI0_CS3A in the EBI0
Chip Select Assignment Register/EBI1_CS2A in the EBI1 Chip Select Assignment Register located in the
bus matrix memory space.

Reserve A21 / A22 for ALE / CLE functions. Address and Command Latches are controlled respectively by
setting to 1 the address bit A21 and A22 during accesses.

EBI1 NANDOE and NANDWE signals are multiplexed with PIO lines and thus the dedicated PIOs must be
programmed in peripheral mode in the PIO controller.

Configure a PIO line as an input to manage the Ready/Busy signal.

Configure Static Memory Controller CS3/CS2 Setup, Pulse, Cycle and Mode accordingly to NAND Flash
timings, the data bus width and the system bus frequency.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
181
20.6.4 16-bit NAND Flash
20.6.4.1 Hardware Configuration - 16-bit NAND Flash
D[0..15]
U1
CLE
ALE
NANDOE
NANDWE
(ANY PIO)
(ANY PIO)
R1
3V3
R2
10K
16
17
8
18
9
CLE
ALE
RE
WE
CE
7
R/B
19
WP
1
2
3
4
5
6
10
11
14
15
20
21
22
23
24
34
35
N.C
N.C
N.C
N.C
N.C
N.C
N.C
N.C
N.C
N.C
N.C
N.C
N.C
N.C
N.C
N.C
N.C
10K
MT29F2G16AABWP-ET
I/O0 26
I/O1 28
I/O2 30
I/O3 32
I/O4 40
I/O5 42
I/O6 44
I/O7 46
I/O8 27
I/O9 29
I/O10 31
I/O11 33
I/O12 41
I/O13 43
I/O14 45
I/O15 47
N.C
PRE
N.C
39
38
36
VCC
VCC
37
12
VSS
VSS
VSS
48
25
13
2 Gb
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
3V3
C2
100NF
C1
100NF
TSOP48 PACKAGE
20.6.4.2 Software Configuration - 16-bit NAND Flash
The software configuration is the same as for an 8-bit NAND Flash except the data bus width programmed in the
SMC Mode Register.
182
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
20.6.5 NOR Flash on NCS0
20.6.5.1 Hardware Configuration - NOR Flash on NCS0
D[0..15]
A[1..22]
U1
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
A22
NRST
NWE
3V3
NCS0
NRD
25
24
23
22
21
20
19
18
8
7
6
5
4
3
2
1
48
17
16
15
10
9
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
12
11
14
13
26
28
RESET
WE
WP
VPP
CE
OE
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
29
31
33
35
38
40
42
44
30
32
34
36
39
41
43
45
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
AT49BV6416
3V3
VCCQ
47
VCC
37
VSS
VSS
46
27
C2
100NF
C1
100NF
TSOP48 PACKAGE
20.6.5.2 Software Configuration - NOR Flash on NCS0
The default configuration for the Static Memory Controller, byte select mode, 16-bit data bus, Read/Write
controlled by Chip Select, allows boot on 16-bit non-volatile memory at slow clock.
For another configuration, configure the Static Memory Controller CS0 Setup, Pulse, Cycle and Mode depending
on Flash timings and system bus frequency.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
183
20.6.6 CompactFlash
20.6.6.1 Hardware Configuration - CompactFlash
MEMORY & I/O MODE
D[0..15]
MN1A
D15
D14
D13
D12
D11
D10
D9
D8
A2
A1
B2
B1
C2
C1
D2
D1
A3
A4
1B1
1B2
1B3
1B4
1B5
1B6
1B7
1B8
A5
A6
B5
B6
C5
C6
D5
D6
CF_D15
CF_D14
CF_D13
CF_D12
CF_D11
CF_D10
CF_D9
CF_D8
E5
E6
F5
F6
G5
G6
H5
H6
CF_D7
CF_D6
CF_D5
CF_D4
CF_D3
CF_D2
CF_D1
CF_D0
1DIR
1OE
74ALVCH32245
MN1B
D7
D6
D5
D4
D3
D2
D1
D0
A25/CFRNW
4
CFCSx
(CFCS0 or CFCS1)
6
5
E2
E1
F2
F1
G2
G1
H2
H1
2B1
2B2
2B3
2B4
2B5
2B6
2B7
2B8
H3
H4
2DIR
2OE
2A1
2A2
2A3
2A4
2A5
2A6
2A7
2A8
3V3
R1
MN2A
47K
SN74ALVC32
74ALVCH32245
MN2B
SN74ALVC32
R2
47K
CD2
1
3
(ANY PIO)
CD1
2
&$5''(7(&7
A10
A9
A8
A7
A6
A5
A4
A3
J5
J6
K5
K6
L5
L6
M5
M6
3A1
3A2
3A3
3A4
3A5
3A6
3A7
3A8
J3
J4
3DIR
3OE
3V3
3B1
3B2
3B3
3B4
3B5
3B6
3B7
3B8
J2
J1
K2
K1
L2
L1
M2
M1
CF_A10
CF_A9
CF_A8
CF_A7
CF_A6
CF_A5
CF_A4
CF_A3
31
30
29
28
27
49
48
47
6
5
4
3
2
23
22
21
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
CD2
CD1
25
26
CD2#
CD1#
CF_A10
CF_A9
CF_A8
CF_A7
CF_A6
CF_A5
CF_A4
CF_A3
CF_A2
CF_A1
CF_A0
8
10
11
12
14
15
16
17
18
19
20
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0
REG
44
REG#
WE
OE
IOWR
IORD
36
9
35
34
WE#
OE#
IOWR#
IORD#
CE2
CE1
74ALVCH32245
MN1D
A2
A1
A0
A22/REG
CFWE
CFOE
CFIOW
CFIOR
N5
N6
P5
P6
R5
R6
T6
T5
4A1
4A2
4A3
4A4
4A5
4A6
4A7
4A8
T3
T4
4DIR
4OE
4B1
4B2
4B3
4B4
4B5
4B6
4B7
4B8
N2
N1
P2
P1
R2
R1
T1
T2
CF_A2
CF_A1
CF_A0
REG
WE
OE
IOWR
IORD
1
2
CFCE1
5
10
4
CFCE2
CFRST
9
(ANY PIO)
CFIRQ
11
13
(ANY PIO)
MN3A
SN74ALVC125
3
CE2
MN3B
SN74ALVC125
6
CE1
MN3C
SN74ALVC125
RESET
8
MN3D
R3
SN74ALVC125
10K
RDY/BSY
12
3V3
MN4
3V3
NWAIT
5 VCC
1
4
2
GND
3
SN74LVC1G125-Q1
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
R4
10K
WAIT#
32
7
CE2#
CE1#
3V3
VCC
38
VCC
13
GND
GND
50
1
CSEL#
39
INPACK#
43
BVD2
BVD1
45
46
24
WP
WAIT#
42
WAIT#
VS2#
VS1#
40
33
RESET
41
RESET
RDY/BSY
37
N7E50-7516VY-20
74ALVCH32245
184
CF_D15
CF_D14
CF_D13
CF_D12
CF_D11
CF_D10
CF_D9
CF_D8
CF_D7
CF_D6
CF_D5
CF_D4
CF_D3
CF_D2
CF_D1
CF_D0
MN1C
A[0..10]
3V3
J1
1A1
1A2
1A3
1A4
1A5
1A6
1A7
1A8
C1
100NF
C2
100NF
RDY/BSY
20.6.6.2 Software Configuration - CompactFlash
The following configuration has to be performed:

Assign the EBI CS4 and/or EBI CS5 to the CompactFlash Slot 0 or/and Slot 1 by setting the bit EBI0_CS4A
or/and EBI0_CS5A in the EBI0 Chip Select Assignment Register located in the bus matrix memory space.

The address line A23 is to select I/O (A23 = 1) or Memory mode (A23 = 0) and the address line A22 for REG
function.

A23, CFRNW, CFS0, CFCS1, CFCE1 and CFCE2 signals are multiplexed with PIO lines and thus the
dedicated PIOs must be programmed in peripheral mode in the PIO controller.

Configure a PIO line as an output for CFRST and two others as an input for CFIRQ and CARD DETECT
functions respectively.

Configure SMC CS4 and/or SMC CS5 (for Slot 0 or 1) Setup, Pulse, Cycle and Mode accordingly to
CompactFlash timings and system bus frequency.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
185
20.6.7 CompactFlash True IDE
20.6.7.1 Hardware Configuration - CompactFlash True IDE
TRUE IDE MODE
D[0..15]
MN1A
D15
D14
D13
D12
D11
D10
D9
D8
A2
A1
B2
B1
C2
C1
D2
D1
A3
A4
1B1
1B2
1B3
1B4
1B5
1B6
1B7
1B8
A5
A6
B5
B6
C5
C6
D5
D6
E5
E6
F5
F6
G5
G6
H5
H6
CF_D7
CF_D6
CF_D5
CF_D4
CF_D3
CF_D2
CF_D1
CF_D0
1DIR
1OE
74ALVCH32245
MN1B
D7
D6
D5
D4
D3
D2
D1
D0
A25/CFRNW
CFCSx
(CFCS0 or CFCS1)
4
6
5
E2
E1
F2
F1
G2
G1
H2
H1
2B1
2B2
2B3
2B4
2B5
2B6
2B7
2B8
H3
H4
2DIR
2OE
2A1
2A2
2A3
2A4
2A5
2A6
2A7
2A8
3V3
R1
MN2A
47K
SN74ALVC32
74ALVCH32245
MN2B
SN74ALVC32
CD2
1
CD1
2
&$5''(7(&7
J5
J6
K5
K6
L5
L6
M5
M6
3A1
3A2
3A3
3A4
3A5
3A6
3A7
3A8
J3
J4
3DIR
3OE
3V3
3B1
3B2
3B3
3B4
3B5
3B6
3B7
3B8
J2
J1
K2
K1
L2
L1
M2
M1
CF_A10
CF_A9
CF_A8
CF_A7
CF_A6
CF_A5
CF_A4
CF_A3
N5
N6
P5
P6
R5
R6
T6
T5
A22/REG
CFWE
CFOE
CFIOW
CFIOR
T3
T4
4A1
4A2
4A3
4A4
4A5
4A6
4A7
4A8
4B1
4B2
4B3
4B4
4B5
4B6
4B7
4B8
N2
N1
P2
P1
R2
R1
T1
T2
CF_A2
CF_A1
CF_A0
REG
WE
OE
IOWR
IORD
1
CFCE1
5
10
CFRST
9
(ANY PIO)
CFIRQ
11
13
(ANY PIO)
MN3A
SN74ALVC125
3
CE2
MN3B
SN74ALVC125
6
CE1
MN3C
SN74ALVC125
RESET#
8
MN3D
SN74ALVC125
INTRQ
12
R3
10K
3V3
MN4
3V3
NWAIT
5 VCC
1
4
2
GND
3
SN74LVC1G125-Q1
186
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
25
26
CD2#
CD1#
CF_A2
CF_A1
CF_A0
8
10
11
12
14
15
16
17
18
19
20
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0
44
REG#
36
9
35
34
WE#
ATA SEL#
IOWR#
IORD#
R4
10K
IORDY
32
7
CS1#
CS0#
24
IOIS16#
IORDY
42
IORDY
RESET#
41
3V3
VCC
38
VCC
13
GND
GND
50
1
CSEL#
39
INPACK#
43
DASP#
PDIAG#
45
46
VS2#
VS1#
40
33
INTRQ
37
RESET#
N7E50-7516VY-20
4DIR
4OE
4
2
CD2
CD1
CE2
CE1
74ALVCH32245
CFCE2
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
IOWR
IORD
74ALVCH32245
MN1D
A2
A1
A0
31
30
29
28
27
49
48
47
6
5
4
3
2
23
22
21
3V3
MN1C
A10
A9
A8
A7
A6
A5
A4
A3
CF_D15
CF_D14
CF_D13
CF_D12
CF_D11
CF_D10
CF_D9
CF_D8
CF_D7
CF_D6
CF_D5
CF_D4
CF_D3
CF_D2
CF_D1
CF_D0
R2
47K
3
(ANY PIO)
A[0..10]
3V3
J1
1A1
1A2
1A3
1A4
1A5
1A6
1A7
1A8
CF_D15
CF_D14
CF_D13
CF_D12
CF_D11
CF_D10
CF_D9
CF_D8
C1
100NF
C2
100NF
INTRQ
20.6.7.2 Software Configuration - CompactFlash True IDE
The following configuration has to be performed:

Assign the EBI CS4 and/or EBI CS5 to the CompactFlash Slot 0 or/and Slot 1 by setting the bit EBI0_CS4A
or/and EBI0_CS5A in the EBI0 Chip Select Assignment Register located in the bus matrix memory space.

The address line A21 is to select Alternate True IDE (A21 = 1) or True IDE (A21 = 0) modes.

CFRNW, CFS0, CFCS1, CFCE1 and CFCE2 signals are multiplexed with PIO lines and thus the dedicated
PIOs must be programmed in peripheral mode in the PIO controller.

Configure a PIO line as an output for CFRST and two others as an input for CFIRQ and CARD DETECT
functions respectively.

Configure SMC CS4 and/or SMC CS5 (for Slot 0 or 1) Setup, Pulse, Cycle and Mode accordingly to
CompactFlash timings and system bus frequency.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
187
21.
Static Memory Controller (SMC)
21.1
Overview
The Static Memory Controller (SMC) generates the signals that control the access to the external memory devices
or peripheral devices. It has 8 Chip Selects and a 26-bit address bus. The 32-bit data bus can be configured to
interface with 8-, 16-, or 32-bit external devices. Separate read and write control signals allow for direct memory
and peripheral interfacing. Read and write signal waveforms are fully parameterizable.
The SMC can manage wait requests from external devices to extend the current access. The SMC is provided with
an automatic slow clock mode. In slow clock mode, it switches from user-programmed waveforms to slow-rate
specific waveforms on read and write signals. The SMC supports asynchronous burst read in page mode access
for page size up to 32 bytes.
21.2
I/O Lines Description
Table 21-1.
I/O Line Description
Name
Description
Type
Active Level
NCS[7:0]
Static Memory Controller Chip Select Lines
Output
Low
NRD
Read Signal
Output
Low
NWR0/NWE
Write 0/Write Enable Signal
Output
Low
A0/NBS0
Address Bit 0/Byte 0 Select Signal
Output
Low
NWR1/NBS1
Write 1/Byte 1 Select Signal
Output
Low
A1/NWR2/NBS2
Address Bit 1/Write 2/Byte 2 Select Signal
Output
Low
NWR3/NBS3
Write 3/Byte 3 Select Signal
Output
Low
A[25:2]
Address Bus
Output
D[31:0]
Data Bus
NWAIT
External Wait Signal
21.3
I/O
Input
Low
Multiplexed Signals
Table 21-2.
Static Memory Controller (SMC) Multiplexed Signals
Multiplexed Signals
Related Function
NWR0
NWE
Byte-write or byte-select access, see “Byte Write or Byte Select Access” on page 190
A0
NBS0
8-bit or 16-/32-bit data bus, see “Data Bus Width” on page 190
NWR1
NBS1
Byte-write or byte-select access see “Byte Write or Byte Select Access” on page 190
A1
NWR2
NWR3
NBS3
188
NBS2
8-/16-bit or 32-bit data bus, see “Data Bus Width” on page 190.
Byte-write or byte-select access, see “Byte Write or Byte Select Access” on page 190
Byte-write or byte-select access see “Byte Write or Byte Select Access” on page 190
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
21.4
Application Example
21.4.1 Hardware Interface
Figure 21-1.
SMC Connections to Static Memory Devices
D0-D31
A0/NBS0
NWR0/NWE
NWR1/NBS1
A1/NWR2/NBS2
NWR3/NBS3
D0 - D7
128K x 8
SRAM
D8-D15
D0 - D7
CS
NRD
NWR0/NWE
A2 - A25
A2 - A18
A0 - A16
NRD
OE
NWR1/NBS1
WE
128K x 8
SRAM
D16 - D23
D24-D31
D0 - D7
A0 - A16
NRD
Static Memory
Controller
A2 - A18
OE
WE
128K x 8
SRAM
D0-D7
CS
CS
A1/NWR2/NBS2
D0-D7
CS
A0 - A16
NCS0
NCS1
NCS2
NCS3
NCS4
NCS5
NCS6
NCS7
128K x 8
SRAM
A2 - A18
A2 - A18
A0 - A16
NRD
OE
WE
OE
NWR3/NBS3
WE
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
189
21.5
Product Dependencies
21.5.1 I/O Lines
The pins used for interfacing the Static Memory Controller may be multiplexed with the PIO lines. The programmer
must first program the PIO controller to assign the Static Memory Controller pins to their peripheral function. If I/O
Lines of the SMC are not used by the application, they can be used for other purposes by the PIO Controller.
21.6
External Memory Mapping
The SMC provides up to 26 address lines, A[25:0]. This allows each chip select line to address up to 64 Mbytes of
memory.
If the physical memory device connected on one chip select is smaller than 64 Mbytes, it wraps around and
appears to be repeated within this space. The SMC correctly handles any valid access to the memory device
within the page (see Figure 21-2).
A[25:0] is only significant for 8-bit memory, A[25:1] is used for 16-bit memory, A[25:2] is used for 32-bit memory.
Figure 21-2.
Memory Connections for Eight External Devices
NCS[0] - NCS[7]
NCS7
NRD
SMC
NCS6
NWE
NCS5
A[25:0]
NCS4
D[31:0]
NCS3
NCS2
NCS1
NCS0
Memory Enable
Memory Enable
Memory Enable
Memory Enable
Memory Enable
Memory Enable
Memory Enable
Memory Enable
Output Enable
Write Enable
A[25:0]
8 or 16 or 32
21.7
D[31:0] or D[15:0] or
D[7:0]
Connection to External Devices
21.7.1 Data Bus Width
A data bus width of 8, 16, or 32 bits can be selected for each chip select. This option is controlled by the field DBW
in SMC_MODE (Mode Register) for the corresponding chip select.
Figure 21-3 shows how to connect a 512K x 8-bit memory on NCS2. Figure 21-4 shows how to connect a 512K x
16-bit memory on NCS2. Figure 21-5 shows two 16-bit memories connected as a single 32-bit memory.
21.7.2 Byte Write or Byte Select Access
Each chip select with a 16-bit or 32-bit data bus can operate with one of two different types of write access: byte
write or byte select access. This is controlled by the field SMC_MODE.BAT for the corresponding chip select.
190
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Figure 21-3.
Memory Connection for an 8-bit Data Bus
D[7:0]
D[7:0]
A[18:2]
A[18:2]
SMC
A0
A0
A1
A1
NWE
Write Enable
NRD
Output Enable
NCS[2]
Figure 21-4.
Memory Connection for a 16-bit Data Bus
D[15:0]
D[15:0]
A[19:2]
A[18:1]
A1
SMC
A[0]
NBS0
Low Byte Enable
NBS1
High Byte Enable
NWE
Write Enable
NRD
Output Enable
NCS[2]
Figure 21-5.
Memory Enable
Memory Enable
Memory Connection for a 32-bit Data Bus
D[31:16]
SMC
D[31:16]
D[15:0]
D[15:0]
A[20:2]
A[18:0]
NBS0
Byte 0 Enable
NBS1
Byte 1 Enable
NBS2
Byte 2 Enable
NBS3
Byte 3 Enable
NWE
Write Enable
NRD
Output Enable
NCS[2]
Memory Enable
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
191
21.7.2.1 Byte Write Access
Byte write access supports one byte write signal per byte of the data bus and a single read signal.
Note that the SMC does not allow boot in Byte Write Access mode.

For 16-bit devices: the SMC provides NWR0 and NWR1 write signals for respectively byte0 (lower byte) and
byte1 (upper byte) of a 16-bit bus. One single read signal (NRD) is provided.
Byte Write Access is used to connect 2 x 8-bit devices as a 16-bit memory.

For 32-bit devices: NWR0, NWR1, NWR2 and NWR3, are the write signals of byte0 (lower byte), byte1,
byte2 and byte 3 (upper byte) respectively. One single read signal (NRD) is provided.
Byte Write Access is used to connect 4 x 8-bit devices as a 32-bit memory.
Byte Write option is illustrated on Figure 21.7.2.3.
Figure 21-6.
Connection of 2 x 8-bit Devices on a 16-bit Bus: Byte Write Option
D[7:0]
D[7:0]
D[15:8]
A[24:2]
SMC
A1
NWR0
A[23:1]
A[0]
Write Enable
NWR1
NRD
NCS[3]
Read Enable
Memory Enable
D[15:8]
A[23:1]
A[0]
Write Enable
Read Enable
Memory Enable
21.7.2.2 Byte Select Access
In this mode, read/write operations can be enabled/disabled at a byte level. One byte-select line per byte of the
data bus is provided. One NRD and one NWE signal control read and write.

For 16-bit devices: the SMC provides NBS0 and NBS1 selection signals for respectively byte0 (lower byte)
and byte1 (upper byte) of a 16-bit bus.
Byte Select Access is used to connect one 16-bit device.

For 32-bit devices: NBS0, NBS1, NBS2 and NBS3, are the selection signals of byte0 (lower byte), byte1,
byte2 and byte 3 (upper byte) respectively. Byte Select Access is used to connect two 16-bit devices.
Figure shows how to connect two 16-bit devices on a 32-bit data bus in Byte Select Access mode, on NCS3 (BAT
= Byte Select Access).
192
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Figure 21-7.
Connection of 2x16-bit Data Bus on a 32-bit Data Bus (Byte Select Option)
D[15:0]
D[15:0]
D[31:16]
A[25:2]
SMC
A[23:0]
NWE
Write Enable
NBS0
Low Byte Enable
NBS1
High Byte Enable
NBS2
NBS3
Read Enable
NRD
Memory Enable
NCS[3]
D[31:16]
A[23:0]
Write Enable
Low Byte Enable
High Byte Enable
Read Enable
Memory Enable
21.7.2.3 Signal Multiplexing
Depending on the BAT, only the write signals or the byte select signals are used. To save IOs at the external bus
interface, control signals at the SMC interface are multiplexed. Table 21-3 shows signal multiplexing depending on
the data bus width and the byte access type.
For 32-bit devices, bits A0 and A1 are unused. For 16-bit devices, bit A0 of address is unused. When Byte Select
Option is selected, NWR1 to NWR3 are unused. When Byte Write option is selected, NBS0 to NBS3 are unused.
Table 21-3.
SMC Multiplexed Signal Translation
Signal Name
Device Type
32-bit Bus
16-bit Bus
8-bit Bus
1x32-bit
2x16-bit
4 x 8-bit
1x16-bit
2 x 8-bit
Byte Select
Byte Select
Byte Write
Byte Select
Byte Write
NBS0_A0
NBS0
NBS0
NWE_NWR0
NWE
NWE
NWR0
NWE
NWR0
NBS1_NWR1
NBS1
NBS1
NWR1
NBS1
NWR1
NBS2_NWR2_A1
NBS2
NBS2
NWR2
A1
A1
NBS3_NWR3
NBS3
NBS3
NWR3
Byte Access Type (BAT)
1 x 8-bit
NBS0
A0
NWE
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
A1
193
21.8
Standard Read and Write Protocols
In the following sections, the byte access type is not considered. Byte select lines (NBS0 to NBS3) always have
the same timing as the A address bus. NWE represents either the NWE signal in byte select access type or one of
the byte write lines (NWR0 to NWR3) in byte write access type. NWR0 to NWR3 have the same timings and
protocol as NWE. In the same way, NCS represents one of the NCS[0..7] chip select lines.
21.8.1 Read Waveforms
The read cycle is shown on Figure 21-8.
The read cycle starts with the address setting on the memory address bus, i.e.:
{A[25:2], A1, A0} for 8-bit devices
{A[25:2], A1} for 16-bit devices
A[25:2] for 32-bit devices.
Figure 21-8.
Standard Read Cycle
MCK
A[25:2]
NBS0,NBS1,
NBS2,NBS3,
A0, A1
NRD
NCS
D[31:0]
NRD_SETUP
NCS_RD_SETUP
NRD_PULSE
NCS_RD_PULSE
NRD_HOLD
NCS_RD_HOLD
NRD_CYCLE
21.8.1.1 NRD Waveform
The NRD signal is characterized by a setup timing, a pulse width and a hold timing.
1.
NRD_SETUP: the NRD setup time is defined as the setup of address before the NRD falling edge;
2.
NRD_PULSE: the NRD pulse length is the time between NRD falling edge and NRD rising edge;
3.
NRD_HOLD: the NRD hold time is defined as the hold time of address after the NRD rising edge.
21.8.1.2 NCS Waveform
Similarly, the NCS signal can be divided into a setup time, pulse length and hold time:
194
1.
NCS_RD_SETUP: the NCS setup time is defined as the setup time of address before the NCS falling edge.
2.
NCS_RD_PULSE: the NCS pulse length is the time between NCS falling edge and NCS rising edge;
3.
NCS_RD_HOLD: the NCS hold time is defined as the hold time of address after the NCS rising edge.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
21.8.1.3 Read Cycle
The NRD_CYCLE time is defined as the total duration of the read cycle, i.e., from the time where address is set on
the address bus to the point where address may change. The total read cycle time is equal to:
NRD_CYCLE = NRD_SETUP + NRD_PULSE + NRD_HOLD,
as well as
NRD_CYCLE = NCS_RD_SETUP + NCS_RD_PULSE + NCS_RD_HOLD
All NRD and NCS timings are defined separately for each chip select as an integer number of Master Clock cycles.
The NRD_CYCLE field is common to both the NRD and NCS signals, thus the timing period is of the same
duration.
NRD_CYCLE, NRD_SETUP, and NRD_PULSE implicitly define the NRD_HOLD value as:
NRD_HOLD = NRD_CYCLE - NRD SETUP - NRD PULSE
NRD_CYCLE, NCS_RD_SETUP, and NCS_RD_PULSE implicitly define the NCS_RD_HOLD value as:
NCS_RD_HOLD = NRD_CYCLE - NCS_RD_SETUP - NCS_RD_PULSE
21.8.1.4 Null Delay Setup and Hold
If null setup and hold parameters are programmed for NRD and/or NCS, NRD and NCS remain active continuously
in case of consecutive read cycles in the same memory (see Figure 21-9).
Figure 21-9.
No Setup, No Hold On NRD and NCS Read Signals
MCK
A[25:2]
NBS0,NBS1,
NBS2,NBS3,
A0, A1
NRD
NCS
D[31:0]
NRD_PULSE
NCS_RD_PULSE
NRD_CYCLE
NRD_PULSE
NCS_RD_PULSE
NRD_CYCLE
NRD_PULSE
NCS_RD_PULSE
NRD_CYCLE
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
195
21.8.1.5 Null Pulse
Programming null pulse is not permitted. Pulse must be at least set to 1. A null value leads to unpredictable
behavior.
21.8.2 Read Mode
As NCS and NRD waveforms are defined independently of one other, the SMC needs to know when the read data
is available on the data bus. The SMC does not compare NCS and NRD timings to know which signal rises first.
The READ_MODE parameter in the SMC_MODE register of the corresponding chip select indicates which signal
of NRD and NCS controls the read operation.
21.8.2.1 Read is Controlled by NRD (READ_MODE = 1):
Figure 21-10 shows the waveforms of a read operation of a typical asynchronous RAM. The read data is available
tPACC after the falling edge of NRD, and turns to ‘Z’ after the rising edge of NRD. In this case, the READ_MODE
must be set to 1 (read is controlled by NRD), to indicate that data is available with the rising edge of NRD. The
SMC samples the read data internally on the rising edge of Master Clock that generates the rising edge of NRD,
whatever the programmed waveform of NCS may be.
Figure 21-10. READ_MODE = 1: Data is sampled by SMC before the rising edge of NRD
MCK
A[25:2]
NBS0,NBS1,
NBS2,NBS3,
A0, A1
NRD
NCS
tPACC
D[31:0]
Data Sampling
196
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
21.8.2.2 Read is Controlled by NCS (READ_MODE = 0)
Figure 21-11 shows the typical read cycle of an LCD module. The read data is valid tPACC after the falling edge of
the NCS signal and remains valid until the rising edge of NCS. Data must be sampled when NCS is raised. In that
case, the READ_MODE must be set to 0 (read is controlled by NCS): the SMC internally samples the data on the
rising edge of Master Clock that generates the rising edge of NCS, whatever the programmed waveform of NRD
may be.
Figure 21-11. READ_MODE = 0: Data is sampled by SMC before the rising edge of NCS
MCK
A[25:2]
NBS0,NBS1,
NBS2,NBS3,
A0, A1
NRD
NCS
tPACC
D[31:0]
Data Sampling
21.8.3 Write Waveforms
The write protocol is similar to the read protocol. It is depicted in Figure 21-12. The write cycle starts with the
address setting on the memory address bus.
21.8.3.1 NWE Waveforms
The NWE signal is characterized by a setup timing, a pulse width and a hold timing.
1.
NWE_SETUP: the NWE setup time is defined as the setup of address and data before the NWE falling
edge;
2.
NWE_PULSE: The NWE pulse length is the time between NWE falling edge and NWE rising edge;
3.
NWE_HOLD: The NWE hold time is defined as the hold time of address and data after the NWE rising edge.
The NWE waveforms apply to all byte-write lines in Byte Write access mode: NWR0 to NWR3.
21.8.3.2 NCS Waveforms
The NCS signal waveforms in write operation are not the same that those applied in read operations, but are
separately defined:
1.
NCS_WR_SETUP: the NCS setup time is defined as the setup time of address before the NCS falling edge.
2.
NCS_WR_PULSE: the NCS pulse length is the time between NCS falling edge and NCS rising edge;
3.
NCS_WR_HOLD: the NCS hold time is defined as the hold time of address after the NCS rising edge.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
197
Figure 21-12. Write Cycle
MCK
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0, A1
NWE
NCS
NWE_SETUP
NCS_WR_SETUP
NWE_PULSE
NCS_WR_PULSE
NWE_HOLD
NCS_WR_HOLD
NWE_CYCLE
21.8.3.3 Write Cycle
The write cycle time is defined as the total duration of the write cycle, that is, from the time where address is set on
the address bus to the point where address may change. The total write cycle time is equal to:
NWE_CYCLE = NWE_SETUP + NWE_PULSE + NWE_HOLD,
as well as
NWE_CYCLE = NCS_WR_SETUP + NCS_WR_PULSE + NCS_WR_HOLD
All NWE and NCS (write) timings are defined separately for each chip select as an integer number of Master Clock
cycles. The NWE_CYCLE field is common to both the NWE and NCS signals, thus the timing period is of the same
duration.
NWE_CYCLE, NWE_SETUP, and NWE_PULSE implicitly define the NWE_HOLD value as:
NWE_HOLD = NWE_CYCLE - NWE_SETUP - NWE_PULSE
NWE_CYCLE, NCS_WR_SETUP, and NCS_WR_PULSE implicitly define the NCS_WR_HOLD value as:
NCS_WR_HOLD = NWE_CYCLE - NCS_WR_SETUP - NCS_WR_PULSE
198
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
21.8.3.4 Null Delay Setup and Hold
If null setup parameters are programmed for NWE and/or NCS, NWE and/or NCS remain active continuously in
case of consecutive write cycles in the same memory (see Figure 21-13). However, for devices that perform write
operations on the rising edge of NWE or NCS, such as SRAM, either a setup or a hold must be programmed.
Figure 21-13. Null Setup and Hold Values of NCS and NWE in Write Cycle
MCK
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0, A1
NWE,
NWR0, NWR1,
NWR2, NWR3
NCS
D[31:0]
NWE_PULSE
NWE_PULSE
NWE_PULSE
NCS_WR_PULSE
NCS_WR_PULSE
NCS_WR_PULSE
NWE_CYCLE
NWE_CYCLE
NWE_CYCLE
21.8.3.5 Null Pulse
Programming null pulse is not permitted. Pulse must be at least set to 1. A null value leads to unpredictable
behavior.
21.8.4 Write Mode
The WRITE_MODE parameter in the SMC_MODE register of the corresponding chip select indicates which signal
controls the write operation.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
199
21.8.4.1 Write is Controlled by NWE (WRITE_MODE = 1)
Figure 21-14 shows the waveforms of a write operation with WRITE_MODE set to 1. The data is put on the bus
during the pulse and hold steps of the NWE signal. The internal data buffers are turned out after the NWE_SETUP
time, and until the end of the write cycle, regardless of the programmed waveform on NCS.
Figure 21-14. WRITE_MODE = 1. The write operation is controlled by NWE
MCK
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0, A1
NWE,
NWR0, NWR1,
NWR2, NWR3
NCS
D[31:0]
21.8.4.2 Write is Controlled by NCS (WRITE_MODE = 0)
Figure 21-15 shows the waveforms of a write operation with WRITE_MODE set to 0. The data is put on the bus
during the pulse and hold steps of the NCS signal. The internal data buffers are turned out after the
NCS_WR_SETUP time, and until the end of the write cycle, regardless of the programmed waveform on NWE.
Figure 21-15. WRITE_MODE = 0. The write operation is controlled by NCS
MCK
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0, A1
NWE,
NWR0, NWR1,
NWR2, NWR3
NCS
D[31:0]
200
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
21.8.5 Coding Timing Parameters
All timing parameters are defined for one chip select and are grouped together in one SMC_REGISTER according
to their type.

The SMC_SETUP register groups the definition of all setup parameters: NRD_SETUP, NCS_RD_SETUP,
NWE_SETUP, NCS_WR_SETUP

The SMC_PULSE register groups the definition of all pulse parameters: NRD_PULSE, NCS_RD_PULSE,
NWE_PULSE, NCS_WR_PULSE

The SMC_CYCLE register groups the definition of all cycle parameters: NRD_CYCLE, NWE_CYCLE
Table 21-4 shows how the timing parameters are coded and their permitted range.
Table 21-4.
Coding and Range of Timing Parameters
Permitted Range
Coded Value
Number of Bits
Effective Value
Coded Value
Effective Value
setup [5:0]
6
128 x setup[5] + setup[4:0]
0 ≤ 31
0 ≤ 128 + 31
pulse [6:0]
7
256 x pulse[6] + pulse[5:0]
0 ≤ 63
0 ≤ 256 + 63
cycle [8:0]
9
256 x cycle[8:7] + cycle[6:0]
0 ≤ 127
0 ≤ 512 + 127
0 ≤ 256 + 127
0 ≤ 768 + 127
21.8.6 Reset Values of Timing Parameters
Table 21-8 ”Register Mapping” on page 221 gives the default value of timing parameters at reset.
21.8.7 Usage Restriction
The SMC does not check the validity of the user-programmed parameters. If the sum of SETUP and PULSE
parameters is larger than the corresponding CYCLE parameter, this leads to unpredictable behavior of the SMC.
For read operations:
Null but positive setup and hold of address and NRD and/or NCS can not be guaranteed at the memory interface
because of the propagation delay of theses signals through external logic and pads. If positive setup and hold
values must be verified, then it is strictly recommended to program non-null values so as to cover possible skews
between address, NCS and NRD signals.
For write operations:
If a null hold value is programmed on NWE, the SMC can guarantee a positive hold of address, byte select lines,
and NCS signal after the rising edge of NWE. This is true for WRITE_MODE = 1 only. See “Early Read Wait State”
on page 203.
For read and write operations: a null value for pulse parameters is forbidden and may lead to unpredictable
behavior.
In read and write cycles, the setup and hold time parameters are defined in reference to the address bus. For
external devices that require setup and hold time between NCS and NRD signals (read), or between NCS and
NWE signals (write), these setup and hold times must be converted into setup and hold times in reference to the
address bus.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
201
21.9
Automatic Wait States
Under certain circumstances, the SMC automatically inserts idle cycles between accesses to avoid bus contention
or operation conflict.
21.9.1 Chip Select Wait States
The SMC always inserts an idle cycle between 2 transfers on separate chip selects. This idle cycle ensures that
there is no bus contention between the de-activation of one device and the activation of the next one.
During chip select wait state, all control lines are turned inactive: NBS0 to NBS3, NWR0 to NWR3, NCS[0..7], NRD
lines are all set to 1.
Figure 21-16 illustrates a chip select wait state between access on Chip Select 0 and Chip Select 2.
Figure 21-16. Chip Select Wait State between a Read Access on NCS0 and a Write Access on NCS2
MCK
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0,A1
NRD
NWE
NCS0
NCS2
NRD_CYCLE
NWE_CYCLE
D[31:0]
Read to Write Chip Select
Wait State
Wait State
202
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
21.9.2 Early Read Wait State
In some cases, the SMC inserts a wait state cycle between a write access and a read access to allow time for the
write cycle to end before the subsequent read cycle begins. This wait state is not generated in addition to a chip
select wait state. The early read cycle thus only occurs between a write and read access to the same memory
device (same chip select).
An early read wait state is automatically inserted if at least one of the following conditions is valid:

if the write controlling signal has no hold time and the read controlling signal has no setup time (Figure 2117).

in NCS write controlled mode (WRITE_MODE = 0), if there is no hold timing on the NCS signal and the
NCS_RD_SETUP parameter is set to 0, regardless of the read mode (Figure 21-18). The write operation
must end with a NCS rising edge. Without an Early Read Wait State, the write operation could not complete
properly.

in NWE controlled mode (WRITE_MODE = 1) and if there is no hold timing (NWE_HOLD = 0), the feedback
of the write control signal is used to control address, data, chip select and byte select lines. If the external
write control signal is not inactivated as expected due to load capacitances, an Early Read Wait State is
inserted and address, data and control signals are maintained one more cycle. See Figure 21-19.
Figure 21-17. Early Read Wait State: Write with No Hold Followed by Read with No Setup
MCK
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0, A1
NWE
NRD
no hold
no setup
D[31:0]
write cycle
Early Read
wait state
read cycle
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
203
Figure 21-18. Early Read Wait State: NCS Controlled Write with No Hold Followed by a Read with No NCS Setup
MCK
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0,A1
NCS
NRD
no hold
no setup
D[31:0]
write cycle
(WRITE_MODE = 0)
Early Read
wait state
read cycle
(READ_MODE = 0 or READ_MODE = 1)
Figure 21-19. Early Read Wait State: NWE-controlled Write with No Hold Followed by a Read with one Set-up Cycle
MCK
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0, A1
internal write controlling signal
external write controlling signal
(NWE)
no hold
read setup = 1
NRD
D[31:0]
write cycle
(WRITE_MODE = 1)
204
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Early Read
wait state
read cycle
(READ_MODE = 0 or READ_MODE = 1)
21.9.3 Reload User Configuration Wait State
The user may change any of the configuration parameters by writing the SMC user interface.
When detecting that a new user configuration has been written in the user interface, the SMC inserts a wait state
before starting the next access. The so called “Reload User Configuration Wait State” is used by the SMC to load
the new set of parameters to apply to next accesses.
The Reload Configuration Wait State is not applied in addition to the Chip Select Wait State. If accesses before
and after re-programming the user interface are made to different devices (Chip Selects), then one single Chip
Select Wait State is applied.
On the other hand, if accesses before and after writing the user interface are made to the same device, a Reload
Configuration Wait State is inserted, even if the change does not concern the current Chip Select.
21.9.3.1 User Procedure
To insert a Reload Configuration Wait State, the SMC detects a write access to any SMC_MODE register of the
user interface. If the user only modifies timing registers (SMC_SETUP, SMC_PULSE, SMC_CYCLE registers) in
the user interface, he must validate the modification by writing the SMC_MODE, even if no change was made on
the mode parameters.
The user must not change the configuration parameters of an SMC Chip Select (Setup, Pulse, Cycle, Mode) if
accesses are performed on this CS during the modification. Any change of the Chip Select parameters, while
fetching the code from a memory connected on this CS, may lead to unpredictable behavior. The instructions used
to modify the parameters of an SMC Chip Select can be executed from the internal RAM or from a memory
connected to another CS.
21.9.3.2 Slow Clock Mode Transition
A Reload Configuration Wait State is also inserted when the Slow Clock Mode is entered or exited, after the end of
the current transfer (see “Slow Clock Mode” on page 215).
21.9.4 Read to Write Wait State
Due to an internal mechanism, a wait cycle is always inserted between consecutive read and write SMC accesses.
This wait cycle is referred to as a read to write wait state in this document.
This wait cycle is applied in addition to chip select and reload user configuration wait states when they are to be
inserted. See Figure 21-16 on page 202.
21.10 Data Float Wait States
Some memory devices are slow to release the external bus. For such devices, it is necessary to add wait states
(data float wait states) after a read access:

before starting a read access to a different external memory

before starting a write access to the same device or to a different external one.
The Data Float Output Time (tDF) for each external memory device is programmed in the TDF_CYCLES field of the
SMC_MODE register for the corresponding chip select. The value of TDF_CYCLES indicates the number of data
float wait cycles (between 0 and 15) before the external device releases the bus, and represents the time allowed
for the data output to go to high impedance after the memory is disabled.
Data float wait states do not delay internal memory accesses. Hence, a single access to an external memory with
long tDF will not slow down the execution of a program from internal memory.
The data float wait states management depends on the READ_MODE and the TDF_MODE fields of the
SMC_MODE register for the corresponding chip select.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
205
21.10.1 READ_MODE
Setting the READ_MODE to 1 indicates to the SMC that the NRD signal is responsible for turning off the tri-state
buffers of the external memory device. The Data Float Period then begins after the rising edge of the NRD signal
and lasts TDF_CYCLES MCK cycles.
When the read operation is controlled by the NCS signal (READ_MODE = 0), the TDF field gives the number of
MCK cycles during which the data bus remains busy after the rising edge of NCS.
Figure 21-20 illustrates the Data Float Period in NRD-controlled mode (READ_MODE = 1), assuming a data float
period of 2 cycles (TDF_CYCLES = 2). Figure 21-21 shows the read operation when controlled by NCS
(READ_MODE = 0) and the TDF_CYCLES parameter equals 3.
Figure 21-20. TDF Period in NRD Controlled Read Access (TDF = 2)
MCK
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0, A1
NRD
NCS
tpacc
D[31:0]
TDF = 2 clock cycles
NRD controlled read operation
Figure 21-21. TDF Period in NCS Controlled Read Operation (TDF = 3)
MCK
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0,A1
NRD
NCS
tpacc
D[31:0]
TDF = 3 clock cycles
NCS controlled read operation
206
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
21.10.2 TDF Optimization Enabled (TDF_MODE = 1)
When the TDF_MODE of the SMC_MODE register is set to 1 (TDF optimization is enabled), the SMC takes
advantage of the setup period of the next access to optimize the number of wait states cycle to insert.
Figure 21-22 shows a read access controlled by NRD, followed by a write access controlled by NWE, on Chip
Select 0. Chip Select 0 has been programmed with:
NRD_HOLD = 4; READ_MODE = 1 (NRD controlled)
NWE_SETUP = 3; WRITE_MODE = 1 (NWE controlled)
TDF_CYCLES = 6; TDF_MODE = 1 (optimization enabled).
Figure 21-22. TDF Optimization: No TDF wait states are inserted if the TDF period is over when the next access begins
MCK
A[25:2]
NRD
NRD_HOLD= 4
NWE
NWE_SETUP= 3
NCS0
TDF_CYCLES = 6
D[31:0]
read access on NCS0 (NRD controlled)
Read to Write
Wait State
write access on NCS0 (NWE controlled)
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
207
21.10.3 TDF Optimization Disabled (TDF_MODE = 0)
When optimization is disabled, tdf wait states are inserted at the end of the read transfer, so that the data float
period is ended when the second access begins. If the hold period of the read1 controlling signal overlaps the data
float period, no additional tdf wait states will be inserted.
Figure 21-23, Figure 21-24 and Figure 21-25 illustrate the cases:

read access followed by a read access on another chip select,

read access followed by a write access on another chip select,

read access followed by a write access on the same chip select,
with no TDF optimization.
Figure 21-23. TDF Optimization Disabled (TDF Mode = 0). TDF wait states between 2 read accesses on different chip selects
MCK
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0, A1
read1 controlling signal
(NRD)
read1 hold = 1
read2 controlling signal
(NRD)
read2 setup = 1
TDF_CYCLES = 6
D[31:0]
5 TDF WAIT STATES
read1 cycle
TDF_CYCLES = 6
Chip Select Wait State
208
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
read 2 cycle
TDF_MODE = 0
(optimization disabled)
Figure 21-24.
TDF Mode = 0: TDF wait states between a read and a write access on different chip selects
MCK
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0, A1
read1 controlling signal
(NRD)
read1 hold = 1
write2 controlling signal
(NWE)
write2 setup = 1
TDF_CYCLES = 4
D[31:0]
2 TDF WAIT STATES
read1 cycle
TDF_CYCLES = 4
write2 cycle
TDF_MODE = 0
(optimization disabled)
Read to Write Chip Select
Wait State Wait State
Figure 21-25. TDF Mode = 0: TDF wait states between read and write accesses on the same chip select
MCK
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0, A1
read1 controlling signal
(NRD)
write2 setup = 1
read1 hold = 1
write2 controlling signal
(NWE)
TDF_CYCLES = 5
D[31:0]
4 TDF WAIT STATES
read1 cycle
TDF_CYCLES = 5
Read to Write
Wait State
write2 cycle
TDF_MODE = 0
(optimization disabled)
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
209
21.11 External Wait
Any access can be extended by an external device using the NWAIT input signal of the SMC. The EXNW_MODE
field of the SMC_MODE register on the corresponding chip select must be set to either to “10” (frozen mode) or
“11” (ready mode). When the EXNW_MODE is set to “00” (disabled), the NWAIT signal is simply ignored on the
corresponding chip select. The NWAIT signal delays the read or write operation in regards to the read or write
controlling signal, depending on the read and write modes of the corresponding chip select.
21.11.1 Restriction
When one of the EXNW_MODE is enabled, it is mandatory to program at least one hold cycle for the read/write
controlling signal. For that reason, the NWAIT signal cannot be used in Page Mode (“Asynchronous Page Mode”
on page 218), or in Slow Clock Mode (“Slow Clock Mode” on page 215).
The NWAIT signal is assumed to be a response of the external device to the read/write request of the SMC. Then
NWAIT is examined by the SMC only in the pulse state of the read or write controlling signal. The assertion of the
NWAIT signal outside the expected period has no impact on SMC behavior.
21.11.2 Frozen Mode
When the external device asserts the NWAIT signal (active low), and after internal synchronization of this signal,
the SMC state is frozen, i.e., SMC internal counters are frozen, and all control signals remain unchanged. When
the resynchronized NWAIT signal is deasserted, the SMC completes the access, resuming the access from the
point where it was stopped. See Figure 21-26. This mode must be selected when the external device uses the
NWAIT signal to delay the access and to freeze the SMC.
The assertion of the NWAIT signal outside the expected period is ignored as illustrated in Figure 21-27.
Figure 21-26. Write Access with NWAIT Assertion in Frozen Mode (EXNW_MODE = 10)
MCK
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0,A1
FROZEN STATE
4
3
2
1
1
1
1
0
3
2
2
2
2
1
NWE
6
5
4
NCS
D[31:0]
NWAIT
internally synchronized
NWAIT signal
Write cycle
EXNW_MODE = 10 (Frozen)
WRITE_MODE = 1 (NWE_controlled)
NWE_PULSE = 5
NCS_WR_PULSE = 7
210
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
0
Figure 21-27. Read Access with NWAIT Assertion in Frozen Mode (EXNW_MODE = 10)
MCK
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0,A1
NCS
FROZEN STATE
4
1
NRD
3
2
2
2
1
0
2
1
0
2
1
0
0
5
5
5
4
3
NWAIT
internally synchronized
NWAIT signal
Read cycle
EXNW_MODE = 10 (Frozen)
READ_MODE = 0 (NCS_controlled)
NRD_PULSE = 2, NRD_HOLD = 6
NCS_RD_PULSE =5, NCS_RD_HOLD =3
Assertion is ignored
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
211
21.11.3 Ready Mode
In Ready mode (EXNW_MODE = 11), the SMC behaves differently. Normally, the SMC begins the access by
down counting the setup and pulse counters of the read/write controlling signal. In the last cycle of the pulse
phase, the resynchronized NWAIT signal is examined.
If asserted, the SMC suspends the access as shown in Figure 21-28 and Figure 21-29. After deassertion, the
access is completed: the hold step of the access is performed.
This mode must be selected when the external device uses deassertion of the NWAIT signal to indicate its ability
to complete the read or write operation.
If the NWAIT signal is deasserted before the end of the pulse, or asserted after the end of the pulse of the
controlling read/write signal, it has no impact on the access length as shown in Figure 21-29.
Figure 21-28. NWAIT Assertion in Write Access: Ready Mode (EXNW_MODE = 11)
MCK
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0,A1
Wait STATE
4
3
2
1
0
0
0
3
2
1
1
1
NWE
6
5
4
NCS
D[31:0]
NWAIT
internally synchronized
NWAIT signal
Write cycle
EXNW_MODE = 11 (Ready mode)
WRITE_MODE = 1 (NWE_controlled)
NWE_PULSE = 5
NCS_WR_PULSE = 7
212
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
0
Figure 21-29. NWAIT Assertion in Read Access: Ready Mode (EXNW_MODE = 11)
MCK
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0,A1
Wait STATE
6
5
4
3
2
1
0
0
6
5
4
3
2
1
1
NCS
NRD
0
NWAIT
internally synchronized
NWAIT signal
Read cycle
EXNW_MODE = 11(Ready mode)
READ_MODE = 0 (NCS_controlled)
Assertion is ignored
Assertion is ignored
NRD_PULSE = 7
NCS_RD_PULSE =7
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
213
21.11.4 NWAIT Latency and Read/Write Timings
There may be a latency between the assertion of the read/write controlling signal and the assertion of the NWAIT
signal by the device. The programmed pulse length of the read/write controlling signal must be at least equal to
this latency plus the 2 cycles of resynchronization + 1 cycle. Otherwise, the SMC may enter the hold state of the
access without detecting the NWAIT signal assertion. This is true in frozen mode as well as in ready mode. This is
illustrated in Figure 21-30.
When EXNW_MODE is enabled (ready or frozen), the user must program a pulse length of the read and write
controlling signal of at least:
minimal pulse length = NWAIT latency + 2 resynchronization cycles + 1 cycle
Figure 21-30. NWAIT Latency
MCK
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0,A1
WAIT STATE
4
3
2
1
0
0
NRD
minimal pulse length
NWAIT
intenally synchronized
NWAIT signal
NWAIT latency 2 cycle resynchronization
Read cycle
EXNW_MODE = 10 or 11
READ_MODE = 1 (NRD_controlled)
NRD_PULSE = 5
214
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
0
21.12 Slow Clock Mode
The SMC is able to automatically apply a set of “slow clock mode” read/write waveforms when an internal signal
driven by the Power Management Controller is asserted because MCK has been configured to a very slow clock
rate (typically 32 kHz clock rate). In this mode, the user-programmed waveforms are ignored and the slow clock
mode waveforms are applied. This mode is provided so as to avoid reprogramming the User Interface with
appropriate waveforms at very slow clock rate. When activated, the slow mode is active on all chip selects.
21.12.1 Slow Clock Mode Waveforms
Figure 21-31 illustrates the read and write operations in slow clock mode. They are valid on all chip selects. Table
21-5 indicates the value of read and write parameters in slow clock mode.
Figure 21-31.
Read/write Cycles in Slow Clock Mode
MCK
MCK
A[25:2]
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0,A1
NBS0, NBS1,
NBS2, NBS3,
A0,A1
1
NWE
NRD
1
1
1
1
NCS
NCS
NRD_CYCLE = 2
NWE_CYCLE = 3
SLOW CLOCK MODE WRITE
Table 21-5.
SLOW CLOCK MODE READ
Read and Write Timing Parameters in Slow Clock Mode
Read Parameters
Duration (cycles)
Write Parameters
Duration (cycles)
NRD_SETUP
1
NWE_SETUP
1
NRD_PULSE
1
NWE_PULSE
1
NCS_RD_SETUP
0
NCS_WR_SETUP
0
NCS_RD_PULSE
2
NCS_WR_PULSE
3
NRD_CYCLE
2
NWE_CYCLE
3
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
215
21.12.2 Switching from (to) Slow Clock Mode to (from) Normal Mode
When switching from slow clock mode to the normal mode, the current slow clock mode transfer is completed at
high clock rate, with the set of slow clock mode parameters. See Figure 21-32. The external device may not be fast
enough to support such timings.
Figure 21-33 illustrates the recommended procedure to properly switch from one mode to the other.
Figure 21-32. Clock Rate Transition Occurs while the SMC is Performing a Write Operation
Slow Clock Mode
internal signal from PMC
MCK
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0,A1
NWE
1
1
1
1
1
1
2
3
2
NCS
NWE_CYCLE = 3
NWE_CYCLE = 7
SLOW CLOCK MODE WRITE SLOW CLOCK MODE WRITE
This write cycle finishes with the slow clock mode set
of parameters after the clock rate transition
216
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
NORMAL MODE WRITE
Slow clock mode transition is detected:
Reload Configuration Wait State
Figure 21-33. Recommended Procedure to Switch from Slow Clock Mode to Normal Mode or from Normal Mode to Slow Clock
Mode
Slow Clock Mode
internal signal from PMC
MCK
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0,A1
NWE
1
1
1
2
3
2
NCS
SLOW CLOCK MODE WRITE
IDLE STATE
NORMAL MODE WRITE
Reload Configuration
Wait State
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
217
21.13 Asynchronous Page Mode
The SMC supports asynchronous burst reads in Page mode, providing that the page mode is enabled in the
SMC_MODE register (PMEN field). The page size must be configured in the SMC_MODE register (PS field) to 4,
8, 16 or 32 bytes.
The page defines a set of consecutive bytes into memory. A 4-byte page (resp. 8-, 16-, 32-byte page) is always
aligned to 4-byte boundaries (resp. 8-, 16-, 32-byte boundaries) of memory. The MSB of data address defines the
address of the page in memory, the LSB of address define the address of the data in the page as detailed in Table
21-6.
With Page mode memory devices, the first access to one page (tpa) takes longer than the subsequent accesses to
the page (tsa) as shown in Figure 21-34. When in Page mode, the SMC enables the user to define different read
timings for the first access within one page, and next accesses within the page.
Table 21-6.
Page Address and Data Address within a Page
Page Size
Page Address(1)
Data Address in the Page(2)
4 bytes
A[25:2]
A[1:0]
8 bytes
A[25:3]
A[2:0]
16 bytes
A[25:4]
A[3:0]
32 bytes
A[25:5]
A[4:0]
Notes:
1.
2.
A denotes the address bus of the memory device
For 16-bit devices, the bit 0 of address is ignored. For 32-bit devices, bits [1:0] are ignored.
21.13.1 Protocol and Timings in Page Mode
Figure 21-34 shows the NRD and NCS timings in Page mode access.
Figure 21-34. Page Mode Read Protocol (Address MSB and LSB are defined in Table 21-6)
MCK
A[MSB]
A[LSB]
NRD
tpa
NCS
tsa
tsa
D[31:0]
NCS_RD_PULSE
NRD_PULSE
NRD_PULSE
The NRD and NCS signals are held low during all read transfers, whatever the programmed values of the setup
and hold timings in the User Interface may be. Moreover, the NRD and NCS timings are identical. The pulse length
of the first access to the page is defined with the NCS_RD_PULSE field of the SMC_PULSE register. The pulse
length of subsequent accesses within the page are defined using the NRD_PULSE parameter.
218
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
In Page mode, the programming of the read timings is described in Table 21-7.
Table 21-7.
Programming of Read Timings in Page Mode
Parameter
Value
Definition
READ_MODE
‘x’
No impact
NCS_RD_SETUP
‘x’
No impact
NCS_RD_PULSE
tpa
Access time of first access to the page
NRD_SETUP
‘x’
No impact
NRD_PULSE
tsa
Access time of subsequent accesses in the page
NRD_CYCLE
‘x’
No impact
The SMC does not check the coherency of timings. It will always apply the NCS_RD_PULSE timings as page
access timing (tpa) and the NRD_PULSE for accesses to the page (tsa), even if the programmed value for tpa is
shorter than the programmed value for tsa.
21.13.2 Byte Access Type in Page Mode
The Byte Access Type configuration remains active in page mode. For 16-bit or 32-bit page mode devices that
require byte selection signals, configure the BAT field of the SMC Mode Register to 0 (byte select access type).
21.13.3 Page Mode Restriction
The Page mode is not compatible with the use of the NWAIT signal. Using the Page mode and the NWAIT signal
may lead to unpredictable behavior.
21.13.4 Sequential and Non-sequential Accesses
If the chip select and the MSB of addresses as defined in Table 21-6 are identical, then the current access lies in
the same page as the previous one, and no page break occurs.
Using this information, all data within the same page, sequential or not sequential, are accessed with a minimum
access time (tsa). Figure 21-35 illustrates access to an 8-bit memory device in page mode, with 8-byte pages.
Access to D1 causes a page access with a long access time (tpa). Accesses to D3 and D7, though they are not
sequential accesses, only require a short access time (tsa).
If the MSB of addresses are different, the SMC performs the access of a new page. In the same way, if the chip
select is different from the previous access, a page break occurs. If two sequential accesses are made to the page
mode memory, but separated by an other internal or external peripheral access, a page break occurs on the
second access because the chip select of the device was deasserted between both accesses.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
219
Figure 21-35.
Access to Non-sequential Data within the Same Page
MCK
Page address
A[25:3]
A[2], A1, A0
A1
A3
A7
NRD
NCS
D[7:0]
D1
NCS_RD_PULSE
220
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
D3
NRD_PULSE
D7
NRD_PULSE
21.14 Static Memory Controller (SMC) User Interface
The SMC is programmed using the registers listed in Table 21-8. For each chip select, a set of 4 registers is used to program the parameters of the external device connected on it. In Table 21-8, “CS_number” denotes the chip select number.
16 bytes (0x10) are required per chip select.
The user must complete writing the configuration by writing any one of the SMC_MODE registers.
Table 21-8.
Register Mapping
Offset
Register
Name
Access
Reset
0x10 x CS_number + 0x00
SMC Setup Register
SMC_SETUP
Read/Write
0x01010101
0x10 x CS_number + 0x04
SMC Pulse Register
SMC_PULSE
Read/Write
0x01010101
0x10 x CS_number + 0x08
SMC Cycle Register
SMC_CYCLE
Read/Write
0x00030003
0x10 x CS_number + 0x0C
SMC Mode Register
SMC_MODE
Read/Write
0x10001000
0xEC–0xFC
Reserved
–
–
–
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
221
21.14.1 SMC Setup Register
Name:
SMC_SETUP[0..7]
Address:
0xFFFFE400 (0)[0], 0xFFFFE410 (0)[1], 0xFFFFE420 (0)[2], 0xFFFFE430 (0)[3], 0xFFFFE440 (0)[4],
0xFFFFE450 (0)[5], 0xFFFFE460 (0)[6], 0xFFFFE470 (0)[7], 0xFFFFEA00 (1)[0], 0xFFFFEA10 (1)[1],
0xFFFFEA20 (1)[2], 0xFFFFEA30 (1)[3], 0xFFFFEA40 (1)[4], 0xFFFFEA50 (1)[5], 0xFFFFEA60 (1)[6],
0xFFFFEA70 (1)[7]
Access:
Read/Write
31
30
–
–
23
22
–
–
15
14
–
–
7
6
–
–
29
28
27
26
25
24
18
17
16
10
9
8
1
0
NCS_RD_SETUP
21
20
19
NRD_SETUP
13
12
11
NCS_WR_SETUP
5
4
3
2
NWE_SETUP
• NWE_SETUP: NWE Setup Length
The NWE signal setup length is defined as:
NWE setup length = (128* NWE_SETUP[5] + NWE_SETUP[4:0]) clock cycles
• NCS_WR_SETUP: NCS Setup Length in WRITE Access
In write access, the NCS signal setup length is defined as:
NCS setup length = (128* NCS_WR_SETUP[5] + NCS_WR_SETUP[4:0]) clock cycles
• NRD_SETUP: NRD Setup Length
The NRD signal setup length is defined in clock cycles as:
NRD setup length = (128* NRD_SETUP[5] + NRD_SETUP[4:0]) clock cycles
• NCS_RD_SETUP: NCS Setup Length in READ Access
In read access, the NCS signal setup length is defined as:
NCS setup length = (128* NCS_RD_SETUP[5] + NCS_RD_SETUP[4:0]) clock cycles
222
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
21.14.2 SMC Pulse Register
Name:
SMC_PULSE[0..7]
Address:
0xFFFFE404 (0)[0], 0xFFFFE414 (0)[1], 0xFFFFE424 (0)[2], 0xFFFFE434 (0)[3], 0xFFFFE444 (0)[4],
0xFFFFE454 (0)[5], 0xFFFFE464 (0)[6], 0xFFFFE474 (0)[7], 0xFFFFEA04 (1)[0], 0xFFFFEA14 (1)[1],
0xFFFFEA24 (1)[2], 0xFFFFEA34 (1)[3], 0xFFFFEA44 (1)[4], 0xFFFFEA54 (1)[5], 0xFFFFEA64 (1)[6],
0xFFFFEA74 (1)[7]
Access:
Read/Write
31
30
29
28
–
23
27
22
21
20
19
–
15
25
24
18
17
16
10
9
8
2
1
0
NRD_PULSE
14
13
12
–
7
26
NCS_RD_PULSE
11
NCS_WR_PULSE
6
5
4
–
3
NWE_PULSE
• NWE_PULSE: NWE Pulse Length
The NWE signal pulse length is defined as:
NWE pulse length = (256* NWE_PULSE[6] + NWE_PULSE[5:0]) clock cycles
The NWE pulse length must be at least 1 clock cycle.
• NCS_WR_PULSE: NCS Pulse Length in WRITE Access
In write access, the NCS signal pulse length is defined as:
NCS pulse length = (256* NCS_WR_PULSE[6] + NCS_WR_PULSE[5:0]) clock cycles
The NCS pulse length must be at least 1 clock cycle.
• NRD_PULSE: NRD Pulse Length
In standard read access, the NRD signal pulse length is defined in clock cycles as:
NRD pulse length = (256* NRD_PULSE[6] + NRD_PULSE[5:0]) clock cycles
The NRD pulse length must be at least 1 clock cycle.
In page mode read access, the NRD_PULSE parameter defines the duration of the subsequent accesses in the page.
• NCS_RD_PULSE: NCS Pulse Length in READ Access
In standard read access, the NCS signal pulse length is defined as:
NCS pulse length = (256* NCS_RD_PULSE[6] + NCS_RD_PULSE[5:0]) clock cycles
The NCS pulse length must be at least 1 clock cycle.
In page mode read access, the NCS_RD_PULSE parameter defines the duration of the first access to one page.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
223
21.14.3 SMC Cycle Register
Name:
SMC_CYCLE[0..7]
Address:
0xFFFFE408 (0)[0], 0xFFFFE418 (0)[1], 0xFFFFE428 (0)[2], 0xFFFFE438 (0)[3], 0xFFFFE448 (0)[4],
0xFFFFE458 (0)[5], 0xFFFFE468 (0)[6], 0xFFFFE478 (0)[7], 0xFFFFEA08 (1)[0], 0xFFFFEA18 (1)[1],
0xFFFFEA28 (1)[2], 0xFFFFEA38 (1)[3], 0xFFFFEA48 (1)[4], 0xFFFFEA58 (1)[5], 0xFFFFEA68 (1)[6],
0xFFFFEA78 (1)[7]
Access:
Read/Write
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
NRD_CYCLE
23
22
21
20
19
18
17
16
NRD_CYCLE
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
NWE_CYCLE
7
6
5
4
3
2
1
0
NWE_CYCLE
• NWE_CYCLE: Total Write Cycle Length
The total write cycle length is the total duration in clock cycles of the write cycle. It is equal to the sum of the setup, pulse
and hold steps of the NWE and NCS signals. It is defined as:
Write cycle length = (NWE_CYCLE[8:7]*256 + NWE_CYCLE[6:0]) clock cycles
• NRD_CYCLE: Total Read Cycle Length
The total read cycle length is the total duration in clock cycles of the read cycle. It is equal to the sum of the setup, pulse
and hold steps of the NRD and NCS signals. It is defined as:
Read cycle length = (NRD_CYCLE[8:7]*256 + NRD_CYCLE[6:0]) clock cycles
224
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
21.14.4 SMC Mode Register
Name:
SMC_MODE[0..7]
Address:
0xFFFFE40C (0)[0], 0xFFFFE41C (0)[1], 0xFFFFE42C (0)[2], 0xFFFFE43C (0)[3], 0xFFFFE44C (0)[4],
0xFFFFE45C (0)[5], 0xFFFFE46C (0)[6], 0xFFFFE47C (0)[7], 0xFFFFEA0C (1)[0], 0xFFFFEA1C (1)[1],
0xFFFFEA2C (1)[2], 0xFFFFEA3C (1)[3], 0xFFFFEA4C (1)[4], 0xFFFFEA5C (1)[5], 0xFFFFEA6C (1)[6],
0xFFFFEA7C (1)[7]
Access:
Read/Write
31
30
–
–
29
28
23
22
21
20
–
–
–
TDF_MODE
15
14
13
–
–
7
6
–
–
PS
12
DBW
5
4
EXNW_MODE
27
26
25
24
–
–
–
PMEN
19
18
17
16
TDF_CYCLES
11
10
9
8
–
–
–
BAT
3
2
1
0
–
–
WRITE_MODE READ_MODE
• READ_MODE:
1: The read operation is controlled by the NRD signal.
– If TDF cycles are programmed, the external bus is marked busy after the rising edge of NRD.
– If TDF optimization is enabled (TDF_MODE = 1), TDF wait states are inserted after the setup of NRD.
0: The read operation is controlled by the NCS signal.
– If TDF cycles are programmed, the external bus is marked busy after the rising edge of NCS.
– If TDF optimization is enabled (TDF_MODE = 1), TDF wait states are inserted after the setup of NCS.
• WRITE_MODE
1: The write operation is controlled by the NWE signal.
– If TDF optimization is enabled (TDF_MODE = 1), TDF wait states will be inserted after the setup of NWE.
0: The write operation is controlled by the NCS signal.
– If TDF optimization is enabled (TDF_MODE = 1), TDF wait states will be inserted after the setup of NCS.
• EXNW_MODE: NWAIT Mode
The NWAIT signal is used to extend the current read or write signal. It is only taken into account during the pulse phase of
the read and write controlling signal. When the use of NWAIT is enabled, at least one cycle hold duration must be programmed for the read and write controlling signal.
EXNW_MODE
NWAIT Mode
0
0
Disabled
0
1
Reserved
1
0
Frozen Mode
1
1
Ready Mode
• Disabled Mode: The NWAIT input signal is ignored on the corresponding Chip Select.
• Frozen Mode: If asserted, the NWAIT signal freezes the current read or write cycle. After deassertion, the read/write
cycle is resumed from the point where it was stopped.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
225
• Ready Mode: The NWAIT signal indicates the availability of the external device at the end of the pulse of the controlling
read or write signal, to complete the access. If high, the access normally completes. If low, the access is extended until
NWAIT returns high.
•
BAT: Byte Access Type
This field is used only if DBW defines a 16- or 32-bit data bus.
• 1: Byte write access type:
– Write operation is controlled using NCS, NWR0, NWR1, NWR2, NWR3.
– Read operation is controlled using NCS and NRD.
• 0: Byte select access type:
– Write operation is controlled using NCS, NWE, NBS0, NBS1, NBS2 and NBS3
– Read operation is controlled using NCS, NRD, NBS0, NBS1, NBS2 and NBS3
• DBW: Data Bus Width
DBW
Data Bus Width
0
0
8-bit bus
0
1
16-bit bus
1
0
32-bit bus
1
1
Reserved
• TDF_CYCLES: Data Float Time
This field gives the integer number of clock cycles required by the external device to release the data after the rising edge
of the read controlling signal. The SMC always provide one full cycle of bus turnaround after the TDF_CYCLES period. The
external bus cannot be used by another chip select during TDF_CYCLES + 1 cycles. From 0 up to 15 TDF_CYCLES can
be set.
• TDF_MODE: TDF Optimization
1: TDF optimization is enabled.
– The number of TDF wait states is optimized using the setup period of the next read/write access.
0: TDF optimization is disabled.
– The number of TDF wait states is inserted before the next access begins.
•
PMEN: Page Mode Enabled
1: Asynchronous burst read in page mode is applied on the corresponding chip select.
0: Standard read is applied.
• PS: Page Size
If page mode is enabled, this field indicates the size of the page in bytes.
PS
Page Size
0
0
4-byte page
0
1
8-byte page
1
0
16-byte page
1
1
32-byte page
226
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
22.
SDRAM Controller (SDRAMC)
22.1
Description
The SDRAM Controller (SDRAMC) extends the memory capabilities of a chip by providing the interface to an
external 16-bit or 32-bit SDRAM device. The page size supports ranges from 2048 to 8192 and the number of
columns from 256 to 2048. It supports byte (8-bit), half-word (16-bit) and word (32-bit) accesses.
The SDRAM Controller supports a read or write burst length of one location. It keeps track of the active row in each
bank, thus maximizing SDRAM performance, e.g., the application may be placed in one bank and data in the other
banks. So as to optimize performance, it is advisable to avoid accessing different rows in the same bank.
The SDRAM controller supports a CAS latency of 1, 2 or 3 and optimizes the read access depending on the
frequency.
The different modes available - self-refresh, power-down and deep power-down modes - minimize power
consumption on the SDRAM device.
22.2
I/O Lines Description
Table 22-1.
I/O Line Description
Name
Description
Type
Active Level
SDCK
SDRAM Clock
Output
SDCKE
SDRAM Clock Enable
Output
High
SDCS
SDRAM Controller Chip Select
Output
Low
BA[1:0]
Bank Select Signals
Output
RAS
Row Signal
Output
Low
CAS
Column Signal
Output
Low
SDWE
SDRAM Write Enable
Output
Low
NBS[3:0]
Data Mask Enable Signals
Output
Low
SDRAMC_A[12:0]
Address Bus
Output
D[31:0]
Data Bus
I/O
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
227
22.3
Application Example
22.3.1 Software Interface
The SDRAM address space is organized into banks, rows, and columns. The SDRAM controller allows mapping
different memory types according to the values set in the SDRAMC configuration register.
The SDRAM Controller’s function is to make the SDRAM device access protocol transparent to the user. Table 222 to Table 22-7 illustrate the SDRAM device memory mapping seen by the user in correlation with the device
structure. Various configurations are illustrated.
22.3.1.1 32-bit Memory Data Bus Width
Table 22-2.
SDRAM Configuration Mapping: 2K Rows, 256/512/1024/2048 Columns
CPU Address Line
27
26
25
24
23
22
21
20
19
18
17
16
Bk[1:0]
14
13
12
11
10
9
8
7
Row[10:0]
Bk[1:0]
5
4
3
2
0
M[1:0]
Column[9:0]
Row[10:0]
1
M[1:0]
Column[8:0]
Row[10:0]
Bk[1:0]
6
Column[7:0]
Row[10:0]
Bk[1:0]
Table 22-3.
15
M[1:0]
Column[10:0]
M[1:0]
SDRAM Configuration Mapping: 4K Rows, 256/512/1024/2048 Columns
CPU Address Line
27
26
25
24
23
22
21
20
19
18
17
Bk[1:0]
15
14
13
12
11
10
9
8
7
Row[11:0]
Bk[1:0]
5
4
3
2
0
M[1:0]
Column[9:0]
Row[11:0]
1
M[1:0]
Column[8:0]
Row[11:0]
Bk[1:0]
6
Column[7:0]
Row[11:0]
Bk[1:0]
Table 22-4.
16
M[1:0]
Column[10:0]
M[1:0]
SDRAM Configuration Mapping: 8K Rows, 256/512/1024/2048 Columns
CPU Address Line
27
26
25
24
23
22
21
20
19
18
Bk[1:0]
228
15
Row[12:0]
Bk[1:0]
Notes:
16
Row[12:0]
Bk[1:0]
Bk[1:0]
17
Row[12:0]
Row[12:0]
1. M[1:0] is the byte address inside a 32-bit word.
2. Bk[1] = BA1, Bk[0] = BA0.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
14
13
12
11
10
9
8
7
6
5
Column[7:0]
Column[8:0]
Column[9:0]
Column[10:0]
4
3
2
1
0
M[1:0]
M[1:0]
M[1:0]
M[1:0]
22.3.1.2 16-bit Memory Data Bus Width
Table 22-5.
SDRAM Configuration Mapping: 2K Rows, 256/512/1024/2048 Columns
CPU Address Line
27
26
25
24
23
22
21
20
19
18
17
16
15
Bk[1:0]
13
12
11
10
9
8
7
6
Row[10:0]
Bk[1:0]
4
3
2
1
M0
Column[9:0]
Row[10:0]
0
M0
Column[8:0]
Row[10:0]
Bk[1:0]
5
Column[7:0]
Row[10:0]
Bk[1:0]
Table 22-6.
14
M0
Column[10:0]
M0
SDRAM Configuration Mapping: 4K Rows, 256/512/1024/2048 Columns
CPU Address Line
27
26
25
24
23
22
21
20
19
18
17
16
Bk[1:0]
14
13
12
11
10
9
8
7
6
Row[11:0]
Bk[1:0]
4
3
2
1
M0
Column[9:0]
Row[11:0]
0
M0
Column[8:0]
Row[11:0]
Bk[1:0]
5
Column[7:0]
Row[11:0]
Bk[1:0]
Table 22-7.
15
M0
Column[10:0]
M0
SDRAM Configuration Mapping: 8K Rows, 256/512/1024/2048 Columns
CPU Address Line
27
26
25
24
23
22
21
20
19
18
17
Bk[1:0]
Bk[1:0]
Bk[1:0]
Bk[1:0]
Notes:
16
15
14
Row[12:0]
Row[12:0]
Row[12:0]
Row[12:0]
13
12
11
10
9
8
7
6
5
4
3
2
Column[7:0]
Column[8:0]
Column[9:0]
Column[10:0]
1
0
M0
M0
M0
M0
1. M0 is the byte address inside a 16-bit half-word.
2. Bk[1] = BA1, Bk[0] = BA0.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
229
22.4
Product Dependencies
22.4.1 SDRAM Device Initialization
The initialization sequence is generated by software. The SDRAM devices are initialized by the following
sequence:
1.
SDRAM features must be set in the configuration register: asynchronous timings (TRC, TRAS, etc.), number
of columns, rows, CAS latency, and the data bus width.
2.
For mobile SDRAM, temperature-compensated self refresh (TCSR), drive strength (DS) and partial array
self refresh (PASR) must be set in the Low Power Register.
3.
The SDRAM memory type must be set in the Memory Device Register.
4.
A minimum pause of 200 µs is provided to precede any signal toggle.
5.
(1)
A NOP command is issued to the SDRAM devices. The application must set Mode to 1 in the Mode
Register and perform a write access to any SDRAM address.
6.
An All Banks Precharge command is issued to the SDRAM devices. The application must set Mode to 2 in
the Mode Register and perform a write access to any SDRAM address.
7.
Eight auto-refresh (CBR) cycles are provided. The application must set the Mode to 4 in the Mode Register
and perform a write access to any SDRAM location eight times.
8.
A Mode Register set (MRS) cycle is issued to program the parameters of the SDRAM devices, in particular
CAS latency and burst length. The application must set Mode to 3 in the Mode Register and perform a write
access to the SDRAM. The write address must be chosen so that BA[1:0] are set to 0. For example, with a
16-bit 128 MB SDRAM (12 rows, 9 columns, 4 banks) bank address, the SDRAM write access should be
done at the address 0x20000000.
9.
For mobile SDRAM initialization, an Extended Mode Register set (EMRS) cycle is issued to program the
SDRAM parameters (TCSR, PASR, DS). The application must set Mode to 5 in the Mode Register and
perform a write access to the SDRAM. The write address must be chosen so that BA[1] or BA[0] are set to 1.
For example, with a 16-bit 128 MB SDRAM, (12 rows, 9 columns, 4 banks) bank address the SDRAM write
access should be done at the address 0x20800000 or 0x20400000.
10. The application must go into Normal Mode, setting Mode to 0 in the Mode Register and performing a write
access at any location in the SDRAM.
11. Write the refresh rate into the count field in the SDRAMC Refresh Timer register. (Refresh rate = delay
between refresh cycles). The SDRAM device requires a refresh every 15.625 µs or 7.81 µs. With a 100 MHz
frequency, the Refresh Timer Counter Register must be set with the value 1562 (15.652 µs × 100 MHz) or
781 (7.81 µs × 100 MHz).
After initialization, the SDRAM devices are fully functional.
Note:
230
1.
It is strongly recommended to respect the instructions stated in Step 5 of the initialization process in order to be
certain that the subsequent commands issued by the SDRAMC will be taken into account.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Figure 22-1.
SDRAM Device Initialization Sequence
SDCKE
tRP
tRC
tMRD
SDCK
SDRAMC_A[9:0]
A10
SDRAMC_A[12:11]
SDCS
RAS
CAS
SDWE
NBS
Inputs Stable for
200 μsec
Precharge All Banks
1st Auto-refresh
8th Auto-refresh
MRS Command
Valid Command
22.4.2 I/O Lines
The pins used for interfacing the SDRAM Controller may be multiplexed with the PIO lines. The programmer must
first program the PIO controller to assign the SDRAM Controller pins to their peripheral function. If I/O lines of the
SDRAM Controller are not used by the application, they can be used for other purposes by the PIO Controller.
22.4.3 Interrupt
The SDRAM Controller interrupt (Refresh Error notification) is connected to the Memory Controller. This interrupt
may be ORed with other System Peripheral interrupt lines and is finally provided as the System Interrupt Source
(Source 1) to the AIC (Advanced Interrupt Controller).
Using the SDRAM Controller interrupt requires the AIC to be programmed first.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
231
22.5
Functional Description
22.5.1 SDRAM Controller Write Cycle
The SDRAM Controller allows burst access or single access. In both cases, the SDRAM controller keeps track of
the active row in each bank, thus maximizing performance. To initiate a burst access, the SDRAM Controller uses
the transfer type signal provided by the master requesting the access. If the next access is a sequential write
access, writing to the SDRAM device is carried out. If the next access is a write-sequential access, but the current
access is to a boundary page, or if the next access is in another row, then the SDRAM Controller generates a
precharge command, activates the new row and initiates a write command. To comply with SDRAM timing
parameters, additional clock cycles are inserted between precharge/active (tRP) commands and active/write (tRCD)
commands. For definition of these timing parameters, refer to the “SDRAMC Configuration Register” on page 242.
This is described in Figure 22-2 below.
Figure 22-2.
Write Burst, 32-bit SDRAM Access
tRCD = 3
SDCS
SDCK
SDRAMC_A[12:0]
Row n
col a
col b
col c
col d
col e
col f
col g
col h
col i
col j
col k
col l
Dnb
Dnc
Dnd
Dne
Dnf
Dng
Dnh
Dni
Dnj
Dnk
Dnl
RAS
CAS
SDWE
D[31:0]
232
Dna
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
22.5.2 SDRAM Controller Read Cycle
The SDRAM Controller allows burst access, incremental burst of unspecified length or single access. In all cases,
the SDRAM Controller keeps track of the active row in each bank, thus maximizing performance of the SDRAM. If
row and bank addresses do not match the previous row/bank address, then the SDRAM controller automatically
generates a precharge command, activates the new row and starts the read command. To comply with the
SDRAM timing parameters, additional clock cycles on SDCK are inserted between precharge and active
commands (tRP) and between active and read command (tRCD). These two parameters are set in the configuration
register of the SDRAM Controller. After a read command, additional wait states are generated to comply with the
CAS latency (1, 2 or 3 clock delays specified in the configuration register).
For a single access or an incremented burst of unspecified length, the SDRAM Controller anticipates the next
access. While the last value of the column is returned by the SDRAM Controller on the bus, the SDRAM Controller
anticipates the read to the next column and thus anticipates the CAS latency. This reduces the effect of the CAS
latency on the internal bus.
For burst access of specified length (4, 8, 16 words), access is not anticipated. This case leads to the best
performance. If the burst is broken (border, busy mode, etc.), the next access is handled as an incrementing burst
of unspecified length.
Figure 22-3.
Read Burst, 32-bit SDRAM Access
tRCD = 3
CAS = 2
SDCS
SDCK
SDRAMC_A[12:0]
Row n
col a
col b
col c
col d
col e
col f
RAS
CAS
SDWE
D[31:0]
(Input)
Dna
Dnb
Dnc
Dnd
Dne
Dnf
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
233
22.5.3 Border Management
When the memory row boundary has been reached, an automatic page break is inserted. In this case, the SDRAM
controller generates a precharge command, activates the new row and initiates a read or write command. To
comply with SDRAM timing parameters, an additional clock cycle is inserted between the precharge/active (tRP)
command and the active/read (tRCD) command. This is described in Figure 22-4 below.
Figure 22-4.
Read Burst with Boundary Row Access
TRP = 3
TRCD = 3
CAS = 2
SDCS
SDCK
Row n
SDRAMC_A[12:0]
col a
col b
col c
col d
Row m
col a
col b
col c
col d
col e
RAS
CAS
SDWE
D[31:0]
234
Dna
Dnb
Dnc
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Dnd
Dma
Dmb
Dmc
Dmd
Dme
22.5.4 SDRAM Controller Refresh Cycles
An auto-refresh command is used to refresh the SDRAM device. Refresh addresses are generated internally by
the SDRAM device and incremented after each auto-refresh automatically. The SDRAM Controller generates
these auto-refresh commands periodically. An internal timer is loaded with the value in the register SDRAMC_TR
that indicates the number of clock cycles between refresh cycles.
A refresh error interrupt is generated when the previous auto-refresh command did not perform. It is acknowledged
by reading the Interrupt Status Register (SDRAMC_ISR).
When the SDRAM Controller initiates a refresh of the SDRAM device, internal memory accesses are not delayed.
However, if the CPU tries to access the SDRAM, the slave indicates that the device is busy and the master is held
by a wait signal. See Figure 22-5.
Figure 22-5.
Refresh Cycle Followed by a Read Access
tRP = 3
tRC = 8
tRCD = 3
CAS = 2
SDCS
SDCK
Row n
SDRAMC_A[12:0]
Row m
col c col d
col a
RAS
CAS
SDWE
D[31:0]
(input)
Dnb
Dnc
Dma
Dnd
22.5.5 Power Management
Three low-power modes are available:

Self-refresh Mode: The SDRAM executes its own Auto-refresh cycle without control of the SDRAM
Controller. Current drained by the SDRAM is very low.

Power-down Mode: Auto-refresh cycles are controlled by the SDRAM Controller. Between auto-refresh
cycles, the SDRAM is in power-down. Current drained in Power-down mode is higher than in Self-refresh
Mode.

Deep Power-down Mode: (Only available with Mobile SDRAM) The SDRAM contents are lost, but the
SDRAM does not drain any current.
The SDRAM Controller activates one low-power mode as soon as the SDRAM device is not selected. It is possible
to delay the entry in self-refresh and power-down mode after the last access by programming a timeout value in
the Low Power Register.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
235
22.5.5.1 Self-refresh Mode
This mode is selected by programming the LPCB field to 1 in the SDRAMC Low Power Register. In self-refresh
mode, the SDRAM device retains data without external clocking and provides its own internal clocking, thus
performing its own auto-refresh cycles. All the inputs to the SDRAM device become “don’t care” except SDCKE,
which remains low. As soon as the SDRAM device is selected, the SDRAM Controller provides a sequence of
commands and exits self-refresh mode.
Some low-power SDRAMs (e.g., mobile SDRAM) can refresh only one quarter or a half quarter or all banks of the
SDRAM array. This feature reduces the self-refresh current. To configure this feature, Temperature Compensated
Self Refresh (TCSR), Partial Array Self Refresh (PASR) and Drive Strength (DS) parameters must be set in the
Low Power Register and transmitted to the low-power SDRAM during initialization.
The SDRAM device must remain in self-refresh mode for a minimum period of tRAS and may remain in self-refresh
mode for an indefinite period. This is described in Figure 22-6.
Figure 22-6.
Self-refresh Mode Behavior
Self Refresh Mode
TXSR = 3
SRCB = 1
Write
SDRAMC_SRR
Row
SDRAMC_A[12:0]
SDCK
SDCKE
SDCS
RAS
CAS
SDWE
Access Request
to the SDRAM Controller
236
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
22.5.5.2 Low-power Mode
This mode is selected by programming the LPCB field to 2 in the SDRAMC Low Power Register. Power
consumption is greater than in self-refresh mode. All the input and output buffers of the SDRAM device are
deactivated except SDCKE, which remains low. In contrast to self-refresh mode, the SDRAM device cannot
remain in low-power mode longer than the refresh period (64 ms for a whole device refresh operation). As no autorefresh operations are performed by the SDRAM itself, the SDRAM Controller carries out the refresh operation.
The exit procedure is faster than in self-refresh mode.
This is described in Figure 22-7.
Figure 22-7.
Low-power Mode Behavior
TRCD = 3
CAS = 2
Low Power Mode
SDCS
SDCK
SDRAMC_A[12:0]
Row n
col a
col b
col c
col d
col e
col f
RAS
CAS
SDCKE
D[31:0]
(input)
Dna
Dnb
Dnc
Dnd
Dne
Dnf
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
237
22.5.5.3 Deep Power-down Mode
This mode is selected by programming the LPCB field to 3 in the SDRAMC Low Power Register. When this mode
is activated, all internal voltage generators inside the SDRAM are stopped and all data is lost.
When this mode is enabled, the application must not access to the SDRAM until a new initialization sequence is
done (See “SDRAM Device Initialization” on page 230).
This is described in Figure 22-8.
Figure 22-8.
Deep Power-down Mode Behavior
tRP = 3
SDCS
SDCK
Row n
SDRAMC_A[12:0]
col c
col d
RAS
CAS
SDWE
CKE
D[31:0]
(input)
238
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Dnb
Dnc
Dnd
22.6
SDRAM Controller (SDRAMC) User Interface
Table 22-8.
Offset
Register Mapping
Register
Name
Access
Reset
0x00
SDRAMC Mode Register
SDRAMC_MR
Read/Write
0x00000000
0x04
SDRAMC Refresh Timer Register
SDRAMC_TR
Read/Write
0x00000000
0x08
SDRAMC Configuration Register
SDRAMC_CR
Read/Write
0x852372C0
0x0C
Reserved
–
–
–
0x10
SDRAMC Low Power Register
SDRAMC_LPR
Read/Write
0x0
0x14
SDRAMC Interrupt Enable Register
SDRAMC_IER
Write-only
–
0x18
SDRAMC Interrupt Disable Register
SDRAMC_IDR
Write-only
–
0x1C
SDRAMC Interrupt Mask Register
SDRAMC_IMR
Read-only
0x0
0x20
SDRAMC Interrupt Status Register
SDRAMC_ISR
Read-only
0x0
0x24
SDRAMC Memory Device Register
SDRAMC_MDR
Read/Write
0x0
Reserved
–
–
–
0x28–0xFC
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
239
22.6.1 SDRAMC Mode Register
Name:
SDRAMC_MR
Address:
0xFFFFE200 (0), 0xFFFFE800 (1)
Access:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
–
6
–
5
–
4
–
3
–
2
1
0
MODE
• MODE: SDRAMC Command Mode
This field defines the command issued by the SDRAM Controller when the SDRAM device is accessed.
Value
Description
0
0
0
Normal mode. Any access to the SDRAM is decoded normally. To activate this mode, command must be followed by a
write to the SDRAM.
0
0
1
The SDRAM Controller issues a NOP command when the SDRAM device is accessed regardless of the cycle. To
activate this mode, command must be followed by a write to the SDRAM.
0
1
0
The SDRAM Controller issues an “All Banks Precharge” command when the SDRAM device is accessed regardless of
the cycle. To activate this mode, command must be followed by a write to the SDRAM.
0
1
1
The SDRAM Controller issues a “Load Mode Register” command when the SDRAM device is accessed regardless of the
cycle. To activate this mode, command must be followed by a write to the SDRAM.
1
0
0
The SDRAM Controller issues an “Auto-Refresh” Command when the SDRAM device is accessed regardless of the
cycle. Previously, an “All Banks Precharge” command must be issued. To activate this mode, command must be followed
by a write to the SDRAM.
1
0
1
The SDRAM Controller issues an “Extended Load Mode Register” command when the SDRAM device is accessed
regardless of the cycle. To activate this mode, the “Extended Load Mode Register” command must be followed by a write
to the SDRAM. The write in the SDRAM must be done in the appropriate bank; most low-power SDRAM devices use the
bank 1.
1
1
0
Deep power-down mode. Enters deep power-down mode.
240
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
22.6.2 SDRAMC Refresh Timer Register
Name:
SDRAMC_TR
Address:
0xFFFFE204 (0), 0xFFFFE804 (1)
Access:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
10
9
8
7
6
5
4
1
0
COUNT
3
2
COUNT
• COUNT: SDRAMC Refresh Timer Count
This 12-bit field is loaded into a timer that generates the refresh pulse. Each time the refresh pulse is generated, a refresh
burst is initiated. The value to be loaded depends on the SDRAMC clock frequency (MCK: Master Clock), the refresh rate
of the SDRAM device and the refresh burst length where 15.6 µs per row is a typical value for a burst of length one.
To refresh the SDRAM device, this 12-bit field must be written. If this condition is not satisfied, no refresh command is
issued and no refresh of the SDRAM device is carried out.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
241
22.6.3 SDRAMC Configuration Register
Name:
SDRAMC_CR
Address:
0xFFFFE208 (0), 0xFFFFE808 (1)
Access:
Read/Write
31
30
29
28
27
26
TXSR
23
22
21
20
19
18
TRCD
15
14
13
6
12
11
10
17
16
9
8
TWR
5
CAS
4
NB
3
2
NR
• NC: Number of Column Bits
Reset value is 8 column bits.
Value
Column Bits
0
0
8
0
1
9
1
0
10
1
1
11
• NR: Number of Row Bits
Reset value is 11 row bits.
Value
Row Bits
0
0
11
0
1
12
1
0
13
1
1
Reserved
• NB: Number of Banks
Reset value is two banks.
Value
Number of Banks
0
2
1
4
• CAS: CAS Latency
Reset value is two cycles.
In the SDRAMC, only a CAS latency of one, two and three cycles are managed.
Value
CAS Latency (Cycles)
0
0
Reserved
0
1
1
1
0
2
1
1
3
242
24
TRP
TRC
7
DBW
25
TRAS
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
1
0
NC
• DBW: Data Bus Width
Reset value is 16 bits
0: Data bus width is 32 bits.
1: Data bus width is 16 bits.
• TWR: Write Recovery Delay
Reset value is two cycles.
This field defines the Write Recovery Time in number of cycles. Number of cycles is between 0 and 15.
• TRC: Row Cycle Delay
Reset value is seven cycles.
This field defines the delay between a Refresh and an Activate Command in number of cycles. Number of cycles is
between 0 and 15.
• TRP: Row Precharge Delay
Reset value is three cycles.
This field defines the delay between a Precharge Command and another Command in number of cycles. Number of cycles
is between 0 and 15.
• TRCD: Row to Column Delay
Reset value is two cycles.
This field defines the delay between an Activate Command and a Read/Write Command in number of cycles. Number of
cycles is between 0 and 15.
• TRAS: Active to Precharge Delay
Reset value is five cycles.
This field defines the delay between an Activate Command and a Precharge Command in number of cycles. Number of
cycles is between 0 and 15.
• TXSR: Exit Self Refresh to Active Delay
Reset value is eight cycles.
This field defines the delay between SCKE set high and an Activate Command in number of cycles. Number of cycles is
between 0 and 15.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
243
22.6.4 SDRAMC Low Power Register
Name:
SDRAMC_LPR
Address:
0xFFFFE210 (0), 0xFFFFE810 (1)
Access:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
12
11
10
9
7
–
6
5
PASR
TIMEOUT
DS
4
3
–
8
TCSR
2
–
1
0
LPCB
• LPCB: Low-power Configuration Bits
Value
Description
00
Low Power Feature is inhibited: no Power-down, Self-refresh or Deep Power-down command is issued to the SDRAM
device.
01
The SDRAM Controller issues a Self-refresh command to the SDRAM device, the SDCLK clock is deactivated and the
SDCKE signal is set low. The SDRAM device leaves the Self Refresh Mode when accessed and enters it after the access.
10
The SDRAM Controller issues a Power-down Command to the SDRAM device after each access, the SDCKE signal is set to
low. The SDRAM device leaves the Power-down Mode when accessed and enters it after the access.
11
The SDRAM Controller issues a Deep Power-down command to the SDRAM device. This mode is unique to low-power
SDRAM.
• PASR: Partial Array Self-refresh (only for low-power SDRAM)
PASR parameter is transmitted to the SDRAM during initialization to specify whether only one quarter, one half or all banks
of the SDRAM array are enabled. Disabled banks are not refreshed in self-refresh mode. This parameter must be set
according to the SDRAM device specification.
• TCSR: Temperature Compensated Self-Refresh (only for low-power SDRAM)
TCSR parameter is transmitted to the SDRAM during initialization to set the refresh interval during self-refresh mode
depending on the temperature of the low-power SDRAM. This parameter must be set according to the SDRAM device
specification.
• DS: Drive Strength (only for low-power SDRAM)
DS parameter is transmitted to the SDRAM during initialization to select the SDRAM strength of data output. This parameter must be set according to the SDRAM device specification.
• TIMEOUT: Time to define when low-power mode is enabled
Value
Description
00
The SDRAM controller activates the SDRAM low-power mode immediately after the end of the last transfer.
01
The SDRAM controller activates the SDRAM low-power mode 64 clock cycles after the end of the last transfer.
10
The SDRAM controller activates the SDRAM low-power mode 128 clock cycles after the end of the last transfer.
11
Reserved.
244
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
22.6.5 SDRAMC Interrupt Enable Register
Name:
SDRAMC_IER
Address:
0xFFFFE214 (0), 0xFFFFE814 (1)
Access:
Write-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
–
6
–
5
–
4
–
3
–
2
–
1
–
0
RES
• RES: Refresh Error Interrupt Enable
0: No effect.
1: Enables the refresh error interrupt.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
245
22.6.6 SDRAMC Interrupt Disable Register
Name:
SDRAMC_IDR
Address:
0xFFFFE218 (0), 0xFFFFE818 (1)
Access:
Write-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
–
6
–
5
–
4
–
3
–
2
–
1
–
0
RES
• RES: Refresh Error Interrupt Disable
0: No effect.
1: Disables the refresh error interrupt.
246
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
22.6.7 SDRAMC Interrupt Mask Register
Name:
SDRAMC_IMR
Address:
0xFFFFE21C (0), 0xFFFFE81C (1)
Access:
Read-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
–
6
–
5
–
4
–
3
–
2
–
1
–
0
RES
• RES: Refresh Error Interrupt Mask
0: The refresh error interrupt is disabled.
1: The refresh error interrupt is enabled.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
247
22.6.8 SDRAMC Interrupt Status Register
Name:
SDRAMC_ISR
Address:
0xFFFFE220 (0), 0xFFFFE820 (1)
Access:
Read-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
–
6
–
5
–
4
–
3
–
2
–
1
–
0
RES
• RES: Refresh Error Status (cleard on read)
0: No refresh error has been detected since the register was last read.
1: A refresh error has been detected since the register was last read.
248
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
22.6.9 SDRAMC Memory Device Register
Name:
SDRAMC_MDR
Address:
0xFFFFE224 (0), 0xFFFFE824 (1)
Access:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
–
6
–
5
–
4
–
3
–
2
–
1
0
MD
• MD: Memory Device Type
Value
Description
00
SDRAM
01
Low-power SDRAM
10
Reserved
11
Reserved
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
249
23.
Error Correction Code Controller (ECC)
23.1
Description
NAND Flash/SmartMedia devices contain by default invalid blocks which have one or more invalid bits. Over the
NAND Flash/SmartMedia lifetime, additional invalid blocks may occur which can be detected/corrected by ECC
code.
The ECC Controller is a mechanism that encodes data in a manner that makes possible the identification and
correction of certain errors in data. The ECC controller is capable of single bit error correction and 2-bit random
detection. When NAND Flash/SmartMedia have more than 2 bits of errors, the data cannot be corrected.
The ECC user interface is compliant with the ARM Advanced Peripheral Bus (APB rev2).
23.2
Block Diagram
Figure 23-1.
Block Diagram
NAND Flash
Static
Memory
Controller
SmartMedia
Logic
ECC
Controller
Ctrl/ECC Algorithm
User Interface
APB
250
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
23.3
Functional Description
A page in NAND Flash and SmartMedia memories contains an area for main data and an additional area used for
redundancy (ECC). The page is organized in 8-bit or 16-bit words. The page size corresponds to the number of
words in the main area plus the number of words in the extra area used for redundancy.
The only configuration required for ECC is the NAND Flash or the SmartMedia page size (528/1056/2112/4224).
Page size is configured setting the PAGESIZE field in the ECC Mode Register (ECC_MR).
ECC is automatically computed as soon as a read (00h)/write (80h) command to the NAND Flash or the
SmartMedia is detected. Read and write access must start at a page boundary.
ECC results are available as soon as the counter reaches the end of the main area. Values in the ECC Parity
Register (ECC_PR) and ECC NParity Register (ECC_NPR) are then valid and locked until a new start condition
occurs (read/write command followed by address cycles).
23.3.1 Write Access
Once the flash memory page is written, the computed ECC code is available in the ECC Parity Error (ECC_PR)
and ECC_NParity Error (ECC_NPR) registers. The ECC code value must be written by the software application in
the extra area used for redundancy.
23.3.2 Read Access
After reading the whole data in the main area, the application must perform read accesses to the extra area where
ECC code has been previously stored. Error detection is automatically performed by the ECC controller. Please
note that it is mandatory to read consecutively the entire main area and the locations where Parity and NParity
values have been previously stored to let the ECC controller perform error detection.
The application can check the ECC Status Register (ECC_SR) for any detected errors.
It is up to the application to correct any detected error. ECC computation can detect four different circumstances:

No error: XOR between the ECC computation and the ECC code stored at the end of the NAND Flash or
SmartMedia page is equal to 0. No error flags in the ECC Status Register (ECC_SR).

Recoverable error: Only the RECERR flag in the ECC Status register (ECC_SR) is set. The corrupted word
offset in the read page is defined by the WORDADDR field in the ECC Parity Register (ECC_PR). The
corrupted bit position in the concerned word is defined in the BITADDR field in the ECC Parity Register
(ECC_PR).

ECC error: The ECCERR flag in the ECC Status Register is set. An error has been detected in the ECC
code stored in the Flash memory. The position of the corrupted bit can be found by the application
performing an XOR between the Parity and the NParity contained in the ECC code stored in the flash
memory.

Non correctable error: The MULERR flag in the ECC Status Register is set. Several unrecoverable errors
have been detected in the flash memory page.
ECC Status Register, ECC Parity Register and ECC NParity Register are cleared when a read/write command is
detected or a software reset is performed.
For Single-bit Error Correction and Double-bit Error Detection (SEC-DED) hsiao code is used. 32-bit ECC is
generated in order to perform one bit correction per 512/1024/2048/4096 8- or 16-bit words. Of the 32 ECC bits, 26
bits are for line parity and 6 bits are for column parity. They are generated according to the schemes shown in
Figure 23-2 and Figure 23-3.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
251
Figure 23-2.
Parity Generation for 512/1024/2048/4096 8-bit Words1
1st byte
2nd byte
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
P8
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
P8'
3rd byte
Bit7
Bit7
Bit6
Bit6
Bit5
Bit5
Bit4
Bit4
Bit3
Bit3
Bit2
Bit2
Bit1
Bit1
Bit0
Bit0
P8
Bit7
Bit7
Bit6
Bit6
Bit5
Bit5
Bit4
Bit4
Bit3
Bit3
Bit2
Bit2
Bit1
Bit1
Bit0
Bit0
P8
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
P8
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
P8'
P1
P1'
P1
P1
P1'
P1
P1'
4 th byte
(page size -3 )th byte
(page size -2 )th byte
(page size -1 )th byte
Page size th byte
P2
P2'
P4
Page size
Page size
Page size
Page size
= 512
= 1024
= 2048
= 4096
P1'
Px = 2048
Px = 4096
Px = 8192
Px = 16384
P2
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
PX
P32
PX'
P16
P16'
P4'
P1=bit7(+)bit5(+)bit3(+)bit1(+)P1
P2=bit7(+)bit6(+)bit3(+)bit2(+)P2
P4=bit7(+)bit6(+)bit5(+)bit4(+)P4
P1'=bit6(+)bit4(+)bit2(+)bit0(+)P1'
P2'=bit5(+)bit4(+)bit1(+)bit0(+)P2'
P4'=bit7(+)bit6(+)bit5(+)bit4(+)P4'
for i =0 to n
begin
for (j = 0 to page_size_byte)
begin
if(j[i] ==1)
P[2i+3]=bit7(+)bit6(+)bit5(+)bit4(+)bit3(+)
bit2(+)bit1(+)bit0(+)P[2i+3]
else
P[2i+3]’=bit7(+)bit6(+)bit5(+)bit4(+)bit3(+)
bit2(+)bit1(+)bit0(+)P[2i+3]'
end
end
SAM9263 [DATASHEET]
P8'
P32
P16'
P2'
To calculate P8’ to PX’ and P8 to PX, apply the algorithm that follows.
Page size = 2n
252
P8'
P16
(Page size -3 )th word
(Page size -2 )th word
(Page size -1 )th word
Page size th word
4th word
(+)
Parity Generation for 512/1024/2048/4096 16-bit Words
1st word
2nd word
3rd word
Figure 23-3.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
253
To calculate P8’ to PX’ and P8 to PX, apply the algorithm that follows.
Page size = 2n
for i =0 to n
begin
for (j = 0 to page_size_word)
begin
if(j[i] ==1)
P[2i+3]= bit15(+)bit14(+)bit13(+)bit12(+)
bit11(+)bit10(+)bit9(+)bit8(+)
bit7(+)bit6(+)bit5(+)bit4(+)bit3(+)
bit2(+)bit1(+)bit0(+)P[2n+3]
else
P[2i+3]’=bit15(+)bit14(+)bit13(+)bit12(+)
bit11(+)bit10(+)bit9(+)bit8(+)
bit7(+)bit6(+)bit5(+)bit4(+)bit3(+)
bit2(+)bit1(+)bit0(+)P[2i+3]'
end
end
254
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
23.4
Error Correction Code Controller (ECC) User Interface
Table 23-1.
Offset
Register Mapping
Register
Register Name
Access
Reset
0x00
ECC Control Register
ECC_CR
Write-only
–
0x04
ECC Mode Register
ECC_MR
Read/Write
0x0
0x08
ECC Status Register
ECC_SR
Read-only
0x0
0x0C
ECC Parity Register
ECC_PR
Read-only
0x0
0x10
ECC NParity Register
ECC_NPR
Read-only
0x0
Reserved
–
–
–
0x14–0xFC
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
255
23.4.1 ECC Control Register
Name:
ECC_CR
Address:
0xFFFFE000 (0), 0xFFFFE600 (1)
Access:
Write-only
31
–
23
–
15
–
7
–
30
–
22
–
14
–
6
–
29
–
21
–
13
–
5
–
• RST: RESET Parity
Provides reset to current ECC by software.
1: Resets ECC Parity and ECC NParity register.
0: No effect.
256
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
28
–
20
–
12
–
4
–
27
–
19
–
11
–
3
–
26
–
18
–
10
–
2
–
25
–
17
–
9
–
1
–
24
–
16
–
8
–
0
RST
23.4.2 ECC Mode Register
Name:
ECC_MR
Address:
0xFFFFE004 (0), 0xFFFFE604 (1)
Access:
Read/Write
31
–
23
–
15
–
7
–
30
–
22
–
14
–
6
–
29
–
21
–
13
–
5
–
28
–
20
–
12
–
4
–
27
–
19
–
11
–
3
–
26
–
18
–
10
–
2
–
25
–
17
–
9
–
1
24
–
16
–
8
–
0
PAGESIZE
• PAGESIZE: Page Size
This field defines the page size of the NAND Flash device.
Value
Description
00
528 words
01
1056 words
10
2112 words
11
4224 words
A word has a value of 8 bits or 16 bits, depending on the NAND Flash or SmartMedia memory organization.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
257
23.4.3 ECC Status Register
Name:
ECC_SR
Address:
0xFFFFE008 (0), 0xFFFFE608 (1)
Access:
Read-only
31
–
23
–
15
–
7
–
30
–
22
–
14
–
6
–
29
–
21
–
13
–
5
–
28
–
20
–
12
–
4
–
27
–
19
–
11
–
3
–
26
–
18
–
10
–
2
MULERR
25
–
17
–
9
–
1
ECCERR
24
–
16
–
8
–
0
RECERR
• RECERR: Recoverable Error
0: No Errors Detected.
1: Errors Detected. If MUL_ERROR is 0, a single correctable error was detected. Otherwise multiple uncorrected errors
were detected.
• ECCERR: ECC Error
0: No Errors Detected.
1: A single bit error occurred in the ECC bytes.
Read both ECC Parity and ECC NParity register, the error occurred at the location which contains a 1 in the least significant 16 bits.
• MULERR: Multiple Error
0: No Multiple Errors Detected.
1: Multiple Errors Detected.
258
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
23.4.4 ECC Parity Register
Name:
ECC_PR
Address:
0xFFFFE00C (0), 0xFFFFE60C (1)
Access:
Read-only
31
–
23
–
15
30
–
22
–
14
29
–
21
–
13
28
–
20
–
12
7
6
5
4
27
–
19
–
11
26
–
18
–
10
3
2
25
–
17
–
9
24
–
16
–
8
1
0
WORDADDR
WORDADDR
BITADDR
Once the entire main area of a page is written with data, the register content must be stored at any free location of the
spare area.
• BITADDR
During a page read, this value contains the corrupted bit offset where an error occurred, if a single error was detected. If
multiple errors were detected, this value is meaningless.
• WORDADDR
During a page read, this value contains the word address (8-bit or 16-bit word depending on the memory plane organization) where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
259
23.4.5 ECC NParity Register
Name:
ECC_NPR
Address:
0xFFFFE010 (0), 0xFFFFE610 (1)
Access:
Read-only
31
–
23
–
15
30
–
22
–
14
29
–
21
–
13
28
–
20
–
12
7
6
5
4
27
–
19
–
11
26
–
18
–
10
25
–
17
–
9
24
–
16
–
8
3
2
1
0
NPARITY
NPARITY
• NPARITY:
Once the entire main area of a page is written with data, the register content must be stored at any free location of the
spare area.
260
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
24.
DMA Controller (DMAC)
24.1
Overview
The DMA Controller (DMAC) is an AHB-central DMA controller core that transfers data from a source peripheral to
a destination peripheral over one or more AMBA buses. One channel is required for each source/destination pair.
In the most basic configuration, the DMAC has one master interface and one channel. The master interface reads
the data from a source and writes it to a destination. Two AMBA transfers are required for each DMA data transfer.
This is also known as a dual-access transfer.
The DMAC is programmed via the AHB slave interface.
24.2
Block Diagram
Figure 24-1.
DMA Controller (DMAC) Block Diagram
DMA Controller
AHB Slave
AHB Slave
Interface
Interrupt
Generator
CFG
irq_dma
Channel 1
Channel 0
AHB Master
AHB Master
Interface
FIFO
SRC
FSM
DMARQ0..3
DST
FSM
Hardware
Handshaking
Interface
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
261
24.3
Functional Description
24.3.1 Basic Definitions
Source peripheral: Device on an AMBA layer from where the DMAC reads data, which is then stored in the
channel FIFO. The source peripheral teams up with a destination peripheral to form a channel.
Destination peripheral: Device to which the DMAC writes the stored data from the FIFO (previously read from the
source peripheral).
Memory: Source or destination that is always “ready” for a DMA transfer and does not require a handshaking
interface to interact with the DMAC. A peripheral should be assigned as memory only if it does not insert more than
16 wait states. If more than 16 wait states are required, then the peripheral should use a handshaking interface
(the default if the peripheral is not programmed to be memory) in order to signal when it is ready to accept or
supply data.
Channel: Read/write datapath between a source peripheral on one configured AMBA layer and a destination
peripheral on the same or different AMBA layer that occurs through the channel FIFO. If the source peripheral is
not memory, then a source handshaking interface is assigned to the channel. If the destination peripheral is not
memory, then a destination handshaking interface is assigned to the channel. Source and destination
handshaking interfaces can be assigned dynamically by programming the channel registers.
Master interface: DMAC is a master on the AHB bus reading data from the source and writing it to the destination
over the AHB bus.
Slave interface: The AHB interface over which the DMAC is programmed. The slave interface in practice could be
on the same layer as any of the master interfaces or on a separate layer.
Handshaking interface: A set of signal registers that conform to a protocol and handshake between the DMAC
and source or destination peripheral to control the transfer of a single or burst transaction between them. This
interface is used to request, acknowledge, and control a DMAC transaction. A channel can receive a request
through one of three types of handshaking interface: hardware, software, or peripheral interrupt.
Hardware handshaking interface: Uses hardware signals to control the transfer of a single or burst transaction
between the DMAC and the source or destination peripheral.
Software handshaking interface: Uses software registers to control the transfer of a single or burst transaction
between the DMAC and the source or destination peripheral. No special DMAC handshaking signals are needed
on the I/O of the peripheral. This mode is useful for interfacing an existing peripheral to the DMAC without
modifying it.
Peripheral interrupt handshaking interface: A simple use of the hardware handshaking interface. In this mode,
the interrupt line from the peripheral is tied to the dma_req input of the hardware handshaking interface. Other
interface signals are ignored.
Flow controller: The device (either the DMAC or source/destination peripheral) that determines the length of and
terminates a DMA block transfer. If the length of a block is known before enabling the channel, then the DMAC
should be programmed as the flow controller. If the length of a block is not known prior to enabling the channel, the
source or destination peripheral needs to terminate a block transfer. In this mode, the peripheral is the flow
controller.
Flow control mode (DMAC_CFGx.FCMODE): Special mode that only applies when the destination peripheral is
the flow controller. It controls the pre-fetching of data from the source peripheral.
Transfer hierarchy: Figure 24-2 on page 263 illustrates the hierarchy between DMAC transfers, block transfers,
transactions (single or burst), and AMBA transfers (single or burst) for non-memory peripherals. Figure 24-3 on
page 263 shows the transfer hierarchy for memory.
262
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Figure 24-2.
DMAC Transfer Hierarchy for Non-Memory Peripheral
DMAC Transfer
Block
Block
Burst
Transaction
AMBA
Burst
Transfer
Figure 24-3.
DMA Transfer
Level
Block Transfer
Level
Block
Burst
Transaction
Burst
Transaction
AMBA
Burst
Transfer
AMBA
Burst
Transfer
Single
Transaction
AMBA
Single
Transfer
AMBA
Single
Transfer
DMA Transaction
Level
AMBA Transfer
Level
DMAC Transfer Hierarchy for Memory
DMA Transfer
Level
DMAC Transfer
Block
AMBA
Burst
Transfer
Block
AMBA
Burst
Transfer
Block Transfer
Level
Block
AMBA
Burst
Transfer
AMBA
Single
Transfer
AMBA Transfer
Level
Block: A block of DMAC data. The amount of data (block length) is determined by the flow controller. For transfers
between the DMAC and memory, a block is broken directly into a sequence of AMBA bursts and AMBA single
transfers. For transfers between the DMAC and a non-memory peripheral, a block is broken into a sequence of
DMAC transactions (single and bursts). These are in turn broken into a sequence of AMBA transfers.
Transaction: A basic unit of a DMAC transfer as determined by either the hardware or software handshaking
interface. A transaction is only relevant for transfers between the DMAC and a source or destination peripheral if
the source or destination peripheral is a non-memory device. There are two types of transactions: single and burst.
̶
̶
Single transaction: The length of a single transaction is always 1 and is converted to a single AMBA
transfer.
Burst transaction: The length of a burst transaction is programmed into the DMAC. The burst
transaction is converted into a sequence of AMBA bursts and AMBA single transfers. DMAC executes
each AMBA burst transfer by performing incremental bursts that are no longer than the maximum
AMBA burst size set. The burst transaction length is under program control and normally bears some
relationship to the FIFO sizes in the DMAC and in the source and destination peripherals.
DMA transfer: Software controls the number of blocks in a DMAC transfer. Once the DMA transfer has
completed, then hardware within the DMAC disables the channel and can generate an interrupt to signal the
completion of the DMA transfer. You can then re-program the channel for a new DMA transfer.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
263
Single-block DMA transfer: Consists of a single block.
Multi-block DMA transfer: A DMA transfer may consist of multiple DMAC blocks. Multi-block DMA transfers are
supported through block chaining (linked list pointers), auto-reloading of channel registers, and contiguous blocks.
The source and destination can independently select which method to use.
̶
̶
̶
Linked lists (block chaining) – A linked list pointer (LLP) points to the location in system memory
where the next linked list item (LLI) exists. The LLI is a set of registers that describe the next block
(block descriptor) and an LLP register. The DMAC fetches the LLI at the beginning of every block
when block chaining is enabled.
Auto-reloading – The DMAC automatically reloads the channel registers at the end of each block to
the value when the channel was first enabled.
Contiguous blocks – Where the address between successive blocks is selected to be a continuation
from the end of the previous block.
Scatter: Relevant to destination transfers within a block. The destination AMBA address is
incremented/decremented by a programmed amount when a scatter boundary is reached. The number of AMBA
transfers between successive scatter boundaries is under software control.
Gather: Relevant to source transfers within a block. The source AMBA address is incremented/decremented by a
programmed amount when a gather boundary is reached. The number of AMBA transfers between successive
gather boundaries is under software control.
Channel locking: Software can program a channel to keep the AHB master interface by locking the arbitration for
the master bus interface for the duration of a DMA transfer, block, or transaction (single or burst).
Bus locking: Software can program a channel to maintain control of the AMBA bus by asserting hlock for the
duration of a DMA transfer, block, or transaction (single or burst). Channel locking is asserted for the duration of
bus locking at a minimum.
FIFO mode: Special mode to improve bandwidth. When enabled, the channel waits until the FIFO is less than half
full to fetch the data from the source peripheral and waits until the FIFO is greater than or equal to half full to send
data to the destination peripheral. Thus, the channel can transfer the data using AMBA bursts, eliminating the
need to arbitrate for the AHB master interface for each single AMBA transfer. When this mode is not enabled, the
channel only waits until the FIFO can transmit/accept a single AMBA transfer before requesting the master bus
interface.
Pseudo fly-by operation: Typically, it takes two AMBA bus cycles to complete a transfer, one for reading the
source and one for writing to the destination. However, when the source and destination peripherals of a DMA
transfer are on different AMBA layers, it is possible for the DMAC to fetch data from the source and store it in the
channel FIFO at the same time as the DMAC extracts data from the channel FIFO and writes it to the destination
peripheral. This activity is known as pseudo fly-by operation. For this to occur, the master interface for both source
and destination layers must win arbitration of their AHB layer. Similarly, the source and destination peripherals
must win ownership of their respective master interfaces.
24.3.2 Memory Peripherals
Figure 24-3 on page 263 shows the DMA transfer hierarchy of the DMAC for a memory peripheral. There is no
handshaking interface with the DMAC, and therefore the memory peripheral can never be a flow controller. Once
the channel is enabled, the transfer proceeds immediately without waiting for a transaction request. The alternative
to not having a transaction-level handshaking interface is to allow the DMAC to attempt AMBA transfers to the
peripheral once the channel is enabled. If the peripheral slave cannot accept these AMBA transfers, it inserts wait
states onto the bus until it is ready; it is not recommended that more than 16 wait states be inserted onto the bus.
By using the handshaking interface, the peripheral can signal to the DMAC that it is ready to transmit/receive data,
and then the DMAC can access the peripheral without the peripheral inserting wait states onto the bus.
264
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
24.3.3 Handshaking Interface
Handshaking interfaces are used at the transaction level to control the flow of single or burst transactions. The
operation of the handshaking interface is different and depends on whether the peripheral or the DMAC is the flow
controller.
The peripheral uses the handshaking interface to indicate to the DMAC that it is ready to transfer/accept data over
the AMBA bus. A non-memory peripheral can request a DMA transfer through the DMAC using one of two
handshaking interfaces:

Hardware handshaking

Software handshaking
Software selects between the hardware or software handshaking interface on a per-channel basis. Software
handshaking is accomplished through memory-mapped registers, while hardware handshaking is accomplished
using a dedicated handshaking interface.
24.3.3.1 Software Handshaking
When the slave peripheral requires the DMAC to perform a DMA transaction, it communicates this request by
sending an interrupt to the CPU or interrupt controller.
The interrupt service routine then uses the software registers to initiate and control a DMA transaction. These
software registers are used to implement the software handshaking interface.
The HS_SEL_SRC/HS_SEL_DST bit in the DMAC_CFGx channel configuration register must be set to enable
software handshaking.
When the peripheral is not the flow controller, then the last transaction registers DMAC_LstSrcReg and
DMAC_LstDstReg are not used, and the values in these registers are ignored.
Burst Transactions
Writing a 1 to the DMAC_ReqSrcReg[x]/DMAC_ReqDstReg[x] register is always interpreted as a burst transaction
request, where x is the channel number. However, in order for a burst transaction request to start, software must
write a 1 to the DMAC_SglReqSrcReg[x]/DMAC_SglReqDstReg[x] register.
You can write a 1 to the DMAC_SglReqSrcReg[x]/DMAC_SglReqDstReg[x] and
DMAC_ReqSrcReg[x]/DMAC_ReqDstReg[x] registers in any order, but both registers must be asserted in order to
initiate a burst transaction. Upon completion of the burst transaction, the hardware clears the
DMAC_SglReqSrcReg[x]/DMAC_SglReqDstReg[x] and DMAC_ReqSrcReg[x]/DMAC_ReqDstReg[x] registers.
Single Transactions
Writing a 1 to the DMAC_SglReqSrcReg/DMAC_SglReqDstReg initiates a single transaction. Upon completion of
the single transaction, both the DMAC_SglReqSrcReg/DMAC_SglReqDstReg and
DMAC_ReqSrcReg/DMAC_ReqDstReg bits are cleared by hardware. Therefore, writing a 1 to the
DMAC_ReqSrcReg/DMAC_ReqDstReg is ignored while a single transaction has been initiated, and the requested
burst transaction is not serviced.
Again, writing a 1 to the DMAC_ReqSrcReg/DMAC_ReqDstReg register is always a burst transaction request.
However, in order for a burst transaction request to start, the corresponding channel bit in the
DMAC_SglReqSrcReg/DMAC_SglReqDstReg must be asserted. Therefore, to ensure that a burst transaction is
serviced, you must write a 1 to the DMAC_ReqSrcReg/DMAC_ReqDstReg before writing a 1 to the
DMAC_SglReqSrcReg/DMAC_SglReqDstReg register.
Software can poll the relevant channel bit in the DMAC_SglReqSrcReg/ DMAC_SglReqDstReg and
DMAC_ReqSrcReg/DMAC_ReqDstReg registers. When both are 0, then either the requested burst or single
transaction has completed. Alternatively, the IntSrcTran or IntDstTran interrupts can be enabled and unmasked in
order to generate an interrupt when the requested source or destination transaction has completed.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
265
Note:
The transaction-complete interrupts are triggered when both single and burst transactions are complete. The same
transaction-complete interrupt is used for both single and burst transactions.
24.3.3.2 Hardware Handshaking
There are five hardware handshaking interfaces connected to four external DMA requests (see Table 24-1).
Table 24-1.
Hardware Handshaking Connection
Request
Definition
Hardware Handshaking Interface
DMAREQ0
External DMA Request 0
1
DMAREQ1
External DMA Request 1
2
DMAREQ2
External DMA Request 2
3
DMAREQ3
External DMA Request 3
4
External DMA Request Definition
When an external slave peripheral requires the DMAC to perform DMA transactions, it communicates its request
by asserting the external nDMAREQx signal. This signal is resynchronized to ensure a proper functionality (see
Figure 24-4).
The external nDMAREQx is asserted when the source threshold level is reached. After resynchronization, the
rising edge of dma_req starts the transfer. dma_req is de-asserted when dma_ack is asserted.
Each DMAREQx assertion leads to a transfer. Its size (given by CTLxL.SRC_MSIZE and CTLxL.DEST_MSIZE) is
decremented from CTLxH.BLOCK_TS.
The external nDMAREQx signal must be de-asserted after the last transfer and re-asserted again before a new
transaction starts. The DMA ends the current transfer.
For a source FIFO, an active edge is triggered on nDMAREQx when the source FIFO exceeds a watermark level.
For a destination FIFO, an active edge is triggered on nDMAREQx when the destination FIFO drops below the
watermark level.
The source transaction length, CTLxL.SRC_MSIZE, and destination transaction length, CTLxL.DEST_MSIZE,
must be set according to watermark levels on the source/destination peripherals.
Figure 24-4.
External DMA Request Timing
Hclk
DMA Transaction
nDMAREQx
dma_req
DMA Transfers
dma_ack
266
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
DMA Transfers
DMA Transfers
24.3.4 DMAC Transfer Types
A DMA transfer may consist of single or multi-block transfers. On successive blocks of a multi-block transfer, the
DMAC_SARx/DMAC_DARx in the DMAC is reprogrammed using either of the following methods:

Block chaining using linked lists

Auto-reloading

Contiguous address between blocks
On successive blocks of a multi-block transfer, the DMAC_CTLx register in the DMAC is re-programmed using
either of the following methods:

Block chaining using linked lists

Auto-reloading
When block chaining, using linked lists is the multi-block method of choice, and on successive blocks, the
DMAC_LLPx register in the DMAC is re-programmed using the following method:

Block chaining using linked lists
A block descriptor (LLI) consists of following registers, DMAC_SARx, DMAC_DARx, DMAC_LLPx, DMAC_CTLx.
These registers, along with the DMAC_CFGx register, are used by the DMAC to set up and describe the block
transfer.
24.3.4.1 Multi-block Transfers
Block Chaining Using Linked Lists
In this case, the DMAC re-programs the channel registers prior to the start of each block by fetching the block
descriptor for that block from system memory. This is known as an LLI update.
DMAC block chaining is supported by using a Linked List Pointer register (DMAC_LLPx) that stores the address in
memory of the next linked list item. Each LLI (block descriptor) contains the corresponding block descriptor
(DMAC_SARx, DMAC_DARx, DMAC_LLPx, DMAC_CTLx).
To set up block chaining, a sequence of linked lists must be programmed in memory.
The DMAC_SARx, DMAC_DARx, DMAC_LLPx and DMAC_CTLx registers are fetched from system memory on
an LLI update. Figure 24-5 shows how to use chained linked lists in memory to define multi-block transfers using
block chaining.
The Linked List multi-block transfers is initiated by programming DMAC_LLPx with LLPx(0) (LLI(0) base address)
and DMAC_CTLx with DMAC_CTLx.LLP_S_EN and DMAC_CTLx.LLP_D_EN.
Figure 24-5.
Multi-block Transfer Using Linked Lists
LLI(0)
LLPx(0)
System Memory
LLI(1)
CTLx[63..32]
CTLx[63..32]
CTLx[31..0]
CTLx[31..0]
LLPx(1)
LLPx(2)
DARx
DARx
SARx
SARx
LLPx(2)
LLPx(1)
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
267
Table 24-2.
Programming of Transfer Types and Channel Register Update Method (DMAC State Machine Table)
Transfer Type
Single Block or
1 last transfer of
multi-Block
2
AutoReload
multi-block
transfer with
contiguous SAR
DMAC_CTLx,
LLP_S_EN
RELOAD_SR LLP_D_EN
RELOAD_DS DMAC_LLPx
LLP.LOC = 0 (DMAC_CTLx) (DMAC_CFGx) (DMAC_CTLx) (DMAC_CFGx) Update Method
Yes
0
0
0
0
None, user
reprograms
None (single)
None (single)
Yes
0
0
0
1
DMAC_CTLx,
DMAC_LLPx are
reloaded from
initial values.
Contiguous
Auto-Reload
Auto-Reload
Contiguous
Auto-Reload
Auto-Reload
AutoReload
multi-block
3
transfer with
contiguous DAR
Yes
0
1
0
0
DMAC_CTLx,
DMAC_LLPx are
reloaded from
initial values.
AutoReload
4 multi-block
transfer
Yes
0
1
0
1
DMAC_CTLx,
DMAC_LLPx are
reloaded from
initial values.
–
–
–
–
–
5
–
Linked List
multi-block
6
transfer with
contiguous SAR
No
0
0
1
Linked List
multi-block
transfer with
auto-reload SAR
No
0
1
1
7
Linked List
multi-block
8
transfer with
contiguous DAR
DMAC_SARx DMAC_DARx
Update Method Update Method
No
1
0
0
–
–
–
0
DMAC_CTLx,
DMAC_LLPx
loaded from next
Linked List item
Contiguous
Linked List
0
DMAC_CTLx,
DMAC_LLPx
loaded from next
Linked List item
Auto-Reload
Linked List
0
DMAC_CTLx,
DMAC_LLPx
loaded from next
Linked List item
Linked List
Contiguous
Linked List
Auto-Reload
Linked List
Linked List
Linked List
multi-block
9 transfer with
auto-reload
DAR
No
1
0
0
1
DMAC_CTLx,
DMAC_LLPx
loaded from next
Linked List item
Linked List
10 multi-block
transfer
No
1
0
1
0
DMAC_CTLx,
DMAC_LLPx
loaded from next
Linked List item
Auto-reloading of Channel Registers
During auto-reloading, the channel registers are reloaded with their initial values at the completion of each block
and the new values used for the new block. Depending on the row number in Table 24-2, some or all of the
DMAC_SARx, DMAC_DARx and DMAC_CTLx channel registers are reloaded from their initial value at the start of
a block transfer.
Contiguous Address Between Blocks
In this case, the address between successive blocks is selected to be a continuation from the end of the previous
block. Enabling the source or destination address to be contiguous between blocks is a function of
DMAC_CTLx.LLP_S_EN,
DMAC_CFGx.RELOAD_SR,
DMAC_CTLx.LLP_D_EN,
and
DMAC_CFGx.RELOAD_DS registers (see Table 24-2).
268
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Note:
Both DMAC_SARx and DMAC_DARx updates cannot be selected to be contiguous. If this functionality is required, the
size of the Block Transfer (DMAC_CTLx.BLOCK_TS) must be increased. If this is at the maximum value, use Row 10
of Table 24-2 and set up the LLI.DMAC_SARx address of the block descriptor to be equal to the end DMAC_SARx
address of the previous block. Similarly, set up the LLI.DMAC_DARx address of the block descriptor to be equal to the
end DMAC_DARx address of the previous block.
Suspension of Transfers Between Blocks
At the end of every block transfer, an end of block interrupt is asserted if:

interrupts are enabled, DMAC_CTLx.INT_EN = 1

the channel block interrupt is unmasked, DMAC_MaskBlock[n] = 0, where n is the channel number.
Note:
The block complete interrupt is generated at the completion of the block transfer to the destination.
For rows 6, 8, and 10 of Table 24-2 on page 268, the DMA transfer does not stall between block transfers. For
example, at the end of block N, the DMAC automatically proceeds to block N + 1.
For rows 2, 3, 4, 7, and 9 of Table 24-2 on page 268 (DMAC_SARx and/or DMAC_DARx auto-reloaded between
block transfers), the DMA transfer automatically stalls after the end of block. Interrupt is asserted if the end of block
interrupt is enabled and unmasked.
The DMAC does not proceed to the next block transfer until a write to the block interrupt clear register,
DMAC_ClearBlock[n], is performed by software. This clears the channel block complete interrupt.
For rows 2, 3, 4, 7, and 9 of Table 24-2 on page 268 (DMAC_SARx and/or DMAC_DARx auto-reloaded between
block transfers), the DMA transfer does not stall if either:

interrupts are disabled, DMAC_CTLx.INT_EN = 0, or

the channel block interrupt is masked, DMAC_MaskBlock[n] = 1, where n is the channel number.
Channel suspension between blocks is used to ensure that the end of block ISR (interrupt service routine) of the
next-to-last block is serviced before the start of the final block commences. This ensures that the ISR has cleared
the DMAC_CFGx.RELOAD_SR and/or DMAC_CFGx.RELOAD_DS bits before completion of the final block. The
reload bits DMAC_CFGx.RELOAD_SR and/or DMAC_CFGx.RELOAD_DS should be cleared in the ‘end of block
ISR’ for the next-to-last block transfer.
24.3.4.2 Ending Multi-block Transfers
All multi-block transfers must end as shown in Row 1 of Table 24-2 on page 268. At the end of every block
transfer, the DMAC samples the row number, and if the DMAC is in Row 1 state, then the previous block
transferred was the last block and the DMA transfer is terminated.
For rows 2,3 and 4 of Table 24-2 on page 268, (DMAC_LLPx = 0 and DMAC_CFGx.RELOAD_SR and/or
DMAC_CFGx.RELOAD_DS is set), multi-block DMA transfers continue until both the DMAC_CFGx.RELOAD_SR
and DMAC_CFGx.RELOAD_DS registers are cleared by software. They should be programmed to zero in the end
of block interrupt service routine that services the next-to-last block transfer. This puts the DMAC into Row 1 state.
For rows 6, 8, and 10 (both DMAC_CFGx.RELOAD_SR and DMAC_CFGx.RELOAD_DS cleared) the user must
set up the last block descriptor in memory such that both LLI.DMAC_CTLx.LLP_S_EN and
LLI.DMAC_CTLx.LLP_D_EN are zero.
For rows 7 and 9, the end-of-block interrupt service routine that services the next-to-last block transfer should clear
the DMAC_CFGx.RELOAD_SR and DMAC_CFGx.RELOAD_DS reload bits. The last block descriptor in memory
should be set up so that both the LLI.DMAC_CTLx.LLP_S_EN and LLI.DMAC_CTLx.LLP_D_EN are zero.
24.3.5 Programming a Channel
Three registers, the DMAC_LLPx, the DMAC_CTLx and DMAC_CFGx, need to be programmed to set up whether
single or multi-block transfers take place, and which type of multi-block transfer is used. The different transfer
types are shown in Table 24-2 on page 268.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
269
The “Update Method” column indicates where the values of DMAC_SARx, DMAC_DARx, DMAC_CTLx, and
DMAC_LLPx are obtained for the next block transfer when multi-block DMAC transfers are enabled.
Note:
In Table 24-2 on page 268, all other combinations of DMAC_LLPx.LOC = 0, DMAC_CTLx.LLP_S_EN,
DMAC_CFGx.RELOAD_SR, DMAC_CTLx.LLP_D_EN, and DMAC_CFGx.RELOAD_DS are illegal, and causes
indeterminate or erroneous behavior.
24.3.5.1 Programming Examples
Single-block Transfer (Row 1)
1.
Read the Channel Enable register to choose a free (disabled) channel.
2.
Clear any pending interrupts on the channel from the previous DMA transfer by writing to the Interrupt Clear
registers: DMAC_ClearTfr, DMAC_ClearBlock, DMAC_ClearSrcTran, DMAC_ClearDstTran,
DMAC_ClearErr. Reading the Interrupt Raw Status and Interrupt Status registers confirms that all interrupts
have been cleared.
3.
Program the following channel registers:
1. Write the starting source address in the DMAC_SARx for channel x.
2. Write the starting destination address in the DMAC_DARx for channel x.
3. Program DMAC_CTLx and DMAC_CFGx according to Row 1 as shown in Table 24-2 on page 268. Program the DMAC_LLPx register with ‘0’.
4. Write the control information for the DMA transfer in the DMAC_CTLx register for channel x. For example, in
the register, you can program the following:
̶
i. Set up the transfer type (memory or non-memory peripheral for source and destination) and flow
control device by programming the TT_FC of the DMAC_CTLx register.
̶
5.
̶
ii. Set up the transfer characteristics, such as:

Transfer width for the source in the SRC_TR_WIDTH field.

Transfer width for the destination in the DST_TR_WIDTH field.

Source master layer in the SMS field where source resides.

Destination master layer in the DMS field where destination resides.

Incrementing/decrementing or fixed address for source in SINC field.

Incrementing/decrementing or fixed address for destination in DINC field.
Write the channel configuration information into the DMAC_CFGx register for channel x.
i. Designate the handshaking interface type (hardware or software) for the source and destination
peripherals. This is not required for memory. This step requires programming the
HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’ activates the hardware handshaking
interface to handle source/destination requests. Writing a ‘1’ activates the software handshaking
interface to handle source/destination requests.
̶
4.
270
ii. If the hardware handshaking interface is activated for the source or destination peripheral, assign a
handshaking interface to the source and destination peripheral. This requires programming the
SRC_PER and DEST_PER bits, respectively.
6. If gather is enabled (DMAC_CTLx.S_GATH_EN is enabled), program the DMAC_SGRx for channel x.
7. If scatter is enabled (DMAC_CTLx.D_SCAT_EN, program the DMAC_DSRx for channel x.
After the DMAC selected channel has been programmed, enable the channel by writing a ‘1’ to the
DMAC_ChEnReg.CH_EN bit. Make sure that bit 0 of the DMAC_DmaCfgReg register is enabled.
5.
Source and destination request single and burst DMA transactions to transfer the block of data (assuming
non-memory peripherals). The DMAC acknowledges at the completion of every transaction (burst and
single) in the block and carry out the block transfer.
6.
Once the transfer completes, hardware sets the interrupts and disables the channel. At this time you can
either respond to the Block Complete or Transfer Complete interrupts, or poll for the Channel Enable
(DMAC_ChEnReg.CH_EN) bit until it is cleared by hardware, to detect when the transfer is complete.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Multi-block Transfer with Linked List for Source and Linked List for Destination (Row 10)
1.
Read the Channel Enable register to choose a free (disabled) channel.
2.
Set up the chain of Linked List Items (otherwise known as block descriptors) in memory. Write the control
information in the LLI.DMAC_CTLx register location of the block descriptor for each LLI in memory (see
Figure 24-8 on page 274) for channel x. For example, in the register, you can program the following:
1. Set up the transfer type (memory or non-memory peripheral for source and destination) and flow control
device by programming the TT_FC of the DMAC_CTLx register.
2. Set up the transfer characteristics, such as:
̶
i. Transfer width for the source in the SRC_TR_WIDTH field.
̶
3.
4.
ii. Transfer width for the destination in the DST_TR_WIDTH field.
̶
iii. Source master layer in the SMS field where source resides.
̶
iv. Destination master layer in the DMS field where destination resides.
̶
v. Incrementing/decrementing or fixed address for source in SINC field.
̶
vi. Incrementing/decrementing or fixed address for destination DINC field.
Write the channel configuration information into the DMAC_CFGx register for channel x.
1. Designate the handshaking interface type (hardware or software) for the source and destination peripherals. This is not required for memory. This step requires programming the HS_SEL_SRC/HS_SEL_DST bits,
respectively. Writing a ‘0’ activates the hardware handshaking interface to handle source/destination
requests for the specific channel. Writing a ‘1’ activates the software handshaking interface to handle
source/destination requests.
2. If the hardware handshaking interface is activated for the source or destination peripheral, assign the handshaking interface to the source and destination peripheral. This requires programming the SRC_PER and
DEST_PER bits, respectively.
Make sure that the LLI.DMAC_CTLx register locations of all LLI entries in memory (except the last) are set
as shown in Row 10 of Table 24-2 on page 268. The LLI.DMAC_CTLx register of the last Linked List Item
must be set as described in Row 1 of Table 24-2. Figure 24-7 on page 273 shows a Linked List example with
two list items.
5.
Make sure that the LLI.DMAC_LLPx register locations of all LLI entries in memory (except the last) are nonzero and point to the base address of the next Linked List Item.
6.
Make sure that the LLI.DMAC_SARx/LLI.DMAC_DARx locations of all LLI entries in memory point to the
start source/destination block address preceding that LLI fetch.
7.
Make sure that the LLI.DMAC_CTLx.DONE field of the LLI.DMAC_CTLx register locations of all LLI entries
in memory are cleared.
8.
If gather is enabled (DMAC_CTLx.S_GATH_EN is enabled), program the DMAC_SGRx for channel x.
9.
If scatter is enabled (DMAC_CTLx.D_SCAT_EN is enabled), program the DMAC_DSRx for channel x.
10. Clear any pending interrupts on the channel from the previous DMA transfer by writing to the Interrupt Clear
registers: DMAC_ClearTfr, DMAC_ClearBlock, DMAC_ClearSrcTran, DMAC_ClearDstTran,
DMAC_ClearErr. Reading the Interrupt Raw Status and Interrupt Status registers confirms that all interrupts
have been cleared.
11. Program the DMAC_CTLx, DMAC_CFGx registers according to Row 10 as shown in Table 24-2 on page
268.
12. Program the DMAC_LLPx register with DMAC_LLPx(0), the pointer to the first Linked List item.
13. Finally, enable the channel by writing a ‘1’ to the DMAC_ChEnReg.CH_EN bit. The transfer is performed.
14. The DMAC fetches the first LLI from the location pointed to by DMAC_LLPx(0).
Note:
The LLI.DMAC_SARx, LLI.DMAC_DARx, LLI.DMAC_LLPx and LLI.DMAC_CTLx registers are fetched. The DMAC
automatically reprograms the DMAC_SARx, DMAC_DARx, DMAC_LLPx and DMAC_CTLx channel registers from the
DMAC_LLPx(0).
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
271
15. Source and destination request single and burst DMA transactions to transfer the block of data (assuming
non-memory peripheral). The DMAC acknowledges at the completion of every transaction (burst and single)
in the block and carry out the block transfer.
16. The DMAC does not wait for the block interrupt to be cleared, but continues fetching the next LLI from the
memory location pointed to by current DMAC_LLPx register and automatically reprograms the
DMAC_SARx, DMAC_DARx, DMAC_LLPx and DMAC_CTLx channel registers. The DMA transfer
continues until the DMAC determines that the DMAC_CTLx and DMAC_LLPx registers at the end of a block
transfer match that described in Row 1 of Table 24-2 on page 268. The DMAC then knows that the previous
block transferred was the last block in the DMA transfer. The DMA transfer might look like that shown in
Figure 24-6.
Figure 24-6.
Multi-Block with Linked List Address for Source and Destination
Address of
Destination Layer
Address of
Source Layer
Block 2
SAR(2)
Block 2
DAR(2)
Block 1
SAR(1)
Block 1
DAR(1)
Block 0
Block 0
DAR(0)
SAR(0)
Source Blocks
Destination Blocks
If the user needs to execute a DMA transfer where the source and destination address are contiguous but the
amount of data to be transferred is greater than the maximum block size DMAC_CTLx.BLOCK_TS, then this can
be achieved using the type of multi-block transfer as shown in Figure 24-7 on page 273.
272
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Figure 24-7.
Multi-Block with Linked Address for Source and Destination Blocks are Contiguous
Address of
Source Layer
Address of
Destination Layer
Block 2
DAR(3)
Block 2
Block 2
SAR(3)
DAR(2)
Block 2
Block 1
SAR(2)
DAR(1)
Block 1
SAR(1)
Block 0
DAR(0)
Block 0
SAR(0)
Source Blocks
Destination Blocks
The DMA transfer flow is shown in Figure 24-8 on page 274.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
273
Figure 24-8.
DMA Transfer Flow for Source and Destination Linked List Address
Channel enabled by
software
LLI Fetch
Hardware reprograms
SARx, DARx, CTLx, LLPx
DMAC block transfer
Source/destination
status fetch
Block Complete interrupt
generated here
Is DMAC in
Row1 of
DMAC State Machine Table?
DMAC transfer Complete
interrupt generated here
yes
Channel Disabled by
hardware
274
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
no
Multi-block Transfer with Source Address Auto-reloaded and Destination Address Auto-reloaded (Row 4)
1.
Read the Channel Enable register to choose an available (disabled) channel.
2.
Clear any pending interrupts on the channel from the previous DMA transfer by writing to the Interrupt Clear
registers: DMAC_ClearTfr, DMAC_ClearBlock, DMAC_ClearSrcTran, DMAC_ClearDstTran,
DMAC_ClearErr. Reading the Interrupt Raw Status and Interrupt Status registers confirms that all interrupts
have been cleared.
3.
Program the following channel registers:
1. Write the starting source address in the DMAC_SARx for channel x.
2. Write the starting destination address in the DMAC_DARx for channel x.
3. Program DMAC_CTLx and DMAC_CFGx according to Row 4 as shown in Table 24-2 on page 268. Program the DMAC_LLPx register with ‘0’.
4. Write the control information for the DMA transfer in the DMAC_CTLx register for channel x. For example, in
the register, you can program the following:
̶
i. Set up the transfer type (memory or non-memory peripheral for source and destination) and flow
control device by programming the TT_FC of the DMAC_CTLx register.
̶
5.
6.
7.
̶
̶
ii. Set up the transfer characteristics, such as:

Transfer width for the source in the SRC_TR_WIDTH field.

Transfer width for the destination in the DST_TR_WIDTH field.

Source master layer in the SMS field where source resides.

Destination master layer in the DMS field where destination resides.

Incrementing/decrementing or fixed address for source in SINC field.

Incrementing/decrementing or fixed address for destination in DINC field.
If gather is enabled (DMAC_CTLx.S_GATH_EN is enabled), program the DMAC_SGRx for channel x.
If scatter is enabled (DMAC_CTLx.D_SCAT_EN), program the DMAC_DSRx for channel x.
Write the channel configuration information into the DMAC_CFGx register for channel x. Ensure that the
reload bits, DMAC_CFGx. RELOAD_SR and DMAC_CFGx.RELOAD_DS are enabled.
i. Designate the handshaking interface type (hardware or software) for the source and destination
peripherals. This is not required for memory. This step requires programming the
HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’ activates the hardware handshaking
interface to handle source/destination requests for the specific channel. Writing a ‘1’ activates the
software handshaking interface to handle source/destination requests.
ii. If the hardware handshaking interface is activated for the source or destination peripheral, assign
handshaking interface to the source and destination peripheral. This requires programming the
SRC_PER and DEST_PER bits, respectively.
4.
After the DMAC selected channel has been programmed, enable the channel by writing a ‘1’ to the
DMAC_ChEnReg.CH_EN bit. Make sure that bit 0 of the DMAC_DmaCfgReg register is enabled.
5.
Source and destination request single and burst DMAC transactions to transfer the block of data (assuming
non-memory peripherals). The DMAC acknowledges on completion of each burst/single transaction and
carry out the block transfer.
6.
When the block transfer has completed, the DMAC reloads the DMAC_SARx, DMAC_DARx and
DMAC_CTLx registers. Hardware sets the Block Complete interrupt. The DMAC then samples the row
number as shown in Table 24-2 on page 268. If the DMAC is in Row 1, then the DMA transfer has
completed. Hardware sets the transfer complete interrupt and disables the channel. So you can either
respond to the Block Complete or Transfer Complete interrupts, or poll for the Channel Enable
(DMAC_ChEnReg.CH_EN) bit until it is disabled, to detect when the transfer is complete. If the DMAC is not
in Row 1, the next step is performed.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
275
7.
The DMA transfer proceeds as follows:
1. If interrupts are enabled (DMAC_CTLx.INT_EN = 1) and the block complete interrupt is un-masked
(DMAC_MaskBlock[x] = 1’b1, where x is the channel number) hardware sets the block complete interrupt
when the block transfer has completed. It then stalls until the block complete interrupt is cleared by software. If the next block is to be the last block in the DMA transfer, then the block complete ISR (interrupt
service routine) should clear the reload bits in the DMAC_CFGx.RELOAD_SR and
DMAC_CFGx.RELOAD_DS registers. This put the DMAC into Row 1 as shown in Table 24-2 on page 268.
If the next block is not the last block in the DMA transfer, then the reload bits should remain enabled to keep
the DMAC in Row 4.
2. If interrupts are disabled (DMAC_CTLx.INT_EN = 0) or the block complete interrupt is masked
(DMAC_MaskBlock[x] = 1’b0, where x is the channel number), then hardware does not stall until it detects a
write to the block complete interrupt clear register but starts the next block transfer immediately. In this case
software must clear the reload bits in the DMAC_CFGx.RELOAD_SR and DMAC_CFGx.RELOAD_DS registers to put the DMAC into ROW 1 of Table 24-2 on page 268 before the last block of the DMA transfer has
completed. The transfer is similar to that shown in Figure 24-9. The DMA transfer flow is shown in Figure
24-10 on page 277.
Figure 24-9.
Multi-Block DMA Transfer with Source and Destination Address Auto-reloaded
Address of
Source Layer
Address of
Destination Layer
Block0
Block1
Block2
SAR
DAR
BlockN
Source Blocks
276
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Destination Blocks
Figure 24-10. DMA Transfer Flow for Source and Destination Address Auto-reloaded
Channel Enabled by
software
Block Transfer
Reload SARx, DARx, CTLx
Block Complete interrupt
generated here
DMAC transfer Complete
interrupt generated here
yes
Is DMAC in Row1 of
DMAC State Machine Table?
Channel Disabled by
hardware
no
CTLx.INT_EN=1
&&
MASKBLOCK[x]=1?
no
yes
Stall until block complete
interrupt cleared by software
Multi-block Transfer with Source Address Auto-reloaded and Linked List Destination Address (Row 7)
1.
Read the Channel Enable register to choose a free (disabled) channel.
2.
Set up the chain of linked list items (otherwise known as block descriptors) in memory. Write the control
information in the LLI.DMAC_CTLx register location of the block descriptor for each LLI in memory for
channel x. For example, in the register you can program the following:
1. Set up the transfer type (memory or non-memory peripheral for source and destination) and flow control
peripheral by programming the TT_FC of the DMAC_CTLx register.
2. Set up the transfer characteristics, such as:
̶
i. Transfer width for the source in the SRC_TR_WIDTH field.
̶
̶
̶
3.
Note:
ii. Transfer width for the destination in the DST_TR_WIDTH field.
iii. Source master layer in the SMS field where source resides.
iv. Destination master layer in the DMS field where destination resides.
̶
v. Incrementing/decrementing or fixed address for source in SINC field.
̶
vi. Incrementing/decrementing or fixed address for destination DINC field.
Write the starting source address in the DMAC_SARx for channel x.
The values in the LLI.DMAC_SARx locations of each of the Linked List Items (LLIs) setup in memory, although fetched
during a LLI fetch, are not used.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
277
4.
5.
Write the channel configuration information into the DMAC_CFGx register for channel x.
1. Designate the handshaking interface type (hardware or software) for the source and destination peripherals. This is not required for memory. This step requires programming the HS_SEL_SRC/HS_SEL_DST bits,
respectively. Writing a ‘0’ activates the hardware handshaking interface to handle source/destination
requests for the specific channel. Writing a ‘1’ activates the software handshaking interface source/destination requests.
2. If the hardware handshaking interface is activated for the source or destination peripheral, assign handshaking interface to the source and destination peripheral. This requires programming the SRC_PER and
DEST_PER bits, respectively.
Make sure that the LLI.DMAC_CTLx register locations of all LLIs in memory (except the last) are set as
shown in Row 7 of Table 24-2 on page 268 while the LLI.DMAC_CTLx register of the last Linked List item
must be set as described in Row 1 of Table 24-2. Figure 24-8 on page 274 shows a Linked List example with
two list items.
6.
Make sure that the LLI.DMAC_LLPx register locations of all LLIs in memory (except the last) are non-zero
and point to the next Linked List Item.
7.
Make sure that the LLI.DMAC_DARx location of all LLIs in memory point to the start destination block
address proceeding that LLI fetch.
8.
Make sure that the LLI.DMAC_CTLx.DONE field of the LLI.DMAC_CTLx register locations of all LLIs in
memory is cleared.
9.
If gather is enabled (DMAC_CTLx.S_GATH_EN is enabled), program the DMAC_SGRx for channel x.
10. If scatter is enabled (DMAC_CTLx.D_SCAT_EN is enabled), program the DMAC_DSRx for channel x.
11. Clear any pending interrupts on the channel from the previous DMA transfer by writing to the Interrupt Clear
registers: DMAC_ClearTfr, DMAC_ClearBlock, DMAC_ClearSrcTran, DMAC_ClearDstTran,
DMAC_ClearErr. Reading the Interrupt Raw Status and Interrupt Status registers confirms that all interrupts
have been cleared.
12. Program the DMAC_CTLx, DMAC_CFGx registers according to Row 7 as shown in Table 24-2 on page 268.
13. Program the DMAC_LLPx register with DMAC_LLPx(0), the pointer to the first Linked List item.
14. Finally, enable the channel by writing a ‘1’ to the DMAC_ChEnReg.CH_EN bit. The transfer is performed.
Make sure that bit 0 of the DMAC_DmaCfgReg register is enabled.
15. The DMAC fetches the first LLI from the location pointed to by DMAC_LLPx(0).
Note:
The LLI.DMAC_SARx, LLI.DMAC_DARx, LLI.DMAC_LLPx and LLI.DMAC_CTLx registers are fetched. The
LLI.DMAC_SARx although fetched is not used.
16. Source and destination request single and burst DMAC transactions to transfer the block of data (assuming
non-memory peripherals). DMAC acknowledges at the completion of every transaction (burst and single) in
the block and carry out the block transfer.
17. The DMAC reloads the DMAC_SARx from the initial value. Hardware sets the block complete interrupt. The
DMAC samples the row number as shown in Table 24-2 on page 268. If the DMAC is in Row 1 or 5, then the
DMA transfer has completed. Hardware sets the transfer complete interrupt and disables the channel. You
can either respond to the Block Complete or Transfer Complete interrupts, or poll for the Channel Enable
(DMAC_ChEnReg.CH_EN) bit until it is cleared by hardware, to detect when the transfer is complete. If the
DMAC is not in Row 1 or 5 as shown in Table 24-2 on page 268 the following steps are performed.
18. The DMA transfer proceeds as follows:
1. If interrupts are enabled (DMAC_CTLx.INT_EN = 1) and the block complete interrupt is un-masked
(DMAC_MaskBlock[x] = 1’b1, where x is the channel number) hardware sets the block complete interrupt
when the block transfer has completed. It then stalls until the block complete interrupt is cleared by software. If the next block is to be the last block in the DMA transfer, then the block complete ISR (interrupt
service routine) should clear the DMAC_CFGx.RELOAD_SR source reload bit. This puts the DMAC into
Row1 as shown in Table 24-2 on page 268. If the next block is not the last block in the DMA transfer, then
278
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
the source reload bit should remain enabled to keep the DMAC in Row 7 as shown in Table 24-2 on page
268.
2.
If interrupts are disabled (DMAC_CTLx.INT_EN = 0) or the block complete interrupt is masked
(DMAC_MaskBlock[x] = 1’b0, where x is the channel number) then hardware does not stall until it detects a
write to the block complete interrupt clear register but starts the next block transfer immediately. In this
case, software must clear the source reload bit, DMAC_CFGx.RELOAD_SR, to put the device into Row 1 of
Table 24-2 on page 268 before the last block of the DMA transfer has completed.
19. The DMAC fetches the next LLI from memory location pointed to by the current DMAC_LLPx register, and
automatically reprograms the DMAC_DARx, DMAC_CTLx and DMAC_LLPx channel registers. Note that
the DMAC_SARx is not re-programmed as the reloaded value is used for the next DMA block transfer. If the
next block is the last block of the DMA transfer then the DMAC_CTLx and DMAC_LLPx registers just
fetched from the LLI should match Row 1 of Table 24-2 on page 268. The DMA transfer might look like that
shown in Figure 24-11.
Figure 24-11. Multi-Block DMA Transfer with Source Address Auto-reloaded and Linked List Destination Address
Address of
Destination Layer
Address of
Source Layer
Block0
DAR(0)
Block1
DAR(1)
SAR
Block2
DAR(2)
BlockN
DAR(N)
Source Blocks
Destination Blocks
The DMA Transfer flow is shown in Figure 24-12 on page 280.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
279
Figure 24-12. DMA Transfer Flow for Source Address Auto-reloaded and Linked List Destination Address
Channel Enabled by
software
LLI Fetch
Hardware reprograms
DARx, CTLx, LLPx
DMAC block transfer
Source/destination status fetch
Reload SARx
Block Complete interrupt
generated here
DMAC Transfer Complete
interrupt generated here
yes
Channel Disabled by
hardware
Is DMAC in
Row1 or Row5 of
DMAC State Machine Table?
no
CTLx.INT_EN=1
&&
MASKBLOCK[X]=1 ?
yes
Stall until block interrupt
Cleared by hardware
280
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
no
Multi-block Transfer with Source Address Auto-reloaded and Contiguous Destination Address (Row 3)
1.
Read the Channel Enable register to choose a free (disabled) channel.
2.
Clear any pending interrupts on the channel from the previous DMA transfer by writing to the Interrupt Clear
registers: DMAC_ClearTfr, DMAC_ClearBlock, DMAC_ClearSrcTran, DMAC_ClearDstTran,
DMAC_ClearErr. Reading the Interrupt Raw Status and Interrupt Status registers confirms that all interrupts
have been cleared.
3.
Program the following channel registers:
1. Write the starting source address in the DMAC_SARx for channel x.
2. Write the starting destination address in the DMAC_DARx for channel x.
3. Program DMAC_CTLx and DMAC_CFGx according to Row 3 as shown in Table 24-2 on page 268. Program the DMAC_LLPx register with ‘0’.
4. Write the control information for the DMA transfer in the DMAC_CTLx register for channel x. For example, in
this register, you can program the following:
̶
i. Set up the transfer type (memory or non-memory peripheral for source and destination) and flow
control device by programming the TT_FC of the DMAC_CTLx register.
̶
5.
6.
7.
̶
̶
ii. Set up the transfer characteristics, such as:

Transfer width for the source in the SRC_TR_WIDTH field.

Transfer width for the destination in the DST_TR_WIDTH field.

Source master layer in the SMS field where source resides.

Destination master layer in the DMS field where destination resides.

Incrementing/decrementing or fixed address for source in SINC field.

Incrementing/decrementing or fixed address for destination in DINC field.
If gather is enabled (DMAC_CTLx.S_GATH_EN is enabled), program the DMAC_SGRx for channel x.
If scatter is enabled (DMAC_CTLx.D_SCAT_EN), program the DMAC_DSRx for channel x.
Write the channel configuration information into the DMAC_CFGx register for channel x.
i. Designate the handshaking interface type (hardware or software) for the source and destination
peripherals. This is not required for memory. This step requires programming the
HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’ activates the hardware handshaking
interface to handle source/destination requests for the specific channel. Writing a ‘1’ activates the
software handshaking interface to handle source/destination requests.
ii. If the hardware handshaking interface is activated for the source or destination peripheral, assign
handshaking interface to the source and destination peripheral. This requires programming the
SRC_PER and DEST_PER bits, respectively.
4.
After the DMAC channel has been programmed, enable the channel by writing a ‘1’ to the
DMAC_ChEnReg.CH_EN bit. Make sure that bit 0 of the DMAC_DmaCfgReg register is enabled.
5.
Source and destination request single and burst DMAC transactions to transfer the block of data (assuming
non-memory peripherals). The DMAC acknowledges at the completion of every transaction (burst and
single) in the block and carries out the block transfer.
6.
When the block transfer has completed, the DMAC reloads the DMAC_SARx. The DMAC_DARx remains
unchanged. Hardware sets the block complete interrupt. The DMAC then samples the row number as shown
in Table 24-2 on page 268. If the DMAC is in Row 1, then the DMA transfer has completed. Hardware sets
the transfer complete interrupt and disables the channel. So you can either respond to the Block Complete
or Transfer Complete interrupts, or poll for the Channel Enable (DMAC_ChEnReg.CH_EN) bit until it is
cleared by hardware, to detect when the transfer is complete. If the DMAC is not in Row 1, the next step is
performed.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
281
7.
The DMA transfer proceeds as follows:
1. If interrupts are enabled (DMAC_CTLx.INT_EN = 1) and the block complete interrupt is un-masked
(DMAC_MaskBlock[x] = 1’b1, where x is the channel number) hardware sets the block complete interrupt
when the block transfer has completed. It then stalls until the block complete interrupt is cleared by software. If the next block is to be the last block in the DMA transfer, then the block complete ISR (interrupt
service routine) should clear the source reload bit, DMAC_CFGx.RELOAD_SR. This puts the DMAC into
Row1 as shown in Table 24-2 on page 268. If the next block is not the last block in the DMA transfer then
the source reload bit should remain enabled to keep the DMAC in Row3 as shown in Table 24-2 on page
268.
2. If interrupts are disabled (DMAC_CTLx.INT_EN = 0) or the block complete interrupt is masked
(DMAC_MaskBlock[x] = 1’b0, where x is the channel number) then hardware does not stall until it detects a
write to the block complete interrupt clear register but starts the next block transfer immediately. In this case
software must clear the source reload bit, DMAC_CFGx.RELOAD_SR, to put the device into ROW 1 of
Table 24-2 on page 268 before the last block of the DMA transfer has completed.
The transfer is similar to that shown in Figure 24-13.
The DMA Transfer flow is shown in Figure 24-14 on page 283.
Figure 24-13. Multi-block Transfer with Source Address Auto-reloaded and Contiguous Destination Address
Address of
Destination Layer
Address of
Source Layer
Block2
DAR(2)
Block1
DAR(1)
Block0
SAR
DAR(0)
Source Blocks
282
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Destination Blocks
Figure 24-14. DMA Transfer for Source Address Auto-reloaded and Contiguous Destination Address
Channel Enabled by
software
Block Transfer
Reload SARx, CTLx
Block Complete interrupt
generated here
DMAC Transfer Complete
interrupt generated here
yes
Is DMAC in Row1 of
DMAC State Machine Table?
Channel Disabled by
hardware
no
CTLx.INT_EN=1
&&
MASKBLOCK[x]=1?
no
yes
Stall until Block Complete
interrupt cleared by software
Multi-block DMA Transfer with Linked List for Source and Contiguous Destination Address (Row 8)
1.
Read the Channel Enable register to choose a free (disabled) channel.
2.
Set up the linked list in memory. Write the control information in the LLI.DMAC_CTLx register location of the
block descriptor for each LLI in memory for channel x. For example, in the register, you can program the
following:
1. Set up the transfer type (memory or non-memory peripheral for source and destination) and flow control
device by programming the TT_FC of the DMAC_CTLx register.
2. Set up the transfer characteristics, such as:
̶
i. Transfer width for the source in the SRC_TR_WIDTH field.
̶
̶
̶
3.
ii. Transfer width for the destination in the DST_TR_WIDTH field.
iii. Source master layer in the SMS field where source resides.
iv. Destination master layer in the DMS field where destination resides.
̶
v. Incrementing/decrementing or fixed address for source in SINC field.
̶
vi. Incrementing/decrementing or fixed address for destination DINC field.
Write the starting destination address in the DMAC_DARx for channel x.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
283
Note:
The values in the LLI.DMAC_DARx location of each Linked List Item (LLI) in memory, although fetched during an LLI
fetch, are not used.
4.
Write the channel configuration information into the DMAC_CFGx register for channel x.
1. Designate the handshaking interface type (hardware or software) for the source and destination peripherals. This is not required for memory. This step requires programming the HS_SEL_SRC/HS_SEL_DST bits,
respectively. Writing a ‘0’ activates the hardware handshaking interface to handle source/destination
requests for the specific channel. Writing a ‘1’ activates the software handshaking interface to handle
source/destination requests.
2. If the hardware handshaking interface is activated for the source or destination peripheral, assign handshaking interface to the source and destination peripherals. This requires programming the SRC_PER and
DEST_PER bits, respectively.
Make sure that all LLI.DMAC_CTLx register locations of the LLI (except the last) are set as shown in Row 8
of Table 24-2 on page 268, while the LLI.DMAC_CTLx register of the last Linked List item must be set as
described in Row 1 of Table 24-2. Figure 24-8 on page 274 shows a Linked List example with two list items.
5.
6.
Make sure that the LLI.DMAC_LLPx register locations of all LLIs in memory (except the last) are non-zero
and point to the next Linked List Item.
7.
Make sure that the LLI.DMAC_SARx location of all LLIs in memory point to the start source block address
proceeding that LLI fetch.
8.
Make sure that the LLI.DMAC_CTLx.DONE field of the LLI.DMAC_CTLx register locations of all LLIs in
memory is cleared.
9.
If gather is enabled (DMAC_CTLx.S_GATH_EN is enabled), program the DMAC_SGRx for channel x.
10. If scatter is enabled (DMAC_CTLx.D_SCAT_EN is enabled), program the DMAC_DSRx for channel x.
11. Clear any pending interrupts on the channel from the previous DMA transfer by writing to the Interrupt Clear
registers: DMAC_ClearTfr, DMAC_ClearBlock, DMAC_ClearSrcTran, DMAC_ClearDstTran,
DMAC_ClearErr. Reading the Interrupt Raw Status and Interrupt Status registers confirms that all interrupts
have been cleared.
12. Program the DMAC_CTLx, DMAC_CFGx registers according to Row 8 as shown in Table 24-2 on page 268
13. Program the DMAC_LLPx register with DMAC_LLPx(0), the pointer to the first Linked List item.
14. Finally, enable the channel by writing a ‘1’ to the DMAC_ChEnReg.CH_EN bit. The transfer is performed.
Make sure that bit 0 of the DMAC_DmaCfgReg register is enabled.
15. The DMAC fetches the first LLI from the location pointed to by DMAC_LLPx(0).
Note:
The LLI.DMAC_SARx, LLI.DMAC_DARx, LLI.DMAC_LLPx and LLI.DMAC_CTLx registers are fetched. The
LLI.DMAC_DARx location of the LLI although fetched is not used. The DMAC_DARx in the DMAC remains
unchanged.
16. Source and destination requests single and burst DMAC transactions to transfer the block of data (assuming
non-memory peripherals). The DMAC acknowledges at the completion of every transaction (burst and
single) in the block and carry out the block transfer.
17. The DMAC does not wait for the block interrupt to be cleared, but continues and fetches the next LLI from
the memory location pointed to by current DMAC_LLPx register and automatically reprograms the
DMAC_SARx, DMAC_CTLx and DMAC_LLPx channel registers. The DMAC_DARx is left unchanged. The
DMA transfer continues until the DMAC samples the DMAC_CTLx and DMAC_LLPx registers at the end of
a block transfer match that described in Row 1 of Table 24-2 on page 268. The DMAC then knows that the
previous block transferred was the last block in the DMA transfer.
The DMAC transfer might look like that shown in Figure 24-15 on page 285. Note that the destination address is
decrementing.
284
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Figure 24-15. DMA Transfer with Linked List Source Address and Contiguous Destination Address
Address of
Destination Layer
Address of
Source Layer
Block 2
SAR(2)
Block 2
DAR(2)
Block 1
Block 1
SAR(1)
DAR(1)
Block 0
Block 0
DAR(0)
SAR(0)
Source Blocks
Destination Blocks
The DMA transfer flow is shown in Figure 24-16 on page 286.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
285
Figure 24-16. DMA Transfer Flow for Source Address Auto-reloaded and Contiguous Destination Address
Channel Enabled by
software
LLI Fetch
Hardware reprograms
SARx, CTLx, LLPx
DMAC block transfer
Source/destination
status fetch
Block Complete interrupt
generated here
Is DMAC in
Row 1 of Table 4 ?
DMAC Transfer Complete
interrupt generated here
yes
Channel Disabled by
hardware
286
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
no
24.3.6 Disabling a Channel Prior to Transfer Completion
Under normal operation, software enables a channel by writing a ‘1’ to the Channel Enable Register,
DMAC_ChEnReg.CH_EN, and hardware disables a channel on transfer completion by clearing the
DMAC_ChEnReg.CH_EN register bit.
The recommended way for software to disable a channel without losing data is to use the CH_SUSP bit in
conjunction with the FIFO_EMPTY bit in the Channel Configuration Register (DMAC_CFGx) register.
1.
If software wishes to disable a channel prior to the DMA transfer completion, then it can set the
DMAC_CFGx.CH_SUSP bit to tell the DMAC to halt all transfers from the source peripheral. Therefore, the
channel FIFO receives no new data.
2.
Software can now poll the DMAC_CFGx.FIFO_EMPTY bit until it indicates that the channel FIFO is empty.
3.
The DMAC_ChEnReg.CH_EN bit can then be cleared by software once the channel FIFO is empty.
When DMAC_CTLx.SRC_TR_WIDTH is less than DMAC_CTLx.DST_TR_WIDTH and the
DMAC_CFGx.CH_SUSP bit is high, the DMAC_CFGx.FIFO_EMPTY is asserted once the contents of the FIFO do
not permit a single word of DMAC_CTLx.DST_TR_WIDTH to be formed. However, there may still be data in the
channel FIFO but not enough to form a single transfer of DMAC_CTLx.DST_TR_WIDTH width. In this
configuration, once the channel is disabled, the remaining data in the channel FIFO are not transferred to the
destination peripheral. It is permitted to remove the channel from the suspension state by writing a ‘0’ to the
DMAC_CFGx.CH_SUSP register. The DMA transfer completes in the normal manner.
Note:
If a channel is disabled by software, an active single or burst transaction is not guaranteed to receive an
acknowledgement.
24.3.6.1 Abnormal Transfer Termination
A DMAC DMA transfer may be terminated abruptly by software by clearing the channel enable bit,
DMAC_ChEnReg.CH_EN. This does not mean that the channel is disabled immediately after the
DMAC_ChEnReg.CH_EN bit is cleared over the AHB slave interface. Consider this as a request to disable the
channel. The DMAC_ChEnReg.CH_EN must be polled and then it must be confirmed that the channel is disabled
by reading back 0. A case where the channel is not be disabled after a channel disable request is where either the
source or destination has received a split or retry response. The DMAC must keep re-attempting the transfer to the
system HADDR that originally received the split or retry response until an OKAY response is returned. To do
otherwise is an AMBA protocol violation.
Software may terminate all channels abruptly by clearing the global enable bit in the DMAC Configuration Register
(DMAC_DmaCfgReg[0]). Again, this does not mean that all channels are disabled immediately after the
DMAC_DmaCfgReg[0] is cleared over the AHB slave interface. Consider this as a request to disable all channels.
The DMAC_ChEnReg must be polled and then it must be confirmed that all channels are disabled by reading back
‘0’.
Note:
Note:
If the channel enable bit is cleared while there is data in the channel FIFO, this data is not sent to the destination
peripheral and is not present when the channel is re-enabled. For read sensitive source peripherals such as a source
FIFO this data is therefore lost. When the source is not a read sensitive device (i.e., memory), disabling a channel
without waiting for the channel FIFO to empty may be acceptable as the data is available from the source peripheral
upon request and is not lost.
If a channel is disabled by software, an active single or burst transaction is not guaranteed to receive an
acknowledgement.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
287
24.4
DMA Controller (DMAC) User Interface
Table 24-3.
Offset
Register Mapping
Register
Name
Access
Reset
0x0
Channel 0 Source Address Register
DMAC_SAR0
Read/Write
0x0
0x4
Reserved
–
–
–
0x8
Channel 0 Destination Address Register
DMAC_DAR0
Read/Write
0x0
0xC
Reserved
–
–
–
0x10
Channel 0 Linked List Pointer Register
DMAC_LLP0
Read/Write
0x0
0x14
Reserved
–
–
–
0x18
Channel 0 Control Register Low
DMAC_CTL0L
Read/Write
0x0
0x1C
Channel 0 Control Register High
DMAC_CTL0H
Read/Write
0x0
Reserved
–
–
–
0x40
Channel 0 Configuration Register Low
DMAC_CFG0L
Read/Write
0x00000c00
0x44
Channel 0 Configuration Register High
DMAC_CFG0H
Read/Write
0x00000004
0x48
Channel 0 Source Gather Register
DMAC_SGR0
Read/Write
0x0
0x4C
Reserved
–
–
–
0x50
Channel 0 Destination Scatter Register
DMAC_DSR0
Read/Write
0x0
0x54
Reserved
–
–
–
0x58
Channel 1 Source Address Register
DMAC_SAR1
Read/Write
0x0
0x5C
Reserved
–
–
–
0x60
Channel 1 Destination Address Register
DMAC_DAR1
Read/Write
0x0
0x64
Reserved
–
–
–
0x68
Channel 1 Linked List Pointer Register
DMAC_LLP1
Read/Write
0x0
0x7C
Reserved
–
–
–
0x70
Channel 1 Control Register Low
DMAC_CTL1L
Read/Write
0x0
0x74
Channel 1 Control Register High
DMAC_CTL1H
Read/Write
0x0
Reserved
–
–
–
0x98
Channel 1 Configuration Register Low
DMAC_CFG1L
Read/Write
0x00000c20
0x9C
Channel 1 Configuration Register High
DMAC_CFG1H
Read/Write
0x00000004
0xa0
Channel 1 Source Gather Register
DMAC_SGR1
Read/Write
0x0
0xa4
Reserved
–
–
–
0xa8
Channel 1 Destination Scatter Register
DMAC_DSR1
Read/Write
0x0
Reserved
–
–
–
0x2c0
Raw Status for IntTfr Interrupt
DMAC_RawTfr
Read-only
0x0
0x2c4
Reserved
–
–
–
0x2c8
Raw Status for IntBlock Interrupt
DMAC_RawBlock
Read-only
0x0
0x2cc
Reserved
–
–
–
0x2d0
Raw Status for IntSrcTran Interrupt
DMAC_RawSrcTran
Read-only
0x0
0x20–0x3C
0x78–0x94
0xac–0x2bc
288
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Table 24-3.
Register Mapping (Continued)
Offset
Register
Name
0x2d4
Reserved
–
0x2d8
Raw Status for IntDstTran Interrupt
DMAC_RawDstTran
0x2dc
Reserved
–
0x2e0
Raw Status for IntErr Interrupt
DMAC_RawErr
0x2e4
Reserved
–
0x2e8
Status for IntTfr Interrupt
DMAC_StatusTfr
0x2ec
Reserved
–
0x2f0
Status for IntBlock Interrupt
DMAC_StatusBlock
0x2f4
Reserved
–
0x2f8
Status for IntSrcTran Interrupt
DMAC_StatusSrcTran
0x2fc
Reserved
–
0x300
Status for IntDstTran Interrupt
DMAC_StatusDstTran
0x304
Reserved
–
0x308
Status for IntErr Interrupt
DMAC_StatusErr
0x30c
Reserved
–
0x310
Mask for IntTfr Interrupt
DMAC_MaskTfr
0x314
Reserved
–
0x318
Mask for IntBlock Interrupt
DMAC_MaskBlock
0x31c
Reserved
–
0x320
Mask for IntSrcTran Interrupt
DMAC_MaskSrcTran
0x324
Reserved
–
0x328
Mask for IntDstTran Interrupt
DMAC_MaskDstTran
0x32c
Reserved
–
0x330
Mask for IntErr Interrupt
DMAC_MaskErr
0x334
Reserved
–
0x338
Clear for IntTfr Interrupt
DMAC_ClearTfr
0x33c
Reserved
–
0x340
Clear for IntBlock Interrupt
DMAC_ClearBlock
0x344
Reserved
–
0x348
Clear for IntSrcTran Interrupt
DMAC_ClearSrcTran
0x34c
Reserved
–
0x350
Clear for IntDstTran Interrupt
DMAC_ClearDstTran
0x354
Reserved
–
0x358
Clear for IntErr Interrupt
DMAC_ClearErr
0x35c
Reserved
–
0x360
Status for each interrupt type
DMAC_StatusInt
0x364
Reserved
–
Access
Reset
–
–
Read-only
0x0
–
–
Read-only
0x0
–
–
Read-only
0x0
–
–
Read-only
0x0
–
–
Read-only
0x0
–
–
Read-only
0x0
–
–
Read-only
0x0
–
–
Read/Write
0x0
–
–
Read/Write
0x0
–
–
Read/Write
0x0
–
–
Read/Write
0x0
–
–
Read/Write
0x0
–
–
Write-only
–
–
–
Write-only
–
–
–
Write-only
–
–
–
Write-only
–
–
–
Write-only
–
–
–
Read-only
0x0
–
–
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
289
Table 24-3.
Register Mapping (Continued)
Offset
Register
Name
0x368
Source Software Transaction Request Register
DMAC_ReqSrcReg
0x36c
Reserved
–
0x370
Destination Software Transaction Request Register
DMAC_ReqDstReg
0x374
Reserved
–
0x378
Single Source Transaction Request Register
DMAC_SglReqSrcReg
0x37c
Reserved
–
0x380
Single Destination Transaction Request Register
DMAC_SglReqDstReg
0x384
Reserved
–
0x388
Last Source Transaction Request Register
DMAC_LstSrcReqReg
0x38c
Reserved
–
0x390
Last Destination Transaction Request Register
DMAC_LstDstReqReg
0x394
Reserved
–
0x398
DMA Configuration Register
DMAC_DmaCfgReg
0x39c
Reserved
–
0x3a0
Channel Enable Register
DMAC_ChEnReg
Reserved
–
0x3a4–0x3b8
290
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Access
Reset
Read/Write
0x0
–
–
Read/Write
0x0
–
–
Read/Write
0x0
–
–
Read/Write
0x0
–
–
Read/Write
0x0
–
–
Read/Write
0x0
–
–
Read/Write
0x0
–
–
Read/Write
0x0
–
–
24.4.1 Channel x Source Address Register
Name:
DMAC_SARx
Address:
0x00800000 [0], 0x00800058 [1]
Access:
Read/Write
31
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
SADD
23
22
21
20
SADD
15
14
13
12
SADD
7
6
5
4
SADD
The address offset for each channel is: [x *0x58]
For example, SAR0: 0x000, SAR1: 0x058, etc.
• SADD: Source Address of DMA Transfer
The starting AMBA source address is programmed by software before the DMA channel is enabled or by a LLI update
before the start of the DMA transfer. As the DMA transfer is in progress, this register is updated to reflect the source
address of the current AMBA transfer.
Updated after each source AMBA transfer. The SINC field in the DMAC_CTLx register determines whether the address
increments, decrements, or is left unchanged on every source AMBA transfer throughout the block transfer.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
291
24.4.2 Channel x Destination Address Register
Name:
DMAC_DARx
Address:
0x00800008 [0], 0x00800060 [1]
Access:
Read/Write
31
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
DADD
23
22
21
20
DADD
15
14
13
12
DADD
7
6
5
4
DADD
The address offset for each channel is: 0x08+[x * 0x58]
For example, DAR0: 0x008, DAR1: 0x060, etc.
• DADD: Destination Address of DMA transfer
The starting AMBA destination address is programmed by software before the DMA channel is enabled or by a LLI update
before the start of the DMA transfer. As the DMA transfer is in progress, this register is updated to reflect the destination
address of the current AMBA transfer.
Updated after each destination AMBA transfer. The DINC field in the DMAC_CTLx register determines whether the
address increments, decrements or is left unchanged on every destination AMBA transfer throughout the block transfer.
292
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
24.4.3 Linked List Pointer Register for Channel x
Name:
DMAC_LLPx
Address:
0x00800010 [0], 0x00800068 [1]
Access:
Read/Write
31
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
0
0
LOC
23
22
21
20
LOC
15
14
13
12
LOC
7
6
5
4
LOC
The address offset for each channel is: 0x10+[x * 0x58]
For example, LLP0: 0x010, LLP1: 0x068, etc.
• LOC: Address of the next LLI
Starting address in memory of next LLI if block chaining is enabled. Note that the two LSBs of the starting address are not
stored because the address is assumed to be aligned to a 32-bit boundary.
The user need to program this register to point to the first Linked List Item (LLI) in memory prior to enabling the channel if
block chaining is enabled.
The LLP register has two functions:
1.
The logical result of the equation LLP.LOC != 0 is used to set up the type of DMA transfer (single or multiblock).
If LLP.LOC is set to 0x0, then transfers using linked lists are NOT enabled. This register must be programmed prior to
enabling the channel in order to set up the transfer type.
It (LLP.LOC != 0) contains the pointer to the next Linked Listed Item for block chaining using linked lists.
2.
The DMAC_LLPx register is also used to point to the address where write back of the control and
source/destination status information occurs after block completion.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
293
24.4.4 Control Register for Channel x Low
Name:
DMAC_CTLxL
Address:
0x00800018 [0], 0x00800070 [1]
Access:
Read/Write
31
–
23
DMS
15
SRC_MSIZE
7
DINC
30
–
22
29
–
21
TT_FC
13
14
6
5
SRC_TR_WIDTH
28
LLP_S_EN
20
12
DEST_MSIZE
4
27
LLP_D_EN
19
11
3
26
25
SMS
18
17
D_SCAT_EN
S_GATH_EN
10
9
SINC
2
1
DST_TR_WIDTH
24
DMS
16
SRC_MSIZE
8
DINC
0
INT_EN
The address offset for each channel is: 0x18+[x * 0x58]
For example, CTL0: 0x018, CTL1: 0x070, etc.
This register contains fields that control the DMA transfer. The DMAC_CTLxL register is part of the block descriptor (linked
list item) when block chaining is enabled. It can be varied on a block-by-block basis within a DMA transfer when block
chaining is enabled.
• INT_EN: Interrupt Enable Bit
If set, then all five interrupt generating sources are enabled.
• DST_TR_WIDTH: Destination Transfer Width
• SRC_TR_WIDTH: Source Transfer Width
SRC_TR_WIDTH/DST_TR_WIDTH
Size (bits)
000
8
001
16
010
32
Other
Reserved
• DINC: Destination Address Increment
Indicates whether to increment or decrement the destination address on every destination AMBA transfer. If your device is
writing data to a destination peripheral FIFO with a fixed address, then set this field to “No change”.
00: Increment
01: Decrement
1x: No change
• SINC: Source Address Increment
Indicates whether to increment or decrement the source address on every source AMBA transfer. If your device is fetching
data from a source peripheral FIFO with a fixed address, then set this field to “No change”.
00: Increment
01: Decrement
1x: No change
294
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
• DEST_MSIZE: Destination Burst Transaction Length
Number of data items, each of width DMAC_CTLx.DST_TR_WIDTH, to be written to the destination every time a destination burst transaction request is made from either the corresponding hardware or software handshaking interface.
• SRC_MSIZE: Source Burst Transaction Length
Number of data items, each of width DMAC_CTLx.SRC_TR_WIDTH, to be read from the source every time a source burst
transaction request is made from either the corresponding hardware or software handshaking interface.
• S_GATH_EN: Source Gather Enable Bit
0: Gather is disabled.
1: Gather is enabled.
Gather on the source side is only applicable when the DMAC_CTLx.SINC bit indicates an incrementing or decrementing
address control.
• D_SCAT_EN: Destination Scatter Enable Bit
0: Scatter is disabled.
1: Scatter is enabled.
Scatter on the destination side is only applicable when the DMAC_CTLx.DINC bit indicates an incrementing or decrementing address control.
• TT_FC: Transfer Type and Flow Control
The following transfer types are supported.
• Memory to Memory
• Memory to Peripheral
• Peripheral to Memory
Flow Control can be assigned to the DMAC, the source peripheral, or the destination peripheral.
TT_FC
Transfer Type
Flow Controller
000
Memory to Memory
DMAC
001
Memory to Peripheral
DMAC
010
Peripheral to Memory
DMAC
011
Peripheral to Peripheral
DMAC
100
Peripheral to Memory
Peripheral
101
Peripheral to Peripheral
Source Peripheral
110
Memory to Peripheral
Peripheral
111
Peripheral to Peripheral
Destination Peripheral
• DMS: Destination Master Select
Identifies the Master Interface layer where the destination device (peripheral or memory) resides.
00: AHB master 1
01: Reserved
10: Reserved
11: Reserved
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
295
• SMS: Source Master Select
Identifies the Master Interface layer where the source device (peripheral or memory) is accessed from.
00: AHB master 1
01: Reserved
10: Reserved
11: Reserved
• LLP_D_EN
Block chaining is only enabled on the destination side if the LLP_D_EN field is high and DMAC_LLPx.LOC is non-zero.
• LLP_S_EN
Block chaining is only enabled on the source side if the LLP_S_EN field is high and DMAC_LLPx.LOC is non-zero.
296
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
24.4.5 Control Register for Channel x High
Name:
DMAC_CTLxH
Address:
0x0080001C [0], 0x00800074 [1]
Access:
Read/Write
31
–
23
30
–
22
29
–
21
28
–
20
27
–
19
26
–
18
25
–
17
24
–
16
15
–
7
–
14
–
6
–
13
–
5
–
12
DONE
4
11
–
3
10
–
2
BLOCK_TS
9
–
1
8
–
0
• BLOCK_TS: Block Transfer Size
When the DMAC is flow controller, this field is written by the user before the channel is enabled to indicate the block size.
The number programmed into BLOCK_TS indicates the total number of single transactions to perform for every block
transfer. The width of the single transaction is determined by DMAC_CTLx.SRC_TR_WIDTH.
• DONE: Done Bit
Software can poll the LLI DMAC_CTLx.DONE bit to see when a block transfer is complete. The LLI DMAC_CTLx.DONE
bit should be cleared when the linked lists are set up in memory prior to enabling the channel
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
297
24.4.6 Configuration Register for Channel x Low
Name:
DMAC_CFGxL
Address:
0x00800040 [0], 0x00800098 [1]
Access:
Read/Write
31
RELOAD_DS
23
30
29
28
RELOAD_SR
22
21
20
MAX_ABRST
15
14
13
12
LOCK_B_L
LOCK_CH_L
7
6
5
4
CH_PRIOR
–
27
26
25
24
18
DS_HS_POL
10
HS_SEL_DS
2
–
17
LOCK_B
9
FIFO_EMPT
1
–
16
LOCK_CH
8
CH_SUSP
0
–
MAX_ABRST
19
SR_HS_POL
11
HS_SEL_SR
3
–
The address offset for each channel is: 0x40+[x * 0x58]
For example, CFG0: 0x040, CFG1: 0x098, etc.
• CH_PRIOR: Channel Priority
A priority of 7 is the highest priority, and 0 is the lowest. This field must be programmed within the following range [0, x – 1]
A programmed value outside this range causes erroneous behavior.
• CH_SUSP: Channel Suspend
Suspends all DMA data transfers from the source until this bit is cleared. There is no guarantee that the current transaction
will complete. Can also be used in conjunction with DMAC_CFGx.FIFO_EMPTY to cleanly disable a channel without losing any data.
0: Not Suspended.
1: Suspend. Suspend DMA transfer from the source.
• FIFO_EMPTY
Indicates if there is data left in the channel's FIFO. Can be used in conjunction with DMAC_CFGx.CH_SUSP to cleanly disable a channel.
1: Channel's FIFO empty
0: Channel's FIFO not empty
• HS_SEL_DST: Destination Software or Hardware Handshaking Select
This register selects which of the handshaking interfaces, hardware or software, is active for destination requests on this
channel.
0: Hardware handshaking interface. Software-initiated transaction requests are ignored.
1: Software handshaking interface. Hardware Initiated transaction requests are ignored.
If the destination peripheral is memory, then this bit is ignored.
298
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
• HS_SEL_SRC: Source Software or Hardware Handshaking Select
This register selects which of the handshaking interfaces, hardware or software, is active for source requests on this
channel.
0: Hardware handshaking interface. Software-initiated transaction requests are ignored.
1: Software handshaking interface. Hardware-initiated transaction requests are ignored.
If the source peripheral is memory, then this bit is ignored.
• LOCK_CH_L: Channel Lock Level
Indicates the duration over which DMAC_CFGx.LOCK_CH bit applies.
00: Over complete DMA transfer
01: Over complete DMA block transfer
1x: Over complete DMA transaction
• LOCK_B_L: Bus Lock Level
Indicates the duration over which DMAC_CFGx.LOCK_B bit applies.
00: Over complete DMA transfer
01: Over complete DMA block transfer
1x: Over complete DMA transaction
• LOCK_CH: Channel Lock Bit
When the channel is granted control of the master bus interface and if the DMAC_CFGx.LOCK_CH bit is asserted, then no
other channels are granted control of the master bus interface for the duration specified in DMAC_CFGx.LOCK_CH_L.
Indicates to the master bus interface arbiter that this channel wants exclusive access to the master bus interface for the
duration specified in DMAC_CFGx.LOCK_CH_L.
• LOCK_B: Bus Lock Bit
When active, the AMBA bus master signal hlock is asserted for the duration specified in DMAC_CFGx.LOCK_B_L.
• DS_HS_POL: Destination Handshaking Interface Polarity
0: Active high
1: Active low
• SR_HS_POL: Source Handshaking Interface Polarity
0: Active high
1: Active low
• MAX_ABRST: Maximum AMBA Burst Length
Maximum AMBA burst length that is used for DMA transfers on this channel. A value of ‘0’ indicates that software is not
limiting the maximum AMBA burst length for DMA transfers on this channel.
• RELOAD_SR: Automatic Source Reload
The DMAC_SARx can be automatically reloaded from its initial value at the end of every block for multi-block transfers. A
new block transfer is then initiated.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
299
• RELOAD_DS: Automatic Destination Reload
The DMAC_DARx can be automatically reloaded from its initial value at the end of every block for multi-block transfers. A
new block transfer is then initiated.
300
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
24.4.7 Configuration Register for Channel x High
Name:
DMAC_CFGxH
Address:
0x00800044 [0], 0x0080009C [1]
Access:
Read/Write
31
–
23
–
15
–
7
SRC_PER
30
–
22
–
14
29
–
21
–
13
6
–
5
–
28
–
20
–
12
27
–
19
–
11
26
–
18
–
10
4
3
PROTCTL
2
25
–
17
–
9
SRC_PER
1
FIFO_MODE
DEST_PER
24
–
16
–
8
0
FCMODE
• FCMODE: Flow Control Mode
Determines when source transaction requests are serviced when the Destination Peripheral is the flow controller.
0: Source transaction requests are serviced when they occur. Data pre-fetching is enabled.
1: Source transaction requests are not serviced until a destination transaction request occurs. In this mode the amount of
data transferred from the source is limited such that it is guaranteed to be transferred to the destination prior to block termination by the destination. Data pre-fetching is disabled.
• FIFO_MODE: R/W 0x0 FIFO Mode Select
Determines how much space or data needs to be available in the FIFO before a burst transaction request is serviced.
0: Space/data available for single AMBA transfer of the specified transfer width.
1: Space/data available is greater than or equal to half the FIFO depth for destination transfers and less than half the FIFO
depth for source transfers. The exceptions are at the end of a burst transaction request or at the end of a block transfer.
• PROTCTL: Protection Control
bits used to drive the AMBA HPROT[3:1] bus. The AMBA Specification recommends that the default value of HPROT indicates a non-cached, non-buffered, privileged data access. The reset value is used to indicate such an access.
• HPROT[0] is tied high as all transfers are data accesses as there are no opcode fetches. There is a one-to-one mapping
of these register bits to the HPROT[3:1] master interface signals. SRC_PER: Source Hardware Handshaking
Interface
Assigns a hardware handshaking interface (0 - DMAH_NUM_HS_INT-1) to the source of channel x if the
DMAC_CFGx.HS_SEL_SRC field is 0. Otherwise, this field is ignored. The channel can then communicate with the source
peripheral connected to that interface via the assigned hardware handshaking interface.
For correct DMAC operation, only one peripheral (source or destination) should be assigned to the same handshaking
interface.
• DEST_PER: Destination Hardware Handshaking Interface
Assigns a hardware handshaking interface (0 - DMAH_NUM_HS_INT-1) to the destination of channel x if the
DMAC_CFGx.HS_SEL_DST field is 0. Otherwise, this field is ignored. The channel can then communicate with the destination peripheral connected to that interface via the assigned hardware handshaking interface.
For correct DMA operation, only one peripheral (source or destination) should be assigned to the same handshaking
interface.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
301
24.4.8 Source Gather Register for Channel x
Name:
DMAC_SGRx
Address:
0x00800048 [0], 0x008000A0 [1]
Access:
Read/Write
31
–
23
30
–
22
29
–
21
28
–
20
27
–
19
26
–
18
SGC
15
14
25
–
17
24
–
16
SGI
13
12
11
10
9
8
3
2
1
0
SGI
7
6
5
4
SGI
The address offset for each channel is: 0x48+[x * 0x58]
For example, SGR0: 0x048, SGR1: 0x0a0, etc.
The DMAC_CTLx.SINC field controls whether the address increments or decrements. When the DMAC_CTLx.SINC field
indicates a fixed-address control, then the address remains constant throughout the transfer and the DMAC_SGRx is
ignored.
• SGI: Source Gather Interval
Source gather count field specifies the number of contiguous source transfers of DMAC_CTLx.SRC_TR_WIDTH between
successive gather intervals. This is defined as a gather boundary.
• SGC: Source Gather Count
Source gather interval field (DMAC_SGRx.SGI) – specifies the source address increment/decrement in multiples of
DMAC_CTLx.SRC_TR_WIDTH on a gather boundary when gather mode is enabled for the source transfer.
302
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
24.4.9 Destination Scatter Register for Channel x
Name:
DMAC_DSRx
Address:
0x00800050 [0], 0x008000A8 [1]
Access:
Read/Write
31
–
23
30
–
22
29
–
21
28
–
20
27
–
19
26
–
18
DSC
15
14
25
–
17
24
–
16
DSI
13
12
11
10
9
8
3
2
1
0
DSI
7
6
5
4
DSI
The address offset for each channel is: 0x50+[x * 0x58]
For example, DSR0: 0x050, DSR1: 0x0a8, etc.
The DMAC_CTLx.DINC field controls whether the address increments or decrements. When the DMAC_CTLx.DINC field
indicates a fixed address control then the address remains constant throughout the transfer and the DMAC_DSRx is
ignored.
• DSI: Destination Scatter Interval
Destination scatter interval field (DMAC_DSRx.DSI) – specifies the destination address increment/decrement in multiples
of DMAC_CTLx.DST_TR_WIDTH on a scatter boundary when scatter mode is enabled for the destination transfer.
• DSC: Destination Scatter Count
Destination scatter count field (DMAC_DSRx.DSC) – specifies the number of contiguous destination transfers of
DMAC_CTLx.DST_TR_WIDTH between successive scatter boundaries.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
303
24.4.10 Interrupt Registers
The following sections describe the registers pertaining to interrupts, their status, and how to clear them. For each
channel, there are five types of interrupt sources:

IntTfr: DMA Transfer Complete Interrupt
This interrupt is generated on DMA transfer completion to the destination peripheral.

IntBlock: Block Transfer Complete Interrupt
This interrupt is generated on DMA block transfer completion to the destination peripheral.

IntSrcTran: Source Transaction Complete Interrupt
This interrupt is generated after completion of the last AMBA transfer of the requested single/burst
transaction from the handshaking interface on the source side.
If the source for a channel is memory, then that channel never generates a IntSrcTran interrupt and hence
the corresponding bit in this field is not set.

IntDstTran: Destination Transaction Complete Interrupt
This interrupt is generated after completion of the last AMBA transfer of the requested single/burst
transaction from the handshaking interface on the destination side.
If the destination for a channel is memory, then that channel never generates the IntDstTran interrupt and
hence the corresponding bit in this field is not set.

IntErr: Error Interrupt
This interrupt is generated when an ERROR response is received from an AHB slave on the HRESP bus
during a DMA transfer. In addition, the DMA transfer is cancelled and the channel is disabled.
304
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
24.4.11 Interrupt Raw Status Registers
Names:
DMAC_RawTfr, DMAC_RawBlock, DMAC_RawSrcTran, DMAC_RawDstTran, DMAC_RawErr
Address:
0x008002C0; 0x008002C8; 0x008002D0; 0x008002D8; 0x008002E0
Access:
Read-only
31
–
23
–
15
–
7
–
30
–
22
–
14
–
6
–
29
–
21
–
13
–
5
–
28
–
20
–
12
–
4
–
27
–
19
–
11
–
3
–
26
–
18
–
10
–
2
–
25
–
17
–
9
–
1
RAW1
24
–
16
–
8
–
0
RAW0
• RAWx: Raw Interrupt for Each Channel
Interrupt events are stored in these Raw Interrupt Status Registers before masking: DMAC_RawTfr, DMAC_RawBlock,
DMAC_RawSrcTran, DMAC_RawDstTran, DMAC_RawErr. Each Raw Interrupt Status register has a bit allocated per
channel, for example, DMAC_RawTfr[2] is Channel 2’s raw transfer complete interrupt. Each bit in these registers is
cleared by writing a 1 to the corresponding location in the DMAC_ClearTfr, DMAC_ClearBlock, DMAC_ClearSrcTran,
DMAC_ClearDstTran, DMAC_ClearErr registers.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
305
24.4.12 Interrupt Status Registers
Names:
DMAC_StatusTfr, DMAC_StatusBlock, DMAC_StatusSrcTran, DMAC_StatusDstTran, DMAC_StatusErr
Address:
0x008002E8; 0x008002F0; 0x008002F8; 0x00800300; 0x00800308
Access:
Read-only
31
–
23
–
15
–
7
–
30
–
22
–
14
–
6
–
29
–
21
–
13
–
5
–
28
–
20
–
12
–
4
–
27
–
19
–
11
–
3
–
26
–
18
–
10
–
2
–
25
–
17
–
9
–
1
STATUS1
24
–
16
–
8
–
0
STATUS0
The address offsets are:
DMAC_StatusTfr: 0x2e8
DMAC_StatusBlock: 0x2f0
DMAC_StatusSrcTran: 0x2f8
DMAC_StatusDstTran: 0x300
DMAC_StatusErr: 0x308
• STATUSx:
All interrupt events from all channels are stored in these Interrupt Status Registers after masking: DMAC_StatusTfr,
DMAC_StatusBlock, DMAC_StatusSrcTran, DMAC_StatusDstTran, DMAC_StatusErr. Each Interrupt Status register has
a bit allocated per channel, for example, DMAC_StatusTfr[2] is Channel 2’s status transfer complete interrupt.The contents
of these registers are used to generate the interrupt signals leaving the DMAC.
306
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
24.4.13 Interrupt Mask Registers
Names:
DMAC_MaskTfr, DMAC_MaskBlock, DMAC_MaskSrcTran, DMAC_MaskDstTran, DMAC_MaskErr
Address:
0x00800310; 0x00800318; 0x00800320; 0x00800328; 0x00800330
Access:
Read/Write
31
–
23
–
15
–
7
–
30
–
22
–
14
–
6
–
29
–
21
–
13
–
5
–
28
–
20
–
12
–
4
–
27
–
19
–
11
–
3
–
26
–
18
–
10
–
2
–
25
–
17
–
9
INT_M_WE1
1
INT_MASK1
24
–
16
–
8
INT_M_WE0
0
INT_MASK0
The contents of the Raw Status Registers are masked with the contents of the Mask Registers: DMAC_MaskTfr,
DMAC_MaskBlock, DMAC_MaskSrcTran, DMAC_MaskDstTran, DMAC_MaskErr. Each Interrupt Mask register has a bit
allocated per channel, for example, DMAC_MaskTfr[2] is the mask bit for Channel 2’s transfer complete interrupt.
A channel’s INT_MASK bit is only written if the corresponding mask write enable bit in the INT_MASK_WE field is asserted
on the same AMBA write transfer. This allows software to set a mask bit without performing a read-modified write
operation.
For example, writing hex 01x1 to the DMAC_MaskTfr register writes a 1 into DMAC_MaskTfr[0], while DMAC_MaskTfr[7:1]
remains unchanged. Writing hex 00xx leaves DMAC_MaskTfr[7:0] unchanged.
Writing a 1 to any bit in these registers unmasks the corresponding interrupt, thus allowing the DMAC to set the appropriate bit in the Status Registers.
• INT_MASKx: Interrupt Mask
0: Masked
1: Unmasked
• INT_M_WEx: Interrupt Mask Write Enable
0: Write disabled
1: Write enabled
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
307
24.4.14 Interrupt Clear Registers
Names:
DMAC_ClearTfr, DMAC_ClearBlock, DMAC_ClearSrcTran, DMAC_ClearDstTran,DMAC_ClearErr
Address:
0x00800338; 0x00800340; 0x00800348; 0x00800350; 0x00800358
Access:
Write-only
31
–
23
–
15
–
7
–
30
–
22
–
14
–
6
–
29
–
21
–
13
–
5
–
28
–
20
–
12
–
4
–
27
–
19
–
11
–
3
–
26
–
18
–
10
–
2
–
25
–
17
–
9
–
1
CLEAR1
24
–
16
–
8
–
0
CLEAR0
• CLEARx: Interrupt Clear
0: No effect
1: Clear interrupt
Each bit in the Raw Status and Status registers is cleared on the same cycle by writing a 1 to the corresponding location in
the Clear registers: DMAC_ClearTfr, DMAC_ClearBlock, DMAC_ClearSrcTran, DMAC_ClearDstTran, DMAC_ClearErr.
Each Interrupt Clear register has a bit allocated per channel, for example, DMAC_ClearTfr[2] is the clear bit for Channel 2’s
transfer complete interrupt. Writing a 0 has no effect. These registers are not readable.
308
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
24.4.15 Combined Interrupt Status Registers
Name:
DMAC_StatusInt
Address:
0x00800360
Access:
Read-only
31
–
23
–
15
–
7
–
30
–
22
–
14
–
6
–
29
–
21
–
13
–
5
–
28
–
20
–
12
–
4
ERR
27
–
19
–
11
–
3
DSTT
26
–
18
–
10
–
2
SRCT
25
–
17
–
9
–
1
BLOCK
24
–
16
–
8
–
0
TFR
The contents of each of the five Status Registers (DMAC_StatusTfr, DMAC_StatusBlock, DMAC_StatusSrcTran,
DMAC_StatusDstTran, DMAC_StatusErr) is OR’d to produce a single bit per interrupt type in the Combined Status Register (DMAC_StatusInt).
• TFR
OR of the contents of DMAC_StatusTfr Register.
• BLOCK
OR of the contents of DMAC_StatusBlock Register.
• SRCT
OR of the contents of DMAC_StatusSrcTran Register.
• DSTT
OR of the contents of DMAC_StatusDstTran Register.
• ERR
OR of the contents of DMAC_StatusErr Register.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
309
24.4.16 Source Software Transaction Request Register
Name:
DMAC_ReqSrcReg
Address:
0x00800368
Access:
Read/Write
31
–
23
–
15
–
7
–
30
–
22
–
14
–
6
–
29
–
21
–
13
–
5
–
28
–
20
–
12
–
4
–
27
–
19
–
11
–
3
–
26
–
18
–
10
–
2
–
25
–
17
–
9
REQ_WE1
1
SRC_REQ1
24
–
16
–
8
REQ_WE0
0
SRC_REQ0
A bit is assigned for each channel in this register. DMAC_ReqSrcReg[n] is ignored when software handshaking is not
enabled for the source of channel n.
A channel SRC_REQ bit is written only if the corresponding channel write enable bit in the REQ_WE field is asserted on
the same AMBA write transfer.
For example, writing 0x101 writes a 1 into DMAC_ReqSrcReg[0], while DMAC_ReqSrcReg[2:1] remains unchanged. Writing hex 0x0yy leaves DMAC_ReqSrcReg[2:0] unchanged. This allows software to set a bit in the DMAC_ReqSrcReg
register without performing a read-modified write
• SRC_REQx: Source Request
• REQ_WEx: Request Write Enable
0: Write disabled
1: Write enabled
310
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
24.4.17 Destination Software Transaction Request Register
Name:
DMAC_ReqDstReg
Address:
0x00800370
Access:
Read/Write
31
–
23
–
15
–
7
–
30
–
22
–
14
–
6
–
29
–
21
–
13
–
5
–
28
–
20
–
12
–
4
–
27
–
19
–
11
–
3
–
26
–
18
–
10
–
2
–
25
–
17
–
9
REQ_WE1
1
DST_REQ1
24
–
16
–
8
REQ_WE0
0
DST_REQ0
A bit is assigned for each channel in this register. DMAC_ReqDstReg[n] is ignored when software handshaking is not
enabled for the source of channel n.
A channel DST_REQ bit is written only if the corresponding channel write enable bit in the REQ_WE field is asserted on
the same AMBA write transfer.
• DST_REQx: Destination Request
• REQ_WEx: Request Write Enable
0: Write disabled
1: Write enabled
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
311
24.4.18 Single Source Transaction Request Register
Name:
DMAC_SglReqSrcReg
Address:
0x00800378
Access:
Read/Write
31
–
23
–
15
–
7
–
30
–
22
–
14
–
6
–
29
–
21
–
13
–
5
–
28
–
20
–
12
–
4
–
27
–
19
–
11
–
3
–
26
–
18
–
10
–
2
–
25
–
17
–
9
REQ_WE1
1
S_SG_REQ1
24
–
16
–
8
REQ_WE0
0
S_SG_REQ0
A bit is assigned for each channel in this register. DMAC_SglReqSrcReg[n] is ignored when software handshaking is not
enabled for the source of channel n.
A channel S_SG_REQ bit is written only if the corresponding channel write enable bit in the REQ_WE field is asserted on
the same AMBA write transfer.
• S_SG_REQx: Source Single Request
• REQ_WEx: Request Write Enable
0: Write disabled
1: Write enabled
312
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
24.4.19 Single Destination Transaction Request Register
Name:
DMAC_SglReqDstReg
Address:
0x00800380
Access:
Read/Write
31
–
23
–
15
–
7
–
30
–
22
–
14
–
6
–
29
–
21
–
13
–
5
–
28
–
20
–
12
–
4
–
27
–
19
–
11
–
3
–
26
–
18
–
10
–
2
–
25
–
17
–
9
REQ_WE1
1
D_SG_REQ1
24
–
16
–
8
REQ_WE0
0
D_SG_REQ0
A bit is assigned for each channel in this register. DMAC_SglReqDstReg[n] is ignored when software handshaking is not
enabled for the source of channel n.
A channel D_SG_REQ bit is written only if the corresponding channel write enable bit in the REQ_WE field is asserted on
the same AMBA write transfer.
• D_SG_REQx: Destination Single Request
• REQ_WEx: Request Write Enable
0: Write disabled
1: Write enabled
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
313
24.4.20 Last Source Transaction Request Register
Name:
DMAC_LstSrcReqReg
Address:
0x00800388
Access:
Read/Write
31
–
23
–
15
–
7
–
30
–
22
–
14
–
6
–
29
–
21
–
13
–
5
–
28
–
20
–
12
–
4
–
27
–
19
–
11
–
3
–
26
–
18
–
10
–
2
–
25
–
17
–
9
LSTSR_WE1
1
LSTSRC1
24
–
16
–
8
LSTSR_WE0
0
LSTSRC0
A bit is assigned for each channel in this register. LstSrcReqReg[n] is ignored when software handshaking is not enabled
for the source of channel n.
A channel LSTSRC bit is written only if the corresponding channel write enable bit in the LSTSR_WE field is asserted on
the same AMBA write transfer.
• LSTSRCx: Source Last Transaction Request
• LSTSR_WEx: Source Last Transaction Request Write Enable
0: Write disabled
1: Write enabled
314
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
24.4.21 Last Destination Transaction Request Register
Name:
DMAC_LstDstReqReg
Address:
0x00800390
Access:
Read/Write
31
–
23
–
15
–
7
–
30
–
22
–
14
–
6
–
29
–
21
–
13
–
5
–
28
–
20
–
12
–
4
–
27
–
19
–
11
–
3
–
26
–
18
–
10
–
2
–
25
–
17
–
9
LSTDS_WE1
1
LSTDST1
24
–
16
–
8
LSTDS_WE0
0
LSTDST0
A bit is assigned for each channel in this register. LstDstReqReg[n] is ignored when software handshaking is not enabled
for the source of channel n.
A channel LSTDST bit is written only if the corresponding channel write enable bit in the LSTDS_WE field is asserted on
the same AMBA write transfer.
• LSTDSTx: Destination Last Transaction Request
• LSTDS_WEx: Destination Last Transaction Request Write Enable
0: Write disabled
1: Write enabled
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
315
24.4.22 DMAC Configuration Register
Name:
DMAC_DmaCfgReg
Address:
0x00800398
Access:
Read/Write
31
–
23
–
15
–
7
–
30
–
22
–
14
–
6
–
29
–
21
–
13
–
5
–
28
–
20
–
12
–
4
–
27
–
19
–
11
–
3
–
26
–
18
–
10
–
2
–
25
–
17
–
9
–
1
–
24
–
16
–
8
–
0
DMA_EN
• DMA_EN: DMA Controller Enable
0: DMAC Disabled
1: DMAC Enabled.
This register is used to enable the DMAC, which must be done before any channel activity can begin.
If the global channel enable bit is cleared while any channel is still active, then DMAC_DmaCfgReg.DMA_EN still returns
‘1’ to indicate that there are channels still active until hardware has terminated all activity on all channels, at which point the
DMAC_DmaCfgReg.DMA_EN bit returns ‘0’.
316
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
24.4.23 DMAC Channel Enable Register
Name:
DMAC_ChEnReg
Address:
0x008003A0
Access:
Read/Write
31
–
23
–
15
–
7
–
30
–
22
–
14
–
6
–
29
–
21
–
13
–
5
–
28
–
20
–
12
–
4
–
27
–
19
–
11
–
3
–
26
–
18
–
10
–
2
–
25
–
17
–
9
CH_EN_WE1
1
CH_EN1
24
–
16
–
8
CH_EN_WE0
0
CH_EN0
• CH_ENx:
0: Disable the Channel
1: Enable the Channel
Enables/Disables the channel. Setting this bit enables a channel, clearing this bit disables the channel.
The DMAC_ChEnReg.CH_EN bit is automatically cleared by hardware to disable the channel after the last AMBA transfer
of the DMA transfer to the destination has completed.Software can therefore poll this bit to determine when a DMA transfer
has completed.
• CH_EN_WEx:
The channel enable bit, CH_EN, is only written if the corresponding channel write enable bit, CH_EN_WE, is asserted on
the same AMBA write transfer.
For example, writing 0x101 writes a 1 into DMAC_ChEnReg[0], while DMAC_ChEnReg[7:1] remains unchanged.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
317
25.
Peripheral DMA Controller (PDC)
25.1
Description
The Peripheral DMA Controller (PDC) transfers data between on-chip serial peripherals and the on- and/or off-chip
memories. The link between the PDC and a serial peripheral is operated by the AHB to ABP bridge.
The PDC contains 22 channels. The full-duplex peripherals feature 21 mono directional channels used in pairs
(transmit only or receive only). The half-duplex peripherals feature 1 bi-directional channels.
The user interface of each PDC channel is integrated into the user interface of the peripheral it serves. The user
interface of mono directional channels (receive only or transmit only), contains two 32-bit memory pointers and two
16-bit counters, one set (pointer, counter) for current transfer and one set (pointer, counter) for next transfer. The
bi-directional channel user interface contains four 32-bit memory pointers and four 16-bit counters. Each set
(pointer, counter) is used by current transmit, next transmit, current receive and next receive.
Using the PDC removes processor overhead by reducing its intervention during the transfer. This significantly
reduces the number of clock cycles required for a data transfer, which improves microcontroller performance.
To launch a transfer, the peripheral triggers its associated PDC channels by using transmit and receive signals.
When the programmed data is transferred, an end of transfer interrupt is generated by the peripheral itself.
318
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
25.2
Block Diagram
Figure 25-1.
Block Diagram
FULL DUPLEX
PERIPHERAL
PDC
THR
PDC Channel A
RHR
PDC Channel B
Control
Status & Control
HALF DUPLEX
PERIPHERAL
Control
THR
PDC Channel C
RHR
Control
Status & Control
RECEIVE or TRANSMIT
PERIPHERAL
RHR or THR
Control
PDC Channel D
Status & Control
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
319
25.3
Functional Description
25.3.1 Configuration
The PDC channel user interface enables the user to configure and control data transfers for each channel. The
user interface of each PDC channel is integrated into the associated peripheral user interface.
The user interface of a serial peripheral, whether it is full or half duplex, contains four 32-bit pointers (RPR, RNPR,
TPR, TNPR) and four 16-bit counter registers (RCR, RNCR, TCR, TNCR). However, the transmit and receive
parts of each type are programmed differently: the transmit and receive parts of a full duplex peripheral can be
programmed at the same time, whereas only one part (transmit or receive) of a half duplex peripheral can be
programmed at a time.
32-bit pointers define the access location in memory for current and next transfer, whether it is for read (transmit)
or write (receive). 16-bit counters define the size of current and next transfers. It is possible, at any moment, to
read the number of transfers left for each channel.
The PDC has dedicated status registers which indicate if the transfer is enabled or disabled for each channel. The
status for each channel is located in the associated peripheral status register. Transfers can be enabled and/or
disabled by setting TXTEN/TXTDIS and RXTEN/RXTDIS in the peripheral’s Transfer Control Register.
At the end of a transfer, the PDC channel sends status flags to its associated peripheral. These flags are visible in
the peripheral status register (ENDRX, ENDTX, RXBUFF, and TXBUFE). Refer to Section 25.3.3 and to the
associated peripheral user interface.
25.3.2 Memory Pointers
Each full duplex peripheral is connected to the PDC by a receive channel and a transmit channel. Both channels
have 32-bit memory pointers that point respectively to a receive area and to a transmit area in on- and/or off-chip
memory.
Each half duplex peripheral is connected to the PDC by a bidirectional channel. This channel has two 32-bit
memory pointers, one for current transfer and the other for next transfer. These pointers point to transmit or
receive data depending on the operating mode of the peripheral.
Depending on the type of transfer (byte, half-word or word), the memory pointer is incremented respectively by 1,
2 or 4 bytes.
If a memory pointer address changes in the middle of a transfer, the PDC channel continues operating using the
new address.
25.3.3 Transfer Counters
Each channel has two 16-bit counters, one for current transfer and the other one for next transfer. These counters
define the size of data to be transferred by the channel. The current transfer counter is decremented first as the
data addressed by current memory pointer starts to be transferred. When the current transfer counter reaches
zero, the channel checks its next transfer counter. If the value of next counter is zero, the channel stops
transferring data and sets the appropriate flag. But if the next counter value is greater then zero, the values of the
next pointer/next counter are copied into the current pointer/current counter and the channel resumes the transfer
whereas next pointer/next counter get zero/zero as values. At the end of this transfer the PDC channel sets the
appropriate flags in the Peripheral Status Register.
The following list gives an overview of how status register flags behave depending on the counters’ values:
320

ENDRX flag is set when the PERIPH_RCR reaches zero.

RXBUFF flag is set when both PERIPH_RCR and PERIPH_RNCR reach zero.

ENDTX flag is set when the PERIPH_TCR reaches zero.

TXBUFE flag is set when both PERIPH_TCR and PERIPH_TNCR reach zero.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
These status flags are described in the Peripheral Status Register.
25.3.4 Data Transfers
The serial peripheral triggers its associated PDC channels’ transfers using transmit enable (TXEN) and receive
enable (RXEN) flags in the transfer control register integrated in the peripheral’s user interface.
When the peripheral receives an external data, it sends a Receive Ready signal to its PDC receive channel which
then requests access to the Matrix. When access is granted, the PDC receive channel starts reading the
peripheral Receive Holding Register (RHR). The read data are stored in an internal buffer and then written to
memory.
When the peripheral is about to send data, it sends a Transmit Ready to its PDC transmit channel which then
requests access to the Matrix. When access is granted, the PDC transmit channel reads data from memory and
puts them to Transmit Holding Register (THR) of its associated peripheral. The same peripheral sends data
according to its mechanism.
25.3.5 PDC Flags and Peripheral Status Register
Each peripheral connected to the PDC sends out receive ready and transmit ready flags and the PDC sends back
flags to the peripheral. All these flags are only visible in the Peripheral Status Register.
Depending on the type of peripheral, half or full duplex, the flags belong to either one single channel or two
different channels.
25.3.5.1 Receive Transfer End
This flag is set when PERIPH_RCR reaches zero and the last data has been transferred to memory.
It is reset by writing a non zero value in PERIPH_RCR or PERIPH_RNCR.
25.3.5.2 Transmit Transfer End
This flag is set when PERIPH_TCR reaches zero and the last data has been written into peripheral THR.
It is reset by writing a non zero value in PERIPH_TCR or PERIPH_TNCR.
25.3.5.3 Receive Buffer Full
This flag is set when PERIPH_RCR reaches zero with PERIPH_RNCR also set to zero and the last data has been
transferred to memory.
It is reset by writing a non zero value in PERIPH_TCR or PERIPH_TNCR.
25.3.5.4 Transmit Buffer Empty
This flag is set when PERIPH_TCR reaches zero with PERIPH_TNCR also set to zero and the last data has been
written into peripheral THR.
It is reset by writing a non zero value in PERIPH_TCR or PERIPH_TNCR.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
321
25.4
Peripheral DMA Controller (PDC) User Interface
Table 25-1.
Register
Name(1)
0x100
Receive Pointer Register
0x104
Access
Reset
PERIPH_RPR
Read/Write
0
Receive Counter Register
PERIPH_RCR
Read/Write
0
0x108
Transmit Pointer Register
PERIPH_TPR
Read/Write
0
0x10C
Transmit Counter Register
PERIPH_TCR
Read/Write
0
0x110
Receive Next Pointer Register
PERIPH_RNPR
Read/Write
0
0x114
Receive Next Counter Register
PERIPH_RNCR
Read/Write
0
0x118
Transmit Next Pointer Register
PERIPH_TNPR
Read/Write
0
0x11C
Transmit Next Counter Register
PERIPH_TNCR
Read/Write
0
0x120
Transfer Control Register
PERIPH_PTCR
Write-only
–
0x124
Transfer Status Register
PERIPH_PTSR
Read-only
0
Offset
Note:
322
Register Mapping
1. PERIPH: Ten registers are mapped in the peripheral memory space at the same offset. These can be defined by the user
according to the function and the peripheral desired (DBGU, USART, SSC, SPI, MCI, etc.)
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
25.4.1 Receive Pointer Register
Name:
PERIPH_RPR
Access:
Read/Write
31
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
RXPTR
23
22
21
20
RXPTR
15
14
13
12
RXPTR
7
6
5
4
RXPTR
• RXPTR: Receive Pointer Register
RXPTR must be set to receive buffer address.
When a half duplex peripheral is connected to the PDC, RXPTR = TXPTR.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
323
25.4.2 Receive Counter Register
Name:
PERIPH_RCR
Access:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
14
13
12
11
10
9
8
3
2
1
0
RXCTR
7
6
5
4
RXCTR
• RXCTR: Receive Counter Register
RXCTR must be set to receive buffer size.
When a half duplex peripheral is connected to the PDC, RXCTR = TXCTR.
0: Stops peripheral data transfer to the receiver
1–65535: Starts peripheral data transfer if corresponding channel is active
324
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
25.4.3 Transmit Pointer Register
Name:
PERIPH_TPR
Access:
Read/Write
31
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
TXPTR
23
22
21
20
TXPTR
15
14
13
12
TXPTR
7
6
5
4
TXPTR
• TXPTR: Transmit Counter Register
TXPTR must be set to transmit buffer address.
When a half duplex peripheral is connected to the PDC, RXPTR = TXPTR.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
325
25.4.4 Transmit Counter Register
Name:
PERIPH_TCR
Access:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
14
13
12
11
10
9
8
3
2
1
0
TXCTR
7
6
5
4
TXCTR
• TXCTR: Transmit Counter Register
TXCTR must be set to transmit buffer size.
When a half duplex peripheral is connected to the PDC, RXCTR = TXCTR.
0: Stops peripheral data transfer to the transmitter
1–65535: Starts peripheral data transfer if corresponding channel is active
326
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
25.4.5 Receive Next Pointer Register
Name:
PERIPH_RNPR
Access:
Read/Write
31
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
RXNPTR
23
22
21
20
RXNPTR
15
14
13
12
RXNPTR
7
6
5
4
RXNPTR
• RXNPTR: Receive Next Pointer
RXNPTR contains next receive buffer address.
When a half duplex peripheral is connected to the PDC, RXNPTR = TXNPTR.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
327
25.4.6 Receive Next Counter Register
Name:
PERIPH_RNCR
Access:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
14
13
12
11
10
9
8
3
2
1
0
RXNCTR
7
6
5
4
RXNCTR
• RXNCTR: Receive Next Counter
RXNCTR contains next receive buffer size.
When a half duplex peripheral is connected to the PDC, RXNCTR = TXNCTR.
328
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
25.4.7 Transmit Next Pointer Register
Name:
PERIPH_TNPR
Access:
Read/Write
31
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
TXNPTR
23
22
21
20
TXNPTR
15
14
13
12
TXNPTR
7
6
5
4
TXNPTR
• TXNPTR: Transmit Next Pointer
TXNPTR contains next transmit buffer address.
When a half duplex peripheral is connected to the PDC, RXNPTR = TXNPTR.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
329
25.4.8 Transmit Next Counter Register
Name:
PERIPH_TNCR
Access:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
14
13
12
11
10
9
8
3
2
1
0
TXNCTR
7
6
5
4
TXNCTR
• TXNCTR: Transmit Counter Next
TXNCTR contains next transmit buffer size.
When a half duplex peripheral is connected to the PDC, RXNCTR = TXNCTR.
330
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
25.4.9 Transfer Control Register
Name:
PERIPH_PTCR
Access:
Write-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
TXTDIS
8
TXTEN
7
–
6
–
5
–
4
–
3
–
2
–
1
RXTDIS
0
RXTEN
• RXTEN: Receiver Transfer Enable
0: No effect.
1: Enables PDC receiver channel requests if RXTDIS is not set.
When a half duplex peripheral is connected to the PDC, enabling the receiver channel requests automatically disables the
transmitter channel requests. It is forbidden to set both TXTEN and RXTEN for a half duplex peripheral.
• RXTDIS: Receiver Transfer Disable
0: No effect.
1: Disables the PDC receiver channel requests.
When a half duplex peripheral is connected to the PDC, disabling the receiver channel requests also disables the transmitter channel requests.
• TXTEN: Transmitter Transfer Enable
0: No effect.
1: Enables the PDC transmitter channel requests.
When a half duplex peripheral is connected to the PDC, it enables the transmitter channel requests only if RXTEN is not
set. It is forbidden to set both TXTEN and RXTEN for a half duplex peripheral.
• TXTDIS: Transmitter Transfer Disable
0: No effect.
1: Disables the PDC transmitter channel requests.
When a half duplex peripheral is connected to the PDC, disabling the transmitter channel requests disables the receiver
channel requests.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
331
25.4.10 Transfer Status Register
Name:
PERIPH_PTSR
Access:
Read-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
TXTEN
7
–
6
–
5
–
4
–
3
–
2
–
1
–
0
RXTEN
• RXTEN: Receiver Transfer Enable
0: PDC Receiver channel requests are disabled.
1: PDC Receiver channel requests are enabled.
• TXTEN: Transmitter Transfer Enable
0: PDC Transmitter channel requests are disabled.
1: PDC Transmitter channel requests are enabled.
332
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
26.
Clock Generator
26.1
Overview
The Clock Generator is made up of two PLLs, a Main Oscillator, and a 32.768 kHz low-power Oscillator.
It provides the following clocks:

SLCK, the Slow Clock, which is the only permanent clock within the system

MAINCK is the output of the Main Oscillator
The Clock Generator User Interface is embedded within the Power Management Controller one and is described
in Section 27.9. However, the Clock Generator registers are named CKGR_.
26.2

PLLACK is the output of the Divider and PLL A block.

PLLBCK is the output of the Divider and PLL B block.
Slow Clock Crystal Oscillator
The Clock Generator integrates a 32.768 kHz low-power oscillator. The XIN32 and XOUT32 pins must be
connected to a 32.768 kHz crystal. Two external capacitors must be wired as shown in Figure 26-1.
Figure 26-1.
Typical Slow Clock Crystal Oscillator Connection
XIN32
XOUT32
GNDBU
32.768 kHz
Crystal
26.3
Main Oscillator
Figure 26-2 shows the Main Oscillator block diagram.
Figure 26-2.
Main Oscillator Block Diagram
MOSCEN
XIN
Main
Oscillator
XOUT
MAINCK
Main Clock
OSCOUNT
SLCK
Slow Clock
Main
Oscillator
Counter
Main Clock
Frequency
Counter
MOSCS
MAINF
MAINRDY
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
333
26.3.1 Main Oscillator Connections
The Clock Generator integrates a Main Oscillator that is designed for a 3 to 20 MHz fundamental crystal. The
typical crystal connection is illustrated in Figure 26-3. The 1 k Ω resistor is only required for crystals with
frequencies lower than 8 MHz. For further details on the electrical characteristics of the Main Oscillator, see
Section 46.2 “DC Characteristics”.
Figure 26-3.
Typical Crystal Connection
AT91 Microcontroller
XIN
XOUT
GND
1K
26.3.2 Main Oscillator Startup Time
The startup time of the Main Oscillator is given in Section 46.2 “DC Characteristics”. The startup time depends on
the crystal frequency and decreases when the frequency rises.
26.3.3 Main Oscillator Control
To minimize the power required to start up the system, the main oscillator is disabled after reset and slow clock is
selected.
The software enables or disables the main oscillator so as to reduce power consumption by clearing the MOSCEN
bit in the Main Oscillator Register (CKGR_MOR).
When disabling the main oscillator by clearing the MOSCEN bit in CKGR_MOR, the MOSCS bit in PMC_SR is
automatically cleared, indicating the main clock is off.
When enabling the main oscillator, the user must initiate the main oscillator counter with a value corresponding to
the startup time of the oscillator. This startup time depends on the crystal frequency connected to the main
oscillator.
When the MOSCEN bit and the OSCOUNT are written in CKGR_MOR to enable the main oscillator, the MOSCS
bit in PMC_SR (Status Register) is cleared and the counter starts counting down on the slow clock divided by 8
from the OSCOUNT value. Since the OSCOUNT value is coded with 8 bits, the maximum startup time is about 62
ms.
When the counter reaches 0, the MOSCS bit is set, indicating that the main clock is valid. Setting the MOSCS bit in
PMC_IMR can trigger an interrupt to the processor.
26.3.4 Main Clock Frequency Counter
The Main Oscillator features a Main Clock frequency counter that provides the quartz frequency connected to the
Main Oscillator. Generally, this value is known by the system designer; however, it is useful for the boot program to
configure the device with the correct clock speed, independently of the application.
The Main Clock frequency counter starts incrementing at the Main Clock speed after the next rising edge of the
Slow Clock as soon as the Main Oscillator is stable, i.e., as soon as the MOSCS bit is set. Then, at the 16th falling
edge of Slow Clock, the MAINRDY bit in CKGR_MCFR (Main Clock Frequency Register) is set and the counter
334
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
stops counting. Its value can be read in the MAINF field of CKGR_MCFR and gives the number of Main Clock
cycles during 16 periods of Slow Clock, so that the frequency of the crystal connected on the Main Oscillator can
be determined.
26.3.5 Main Oscillator Bypass
The user can input a clock on the device instead of connecting a crystal. In this case, the user has to provide the
external clock signal on the XIN pin. The input characteristics of the XIN pin under these conditions are given in the
product electrical characteristics section. The programmer has to be sure to set the OSCBYPASS bit to 1 and the
MOSCEN bit to 0 in the Main OSC register (CKGR_MOR) for the external clock to operate properly.
26.4
Divider and PLL Block
The PLL embeds an input divider to increase the accuracy of the resulting clock signals. However, the user must
respect the PLL minimum input frequency when programming the divider.
Figure 26-4 shows the block diagram of the divider and PLL block.
Figure 26-4.
Divider and PLL Block Diagram
DIV
MUL
Divider
MAINCK
OUT
PLLCK
PLL
PLLRC
PLLCOUNT
SLCK
PLL
Counter
LOCK
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
335
Figure 26-5.
Divider and PLL Block Diagram
DIVB
MULB
Divider B
MAINCK
OUTB
PLL B
PLLBCK
PLLRCB
DIVA
MULA
Divider A
OUTA
PLL A
PLLACK
PLLRCA
PLLBCOUNT
PLL B
Counter
LOCKB
PLLACOUNT
PLL A
Counter
SLCK
LOCKA
26.4.1 PLL Filter
The PLL requires connection to an external second-order filter through the PLLRCA and/or PLLRCB pin. Figure
26-6 shows a schematic of these filters.
Figure 26-6.
PLL Capacitors and Resistors
PLLRC
PLL
R
C2
C1
GND
Values of R, C1 and C2 to be connected to the PLLRC pin must be calculated as a function of the PLL input
frequency, the PLL output frequency and the phase margin. A trade-off has to be found between output signal
overshoot and startup time.
26.4.2 Divider and Phase Lock Loop Programming
The divider can be set between 1 and 255 in steps of 1. When a divider field (DIV) is set to 0, the output of the
corresponding divider and the PLL output is a continuous signal at level 0. On reset, each DIV field is set to 0, thus
the corresponding PLL input clock is set to 0.
336
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
The PLL allows multiplication of the divider’s outputs. The PLL clock signal has a frequency that depends on the
respective source signal frequency and on the parameters DIV and MUL. The factor applied to the source signal
frequency is (MUL + 1)/DIV. When MUL is written to 0, the corresponding PLL is disabled and its power
consumption is saved. Re-enabling the PLL can be performed by writing a value higher than 0 in the MUL field.
Whenever the PLL is re-enabled or one of its parameters is changed, the LOCK bit (LOCKA or LOCKB) in
PMC_SR is automatically cleared. The values written in the PLLCOUNT field (PLLACOUNT or PLLBCOUNT) in
CKGR_PLLR (CKGR_PLLAR or CKGR_PLLBR), are loaded in the PLL counter. The PLL counter then
decrements at the speed of the Slow Clock until it reaches 0. At this time, the LOCK bit is set in PMC_SR and can
trigger an interrupt to the processor. The user has to load the number of Slow Clock cycles required to cover the
PLL transient time into the PLLCOUNT field. The transient time depends on the PLL filter. The initial state of the
PLL and its target frequency can be calculated using a specific tool provided by Atmel.
During the PLLA or PLLB initialization, the PMC_PLLICPR must be programmed correctly.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
337
27.
Power Management Controller (PMC)
27.1
Overview
The Power Management Controller (PMC) optimizes power consumption by controlling all system and user
peripheral clocks. The PMC enables/disables the clock inputs to many of the peripherals and the ARM Processor.
The Power Management Controller provides the following clocks:
27.2

MCK, the Master Clock, programmable from a few hundred Hz to the maximum operating frequency of the
device. It is available to the modules running permanently, such as the AIC and the Memory Controller.

Processor Clock (PCK), must be switched off when entering processor in Idle Mode.

Peripheral Clocks, typically MCK, provided to the embedded peripherals (USART, SSC, SPI, TWI, TC, MCI,
etc.) and independently controllable. In order to reduce the number of clock names in a product, the
Peripheral Clocks are named MCK in this datasheet.

UHP Clock (UHPCK), required by USB Host Port operations.

UDP Clock (UDPCK), required by USB Device Port operations.

Programmable Clock Outputs can be selected from the clocks provided by the clock generator and driven on
the PCKx pins.
Master Clock Controller
The Master Clock Controller provides selection and division of the Master Clock (MCK). MCK is the clock provided
to all the peripherals and the memory controller.
The Master Clock is selected from one of the clocks provided by the Clock Generator. Selecting the Slow Clock
provides a Slow Clock signal to the whole device. Selecting the Main Clock saves power consumption of the PLLs.
The Master Clock Controller is made up of a clock selector and a prescaler. It also contains a Master Clock divider
which allows the processor clock to be faster than the Master Clock.
The Master Clock selection is made by writing the CSS field (Clock Source Selection) in PMC_MCKR (Master
Clock Register). The prescaler supports the division by a power of 2 of the selected clock between 1 and 64. The
PRES field in PMC_MCKR programs the prescaler. The Master Clock divider can be programmed through the
MDIV field in PMC_MCKR.
Each time PMC_MCKR is written to define a new Master Clock, the MCKRDY bit is cleared in PMC_SR. It reads 0
until the Master Clock is established. Then, the MCKRDY bit is set and can trigger an interrupt to the processor.
This feature is useful when switching from a high-speed clock to a lower one to inform the software when the
change is actually done.
Figure 27-1.
Master Clock Controller
PMC_MCKR
CSS
PMC_MCKR
PRES
PMC_MCKR
MDIV
SLCK
MAINCK
PLLACK
Master Clock
Prescaler
Master
Clock
Divider
MCK
PLLBCK
To the Processor
Clock Controller (PCK)
338
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
27.3
Processor Clock Controller
The PMC features a Processor Clock Controller (PCK) that implements the Processor Idle Mode. The Processor
Clock can be disabled by writing the System Clock Disable Register (PMC_SCDR). The status of this clock (at
least for debug purposes) can be read in the System Clock Status Register (PMC_SCSR).
The Processor Clock PCK is enabled after a reset and is automatically re-enabled by any enabled interrupt. The
Processor Idle Mode is achieved by disabling the Processor Clock which is automatically re-enabled by any
enabled fast or normal interrupt, or by the reset of the product. and entering Wait for Interrupt Mode. The
Processor Clock is automatically re-enabled by any enabled fast or normal interrupt, or by the reset of the product.
Note:
The ARM Wait for Interrupt mode is entered with CP15 coprocessor operation. Refer to the Atmel application note
Optimizing Power Consumption of AT91SAM9261-based Systems, literature number 6217.
When the Processor Clock is disabled, the current instruction is finished before the clock is stopped, but this does
not prevent data transfers from other masters of the system bus.
27.4
USB Clock Controller
The USB Source Clock is always generated from the PLL B output. If using the USB, the user must program the
PLL to generate a 48 MHz, a 96 MHz or a 192 MHz signal with an accuracy of ± 0.25% depending on the USBDIV
bit in CKGR_PLLBR (see Figure 27-2).
When the PLL B output is stable, i.e., the LOCKB is set:

The USB host clock can be enabled by setting the UHP bit in PMC_SCER. To save power on this peripheral
when it is not used, the user can set the UHP bit in PMC_SCDR. The UHP bit in PMC_SCSR gives the
activity of this clock. The USB host port require both the 12/48 MHz signal and the Master Clock. The Master
Clock may be controlled via the Master Clock Controller.

The USB device clock can be enabled by setting the UDP bit in PMC_SCER. To save power on this
peripheral when it is not used, the user can set the UDP bit in PMC_SCDR. The UDP bit in PMC_SCSR
gives the activity of this clock. The USB device port require both the 48 MHz signal and the Master Clock.
The Master Clock may be controlled via the Master Clock Controller.
Figure 27-2.
USB Clock Controller
USBDIV
USB
Source
Clock
UDP Clock (UDPCK)
Divider
/1,/2,/4
UDP
UHP Clock (UHPCK)
UHP
27.5
Peripheral Clock Controller
The Power Management Controller controls the clocks of each embedded peripheral by the way of the Peripheral
Clock Controller. The user can individually enable and disable the Master Clock on the peripherals by writing into
the Peripheral Clock Enable (PMC_PCER) and Peripheral Clock Disable (PMC_PCDR) registers. The status of
the peripheral clock activity can be read in the Peripheral Clock Status Register (PMC_PCSR).
When a peripheral clock is disabled, the clock is immediately stopped. The peripheral clocks are automatically
disabled after a reset.
In order to stop a peripheral, it is recommended that the system software wait until the peripheral has executed its
last programmed operation before disabling the clock. This is to avoid data corruption or erroneous behavior of the
system.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
339
The bit number within the Peripheral Clock Control registers (PMC_PCER, PMC_PCDR, and PMC_PCSR) is the
Peripheral Identifier defined at the product level. Generally, the bit number corresponds to the interrupt source
number assigned to the peripheral.
27.6
Programmable Clock Output Controller
The PMC controls 4 signals to be output on external pins PCKx. Each signal can be independently programmed
via the PMC_PCKx registers.
PCKx can be independently selected between the Slow clock, the PLL A output, the PLL B output and the main
clock by writing the CSS field in PMC_PCKx. Each output signal can also be divided by a power of 2 between 1
and 64 by writing the PRES (Prescaler) field in PMC_PCKx.
Each output signal can be enabled and disabled by writing 1 in the corresponding bit, PCKx of PMC_SCER and
PMC_SCDR, respectively. Status of the active programmable output clocks are given in the PCKx bits of
PMC_SCSR (System Clock Status Register).
Moreover, like the PCK, a status bit in PMC_SR indicates that the Programmable Clock is actually what has been
programmed in the Programmable Clock registers.
As the Programmable Clock Controller does not manage with glitch prevention when switching clocks, it is strongly
recommended to disable the Programmable Clock before any configuration change and to re-enable it after the
change is actually performed.
27.7
Programming Sequence
1.
Enabling the Main Oscillator:
The main oscillator is enabled by setting the MOSCEN field in the CKGR_MOR. In some cases it may be
advantageous to define a start-up time. This can be achieved by writing a value in the OSCOUNT field in the
CKGR_MOR.
Once this register has been correctly configured, the user must wait for MOSCS field in the PMC_SR to be
set. This can be done either by polling the status register or by waiting the interrupt line to be raised if the
associated interrupt to MOSCS has been enabled in the PMC_IER.
Code Example:
write_register(CKGR_MOR,0x00000701)
Start Up Time = 8 * OSCOUNT / SLCK = 56 Slow Clock Cycles.
So, the main oscillator will be enabled (MOSCS bit set) after 56 Slow Clock Cycles.
2.
Checking the Main Oscillator Frequency (Optional):
In some situations the user may need an accurate measure of the main oscillator frequency. This measure
can be accomplished via the CKGR_MCFR.
Once the MAINRDY field is set in CKGR_MCFR, the user may read the MAINF field in CKGR_MCFR. This
provides the number of main clock cycles within sixteen slow clock cycles.
3.
Setting PLL A and divider A:
All parameters necessary to configure PLL A and divider A are located in the CKGR_PLLAR. ICPPLLA in
PMC_PLLICPR must be set to 1 before configuring the CKGR_PLLAR.
It is important to note that Bit 29 must always be set to 1 when programming the CKGR_PLLAR.
The DIVA field is used to control the divider A itself. The user can program a value between 0 and 255.
Divider A output is divider A input divided by DIVA. By default, DIVA parameter is set to 0 which means that
divider A is turned off.
The OUTA field is used to select the PLL A output frequency range.
340
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
The MULA field is the PLL A multiplier factor. This parameter can be programmed between 0 and 2047. If
MULA is set to 0, PLL A will be turned off. Otherwise PLL A output frequency is PLL A input frequency
multiplied by (MULA + 1).
The PLLACOUNT field specifies the number of slow clock cycles before LOCKA bit is set in the PMC_SR
after CKGR_PLLAR has been written.
Once CKGR_PLLAR has been written, the user is obliged to wait for the LOCKA bit to be set in the
PMC_SR. This can be done either by polling the status register or by waiting the interrupt line to be raised if
the associated interrupt to LOCKA has been enabled in the PMC_IER.
All parameters in CKGR_PLLAR can be programmed in a single write operation. If at some stage one of the
following parameters, SRCA, MULA, DIVA is modified, LOCKA bit will go low to indicate that PLL A is not
ready yet. When PLL A is locked, LOCKA will be set again. User has to wait for LOCKA bit to be set before
using the PLL A output clock.
Code Example:
write_register(CKGR_PLLAR,0x20030605)
PLL A and divider A are enabled. PLL A input clock is main clock divided by 5. PLL An output clock is PLL A
input clock multiplied by 4. Once CKGR_PLLAR has been written, LOCKA bit will be set after six slow clock
cycles.
4.
Setting PLL B and divider B:
All parameters needed to configure PLL B and divider B are located in the CKGR_PLLBR. ICPPLLB in
PMC_PLLICPR must be set to 1 before configuring the CKGR_PLLBR.
The DIVB field is used to control divider B itself. A value between 0 and 255 can be programmed. Divider B
output is divider B input divided by DIVB parameter. By default DIVB parameter is set to 0 which means that
divider B is turned off.
The OUTB field is used to select the PLL B output frequency range.
The MULB field is the PLL B multiplier factor. This parameter can be programmed between 0 and 2047. If
MULB is set to 0, PLL B will be turned off, otherwise the PLL B output frequency is PLL B input frequency
multiplied by (MULB + 1).
The PLLBCOUNT field specifies the number of slow clock cycles before LOCKB bit is set in the PMC_SR
after CKGR_PLLBR has been written.
Once the PMC_PLLB register has been written, the user must wait for the LOCKB bit to be set in the
PMC_SR. This can be done either by polling the status register or by waiting the interrupt line to be raised if
the associated interrupt to LOCKB has been enabled in the PMC_IER. All parameters in CKGR_PLLBR can
be programmed in a single write operation. If at some stage one of the following parameters, MULB, DIVB is
modified, LOCKB bit will go low to indicate that PLL B is not ready yet. When PLL B is locked, LOCKB will be
set again. The user is constrained to wait for LOCKB bit to be set before using the PLL A output clock.
The USBDIV field is used to control the additional divider by 1, 2 or 4, which generates the USB clock(s).
Code Example:
write_register(CKGR_PLLBR,0x00040805)
If PLL B and divider B are enabled, the PLL B input clock is the main clock. PLL B output clock is PLL B input
clock multiplied by 5. Once CKGR_PLLBR has been written, LOCKB bit will be set after eight slow clock
cycles.
5.
Selection of Master Clock and Processor Clock
The Master Clock and the Processor Clock are configurable via the PMC_MCKR.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
341
The CSS field is used to select the Master Clock divider source. By default, the selected clock source is slow
clock.
The PRES field is used to control the Master Clock prescaler. The user can choose between different values
(1, 2, 4, 8, 16, 32, 64). Master Clock output is prescaler input divided by PRES parameter. By default, PRES
parameter is set to 0 which means that master clock is equal to slow clock.
The MDIV field is used to control the Master Clock divider. It is possible to choose between different values
(0, 1, 2). The Master Clock output is Processor Clock divided by 1, 2 or 4, depending on the value
programmed in MDIV. By default, MDIV is set to 0, which indicates that the Processor Clock is equal to the
Master Clock.
Once the PMC_MCKR has been written, the user must wait for the MCKRDY bit to be set in the PMC_SR.
This can be done either by polling the status register or by waiting for the interrupt line to be raised if the
associated interrupt to MCKRDY has been enabled in the PMC_IER.
The PMC_MCKR must not be programmed in a single write operation. For each clock switching, the user
must take care to:
̶
change one by one the CSS, MDIV, and PRES fields
̶
wait till the MCKRDY bit is set in PMC_SR before changing the PMC_MCKR
̶
ensure that each transitory frequency value is in the operational range for PCK and MCK
If at some stage one of the following parameters, CSS or PRES, is modified, the MCKRDY bit will go low to
indicate that the Master Clock and the Processor Clock are not ready yet. The user must wait for MCKRDY
bit to be set again before using the Master and Processor Clocks.
Note:
IF PLLx clock was selected as the Master Clock and the user decides to modify it by writing in CKGR_PLLR
(CKGR_PLLAR or CKGR_PLLBR), the MCKRDY flag will go low while PLL is unlocked. Once PLL is locked again,
LOCK (LOCKA or LOCKB) goes high and MCKRDY is set.
While PLLA is unlocked, the Master Clock selection is automatically changed to Slow Clock. While PLLB is unlocked,
the Master Clock selection is automatically changed to Main Clock. For further information, see Section 27.8.2. “Clock
Switching Waveforms” on page 345.
Code Example:
write_register(PMC_MCKR,0x00000001)
wait (MCKRDY=1)
write_register(PMC_MCKR,0x00000011)
wait (MCKRDY=1)
The Master Clock is main clock divided by 16.
The Processor Clock is the Master Clock.
6.
Selection of Programmable clocks
Programmable clocks are controlled via registers; PMC_SCER, PMC_SCDR and PMC_SCSR.
Programmable clocks can be enabled and/or disabled via the PMC_SCER and PMC_SCDR. Depending on
the system used, 4 Programmable clocks can be enabled or disabled. The PMC_SCSR provides a clear
indication as to which Programmable clock is enabled. By default all Programmable clocks are disabled.
PMC_PCKx registers are used to configure Programmable clocks.
The CSS field is used to select the Programmable clock divider source. Four clock options are available:
main clock, slow clock, PLLCK, PLLACK, PLLBCK.PLLACK, PLLBCK. By default, the clock source selected
is slow clock.
The PRES field is used to control the Programmable clock prescaler. It is possible to choose between
different values (1, 2, 4, 8, 16, 32, 64). Programmable clock output is prescaler input divided by PRES
parameter. By default, the PRES parameter is set to 0 which means that master clock is equal to slow clock.
342
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Once the PMC_PCKx register has been programmed, The corresponding Programmable clock must be
enabled and the user is constrained to wait for the PCKRDYx bit to be set in the PMC_SR. This can be done
either by polling the status register or by waiting the interrupt line to be raised if the associated interrupt to
PCKRDYx has been enabled in the PMC_IER. All parameters in PMC_PCKx can be programmed in a single
write operation.
If the CSS and PRES parameters are to be modified, the corresponding Programmable clock must be
disabled first. The parameters can then be modified. Once this has been done, the user must re-enable the
Programmable clock and wait for the PCKRDYx bit to be set.
Code Example:
write_register(PMC_PCK0,0x00000015)
Programmable clock 0 is main clock divided by 32.
7.
Enabling Peripheral Clocks
Once all of the previous steps have been completed, the peripheral clocks can be enabled and/or disabled
via registers PMC_PCER and PMC_PCDR.
Depending on the system used, 23 peripheral clocks can be enabled or disabled. The PMC_PCSR provides
a clear view as to which peripheral clock is enabled.
Note:
Each enabled peripheral clock corresponds to Master Clock.
Code Examples:
write_register(PMC_PCER,0x00000110)
Peripheral clocks 4 and 8 are enabled.
write_register(PMC_PCDR,0x00000010)
Peripheral clock 4 is disabled.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
343
27.8
Clock Switching Details
27.8.1 Master Clock Switching Timings
Table 27-1 and Table 27-2 give the worst case timings required for the Master Clock to switch from one selected
clock to another one. This is in the event that the prescaler is de-activated. When the prescaler is activated, an
additional time of 64 clock cycles of the new selected clock has to be added.
Table 27-1.
Clock Switching Timings (Worst Case)
From
Main Clock
SLCK
PLL Clock
–
4 x SLCK +
2.5 x Main Clock
0.5 x Main Clock +
4.5 x SLCK
–
3 x PLL Clock +
5 x SLCK
0.5 x Main Clock +
4 x SLCK +
PLLCOUNT x SLCK +
2.5 x PLLx Clock
2.5 x PLL Clock +
5 x SLCK +
PLLCOUNT x SLCK
2.5 x PLL Clock +
4 x SLCK +
PLLCOUNT x SLCK
To
Main Clock
SLCK
PLL Clock
Notes:
1.
2.
Table 27-2.
3 x PLL Clock +
4 x SLCK +
1 x Main Clock
PLL designates either the PLL A or the PLL B Clock.
PLLCOUNT designates either PLLACOUNT or PLLBCOUNT.
Clock Switching Timings Between Two PLLs (Worst Case)
From
PLLA Clock
PLLB Clock
PLLA Clock
2.5 x PLLA Clock +
4 x SLCK +
PLLACOUNT x SLCK
3 x PLLA Clock +
4 x SLCK +
1.5 x PLLA Clock
PLLB Clock
3 x PLLB Clock +
4 x SLCK +
1.5 x PLLB Clock
2.5 x PLLB Clock +
4 x SLCK +
PLLBCOUNT x SLCK
To
344
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
27.8.2 Clock Switching Waveforms
Figure 27-3.
Switch Master Clock from Slow Clock to PLL Clock
Slow Clock
PLL Clock
LOCK
MCKRDY
Master Clock
Write PMC_MCKR
Figure 27-4.
Switch Master Clock from Main Clock to Slow Clock
Slow Clock
Main Clock
MCKRDY
Master Clock
Write PMC_MCKR
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
345
Figure 27-5.
Change PLLA Programming
Slow Clock
PLLA Clock
LOCK
MCKRDY
Master Clock
Slow Clock
Write CKGR_PLLAR
Figure 27-6.
Change PLLB Programming
Main Clock
PLLB Clock
LOCK
MCKRDY
Master Clock
Main Clock
Write CKGR_PLLBR
346
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Figure 27-7.
Programmable Clock Output Programming
PLL Clock
PCKRDY
PCKx Output
Write PMC_PCKx
Write PMC_SCER
Write PMC_SCDR
PLL Clock is selected
PCKx is enabled
PCKx is disabled
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
347
27.9
Power Management Controller (PMC) User Interface
Table 27-3.
Register Mapping
Offset
Register
Name
Access
Reset Value
0x0000
System Clock Enable Register
PMC_SCER
Write-only
–
0x0004
System Clock Disable Register
PMC_SCDR
Write-only
–
0x0008
System Clock Status Register
PMC _SCSR
Read-only
0x03 0x01
0x000C
Reserved
–
–
–
0x0010
Peripheral Clock Enable Register
PMC _PCER
Write-only
–
0x0014
Peripheral Clock Disable Register
PMC_PCDR
Write-only
–
0x0018
Peripheral Clock Status Register
PMC_PCSR
Read-only
0x0
0x001C
Reserved
–
–
–
0x0020
Main Oscillator Register
CKGR_MOR
Read/Write
0x0
0x0024
Main Clock Frequency Register
CKGR_MCFR
Read-only
0x0
0x0028
PLL A Register
CKGR_PLLAR
Read/Write
0x3F00
0x002C
PLL B Register
CKGR_PLLBR
Read/Write
0x3F00
0x0030
Master Clock Register
PMC_MCKR
Read/Write
0x0
0x0038
Reserved
–
–
–
0x003C
Reserved
–
–
–
0x0040
Programmable Clock 0 Register
PMC_PCK0
Read/Write
0x0
0x0044
Programmable Clock 1 Register
PMC_PCK1
Read/Write
0x0
...
...
...
...
0x0060
Interrupt Enable Register
PMC_IER
Write-only
–
0x0064
Interrupt Disable Register
PMC_IDR
Write-only
–
0x0068
Status Register
PMC_SR
Read-only
0x08
0x006C
Interrupt Mask Register
PMC_IMR
Read-only
0x0
Reserved
–
–
–
PLL Charge Pump Current Register
PMC_PLLICPR
Read/Write
–
Reserved
–
–
–
...
0x0070–0x007C
0x0080
0x0084–0x00FC
348
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
27.9.1 PMC System Clock Enable Register
Name:
PMC_SCER
Address:
0xFFFFFC00
Access:
Write-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
PCK3
PCK2
PCK1
PCK0
7
6
5
4
3
2
1
0
UDP
UHP
–
–
–
–
–
–
• UHP: USB Host Port Clock Enable
0: No effect.
1: Enables the 12 and 48 MHz clock of the USB Host Port.
• UDP: USB Device Port Clock Enable
0: No effect.
1: Enables the 48 MHz clock of the USB Device Port.
• PCKx: Programmable Clock x Output Enable
0: No effect.
1: Enables the corresponding Programmable Clock output.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
349
27.9.2 PMC System Clock Disable Register
Name:
PMC_SCDR
Address:
0xFFFFFC04
Access:
Write-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
PCK3
PCK2
PCK1
PCK0
7
6
5
4
3
2
1
0
UDP
UHP
–
–
–
–
–
PCK
• PCK: Processor Clock Disable
0: No effect.
1: Disables the Processor clock. This is used to enter the processor in Idle Mode.
• UHP: USB Host Port Clock Disable
0: No effect.
1: Disables the 12 and 48 MHz clock of the USB Host Port.
• UDP: USB Device Port Clock Disable
0: No effect.
1: Disables the 48 MHz clock of the USB Device Port.
• PCKx: Programmable Clock x Output Disable
0: No effect.
1: Disables the corresponding Programmable Clock output.
350
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
27.9.3 PMC System Clock Status Register
Name:
PMC_SCSR
Address:
0xFFFFFC08
Access:
Read-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
PCK3
PCK2
PCK1
PCK0
7
6
5
4
3
2
1
0
UDP
UHP
–
–
–
–
–
PCK
• PCK: Processor Clock Status
0: The Processor clock is disabled.
1: The Processor clock is enabled.
• UHP: USB Host Port Clock Status
0: The 12 and 48 MHz clock (UHPCK) of the USB Host Port is disabled.
1: The 12 and 48 MHz clock (UHPCK) of the USB Host Port is enabled.
• UDP: USB Device Port Clock Status
0: The 48 MHz clock (UDPCK) of the USB Device Port is disabled.
1: The 48 MHz clock (UDPCK) of the USB Device Port is enabled.
• PCKx: Programmable Clock x Output Status
0: The corresponding Programmable Clock output is disabled.
1: The corresponding Programmable Clock output is enabled.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
351
27.9.4 PMC Peripheral Clock Enable Register
Name:
PMC_PCER
Address:
0xFFFFFC10
Access:
Write-only
31
30
29
28
27
26
25
24
PID31
PID30
PID29
PID28
PID27
PID26
PID25
PID24
23
22
21
20
19
18
17
16
PID23
PID22
PID21
PID20
PID19
PID18
PID17
PID16
15
14
13
12
11
10
9
8
PID15
PID14
PID13
PID12
PID11
PID10
PID9
PID8
7
6
5
4
3
2
1
0
PID7
PID6
PID5
PID4
PID3
PID2
-
-
• PIDx: Peripheral Clock x Enable
0: No effect.
1: Enables the corresponding peripheral clock.
Note: PID2 to PID31 refer to identifiers as defined in Section 9.2 “Peripheral Identifiers”.
Note: Programming the control bits of the Peripheral ID that are not implemented has no effect on the behavior of the PMC.
352
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
27.9.5 PMC Peripheral Clock Disable Register
Name:
PMC_PCDR
Address:
0xFFFFFC14
Access:
Write-only
31
30
29
28
27
26
25
24
PID31
PID30
PID29
PID28
PID27
PID26
PID25
PID24
23
22
21
20
19
18
17
16
PID23
PID22
PID21
PID20
PID19
PID18
PID17
PID16
15
14
13
12
11
10
9
8
PID15
PID14
PID13
PID12
PID11
PID10
PID9
PID8
7
6
5
4
3
2
1
0
PID7
PID6
PID5
PID4
PID3
PID2
-
-
• PIDx: Peripheral Clock x Disable
0: No effect.
1: Disables the corresponding peripheral clock.
Note: PID2 to PID31 refer to identifiers as defined in Section 9.2 “Peripheral Identifiers”.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
353
27.9.6 PMC Peripheral Clock Status Register
Name:
PMC_PCSR
Address:
0xFFFFFC18
Access:
Read-only
31
30
29
28
27
26
25
24
PID31
PID30
PID29
PID28
PID27
PID26
PID25
PID24
23
22
21
20
19
18
17
16
PID23
PID22
PID21
PID20
PID19
PID18
PID17
PID16
15
14
13
12
11
10
9
8
PID15
PID14
PID13
PID12
PID11
PID10
PID9
PID8
7
6
5
4
3
2
1
0
PID7
PID6
PID5
PID4
PID3
PID2
–
–
• PIDx: Peripheral Clock x Status
0: The corresponding peripheral clock is disabled.
1: The corresponding peripheral clock is enabled.
Note: PID2 to PID31 refer to identifiers as defined in Section 9.2 “Peripheral Identifiers”.
354
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
27.9.7 PMC Clock Generator Main Oscillator Register
Name:
CKGR_MOR
Address:
0xFFFFFC20
Access:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
14
13
12
11
10
9
8
3
–
2
–
1
OSCBYPASS
0
MOSCEN
OSCOUNT
7
–
6
–
5
–
4
–
• MOSCEN: Main Oscillator Enable
A crystal must be connected between XIN and XOUT.
0: The Main Oscillator is disabled.
1: The Main Oscillator is enabled. OSCBYPASS must be set to 0.
When MOSCEN is set, the MOSCS flag is set once the Main Oscillator startup time is achieved.
• OSCBYPASS: Oscillator Bypass
0: No effect.
1: The Main Oscillator is bypassed. MOSCEN must be set to 0. An external clock must be connected on XIN.
When OSCBYPASS is set, the MOSCS flag in PMC_SR is automatically set.
Clearing MOSCEN and OSCBYPASS bits allows resetting the MOSCS flag.
• OSCOUNT: Main Oscillator Start-up Time
Specifies the number of Slow Clock cycles multiplied by 8 for the Main Oscillator start-up time.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
355
27.9.8 PMC Clock Generator Main Clock Frequency Register
Name:
CKGR_MCFR
Address:
0xFFFFFC24
Access:
Read-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
MAINRDY
15
14
13
12
11
10
9
8
3
2
1
0
MAINF
7
6
5
4
MAINF
• MAINF: Main Clock Frequency
Gives the number of Main Clock cycles within 16 Slow Clock periods.
• MAINRDY: Main Clock Ready
0: MAINF value is not valid or the Main Oscillator is disabled.
1: The Main Oscillator has been enabled previously and MAINF value is available.
356
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
27.9.9 PMC Clock Generator PLL A Register
Name:
CKGR_PLLAR
Address:
0xFFFFFC28
Access:
Read/Write
31
–
30
–
29
1
28
–
23
22
21
20
27
–
26
25
MULA
24
19
18
17
16
10
9
8
2
1
0
MULA
15
14
13
12
11
OUTA
7
PLLACOUNT
6
5
4
3
DIVA
Possible limitations on PLL A input frequencies and multiplier factors should be checked before using the PMC.
Warning:
Bit 29 must always be set to 1 when programming the CKGR_PLLAR.
• DIVA: Divider A
DIVA
Divider Selected
0
Divider output is 0
1
Divider is bypassed
2–255
Divider output is the Main Clock divided by DIVA.
• PLLACOUNT: PLL A Counter
Specifies the number of Slow Clock cycles before the LOCKA bit is set in PMC_SR after CKGR_PLLAR is written.
• OUTA: PLL A Clock Frequency Range
To optimize clock performance, this field must be programmed as specified in Section 46.6.5 “PLL Characteristics”.
• MULA: PLL A Multiplier
0: The PLL A is deactivated.
1–2047: The PLL A Clock frequency is the PLL A input frequency multiplied by MULA + 1.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
357
27.9.10 PMC Clock Generator PLL B Register
Name:
CKGR_PLLBR
Address:
0xFFFFFC2C
Access:
Read/Write
31
–
30
–
29
23
22
21
28
USBDIV
20
27
–
26
25
MULB
24
19
18
17
16
10
9
8
2
1
0
MULB
15
14
13
12
11
OUTB
7
PLLBCOUNT
6
5
4
3
DIVB
Possible limitations on PLLB input frequencies and multiplier factors should be checked before using the PMC.
• DIVB Divider B
DIVB
Divider Selected
0
Divider output is 0
1
Divider is bypassed
2–255
Divider output is the selected clock divided by DIVB.
• PLLBCOUNT: PLL B Counter
Specifies the number of slow clock cycles before the LOCKB bit is set in PMC_SR after CKGR_PLLBR is written.
• OUTB: PLL B Clock Frequency Range
To optimize clock performance, this field must be programmed as specified in Section 46.6.5 “PLL Characteristics”.
• MULB: PLL B Multiplier
0: The PLL B is deactivated.
1 up to 2047 = The PLL B Clock frequency is the PLL B input frequency multiplied by MULB + 1.
• USBDIV: Divider for USB Clock
USBDIV
Divider for USB Clock(s)
0
0
Divider output is PLLB clock output.
0
1
Divider output is PLLB clock output divided by 2.
1
0
Divider output is PLLB clock output divided by 4.
1
1
Reserved.
358
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
27.9.11 PMC Master Clock Register
Name:
PMC_MCKR
Address:
0xFFFFFC30
Access:
Read/Write
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
4
3
2
7
6
5
–
–
–
PRES
MDIV
1
0
CSS
• CSS: Master Clock Selection
CSS
Clock Source Selection
0
0
Slow Clock is selected
0
1
Main Clock is selected
1
0
PLL A Clock is selected
1
1
PLL B clock is selected
• PRES: Processor Clock Prescaler
PRES
Processor Clock
0
0
0
Selected clock
0
0
1
Selected clock divided by 2
0
1
0
Selected clock divided by 4
0
1
1
Selected clock divided by 8
1
0
0
Selected clock divided by 16
1
0
1
Selected clock divided by 32
1
1
0
Selected clock divided by 64
1
1
1
Reserved
• MDIV: Master Clock Division
MDIV
Master Clock Division
0
0
Master Clock is Processor Clock.
0
1
Master Clock is Processor Clock divided by 2.
1
0
Master Clock is Processor Clock divided by 4.
1
1
Reserved.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
359
27.9.12 PMC Programmable Clock Register
Name:
PMC_PCKx
Address:
0xFFFFFC40
Access:
Read/Write
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
4
3
2
1
7
6
5
–
–
–
• CSS: Master Clock Selection
CSS
Clock Source Selection
0
0
Slow Clock is selected.
0
1
Main Clock is selected.
1
0
PLL A Clock is selected.
1
1
PLL B Clock is selected.
• PRES: Programmable Clock Prescaler
PRES
Programmable Clock
0
0
0
Selected clock
0
0
1
Selected clock divided by 2
0
1
0
Selected clock divided by 4
0
1
1
Selected clock divided by 8
1
0
0
Selected clock divided by 16
1
0
1
Selected clock divided by 32
1
1
0
Selected clock divided by 64
1
1
1
Reserved
360
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
PRES
0
CSS
27.9.13 PMC Interrupt Enable Register
Name:
PMC_IER
Address:
0xFFFFFC60
Access:
Write-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
PCKRDY3
PCKRDY2
PCKRDY1
PCKRDY0
7
6
5
4
3
2
1
0
–
–
–
–
MCKRDY
LOCKB
LOCKA
MOSCS
• MOSCS: Main Oscillator Status Interrupt Enable
• LOCKA: PLL A Lock Interrupt Enable
• LOCKB: PLL B Lock Interrupt Enable
• MCKRDY: Master Clock Ready Interrupt Enable
• PCKRDYx: Programmable Clock Ready x Interrupt Enable
0: No effect.
1: Enables the corresponding interrupt.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
361
27.9.14 PMC Interrupt Disable Register
Name:
PMC_IDR
Address:
0xFFFFFC64
Access:
Write-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
PCKRDY3
PCKRDY2
PCKRDY1
PCKRDY0
7
6
5
4
3
2
1
0
–
–
–
–
MCKRDY
LOCKB
LOCKA
MOSCS
• MOSCS: Main Oscillator Status Interrupt Enable
• LOCKA: PLL A Lock Interrupt Enable
• LOCKB: PLL B Lock Interrupt Enable
• MCKRDY: Master Clock Ready Interrupt Disable
• PCKRDYx: Programmable Clock Ready x Interrupt Disable
0: No effect.
1: Disables the corresponding interrupt.
362
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
27.9.15 PMC Status Register
Name:
PMC_SR
Address:
0xFFFFFC68
Access:
Read-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
PCKRDY3
PCKRDY2
PCKRDY1
PCKRDY0
7
6
5
4
3
2
1
0
–
–
–
–
MCKRDY
LOCKB
LOCKA
MOSCS
• MOSCS: MOSCS Flag Status
0: Main oscillator is not stabilized.
1: Main oscillator is stabilized.
• LOCKA: PLL A Lock Status
0: PLL A is not locked
1: PLL A is locked.
• LOCKB: PLL B Lock Status
0: PLL B is not locked.
1: PLL B is locked.
• MCKRDY: Master Clock Status
0: Master Clock is not ready.
1: Master Clock is ready.
• PCKRDYx: Programmable Clock Ready Status
0: Programmable Clock x is not ready.
1: Programmable Clock x is ready.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
363
27.9.16 PMC Interrupt Mask Register
Name:
PMC_IMR
Address:
0xFFFFFC6C
Access:
Read-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
PCKRDY3
PCKRDY2
PCKRDY1
PCKRDY0
7
6
5
4
3
2
1
0
–
–
–
–
MCKRDY
LOCKB
LOCKA
MOSCS
• MOSCS: Main Oscillator Status Interrupt Mask
• LOCKA: PLL A Lock Interrupt Disable
• LOCKB: PLL B Lock Interrupt Disable
• MCKRDY: Master Clock Ready Interrupt Mask
• PCKRDYx: Programmable Clock Ready x Interrupt Mask
0: The corresponding interrupt is disabled.
1: The corresponding interrupt is enabled.
364
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
27.9.17 PLL Charge Pump Current Register
Name:
PMC_PLLICPR
Address:
0xFFFFFC80
Access:
Read/Write
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
ICPPLLB
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
–
–
–
–
–
–
–
ICPPLLA
• ICPPLLA: Charge pump current
Must be set to 1.
• ICPPLLB: Charge pump current
Must be set to 1.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
365
28.
Advanced Interrupt Controller (AIC)
28.1
Overview
The Advanced Interrupt Controller (AIC) is an 8-level priority, individually maskable, vectored interrupt controller,
providing handling of up to thirty-two interrupt sources. It is designed to substantially reduce the software and realtime overhead in handling internal and external interrupts.
The AIC drives the nFIQ (fast interrupt request) and the nIRQ (standard interrupt request) inputs of an ARM
processor. Inputs of the AIC are either internal peripheral interrupts or external interrupts coming from the
product's pins.
The 8-level Priority Controller allows the user to define the priority for each interrupt source, thus permitting higher
priority interrupts to be serviced even if a lower priority interrupt is being treated.
Internal interrupt sources can be programmed to be level sensitive or edge triggered. External interrupt sources
can be programmed to be positive-edge or negative-edge triggered or high-level or low-level sensitive.
The fast forcing feature redirects any internal or external interrupt source to provide a fast interrupt rather than a
normal interrupt.
366
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
28.2
Block Diagram
Figure 28-1.
Block Diagram
FIQ
AIC
ARM
Processor
IRQ0-IRQn
Up to
Thirty-two
Sources
Embedded
PeripheralEE
Embedded
nFIQ
nIRQ
Peripheral
Embedded
Peripheral
APB
28.3
Application Block Diagram
Figure 28-2.
Description of the Application Block
OS-based Applications
Standalone
Applications
OS Drivers
RTOS Drivers
Hard Real Time Tasks
General OS Interrupt Handler
Advanced Interrupt Controller
External Peripherals
(External Interrupts)
Embedded Peripherals
28.4
AIC Detailed Block Diagram
Figure 28-3.
AIC Detailed Block Diagram
Advanced Interrupt Controller
ARM
Processor
FIQ
PIO
Controller
Fast
Interrupt
Controller
External
Source
Input
Stage
nFIQ
nIRQ
IRQ0-IRQn
Embedded
Peripherals
Interrupt
Priority
Controller
Fast
Forcing
PIOIRQ
Internal
Source
Input
Stage
Processor
Clock
Power
Management
Controller
User Interface
Wake Up
APB
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
367
28.5
I/O Line Description
Table 28-1.
28.6
I/O Line Description
Pin Name
Pin Description
Type
FIQ
Fast Interrupt
Input
IRQ0–IRQn
Interrupt 0–Interrupt n
Input
Product Dependencies
28.6.1 I/O Lines
The interrupt signals FIQ and IRQ0 to IRQn are normally multiplexed through the PIO controllers. Depending on
the features of the PIO controller used in the product, the pins must be programmed in accordance with their
assigned interrupt function. This is not applicable when the PIO controller used in the product is transparent on the
input path.
28.6.2 Power Management
The Advanced Interrupt Controller is continuously clocked. The Power Management Controller has no effect on
the Advanced Interrupt Controller behavior.
The assertion of the Advanced Interrupt Controller outputs, either nIRQ or nFIQ, wakes up the ARM processor
while it is in Idle Mode. The General Interrupt Mask feature enables the AIC to wake up the processor without
asserting the interrupt line of the processor, thus providing synchronization of the processor on an event.
28.6.3 Interrupt Sources
The Interrupt Source 0 is always located at FIQ. If the product does not feature an FIQ pin, the Interrupt Source 0
cannot be used.
The Interrupt Source 1 is always located at System Interrupt. This is the result of the OR-wiring of the system
peripheral interrupt lines. When a system interrupt occurs, the service routine must first distinguish the cause of
the interrupt. This is performed by reading successively the status registers of the above mentioned system
peripherals.
The interrupt sources 2 to 31 can either be connected to the interrupt outputs of an embedded user peripheral or to
external interrupt lines. The external interrupt lines can be connected directly, or through the PIO Controller.
The PIO Controllers are considered as user peripherals in the scope of interrupt handling. Accordingly, the PIO
Controller interrupt lines are connected to the Interrupt Sources 2 to 31.
The peripheral identification defined at the product level corresponds to the interrupt source number (as well as the
bit number controlling the clock of the peripheral). Consequently, to simplify the description of the functional
operations and the user interface, the interrupt sources are named FIQ, SYS, and PID2 to PID31.
368
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
28.7
Functional Description
28.7.1 Interrupt Source Control
28.7.1.1 Interrupt Source Mode
The Advanced Interrupt Controller independently programs each interrupt source. The SRCTYPE field of the
corresponding AIC_SMR (Source Mode Register) selects the interrupt condition of each source.
The internal interrupt sources wired on the interrupt outputs of the embedded peripherals can be programmed
either in level-sensitive mode or in edge-triggered mode. The active level of the internal interrupts is not important
for the user.
The external interrupt sources can be programmed either in high level-sensitive or low level-sensitive modes, or in
positive edge-triggered or negative edge-triggered modes.
28.7.1.2 Interrupt Source Enabling
Each interrupt source, including the FIQ in source 0, can be enabled or disabled by using the command registers;
AIC_IECR (Interrupt Enable Command Register) and AIC_IDCR (Interrupt Disable Command Register). This set
of registers conducts enabling or disabling in one instruction. The interrupt mask can be read in the AIC_IMR. A
disabled interrupt does not affect servicing of other interrupts.
28.7.1.3 Interrupt Clearing and Setting
All interrupt sources programmed to be edge-triggered (including the FIQ in source 0) can be individually set or
cleared by writing respectively the AIC_ISCR and AIC_ICCR. Clearing or setting interrupt sources programmed in
level-sensitive mode has no effect.
The clear operation is perfunctory, as the software must perform an action to reinitialize the “memorization”
circuitry activated when the source is programmed in edge-triggered mode. However, the set operation is available
for auto-test or software debug purposes. It can also be used to execute an AIC-implementation of a software
interrupt.
The AIC features an automatic clear of the current interrupt when the AIC_IVR (Interrupt Vector Register) is read.
Only the interrupt source being detected by the AIC as the current interrupt is affected by this operation. (See
“Priority Controller” on page 372.) The automatic clear reduces the operations required by the interrupt service
routine entry code to reading the AIC_IVR. Note that the automatic interrupt clear is disabled if the interrupt source
has the Fast Forcing feature enabled as it is considered uniquely as a FIQ source. (For further details, See “Fast
Forcing” on page 376.)
The automatic clear of the interrupt source 0 is performed when AIC_FVR is read.
28.7.1.4 Interrupt Status
For each interrupt, the AIC operation originates in AIC_IPR (Interrupt Pending Register) and its mask in AIC_IMR
(Interrupt Mask Register). AIC_IPR enables the actual activity of the sources, whether masked or not.
The AIC_ISR reads the number of the current interrupt (see “Priority Controller” on page 372) and the register
AIC_CISR gives an image of the signals nIRQ and nFIQ driven on the processor.
Each status referred to above can be used to optimize the interrupt handling of the systems.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
369
28.7.1.5 Internal Interrupt Source Input Stage
Figure 28-4.
Internal Interrupt Source Input Stage
AIC_SMRI
(SRCTYPE)
Level/
Edge
Source i
AIC_IPR
AIC_IMR
Fast Interrupt Controller
or
Priority Controller
Edge
AIC_IECR
Detector
Set Clear
FF
AIC_ISCR
AIC_ICCR
AIC_IDCR
28.7.1.6 External Interrupt Source Input Stage
Figure 28-5.
External Interrupt Source Input Stage
High/Low
AIC_SMRi
SRCTYPE
Level/
Edge
AIC_IPR
AIC_IMR
Source i
Fast Interrupt Controller
or
Priority Controller
AIC_IECR
Pos./Neg.
Edge
Detector
Set
Clear
AIC_ISCR
AIC_ICCR
370
FF
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
AIC_IDCR
28.7.2 Interrupt Latencies
Global interrupt latencies depend on several parameters, including:

The time the software masks the interrupts.

Occurrence, either at the processor level or at the AIC level.

The execution time of the instruction in progress when the interrupt occurs.

The treatment of higher priority interrupts and the resynchronization of the hardware signals.
This section addresses only the hardware resynchronizations. It gives details of the latency times between the
event on an external interrupt leading in a valid interrupt (edge or level) or the assertion of an internal interrupt
source and the assertion of the nIRQ or nFIQ line on the processor. The resynchronization time depends on the
programming of the interrupt source and on its type (internal or external). For the standard interrupt,
resynchronization times are given assuming there is no higher priority in progress.
The PIO Controller multiplexing has no effect on the interrupt latencies of the external interrupt sources.
28.7.2.1 External Interrupt Edge Triggered Source
Figure 28-6.
External Interrupt Edge Triggered Source
MCK
IRQ or FIQ
(Positive Edge)
IRQ or FIQ
(Negative Edge)
nIRQ
Maximum IRQ Latency = 4 Cycles
nFIQ
Maximum FIQ Latency = 4 Cycles
28.7.2.2 External Interrupt Level Sensitive Source
Figure 28-7.
External Interrupt Level Sensitive Source
MCK
IRQ or FIQ
(High Level)
IRQ or FIQ
(Low Level)
nIRQ
Maximum IRQ
Latency = 3 Cycles
nFIQ
Maximum FIQ
Latency = 3 cycles
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
371
28.7.2.3 Internal Interrupt Edge Triggered Source
Figure 28-8.
Internal Interrupt Edge Triggered Source
MCK
nIRQ
Maximum IRQ Latency = 4.5 Cycles
Peripheral Interrupt
Becomes Active
28.7.2.4 Internal Interrupt Level Sensitive Source
Figure 28-9.
Internal Interrupt Level Sensitive Source
MCK
nIRQ
Maximum IRQ Latency = 3.5 Cycles
Peripheral Interrupt
Becomes Active
28.7.3 Normal Interrupt
28.7.3.1 Priority Controller
An 8-level priority controller drives the nIRQ line of the processor, depending on the interrupt conditions occurring
on the interrupt sources 1 to 31 (except for those programmed in Fast Forcing).
Each interrupt source has a programmable priority level of 7 to 0, which is user-definable by writing the PRIOR
field of the corresponding AIC_SMR (Source Mode Register). Level 7 is the highest priority and level 0 the lowest.
As soon as an interrupt condition occurs, as defined by the SRCTYPE field of the AIC_SMR (Source Mode
Register), the nIRQ line is asserted. As a new interrupt condition might have happened on other interrupt sources
since the nIRQ has been asserted, the priority controller determines the current interrupt at the time the AIC_IVR
(Interrupt Vector Register) is read. The read of AIC_IVR is the entry point of the interrupt handling which
allows the AIC to consider that the interrupt has been taken into account by the software.
The current priority level is defined as the priority level of the current interrupt.
If several interrupt sources of equal priority are pending and enabled when the AIC_IVR is read, the interrupt with
the lowest interrupt source number is serviced first.
The nIRQ line can be asserted only if an interrupt condition occurs on an interrupt source with a higher priority. If
an interrupt condition happens (or is pending) during the interrupt treatment in progress, it is delayed until the
software indicates to the AIC the end of the current service by writing the AIC_EOICR (End of Interrupt Command
Register). The write of AIC_EOICR is the exit point of the interrupt handling.
372
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
28.7.3.2 Interrupt Nesting
The priority controller utilizes interrupt nesting in order for the high priority interrupt to be handled during the
service of lower priority interrupts. This requires the interrupt service routines of the lower interrupts to re-enable
the interrupt at the processor level.
When an interrupt of a higher priority happens during an already occurring interrupt service routine, the nIRQ line
is re-asserted. If the interrupt is enabled at the core level, the current execution is interrupted and the new interrupt
service routine should read the AIC_IVR. At this time, the current interrupt number and its priority level are pushed
into an embedded hardware stack, so that they are saved and restored when the higher priority interrupt servicing
is finished and the AIC_EOICR is written.
The AIC is equipped with an 8-level wide hardware stack in order to support up to eight interrupt nestings pursuant
to having eight priority levels.
28.7.3.3 Interrupt Vectoring
The interrupt handler addresses corresponding to each interrupt source can be stored in the registers AIC_SVR1
to AIC_SVR31 (Source Vector Register 1 to 31). When the processor reads AIC_IVR (Interrupt Vector Register),
the value written into AIC_SVR corresponding to the current interrupt is returned.
This feature offers a way to branch in one single instruction to the handler corresponding to the current interrupt,
as AIC_IVR is mapped at the absolute address 0xFFFF F100 and thus accessible from the ARM interrupt vector at
address 0x0000 0018 through the following instruction:
LDR
PC,[PC,# -&F20]
When the processor executes this instruction, it loads the read value in AIC_IVR in its program counter, thus
branching the execution on the correct interrupt handler.
This feature is often not used when the application is based on an operating system (either real time or not).
Operating systems often have a single entry point for all the interrupts and the first task performed is to discern the
source of the interrupt.
However, it is strongly recommended to port the operating system on AT91 products by supporting the interrupt
vectoring. This can be performed by defining all the AIC_SVR of the interrupt source to be handled by the
operating system at the address of its interrupt handler. When doing so, the interrupt vectoring permits a critical
interrupt to transfer the execution on a specific very fast handler and not onto the operating system’s general
interrupt handler. This facilitates the support of hard real-time tasks (input/outputs of voice/audio buffers and
software peripheral handling) to be handled efficiently and independently of the application running under an
operating system.
28.7.3.4 Interrupt Handlers
This section gives an overview of the fast interrupt handling sequence when using the AIC. It is assumed that the
programmer understands the architecture of the ARM processor, and especially the processor interrupt modes
and the associated status bits.
It is assumed that:
1.
The Advanced Interrupt Controller has been programmed, AIC_SVR registers are loaded with
corresponding interrupt service routine addresses and interrupts are enabled.
2.
The instruction at the ARM interrupt exception vector address is required to work with the vectoring
LDR PC, [PC, # -&F20]
When nIRQ is asserted, if the bit “I” of CPSR is 0, the sequence is as follows:
1.
The CPSR is stored in SPSR_irq, the current value of the Program Counter is loaded in the Interrupt link
register (R14_irq) and the Program Counter (R15) is loaded with 0x18. In the following cycle during fetch at
address 0x1C, the ARM core adjusts R14_irq, decrementing it by four.
2.
The ARM core enters Interrupt mode, if it has not already done so.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
373
3.
When the instruction loaded at address 0x18 is executed, the program counter is loaded with the value read
in AIC_IVR. Reading the AIC_IVR has the following effects:
̶
Sets the current interrupt to be the pending and enabled interrupt with the highest priority. The current
level is the priority level of the current interrupt.
̶
De-asserts the nIRQ line on the processor. Even if vectoring is not used, AIC_IVR must be read in
order to de-assert nIRQ.
̶
Automatically clears the interrupt, if it has been programmed to be edge-triggered.
̶
Pushes the current level and the current interrupt number on to the stack.
̶
Returns the value written in the AIC_SVR corresponding to the current interrupt.
4.
The previous step has the effect of branching to the corresponding interrupt service routine. This should start
by saving the link register (R14_irq) and SPSR_IRQ. The link register must be decremented by four when it
is saved if it is to be restored directly into the program counter at the end of the interrupt. For example, the
instruction SUB PC, LR, #4 may be used.
5.
Further interrupts can then be unmasked by clearing the “I” bit in CPSR, allowing re-assertion of the nIRQ to
be taken into account by the core. This can happen if an interrupt with a higher priority than the current
interrupt occurs.
6.
The interrupt handler can then proceed as required, saving the registers that will be used and restoring them
at the end. During this phase, an interrupt of higher priority than the current level will restart the sequence
from step 1.
Note:
If the interrupt is programmed to be level sensitive, the source of the interrupt must be cleared during this phase.
7.
The “I” bit in CPSR must be set in order to mask interrupts before exiting to ensure that the interrupt is
completed in an orderly manner.
8.
The End of Interrupt Command Register (AIC_EOICR) must be written in order to indicate to the AIC that the
current interrupt is finished. This causes the current level to be popped from the stack, restoring the previous
current level if one exists on the stack. If another interrupt is pending, with lower or equal priority than the old
current level but with higher priority than the new current level, the nIRQ line is re-asserted, but the interrupt
sequence does not immediately start because the “I” bit is set in the core. SPSR_irq is restored. Finally, the
saved value of the link register is restored directly into the PC. This has the effect of returning from the
interrupt to whatever was being executed before, and of loading the CPSR with the stored SPSR, masking
or unmasking the interrupts depending on the state saved in SPSR_irq.
Note:
The “I” bit in SPSR is significant. If it is set, it indicates that the ARM core was on the verge of masking an interrupt
when the mask instruction was interrupted. Hence, when SPSR is restored, the mask instruction is completed
(interrupt is masked).
28.7.4 Fast Interrupt
28.7.4.1 Fast Interrupt Source
The interrupt source 0 is the only source which can raise a fast interrupt request to the processor except if fast
forcing is used. The interrupt source 0 is generally connected to a FIQ pin of the product, either directly or through
a PIO Controller.
28.7.4.2 Fast Interrupt Control
The fast interrupt logic of the AIC has no priority controller. The mode of interrupt source 0 is programmed with the
AIC_SMR0 and the field PRIOR of this register is not used even if it reads what has been written. The field
SRCTYPE of AIC_SMR0 enables programming the fast interrupt source to be positive-edge triggered or negativeedge triggered or high-level sensitive or low-level sensitive
Writing 0x1 in the AIC_IECR (Interrupt Enable Command Register) and AIC_IDCR (Interrupt Disable Command
Register) respectively enables and disables the fast interrupt. The bit 0 of AIC_IMR (Interrupt Mask Register)
indicates whether the fast interrupt is enabled or disabled.
374
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
28.7.4.3 Fast Interrupt Vectoring
The fast interrupt handler address can be stored in AIC_SVR0 (Source Vector Register 0). The value written into
this register is returned when the processor reads AIC_FVR (Fast Vector Register). This offers a way to branch in
one single instruction to the interrupt handler, as AIC_FVR is mapped at the absolute address 0xFFFF F104 and
thus accessible from the ARM fast interrupt vector at address 0x0000 001C through the following instruction:
LDR
PC,[PC,# -&F20]
When the processor executes this instruction it loads the value read in AIC_FVR in its program counter, thus
branching the execution on the fast interrupt handler. It also automatically performs the clear of the fast interrupt
source if it is programmed in edge-triggered mode.
28.7.4.4 Fast Interrupt Handlers
This section gives an overview of the fast interrupt handling sequence when using the AIC. It is assumed that the
programmer understands the architecture of the ARM processor, and especially the processor interrupt modes
and associated status bits.
Assuming that:
1.
The Advanced Interrupt Controller has been programmed, AIC_SVR0 is loaded with the fast interrupt
service routine address, and the interrupt source 0 is enabled.
2.
The Instruction at address 0x1C (FIQ exception vector address) is required to vector the fast interrupt:
LDR PC, [PC, # -&F20]
The user does not need nested fast interrupts.
3.
When nFIQ is asserted, if the bit “F” of CPSR is 0, the sequence is:
1.
The CPSR is stored in SPSR_fiq, the current value of the program counter is loaded in the FIQ link register
(R14_FIQ) and the program counter (R15) is loaded with 0x1C. In the following cycle, during fetch at
address 0x20, the ARM core adjusts R14_fiq, decrementing it by four.
2.
The ARM core enters FIQ mode.
3.
When the instruction loaded at address 0x1C is executed, the program counter is loaded with the value read
in AIC_FVR. Reading the AIC_FVR has effect of automatically clearing the fast interrupt, if it has been
programmed to be edge triggered. In this case only, it de-asserts the nFIQ line on the processor.
4.
The previous step enables branching to the corresponding interrupt service routine. It is not necessary to
save the link register R14_fiq and SPSR_fiq if nested fast interrupts are not needed.
5.
The Interrupt Handler can then proceed as required. It is not necessary to save registers R8 to R13 because
FIQ mode has its own dedicated registers and the user R8 to R13 are banked. The other registers, R0 to R7,
must be saved before being used, and restored at the end (before the next step). Note that if the fast
interrupt is programmed to be level sensitive, the source of the interrupt must be cleared during this phase in
order to de-assert the interrupt source 0.
6.
Finally, the Link Register R14_fiq is restored into the PC after decrementing it by four (with instruction SUB
PC, LR, #4 for example). This has the effect of returning from the interrupt to whatever was being
executed before, loading the CPSR with the SPSR and masking or unmasking the fast interrupt depending
on the state saved in the SPSR.
Note:
The “F” bit in SPSR is significant. If it is set, it indicates that the ARM core was just about to mask FIQ interrupts when
the mask instruction was interrupted. Hence when the SPSR is restored, the interrupted instruction is completed (FIQ
is masked).
Another way to handle the fast interrupt is to map the interrupt service routine at the address of the ARM vector
0x1C. This method does not use the vectoring, so that reading AIC_FVR must be performed at the very beginning
of the handler operation. However, this method saves the execution of a branch instruction.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
375
28.7.4.5 Fast Forcing
The Fast Forcing feature of the advanced interrupt controller provides redirection of any normal Interrupt source on
the fast interrupt controller.
Fast Forcing is enabled or disabled by writing to the Fast Forcing Enable Register (AIC_FFER) and the Fast
Forcing Disable Register (AIC_FFDR). Writing to these registers results in an update of the Fast Forcing Status
Register (AIC_FFSR) that controls the feature for each internal or external interrupt source.
When Fast Forcing is disabled, the interrupt sources are handled as described in the previous pages.
When Fast Forcing is enabled, the edge/level programming and, in certain cases, edge detection of the interrupt
source is still active but the source cannot trigger a normal interrupt to the processor and is not seen by the priority
handler.
If the interrupt source is programmed in level-sensitive mode and an active level is sampled, Fast Forcing results
in the assertion of the nFIQ line to the core.
If the interrupt source is programmed in edge-triggered mode and an active edge is detected, Fast Forcing results
in the assertion of the nFIQ line to the core.
The Fast Forcing feature does not affect the Source 0 pending bit in the Interrupt Pending Register (AIC_IPR).
The FIQ Vector Register (AIC_FVR) reads the contents of the Source Vector Register 0 (AIC_SVR0), whatever
the source of the fast interrupt may be. The read of the FVR does not clear the Source 0 when the fast forcing
feature is used and the interrupt source should be cleared by writing to the Interrupt Clear Command Register
(AIC_ICCR).
All enabled and pending interrupt sources that have the fast forcing feature enabled and that are programmed in
edge-triggered mode must be cleared by writing to the Interrupt Clear Command Register. In doing so, they are
cleared independently and thus lost interrupts are prevented.
The read of AIC_IVR does not clear the source that has the fast forcing feature enabled.
The source 0, reserved to the fast interrupt, continues operating normally and becomes one of the Fast Interrupt
sources.
Figure 28-10. Fast Forcing
Source 0 _ FIQ
AIC_IPR
Input Stage
Automatic Clear
AIC_IMR
nFIQ
Read FVR if Fast Forcing is
disabled on Sources 1 to 31.
AIC_FFSR
Source n
AIC_IPR
Input Stage
Priority
Manager
Automatic Clear
AIC_IMR
Read IVR if Source n is the current interrupt
and if Fast Forcing is disabled on Source n.
376
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
nIRQ
28.7.5 Protect Mode
The Protect Mode permits reading the Interrupt Vector Register without performing the associated automatic
operations. This is necessary when working with a debug system. When a debugger, working either with a Debug
Monitor or the ARM processor's ICE, stops the applications and updates the opened windows, it might read the
AIC User Interface and thus the IVR. This has undesirable consequences:

If an enabled interrupt with a higher priority than the current one is pending, it is stacked.

If there is no enabled pending interrupt, the spurious vector is returned.
In either case, an End of Interrupt command is necessary to acknowledge and to restore the context of the AIC.
This operation is generally not performed by the debug system as the debug system would become strongly
intrusive and cause the application to enter an undesired state.
This is avoided by using the Protect Mode. Writing PROT in AIC_DCR (Debug Control Register) at 0x1 enables
the Protect Mode.
When the Protect Mode is enabled, the AIC performs interrupt stacking only when a write access is performed on
the AIC_IVR. Therefore, the Interrupt Service Routines must write (arbitrary data) to the AIC_IVR just after reading
it. The new context of the AIC, including the value of the Interrupt Status Register (AIC_ISR), is updated with the
current interrupt only when AIC_IVR is written.
An AIC_IVR read on its own (e.g., by a debugger), modifies neither the AIC context nor the AIC_ISR. Extra
AIC_IVR reads perform the same operations. However, it is recommended to not stop the processor between the
read and the write of AIC_IVR of the interrupt service routine to make sure the debugger does not modify the AIC
context.
To summarize, in normal operating mode, the read of AIC_IVR performs the following operations within the AIC:
1.
Calculates active interrupt (higher than current or spurious).
2.
Determines and returns the vector of the active interrupt.
3.
Memorizes the interrupt.
4.
Pushes the current priority level onto the internal stack.
5.
Acknowledges the interrupt.
However, while the Protect Mode is activated, only operations 1 to 3 are performed when AIC_IVR is read.
Operations 4 and 5 are only performed by the AIC when AIC_IVR is written.
Software that has been written and debugged using the Protect Mode runs correctly in Normal Mode without
modification. However, in Normal Mode the AIC_IVR write has no effect and can be removed to optimize the code.
28.7.6 Spurious Interrupt
The Advanced Interrupt Controller features protection against spurious interrupts. A spurious interrupt is defined
as being the assertion of an interrupt source long enough for the AIC to assert the nIRQ, but no longer present
when AIC_IVR is read. This is most prone to occur when:

An external interrupt source is programmed in level-sensitive mode and an active level occurs for only a
short time.

An internal interrupt source is programmed in level sensitive and the output signal of the corresponding
embedded peripheral is activated for a short time. (As in the case for the Watchdog.)

An interrupt occurs just a few cycles before the software begins to mask it, thus resulting in a pulse on the
interrupt source.
The AIC detects a spurious interrupt at the time the AIC_IVR is read while no enabled interrupt source is pending.
When this happens, the AIC returns the value stored by the programmer in AIC_SPU (Spurious Vector Register).
The programmer must store the address of a spurious interrupt handler in AIC_SPU as part of the application, to
enable an as fast as possible return to the normal execution flow. This handler writes in AIC_EOICR and performs
a return from interrupt.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
377
28.7.7 General Interrupt Mask
The AIC features a General Interrupt Mask bit to prevent interrupts from reaching the processor. Both the nIRQ
and the nFIQ lines are driven to their inactive state if the bit GMSK in AIC_DCR (Debug Control Register) is set.
However, this mask does not prevent waking up the processor if it has entered Idle Mode. This function facilitates
synchronizing the processor on a next event and, as soon as the event occurs, performs subsequent operations
without having to handle an interrupt. It is strongly recommended to use this mask with caution.
378
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
28.8
Advanced Interrupt Controller (AIC) User Interface
28.8.1 Base Address
The AIC is mapped at the address 0xFFFF F000. It has a total 4-Kbyte addressing space. This permits the vectoring feature, as the PC-relative load/store instructions of the ARM processor support only a ± 4-Kbyte offset.
Table 28-2.
Register Mapping
Offset
Register
Name
Access
Reset
0x00
Source Mode Register 0
0x04
Source Mode Register 1
AIC_SMR0
Read/Write
0x0
AIC_SMR1
Read/Write
0x0
...
...
...
...
...
0x7C
Source Mode Register 31
AIC_SMR31
Read/Write
0x0
0x80
0x84
Source Vector Register 0
AIC_SVR0
Read/Write
0x0
Source Vector Register 1
AIC_SVR1
Read/Write
0x0
...
...
...
...
...
0xFC
Source Vector Register 31
AIC_SVR31
Read/Write
0x0
0x100
Interrupt Vector Register
AIC_IVR
Read-only
0x0
0x104
FIQ Interrupt Vector Register
AIC_FVR
Read-only
0x0
0x108
Interrupt Status Register
AIC_ISR
Read-only
0x0
AIC_IPR
Read-only
0x0(1)
(2)
0x10C
Interrupt Pending Register
0x110
Interrupt Mask Register(2)
AIC_IMR
Read-only
0x0
0x114
Core Interrupt Status Register
AIC_CISR
Read-only
0x0
0x118–0x11C
Reserved
–
–
AIC_IECR
Write-only
–
0x120
–
Interrupt Enable Command Register
(2)
(2)
0x124
Interrupt Disable Command Register
AIC_IDCR
Write-only
–
0x128
Interrupt Clear Command Register(2)
AIC_ICCR
Write-only
–
AIC_ISCR
Write-only
–
AIC_EOICR
Write-only
–
(2)
0x12C
Interrupt Set Command Register
0x130
End of Interrupt Command Register
0x134
Spurious Interrupt Vector Register
AIC_SPU
Read/Write
0x0
0x138
Debug Control Register
AIC_DCR
Read/Write
0x0
0x13C
Reserved
–
–
Write-only
–
–
(2)
0x140
Fast Forcing Enable Register
(2)
AIC_FFER
0x144
Fast Forcing Disable Register
AIC_FFDR
Write-only
–
0x148
Fast Forcing Status Register(2)
AIC_FFSR
Read-only
0x0
0x14C–0x1E0
Reserved
–
–
–
0x1EC–0x1FC
Reserved
–
–
–
Notes:
1. The reset value of this register depends on the level of the external interrupt source. All other sources are cleared at reset,
thus not pending.
2. PID2...PID31 bit fields refer to the identifiers as defined in the Peripheral Identifiers Section of the product datasheet.
3. Values in the Version Register vary with the version of the IP block implementation.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
379
28.8.2 AIC Source Mode Register
Name:
AIC_SMR0..AIC_SMR31
Address:
0xFFFFF000
Access:
Read/Write
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
4
3
2
1
0
–
–
–
5
SRCTYPE
• PRIOR: Priority Level
Programs the priority level for all sources except FIQ source (source 0).
The priority level can be between 0 (lowest) and 7 (highest).
The priority level is not used for the FIQ in the related SMR register AIC_SMRx.
• SRCTYPE: Interrupt Source Type
The active level or edge is not programmable for the internal interrupt sources.
Value
Internal Interrupt Sources
External Interrupt Sources
0
0
High level Sensitive
Low level Sensitive
0
1
Positive edge triggered
Negative edge triggered
1
0
High level Sensitive
High level Sensitive
1
1
Positive edge triggered
Positive edge triggered
380
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
PRIOR
28.8.3 AIC Source Vector Register
Name:
AIC_SVR0..AIC_SVR31
Address:
0xFFFFF080
Access:
Read/Write
31
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
VECTOR
23
22
21
20
VECTOR
15
14
13
12
VECTOR
7
6
5
4
VECTOR
• VECTOR: Source Vector
The user may store in these registers the addresses of the corresponding handler for each interrupt source.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
381
28.8.4 AIC Interrupt Vector Register
Name:
AIC_IVR
Address:
0xFFFFF100
Access:
Read-only
31
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
IRQV
23
22
21
20
IRQV
15
14
13
12
IRQV
7
6
5
4
IRQV
• IRQV: Interrupt Vector Register
The Interrupt Vector Register contains the vector programmed by the user in the Source Vector Register corresponding to
the current interrupt.
The Source Vector Register is indexed using the current interrupt number when the Interrupt Vector Register is read.
When there is no current interrupt, the Interrupt Vector Register reads the value stored in AIC_SPU.
382
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
28.8.5 AIC FIQ Vector Register
Name:
AIC_FVR
Address:
0xFFFFF104
Access:
Read-only
31
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
FIQV
23
22
21
20
FIQV
15
14
13
12
FIQV
7
6
5
4
FIQV
• FIQV: FIQ Vector Register
The FIQ Vector Register contains the vector programmed by the user in the Source Vector Register 0. When there is no
fast interrupt, the FIQ Vector Register reads the value stored in AIC_SPU.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
383
28.8.6 AIC Interrupt Status Register
Name:
AIC_ISR
Address:
0xFFFFF108
Access:
Read-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
4
3
2
1
0
7
6
5
–
–
–
• IRQID: Current Interrupt Identifier
The Interrupt Status Register returns the current interrupt source number.
384
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
IRQID
28.8.7 AIC Interrupt Pending Register
Name:
AIC_IPR
Address:
0xFFFFF10C
Access:
Read-only
31
30
29
28
27
26
25
24
PID31
PID30
PID29
PID28
PID27
PID26
PID25
PID24
23
22
21
20
19
18
17
16
PID23
PID22
PID21
PID20
PID19
PID18
PID17
PID16
15
14
13
12
11
10
9
8
PID15
PID14
PID13
PID12
PID11
PID10
PID9
PID8
7
6
5
4
3
2
1
0
PID7
PID6
PID5
PID4
PID3
PID2
SYS
FIQ
• FIQ, SYS, PID2–PID31: Interrupt Pending
0: Corresponding interrupt is not pending.
1: Corresponding interrupt is pending.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
385
28.8.8 AIC Interrupt Mask Register
Name:
AIC_IMR
Address:
0xFFFFF110
Access:
Read-only
31
30
29
28
27
26
25
24
PID31
PID30
PID29
PID28
PID27
PID26
PID25
PID24
23
22
21
20
19
18
17
16
PID23
PID22
PID21
PID20
PID19
PID18
PID17
PID16
15
14
13
12
11
10
9
8
PID15
PID14
PID13
PID12
PID11
PID10
PID9
PID8
7
6
5
4
3
2
1
0
PID7
PID6
PID5
PID4
PID3
PID2
SYS
FIQ
• FIQ, SYS, PID2–PID31: Interrupt Mask
0: Corresponding interrupt is disabled.
1: Corresponding interrupt is enabled.
386
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
28.8.9 AIC Core Interrupt Status Register
Name:
AIC_CISR
Address:
0xFFFFF114
Access:
Read-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
–
–
–
–
–
–
NIRQ
NFIQ
• NFIQ: NFIQ Status
0: nFIQ line is deactivated.
1: nFIQ line is active.
• NIRQ: NIRQ Status
0: nIRQ line is deactivated.
1: nIRQ line is active.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
387
28.8.10 AIC Interrupt Enable Command Register
Name:
AIC_IECR
Address:
0xFFFFF120
Access:
Write-only
31
30
29
28
27
26
25
24
PID31
PID30
PID29
PID28
PID27
PID26
PID25
PID24
23
22
21
20
19
18
17
16
PID23
PID22
PID21
PID20
PID19
PID18
PID17
PID16
15
14
13
12
11
10
9
8
PID15
PID14
PID13
PID12
PID11
PID10
PID9
PID8
7
6
5
4
3
2
1
0
PID7
PID6
PID5
PID4
PID3
PID2
SYS
FIQ
• FIQ, SYS, PID2–PID31: Interrupt Enable
0: No effect.
1: Enables corresponding interrupt.
388
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
28.8.11 AIC Interrupt Disable Command Register
Name:
AIC_IDCR
Address:
0xFFFFF124
Access:
Write-only
31
30
29
28
27
26
25
24
PID31
PID30
PID29
PID28
PID27
PID26
PID25
PID24
23
22
21
20
19
18
17
16
PID23
PID22
PID21
PID20
PID19
PID18
PID17
PID16
15
14
13
12
11
10
9
8
PID15
PID14
PID13
PID12
PID11
PID10
PID9
PID8
7
6
5
4
3
2
1
0
PID7
PID6
PID5
PID4
PID3
PID2
SYS
FIQ
• FIQ, SYS, PID2–PID31: Interrupt Disable
0: No effect.
1: Disables corresponding interrupt.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
389
28.8.12 AIC Interrupt Clear Command Register
Name:
AIC_ICCR
Address:
0xFFFFF128
Access:
Write-only
31
30
29
28
27
26
25
24
PID31
PID30
PID29
PID28
PID27
PID26
PID25
PID24
23
22
21
20
19
18
17
16
PID23
PID22
PID21
PID20
PID19
PID18
PID17
PID16
15
14
13
12
11
10
9
8
PID15
PID14
PID13
PID12
PID11
PID10
PID9
PID8
7
6
5
4
3
2
1
0
PID7
PID6
PID5
PID4
PID3
PID2
SYS
FIQ
• FIQ, SYS, PID2–PID31: Interrupt Clear
0: No effect.
1: Clears corresponding interrupt.
390
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
28.8.13 AIC Interrupt Set Command Register
Name:
AIC_ISCR
Address:
0xFFFFF12C
Access:
Write-only
31
30
29
28
27
26
25
24
PID31
PID30
PID29
PID28
PID27
PID26
PID25
PID24
23
22
21
20
19
18
17
16
PID23
PID22
PID21
PID20
PID19
PID18
PID17
PID16
15
14
13
12
11
10
9
8
PID15
PID14
PID13
PID12
PID11
PID10
PID9
PID8
7
6
5
4
3
2
1
0
PID7
PID6
PID5
PID4
PID3
PID2
SYS
FIQ
• FIQ, SYS, PID2–PID31: Interrupt Set
0: No effect.
1: Sets corresponding interrupt.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
391
28.8.14 AIC End of Interrupt Command Register
Name:
AIC_EOICR
Address:
0xFFFFF130
Access:
Write-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
–
–
–
–
–
–
–
–
The End of Interrupt Command Register is used by the interrupt routine to indicate that the interrupt treatment is complete.
Any value can be written because it is only necessary to make a write to this register location to signal the end of interrupt
treatment.
392
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
28.8.15 AIC Spurious Interrupt Vector Register
Name:
AIC_SPU
Address:
0xFFFFF134
Access:
Read/Write
31
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
SIVR
23
22
21
20
SIVR
15
14
13
12
SIVR
7
6
5
4
SIVR
• SIVR: Spurious Interrupt Vector Register
The user may store the address of a spurious interrupt handler in this register. The written value is returned in AIC_IVR in
case of a spurious interrupt and in AIC_FVR in case of a spurious fast interrupt.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
393
28.8.16 AIC Debug Control Register
Name:
AIC_DCR
Address:
0xFFFFF138
Access:
Read/Write
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
–
–
–
–
–
–
GMSK
PROT
• PROT: Protection Mode
0: The Protection Mode is disabled.
1: The Protection Mode is enabled.
• GMSK: General Mask
0: The nIRQ and nFIQ lines are normally controlled by the AIC.
1: The nIRQ and nFIQ lines are tied to their inactive state.
394
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
28.8.17 AIC Fast Forcing Enable Register
Name:
AIC_FFER
Address:
0xFFFFF140
Access:
Write-only
31
30
29
28
27
26
25
24
PID31
PID30
PID29
PID28
PID27
PID26
PID25
PID24
23
22
21
20
19
18
17
16
PID23
PID22
PID21
PID20
PID19
PID18
PID17
PID16
15
14
13
12
11
10
9
8
PID15
PID14
PID13
PID12
PID11
PID10
PID9
PID8
7
6
5
4
3
2
1
0
PID7
PID6
PID5
PID4
PID3
PID2
SYS
–
• SYS, PID2–PID31: Fast Forcing Enable
0: No effect.
1: Enables the fast forcing feature on the corresponding interrupt.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
395
28.8.18 AIC Fast Forcing Disable Register
Name:
AIC_FFDR
Address:
0xFFFFF144
Access:
Write-only
31
30
29
28
27
26
25
24
PID31
PID30
PID29
PID28
PID27
PID26
PID25
PID24
23
22
21
20
19
18
17
16
PID23
PID22
PID21
PID20
PID19
PID18
PID17
PID16
15
14
13
12
11
10
9
8
PID15
PID14
PID13
PID12
PID11
PID10
PID9
PID8
7
6
5
4
3
2
1
0
PID7
PID6
PID5
PID4
PID3
PID2
SYS
–
• SYS, PID2–PID31: Fast Forcing Disable
0: No effect.
1: Disables the Fast Forcing feature on the corresponding interrupt.
396
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
28.8.19 AIC Fast Forcing Status Register
Name:
AIC_FFSR
Address:
0xFFFFF148
Access:
Read-only
31
30
29
28
27
26
25
24
PID31
PID30
PID29
PID28
PID27
PID26
PID25
PID24
23
22
21
20
19
18
17
16
PID23
PID22
PID21
PID20
PID19
PID18
PID17
PID16
15
14
13
12
11
10
9
8
PID15
PID14
PID13
PID12
PID11
PID10
PID9
PID8
7
6
5
4
3
2
1
0
PID7
PID6
PID5
PID4
PID3
PID2
SYS
–
• SYS, PID2–PID31: Fast Forcing Status
0: The Fast Forcing feature is disabled on the corresponding interrupt.
1: The Fast Forcing feature is enabled on the corresponding interrupt.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
397
29.
Debug Unit (DBGU)
29.1
Description
The Debug Unit provides a single entry point from the processor for access to all the debug capabilities of Atmel’s
ARM-based systems.
The Debug Unit features a two-pin UART that can be used for several debug and trace purposes and offers an
ideal medium for in-situ programming solutions and debug monitor communications. The Debug Unit two-pin
UART can be used standalone for general purpose serial communication.
Moreover, the association with two peripheral data controller channels permits packet handling for these tasks with
processor time reduced to a minimum.
The Debug Unit also makes the Debug Communication Channel (DCC) signals provided by the In-circuit Emulator
of the ARM processor visible to the software. These signals indicate the status of the DCC read and write registers
and generate an interrupt to the ARM processor, making possible the handling of the DCC under interrupt control.
Chip Identifier registers permit recognition of the device and its revision. These registers inform as to the sizes and
types of the on-chip memories, as well as the set of embedded peripherals.
Finally, the Debug Unit features a Force NTRST capability that enables the software to decide whether to prevent
access to the system via the In-circuit Emulator. This permits protection of the code, stored in ROM.
29.2
Embedded Characteristics



Composed of two functions:
̶
Two-pin UART
̶
Debug Communication Channel (DCC) support
Two-pin UART
̶
Implemented features are 100% compatible with the standard Atmel USART
̶
Independent receiver and transmitter with a common programmable Baud Rate Generator
̶
Even, Odd, Mark or Space Parity Generation
̶
Parity, Framing and Overrun Error Detection
̶
Automatic Echo, Local Loopback and Remote Loopback Channel Modes
̶
Support for two PDC channels with connection to receiver and transmitter
Debug Communication Channel Support
̶
398
Offers visibility of and interrupt trigger from COMMRX and COMMTX signals from the ARM
Processor’s ICE Interface
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
29.3
Block Diagram
Figure 29-1.
Debug Unit Functional Block Diagram
Peripheral
Bridge
Peripheral DMA Controller
APB
Debug Unit
DTXD
Transmit
Power
Management
Controller
MCK
Parallel
Input/
Output
Baud Rate
Generator
Receive
DRXD
COMMRX
R
ARM
Processor
COMMTX
DCC
Handler
Chip ID
nTRST
ICE
Access
Handler
Interrupt
Control
dbgu_irq
Power-on
Reset
force_ntrst
Table 29-1.
Debug Unit Pin Description
Pin Name
Description
Type
DRXD
Debug Receive Data
Input
DTXD
Debug Transmit Data
Output
Figure 29-2.
Debug Unit Application Example
Boot Program
Debug Monitor
Trace Manager
Debug Unit
RS232 Drivers
Programming Tool
Debug Console
Trace Console
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
399
29.4
Product Dependencies
29.4.1 I/O Lines
Depending on product integration, the Debug Unit pins may be multiplexed with PIO lines. In this case, the
programmer must first configure the corresponding PIO Controller to enable I/O lines operations of the Debug Unit.
29.4.2 Power Management
Depending on product integration, the Debug Unit clock may be controllable through the Power Management
Controller. In this case, the programmer must first configure the PMC to enable the Debug Unit clock. Usually, the
peripheral identifier used for this purpose is 1.
29.4.3 Interrupt Source
Depending on product integration, the Debug Unit interrupt line is connected to one of the interrupt sources of the
Advanced Interrupt Controller. Interrupt handling requires programming of the AIC before configuring the Debug
Unit. Usually, the Debug Unit interrupt line connects to the interrupt source 1 of the AIC, which may be shared with
the real-time clock, the system timer interrupt lines and other system peripheral interrupts, as shown in Figure 291. This sharing requires the programmer to determine the source of the interrupt when the source 1 is triggered.
29.5
UART Operations
The Debug Unit operates as a UART, (asynchronous mode only) and supports only 8-bit character handling (with
parity). It has no clock pin.
The Debug Unit's UART is made up of a receiver and a transmitter that operate independently, and a common
baud rate generator. Receiver timeout and transmitter time guard are not implemented. However, all the
implemented features are compatible with those of a standard USART.
29.5.1 Baud Rate Generator
The baud rate generator provides the bit period clock named baud rate clock to both the receiver and the
transmitter.
The baud rate clock is the master clock divided by 16 times the value (CD) written in DBGU_BRGR (Baud Rate
Generator Register). If DBGU_BRGR is set to 0, the baud rate clock is disabled and the Debug Unit's UART
remains inactive. The maximum allowable baud rate is Master Clock divided by 16. The minimum allowable baud
rate is Master Clock divided by (16 × 65536).
MCK
Baud Rate = -------------------16 × CD
Figure 29-3.
Baud Rate Generator
CD
CD
MCK
16-bit Counter
OUT
>1
1
0
Divide
by 16
Baud Rate
Clock
0
Receiver
Sampling Clock
400
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
29.5.2 Receiver
29.5.2.1 Receiver Reset, Enable and Disable
After device reset, the Debug Unit receiver is disabled and must be enabled before being used. The receiver can
be enabled by writing the control register DBGU_CR with the bit RXEN at 1. At this command, the receiver starts
looking for a start bit.
The programmer can disable the receiver by writing DBGU_CR with the bit RXDIS at 1. If the receiver is waiting for
a start bit, it is immediately stopped. However, if the receiver has already detected a start bit and is receiving the
data, it waits for the stop bit before actually stopping its operation.
The programmer can also put the receiver in its reset state by writing DBGU_CR with the bit RSTRX at 1. In doing
so, the receiver immediately stops its current operations and is disabled, whatever its current state. If RSTRX is
applied when data is being processed, this data is lost.
29.5.2.2 Start Detection and Data Sampling
The Debug Unit only supports asynchronous operations, and this affects only its receiver. The Debug Unit receiver
detects the start of a received character by sampling the DRXD signal until it detects a valid start bit. A low level
(space) on DRXD is interpreted as a valid start bit if it is detected for more than 7 cycles of the sampling clock,
which is 16 times the baud rate. Hence, a space that is longer than 7/16 of the bit period is detected as a valid start
bit. A space which is 7/16 of a bit period or shorter is ignored and the receiver continues to wait for a valid start bit.
When a valid start bit has been detected, the receiver samples the DRXD at the theoretical midpoint of each bit. It
is assumed that each bit lasts 16 cycles of the sampling clock (1-bit period) so the bit sampling point is eight cycles
(0.5-bit period) after the start of the bit. The first sampling point is therefore 24 cycles (1.5-bit periods) after the
falling edge of the start bit was detected.
Each subsequent bit is sampled 16 cycles (1-bit period) after the previous one.
Figure 29-4.
Start Bit Detection
Sampling Clock
DRXD
True Start
Detection
D0
Baud Rate
Clock
Figure 29-5.
Character Reception
Example: 8-bit, parity enabled 1 stop
0.5 bit
period
1 bit
period
DRXD
Sampling
D0
D1
True Start Detection
D2
D3
D4
D5
D6
Stop Bit
D7
Parity Bit
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
401
29.5.2.3 Receiver Ready
When a complete character is received, it is transferred to the DBGU_RHR and the RXRDY status bit in
DBGU_SR (Status Register) is set. The bit RXRDY is automatically cleared when the receive holding register
DBGU_RHR is read.
Figure 29-6.
Receiver Ready
DRXD
S
D0
D1
D2
D3
D4
D5
D6
D7
D0
S
P
D1
D2
D3
D4
D5
D6
D7
P
RXRDY
Read DBGU_RHR
29.5.2.4 Receiver Overrun
If DBGU_RHR has not been read by the software (or the Peripheral Data Controller) since the last transfer, the
RXRDY bit is still set and a new character is received, the OVRE status bit in DBGU_SR is set. OVRE is cleared
when the software writes the control register DBGU_CR with the bit RSTSTA (Reset Status) at 1.
Figure 29-7.
Receiver Overrun
DRXD
S
D0
D1
D2
D3
D4
D5
D6
D7
P
stop
S
D0
D1
D2
D3
D4
D5
D6
D7
P
stop
RXRDY
OVRE
RSTSTA
29.5.2.5 Parity Error
Each time a character is received, the receiver calculates the parity of the received data bits, in accordance with
the field PAR in DBGU_MR. It then compares the result with the received parity bit. If different, the parity error bit
PARE in DBGU_SR is set at the same time the RXRDY is set. The parity bit is cleared when the control register
DBGU_CR is written with the bit RSTSTA (Reset Status) at 1. If a new character is received before the reset status
command is written, the PARE bit remains at 1.
Figure 29-8.
Parity Error
DRXD
S
D0
D1
D2
D3
D4
D5
D6
D7
P
stop
RXRDY
PARE
Wrong Parity Bit
402
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
RSTSTA
29.5.2.6 Receiver Framing Error
When a start bit is detected, it generates a character reception when all the data bits have been sampled. The stop
bit is also sampled and when it is detected at 0, the FRAME (Framing Error) bit in DBGU_SR is set at the same
time the RXRDY bit is set. The bit FRAME remains high until the control register DBGU_CR is written with the bit
RSTSTA at 1.
Figure 29-9.
Receiver Framing Error
DRXD
S
D0
D1
D2
D3
D4
D5
D6
D7
P
stop
RXRDY
FRAME
Stop Bit
Detected at 0
RSTSTA
29.5.3 Transmitter
29.5.3.1 Transmitter Reset, Enable and Disable
After device reset, the Debug Unit transmitter is disabled and it must be enabled before being used. The
transmitter is enabled by writing the control register DBGU_CR with the bit TXEN at 1. From this command, the
transmitter waits for a character to be written in the Transmit Holding Register DBGU_THR before actually starting
the transmission.
The programmer can disable the transmitter by writing DBGU_CR with the bit TXDIS at 1. If the transmitter is not
operating, it is immediately stopped. However, if a character is being processed into the Shift Register and/or a
character has been written in the Transmit Holding Register, the characters are completed before the transmitter is
actually stopped.
The programmer can also put the transmitter in its reset state by writing the DBGU_CR with the bit RSTTX at 1.
This immediately stops the transmitter, whether or not it is processing characters.
29.5.3.2 Transmit Format
The Debug Unit transmitter drives the pin DTXD at the baud rate clock speed. The line is driven depending on the
format defined in the Mode Register and the data stored in the Shift Register. One start bit at level 0, then the 8
data bits, from the lowest to the highest bit, one optional parity bit and one stop bit at 1 are consecutively shifted
out as shown on the following figure. The field PARE in the mode register DBGU_MR defines whether or not a
parity bit is shifted out. When a parity bit is enabled, it can be selected between an odd parity, an even parity, or a
fixed space or mark bit.
Figure 29-10. Character Transmission
Example: Parity enabled
Baud Rate
Clock
DTXD
Start
Bit
D0
D1
D2
D3
D4
D5
D6
D7
Parity
Bit
Stop
Bit
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
403
29.5.3.3 Transmitter Control
When the transmitter is enabled, the bit TXRDY (Transmitter Ready) is set in the status register DBGU_SR. The
transmission starts when the programmer writes in the Transmit Holding Register DBGU_THR, and after the
written character is transferred from DBGU_THR to the Shift Register. The bit TXRDY remains high until a second
character is written in DBGU_THR. As soon as the first character is completed, the last character written in
DBGU_THR is transferred into the shift register and TXRDY rises again, showing that the holding register is
empty.
When both the Shift Register and the DBGU_THR are empty, i.e., all the characters written in DBGU_THR have
been processed, the bit TXEMPTY rises after the last stop bit has been completed.
Figure 29-11. Transmitter Control
DBGU_THR
Data 0
Data 1
Shift Register
DTXD
Data 0
Data 0
S
Data 1
P
stop
S
Data 1
P
stop
TXRDY
TXEMPTY
Write Data 0
in DBGU_THR
Write Data 1
in DBGU_THR
29.5.4 Peripheral Data Controller
Both the receiver and the transmitter of the Debug Unit's UART are generally connected to a Peripheral Data
Controller (PDC) channel.
The peripheral data controller channels are programmed via registers that are mapped within the Debug Unit user
interface from the offset 0x100. The status bits are reported in the Debug Unit status register DBGU_SR and can
generate an interrupt.
The RXRDY bit triggers the PDC channel data transfer of the receiver. This results in a read of the data in
DBGU_RHR. The TXRDY bit triggers the PDC channel data transfer of the transmitter. This results in a write of a
data in DBGU_THR.
404
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
29.5.5 Test Modes
The Debug Unit supports three tests modes. These modes of operation are programmed by using the field
CHMODE (Channel Mode) in the mode register DBGU_MR.
The Automatic Echo mode allows bit-by-bit retransmission. When a bit is received on the DRXD line, it is sent to
the DTXD line. The transmitter operates normally, but has no effect on the DTXD line.
The Local Loopback mode allows the transmitted characters to be received. DTXD and DRXD pins are not used
and the output of the transmitter is internally connected to the input of the receiver. The DRXD pin level has no
effect and the DTXD line is held high, as in idle state.
The Remote Loopback mode directly connects the DRXD pin to the DTXD line. The transmitter and the receiver
are disabled and have no effect. This mode allows a bit-by-bit retransmission.
Figure 29-12. Test Modes
Automatic Echo
RXD
Receiver
Transmitter
Disabled
TXD
Local Loopback
Disabled
Receiver
RXD
VDD
Disabled
Transmitter
Remote Loopback
Receiver
Transmitter
TXD
VDD
Disabled
Disabled
RXD
TXD
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
405
29.5.6 Debug Communication Channel Support
The Debug Unit handles the signals COMMRX and COMMTX that come from the Debug Communication Channel
of the ARM Processor and are driven by the In-circuit Emulator.
The Debug Communication Channel contains two registers that are accessible through the ICE Breaker on the
JTAG side and through the coprocessor 0 on the ARM Processor side.
As a reminder, the following instructions are used to read and write the Debug Communication Channel:
MRC
p14, 0, Rd, c1, c0, 0
Returns the debug communication data read register into Rd
MCR
p14, 0, Rd, c1, c0, 0
Writes the value in Rd to the debug communication data write register.
The bits COMMRX and COMMTX, which indicate, respectively, that the read register has been written by the
debugger but not yet read by the processor, and that the write register has been written by the processor and not
yet read by the debugger, are wired on the two highest bits of the status register DBGU_SR. These bits can
generate an interrupt. This feature permits handling under interrupt a debug link between a debug monitor running
on the target system and a debugger.
29.5.7 Chip Identifier
The Debug Unit features two chip identifier registers, DBGU_CIDR (Chip ID Register) and DBGU_EXID
(Extension ID). Both registers contain a hard-wired value that is read-only. The first register contains the following
fields:

EXT - shows the use of the extension identifier register

NVPTYP and NVPSIZ - identifies the type of embedded non-volatile memory and its size

ARCH - identifies the set of embedded peripherals

SRAMSIZ - indicates the size of the embedded SRAM

EPROC - indicates the embedded ARM processor

VERSION - gives the revision of the silicon
The second register is device-dependent and reads 0 if the bit EXT is 0.
29.5.8 ICE Access Prevention
The Debug Unit allows blockage of access to the system through the ARM processor's ICE interface. This feature
is implemented via the register Force NTRST (DBGU_FNR), that allows assertion of the NTRST signal of the ICE
Interface. Writing the bit FNTRST (Force NTRST) to 1 in this register prevents any activity on the TAP controller.
On standard devices, the bit FNTRST resets to 0 and thus does not prevent ICE access.
This feature is especially useful on custom ROM devices for customers who do not want their on-chip code to be
visible.
406
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
29.6
Debug Unit (DBGU) User Interface
Table 29-2.
Register Mapping
Offset
Register
Name
Access
Reset
0x0000
Control Register
DBGU_CR
Write-only
–
0x0004
Mode Register
DBGU_MR
Read/Write
0x0
0x0008
Interrupt Enable Register
DBGU_IER
Write-only
–
0x000C
Interrupt Disable Register
DBGU_IDR
Write-only
–
0x0010
Interrupt Mask Register
DBGU_IMR
Read-only
0x0
0x0014
Status Register
DBGU_SR
Read-only
0x00181800
0x0018
Receive Holding Register
DBGU_RHR
Read-only
0x0
0x001C
Transmit Holding Register
DBGU_THR
Write-only
–
0x0020
Baud Rate Generator Register
DBGU_BRGR
Read/Write
0x0
Reserved
–
–
–
0x0040
Chip ID Register
DBGU_CIDR
Read-only
0x019607A0
0x0044
Chip ID Extension Register
DBGU_EXID
Read-only
–
0x0048
Force NTRST Register
DBGU_FNR
Read/Write
0x0
0x004C–0x00FC
Reserved
–
–
–
0x0100–0x0124
PDC Area
–
–
–
0x0024–0x003C
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
407
29.6.1 Debug Unit Control Register
Name:
DBGU_CR
Address:
0xFFFFEE00
Access:
Write-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
RSTSTA
7
6
5
4
3
2
1
0
TXDIS
TXEN
RXDIS
RXEN
RSTTX
RSTRX
–
–
• RSTRX: Reset Receiver
0: No effect.
1: The receiver logic is reset and disabled. If a character is being received, the reception is aborted.
• RSTTX: Reset Transmitter
0: No effect.
1: The transmitter logic is reset and disabled. If a character is being transmitted, the transmission is aborted.
• RXEN: Receiver Enable
0: No effect.
1: The receiver is enabled if RXDIS is 0.
• RXDIS: Receiver Disable
0: No effect.
1: The receiver is disabled. If a character is being processed and RSTRX is not set, the character is completed before the
receiver is stopped.
• TXEN: Transmitter Enable
0: No effect.
1: The transmitter is enabled if TXDIS is 0.
• TXDIS: Transmitter Disable
0: No effect.
1: The transmitter is disabled. If a character is being processed and a character has been written the DBGU_THR and
RSTTX is not set, both characters are completed before the transmitter is stopped.
• RSTSTA: Reset Status Bits
0: No effect.
1: Resets the status bits PARE, FRAME and OVRE in the DBGU_SR.
408
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
29.6.2 Debug Unit Mode Register
Name:
DBGU_MR
Address:
0xFFFFEE04
Access:
Read/Write
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
14
13
12
11
10
9
–
–
15
CHMODE
PAR
8
–
7
6
5
4
3
2
1
0
–
–
–
–
–
–
–
–
• PAR: Parity Type
Value
Parity Type
0
0
0
Even parity
0
0
1
Odd parity
0
1
0
Space: parity forced to 0
0
1
1
Mark: parity forced to 1
1
x
x
No parity
• CHMODE: Channel Mode
Value
Mode Description
0
0
Normal Mode
0
1
Automatic Echo
1
0
Local Loopback
1
1
Remote Loopback
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
409
29.6.3 Debug Unit Interrupt Enable Register
Name:
DBGU_IER
Address:
0xFFFFEE08
Access:
Write-only
31
30
29
28
27
26
25
24
COMMRX
COMMTX
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
RXBUFF
TXBUFE
–
TXEMPTY
–
7
6
5
4
3
2
1
0
PARE
FRAME
OVRE
ENDTX
ENDRX
–
TXRDY
RXRDY
• RXRDY: Enable RXRDY Interrupt
• TXRDY: Enable TXRDY Interrupt
• ENDRX: Enable End of Receive Transfer Interrupt
• ENDTX: Enable End of Transmit Interrupt
• OVRE: Enable Overrun Error Interrupt
• FRAME: Enable Framing Error Interrupt
• PARE: Enable Parity Error Interrupt
• TXEMPTY: Enable TXEMPTY Interrupt
• TXBUFE: Enable Buffer Empty Interrupt
• RXBUFF: Enable Buffer Full Interrupt
• COMMTX: Enable COMMTX (from ARM) Interrupt
• COMMRX: Enable COMMRX (from ARM) Interrupt
0: No effect.
1: Enables the corresponding interrupt.
410
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
29.6.4 Debug Unit Interrupt Disable Register
Name:
DBGU_IDR
Address:
0xFFFFEE0C
Access:
Write-only
31
30
29
28
27
26
25
24
COMMRX
COMMTX
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
RXBUFF
TXBUFE
–
TXEMPTY
–
7
6
5
4
3
2
1
0
PARE
FRAME
OVRE
ENDTX
ENDRX
–
TXRDY
RXRDY
• RXRDY: Disable RXRDY Interrupt
• TXRDY: Disable TXRDY Interrupt
• ENDRX: Disable End of Receive Transfer Interrupt
• ENDTX: Disable End of Transmit Interrupt
• OVRE: Disable Overrun Error Interrupt
• FRAME: Disable Framing Error Interrupt
• PARE: Disable Parity Error Interrupt
• TXEMPTY: Disable TXEMPTY Interrupt
• TXBUFE: Disable Buffer Empty Interrupt
• RXBUFF: Disable Buffer Full Interrupt
• COMMTX: Disable COMMTX (from ARM) Interrupt
• COMMRX: Disable COMMRX (from ARM) Interrupt
0: No effect.
1: Disables the corresponding interrupt.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
411
29.6.5 Debug Unit Interrupt Mask Register
Name:
DBGU_IMR
Address:
0xFFFFEE10
Access:
Read-only
31
30
29
28
27
26
25
24
COMMRX
COMMTX
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
RXBUFF
TXBUFE
–
TXEMPTY
–
7
6
5
4
3
2
1
0
PARE
FRAME
OVRE
ENDTX
ENDRX
–
TXRDY
RXRDY
• RXRDY: Mask RXRDY Interrupt
• TXRDY: Disable TXRDY Interrupt
• ENDRX: Mask End of Receive Transfer Interrupt
• ENDTX: Mask End of Transmit Interrupt
• OVRE: Mask Overrun Error Interrupt
• FRAME: Mask Framing Error Interrupt
• PARE: Mask Parity Error Interrupt
• TXEMPTY: Mask TXEMPTY Interrupt
• TXBUFE: Mask TXBUFE Interrupt
• RXBUFF: Mask RXBUFF Interrupt
• COMMTX: Mask COMMTX Interrupt
• COMMRX: Mask COMMRX Interrupt
0: The corresponding interrupt is disabled.
1: The corresponding interrupt is enabled.
412
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
29.6.6 Debug Unit Status Register
Name:
DBGU_SR
Address:
0xFFFFEE14
Access:
Read-only
31
30
29
28
27
26
25
24
COMMRX
COMMTX
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
RXBUFF
TXBUFE
–
TXEMPTY
–
7
6
5
4
3
2
1
0
PARE
FRAME
OVRE
ENDTX
ENDRX
–
TXRDY
RXRDY
• RXRDY: Receiver Ready
0: No character has been received since the last read of the DBGU_RHR or the receiver is disabled.
1: At least one complete character has been received, transferred to DBGU_RHR and not yet read.
• TXRDY: Transmitter Ready
0: A character has been written to DBGU_THR and not yet transferred to the Shift Register, or the transmitter is disabled.
1: There is no character written to DBGU_THR not yet transferred to the Shift Register.
• ENDRX: End of Receiver Transfer
0: The End of Transfer signal from the receiver Peripheral Data Controller channel is inactive.
1: The End of Transfer signal from the receiver Peripheral Data Controller channel is active.
• ENDTX: End of Transmitter Transfer
0: The End of Transfer signal from the transmitter Peripheral Data Controller channel is inactive.
1: The End of Transfer signal from the transmitter Peripheral Data Controller channel is active.
• OVRE: Overrun Error
0: No overrun error has occurred since the last RSTSTA.
1: At least one overrun error has occurred since the last RSTSTA.
• FRAME: Framing Error
0: No framing error has occurred since the last RSTSTA.
1: At least one framing error has occurred since the last RSTSTA.
• PARE: Parity Error
0: No parity error has occurred since the last RSTSTA.
1: At least one parity error has occurred since the last RSTSTA.
• TXEMPTY: Transmitter Empty
0: There are characters in DBGU_THR, or characters being processed by the transmitter, or the transmitter is disabled.
1: There are no characters in DBGU_THR and there are no characters being processed by the transmitter.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
413
• TXBUFE: Transmission Buffer Empty
0: The buffer empty signal from the transmitter PDC channel is inactive.
1: The buffer empty signal from the transmitter PDC channel is active.
• RXBUFF: Receive Buffer Full
0: The buffer full signal from the receiver PDC channel is inactive.
1: The buffer full signal from the receiver PDC channel is active.
• COMMTX: Debug Communication Channel Write Status
0: COMMTX from the ARM processor is inactive.
1: COMMTX from the ARM processor is active.
• COMMRX: Debug Communication Channel Read Status
0: COMMRX from the ARM processor is inactive.
1: COMMRX from the ARM processor is active.
414
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
29.6.7 Debug Unit Receiver Holding Register
Name:
DBGU_RHR
Address:
0xFFFFEE18
Access:
Read-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
RXCHR
• RXCHR: Received Character
Last received character if RXRDY is set.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
415
29.6.8 Debug Unit Transmit Holding Register
Name:
DBGU_THR
Address:
0xFFFFEE1C
Access:
Write-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
TXCHR
• TXCHR: Character to be Transmitted
Next character to be transmitted after the current character if TXRDY is not set.
416
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
29.6.9 Debug Unit Baud Rate Generator Register
Name:
DBGU_BRGR
Address:
0xFFFFEE20
Access:
Read/Write
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
3
2
1
0
CD
7
6
5
4
CD
• CD: Clock Divisor
Value
Baud Rate Clock
0
Disabled
1
MCK
2–65535
MCK / (CD × 16)
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
417
29.6.10 Debug Unit Chip ID Register
Name:
DBGU_CIDR
Address:
0xFFFFEE40
Access:
Read-only
31
30
29
EXT
28
27
26
NVPTYP
23
22
21
20
19
18
ARCH
15
14
13
6
5
• VERSION: Version of the Device
Current version of the device.
• EPROC: Embedded Processor
Processor
0
0
1
ARM946ES
0
1
0
ARM7TDMI
1
0
0
ARM920T
1
0
1
ARM926EJS
• NVPSIZ: Nonvolatile Program Memory Size
Value
Size
0
0
0
0
None
0
0
0
1
8 Kbytes
0
0
1
0
16 Kbytes
0
0
1
1
32 Kbytes
0
1
0
0
Reserved
0
1
0
1
64 Kbytes
0
1
1
0
Reserved
0
1
1
1
128 Kbytes
1
0
0
0
Reserved
1
0
0
1
256 Kbytes
1
0
1
0
512 Kbytes
1
0
1
1
Reserved
1
1
0
0
1024 Kbytes
1
1
0
1
Reserved
1
1
1
0
2048 Kbytes
1
1
1
1
Reserved
418
17
16
12
11
10
9
8
1
0
NVPSIZ
EPROC
Value
24
SRAMSIZ
NVPSIZ2
7
25
ARCH
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
4
3
2
VERSION
• NVPSIZ2 Second Nonvolatile Program Memory Size
Value
Size
0
0
0
0
None
0
0
0
1
8 Kbytes
0
0
1
0
16 Kbytes
0
0
1
1
32 Kbytes
0
1
0
0
Reserved
0
1
0
1
64 Kbytes
0
1
1
0
Reserved
0
1
1
1
128 Kbytes
1
0
0
0
Reserved
1
0
0
1
256 Kbytes
1
0
1
0
512 Kbytes
1
0
1
1
Reserved
1
1
0
0
1024 Kbytes
1
1
0
1
Reserved
1
1
1
0
2048 Kbytes
1
1
1
1
Reserved
• SRAMSIZ: Internal SRAM Size
Value
Size
0
0
0
0
Reserved
0
0
0
1
1 Kbytes
0
0
1
0
2 Kbytes
0
0
1
1
6 Kbytes
0
1
0
0
112 Kbytes
0
1
0
1
4 Kbytes
0
1
1
0
80 Kbytes
0
1
1
1
160 Kbytes
1
0
0
0
8 Kbytes
1
0
0
1
16 Kbytes
1
0
1
0
32 Kbytes
1
0
1
1
64 Kbytes
1
1
0
0
128 Kbytes
1
1
0
1
256 Kbytes
1
1
1
0
96 Kbytes
1
1
1
1
512 Kbytes
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
419
• ARCH: Architecture Identifier
Value
Hex
Bin
Architecture
0x19
0001 1001
AT91SAM9xx Series
0x29
0010 1001
AT91SAM9XExx Series
0x34
0011 0100
AT91x34 Series
0x37
0011 0111
CAP7 Series
0x39
0011 1001
CAP9 Series
0x3B
0011 1011
CAP11 Series
0x40
0100 0000
AT91x40 Series
0x42
0100 0010
AT91x42 Series
0x55
0101 0101
AT91x55 Series
0x60
0110 0000
AT91SAM7Axx Series
0x61
0110 0001
AT91SAM7AQxx Series
0x63
0110 0011
AT91x63 Series
0x70
0111 0000
AT91SAM7Sxx Series
0x71
0111 0001
AT91SAM7XCxx Series
0x72
0111 0010
AT91SAM7SExx Series
0x73
0111 0011
AT91SAM7Lxx Series
0x75
0111 0101
AT91SAM7Xxx Series
0x92
1001 0010
AT91x92 Series
0xF0
1111 0000
AT75Cxx Series
• NVPTYP: Nonvolatile Program Memory Type
Value
Memory
0
0
0
ROM
0
0
1
ROMless or on-chip Flash
1
0
0
SRAM emulating ROM
0
1
0
Embedded Flash Memory
0
1
1
ROM and Embedded Flash Memory
NVPSIZ is ROM size
NVPSIZ2 is Flash size
• EXT: Extension Flag
0: Chip ID has a single register definition without extension
1: An extended Chip ID exists.
420
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
29.6.11 Debug Unit Chip ID Extension Register
Name:
DBGU_EXID
Address:
0xFFFFEE44
Access:
Read-only
31
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
EXID
23
22
21
20
EXID
15
14
13
12
EXID
7
6
5
4
EXID
• EXID: Chip ID Extension
Reads 0 if the bit EXT in DBGU_CIDR is 0.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
421
29.6.12 Debug Unit Force NTRST Register
Name:
DBGU_FNR
Address:
0xFFFFEE48
Access:
Read/Write
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
–
–
–
–
–
–
–
FNTRST
• FNTRST: Force NTRST
0: NTRST of the ARM processor’s TAP controller is driven by the power_on_reset signal.
1: NTRST of the ARM processor’s TAP controller is held low.
422
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
30.
Parallel Input/Output Controller (PIO)
30.1
Description
The Parallel Input/Output Controller (PIO) manages up to 32 fully programmable input/output lines. Each I/O line
may be dedicated as a general-purpose I/O or be assigned to a function of an embedded peripheral. This assures
effective optimization of the pins of a product.
Each I/O line is associated with a bit number in all of the 32-bit registers of the 32-bit wide User Interface.
Each I/O line of the PIO Controller features:

An input change interrupt enabling level change detection on any I/O line.

A glitch filter providing rejection of pulses lower than one-half of clock cycle.

Multi-drive capability similar to an open drain I/O line.

Control of the pull-up of the I/O line.

Input visibility and output control.
The PIO Controller also features a synchronous output providing up to 32 bits of data output in a single write
operation.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
423
30.2
Block Diagram
Figure 30-1.
Block Diagram
PIO Controller
AIC
PIO Interrupt
PIO Clock
PMC
Data, Enable
Up to 32
peripheral IOs
Embedded
Peripheral
PIN 0
Data, Enable
PIN 1
Up to 32 pins
Up to 32
peripheral IOs
Embedded
Peripheral
PIN 31
APB
Figure 30-2.
Application Block Diagram
On-Chip Peripheral Drivers
Keyboard Driver
Control & Command
Driver
On-Chip Peripherals
PIO Controller
Keyboard Driver
424
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
General Purpose I/Os
External Devices
30.3
Product Dependencies
30.3.1 Pin Multiplexing
Each pin is configurable, according to product definition as either a general-purpose I/O line only, or as an I/O line
multiplexed with one or two peripheral I/Os. As the multiplexing is hardware-defined and thus product-dependent,
the hardware designer and programmer must carefully determine the configuration of the PIO controllers required
by their application. When an I/O line is general-purpose only, i.e. not multiplexed with any peripheral I/O,
programming of the PIO Controller regarding the assignment to a peripheral has no effect and only the PIO
Controller can control how the pin is driven by the product.
30.3.2 External Interrupt Lines
The interrupt signals FIQ and IRQ0 to IRQn are most generally multiplexed through the PIO Controllers. However,
it is not necessary to assign the I/O line to the interrupt function as the PIO Controller has no effect on inputs and
the interrupt lines (FIQ or IRQs) are used only as inputs.
30.3.3 Power Management
The Power Management Controller controls the PIO Controller clock in order to save power. Writing any of the
registers of the user interface does not require the PIO Controller clock to be enabled. This means that the
configuration of the I/O lines does not require the PIO Controller clock to be enabled.
However, when the clock is disabled, not all of the features of the PIO Controller are available. Note that the Input
Change Interrupt and the read of the pin level require the clock to be validated.
After a hardware reset, the PIO clock is disabled by default.
The user must configure the Power Management Controller before any access to the input line information.
30.3.4 Interrupt Generation
For interrupt handling, the PIO Controllers are considered as user peripherals. This means that the PIO Controller
interrupt lines are connected among the interrupt sources 2 to 31. Refer to the PIO Controller peripheral identifier
in the product description to identify the interrupt sources dedicated to the PIO Controllers.
The PIO Controller interrupt can be generated only if the PIO Controller clock is enabled.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
425
30.4
Functional Description
The PIO Controller features up to 32 fully-programmable I/O lines. Most of the control logic associated to each I/O
is represented in Figure 30-3. In this description each signal shown represents but one of up to 32 possible
indexes.
Figure 30-3.
I/O Line Control Logic
PIO_OER[0]
PIO_OSR[0]
PIO_PUER[0]
PIO_ODR[0]
PIO_PUSR[0]
PIO_PUDR[0]
1
Peripheral A
Output Enable
0
0
Peripheral B
Output Enable
0
1
PIO_PER[0]
PIO_ASR[0]
1
PIO_PSR[0]
PIO_ABSR[0]
PIO_PDR[0]
PIO_BSR[0]
Peripheral A
Output
0
Peripheral B
Output
1
PIO_MDER[0]
PIO_MDSR[0]
PIO_MDDR[0]
0
0
PIO_SODR[0]
PIO_ODSR[0]
1
Pad
PIO_CODR[0]
1
Peripheral A
Input
PIO_PDSR[0]
PIO_ISR[0]
0
Edge
Detector
Glitch
Filter
PIO_IFSR[0]
PIO_IER[0]
PIO_IMR[0]
PIO_IDR[0]
PIO_ISR[31]
PIO_IER[31]
PIO_IMR[31]
PIO_IDR[31]
426
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
(Up to 32 possible inputs)
PIO Interrupt
1
PIO_IFER[0]
PIO_IFDR[0]
Peripheral B
Input
30.4.1 Pull-up Resistor Control
Each I/O line is designed with an embedded pull-up resistor. The pull-up resistor can be enabled or disabled by
writing respectively PIO_PUER (Pull-up Enable Register) and PIO_PUDR (Pull-up Disable Resistor). Writing in
these registers results in setting or clearing the corresponding bit in PIO_PUSR (Pull-up Status Register). Reading
a 1 in PIO_PUSR means the pull-up is disabled and reading a 0 means the pull-up is enabled.
Control of the pull-up resistor is possible regardless of the configuration of the I/O line.
After reset, all of the pull-ups are enabled, i.e. PIO_PUSR resets at the value 0x0.
30.4.2 I/O Line or Peripheral Function Selection
When a pin is multiplexed with one or two peripheral functions, the selection is controlled with the registers
PIO_PER (PIO Enable Register) and PIO_PDR (PIO Disable Register). The register PIO_PSR (PIO Status
Register) is the result of the set and clear registers and indicates whether the pin is controlled by the
corresponding peripheral or by the PIO Controller. A value of 0 indicates that the pin is controlled by the
corresponding on-chip peripheral selected in the PIO_ABSR (AB Select Status Register). A value of 1 indicates
the pin is controlled by the PIO controller.
If a pin is used as a general purpose I/O line (not multiplexed with an on-chip peripheral), PIO_PER and PIO_PDR
have no effect and PIO_PSR returns 1 for the corresponding bit.
After reset, most generally, the I/O lines are controlled by the PIO controller, i.e. PIO_PSR resets at 1. However, in
some events, it is important that PIO lines are controlled by the peripheral (as in the case of memory chip select
lines that must be driven inactive after reset or for address lines that must be driven low for booting out of an
external memory). Thus, the reset value of PIO_PSR is defined at the product level, depending on the multiplexing
of the device.
30.4.3 Peripheral A or B Selection
The PIO Controller provides multiplexing of up to two peripheral functions on a single pin. The selection is
performed by writing PIO_ASR (A Select Register) and PIO_BSR (Select B Register). PIO_ABSR (AB Select
Status Register) indicates which peripheral line is currently selected. For each pin, the corresponding bit at level 0
means peripheral A is selected whereas the corresponding bit at level 1 indicates that peripheral B is selected.
Note that multiplexing of peripheral lines A and B only affects the output line. The peripheral input lines are always
connected to the pin input.
After reset, PIO_ABSR is 0, thus indicating that all the PIO lines are configured on peripheral A. However,
peripheral A generally does not drive the pin as the PIO Controller resets in I/O line mode.
Writing in PIO_ASR and PIO_BSR manages PIO_ABSR regardless of the configuration of the pin. However,
assignment of a pin to a peripheral function requires a write in the corresponding peripheral selection register
(PIO_ASR or PIO_BSR) in addition to a write in PIO_PDR.
30.4.4 Output Control
When the I/0 line is assigned to a peripheral function, i.e. the corresponding bit in PIO_PSR is at 0, the drive of the
I/O line is controlled by the peripheral. Peripheral A or B, depending on the value in PIO_ABSR, determines
whether the pin is driven or not.
When the I/O line is controlled by the PIO controller, the pin can be configured to be driven. This is done by writing
PIO_OER (Output Enable Register) and PIO_ODR (Output Disable Register). The results of these write
operations are detected in PIO_OSR (Output Status Register). When a bit in this register is at 0, the corresponding
I/O line is used as an input only. When the bit is at 1, the corresponding I/O line is driven by the PIO controller.
The level driven on an I/O line can be determined by writing in PIO_SODR (Set Output Data Register) and
PIO_CODR (Clear Output Data Register). These write operations respectively set and clear PIO_ODSR (Output
Data Status Register), which represents the data driven on the I/O lines. Writing in PIO_OER and PIO_ODR
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
427
manages PIO_OSR whether the pin is configured to be controlled by the PIO controller or assigned to a peripheral
function. This enables configuration of the I/O line prior to setting it to be managed by the PIO Controller.
Similarly, writing in PIO_SODR and PIO_CODR effects PIO_ODSR. This is important as it defines the first level
driven on the I/O line.
30.4.5 Synchronous Data Output
Controlling all parallel busses using several PIOs requires two successive write operations in the PIO_SODR and
PIO_CODR. This may lead to unexpected transient values. The PIO controller offers a direct control of PIO
outputs by single write access to PIO_ODSR (Output Data Status Register). Only bits unmasked by PIO_OWSR
(Output Write Status Register) are written. The mask bits in the PIO_OWSR are set by writing to PIO_OWER
(Output Write Enable Register) and cleared by writing to PIO_OWDR (Output Write Disable Register).
After reset, the synchronous data output is disabled on all the I/O lines as PIO_OWSR resets at 0x0.
30.4.6 Multi Drive Control (Open Drain)
Each I/O can be independently programmed in Open Drain by using the Multi Drive feature. This feature permits
several drivers to be connected on the I/O line which is driven low only by each device. An external pull-up resistor
(or enabling of the internal one) is generally required to guarantee a high level on the line.
The Multi Drive feature is controlled by PIO_MDER (Multi-driver Enable Register) and PIO_MDDR (Multi-driver
Disable Register). The Multi Drive can be selected whether the I/O line is controlled by the PIO controller or
assigned to a peripheral function. PIO_MDSR (Multi-driver Status Register) indicates the pins that are configured
to support external drivers.
After reset, the Multi Drive feature is disabled on all pins, i.e. PIO_MDSR resets at value 0x0.
30.4.7 Output Line Timings
Figure 30-4 shows how the outputs are driven either by writing PIO_SODR or PIO_CODR, or by directly writing
PIO_ODSR. This last case is valid only if the corresponding bit in PIO_OWSR is set. Figure 30-4 also shows when
the feedback in PIO_PDSR is available.
Figure 30-4.
Output Line Timings
MCK
Write PIO_SODR
Write PIO_ODSR at 1
APB Access
Write PIO_CODR
Write PIO_ODSR at 0
APB Access
PIO_ODSR
2 cycles
PIO_PDSR
428
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
2 cycles
30.4.8 Inputs
The level on each I/O line can be read through PIO_PDSR (Pin Data Status Register). This register indicates the
level of the I/O lines regardless of their configuration, whether uniquely as an input or driven by the PIO controller
or driven by a peripheral.
Reading the I/O line levels requires the clock of the PIO controller to be enabled, otherwise PIO_PDSR reads the
levels present on the I/O line at the time the clock was disabled.
30.4.9 Input Glitch Filtering
Optional input glitch filters are independently programmable on each I/O line. When the glitch filter is enabled, a
glitch with a duration of less than 1/2 Master Clock (MCK) cycle is automatically rejected, while a pulse with a
duration of 1 Master Clock cycle or more is accepted. For pulse durations between 1/2 Master Clock cycle and 1
Master Clock cycle the pulse may or may not be taken into account, depending on the precise timing of its
occurrence. Thus for a pulse to be visible it must exceed 1 Master Clock cycle, whereas for a glitch to be reliably
filtered out, its duration must not exceed 1/2 Master Clock cycle. The filter introduces one Master Clock cycle
latency if the pin level change occurs before a rising edge. However, this latency does not appear if the pin level
change occurs before a falling edge. This is illustrated in Figure 30-5.
The glitch filters are controlled by the register set; PIO_IFER (Input Filter Enable Register), PIO_IFDR (Input Filter
Disable Register) and PIO_IFSR (Input Filter Status Register). Writing PIO_IFER and PIO_IFDR respectively sets
and clears bits in PIO_IFSR. This last register enables the glitch filter on the I/O lines.
When the glitch filter is enabled, it does not modify the behavior of the inputs on the peripherals. It acts only on the
value read in PIO_PDSR and on the input change interrupt detection. The glitch filters require that the PIO
Controller clock is enabled.
Figure 30-5.
Input Glitch Filter Timing
MCK
up to 1.5 cycles
Pin Level
1 cycle
1 cycle
1 cycle
1 cycle
PIO_PDSR
if PIO_IFSR = 0
2 cycles
PIO_PDSR
if PIO_IFSR = 1
up to 2.5 cycles
1 cycle
up to 2 cycles
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
429
30.4.10 Input Change Interrupt
The PIO Controller can be programmed to generate an interrupt when it detects an input change on an I/O line.
The Input Change Interrupt is controlled by writing PIO_IER (Interrupt Enable Register) and PIO_IDR (Interrupt
Disable Register), which respectively enable and disable the input change interrupt by setting and clearing the
corresponding bit in PIO_IMR (Interrupt Mask Register). As Input change detection is possible only by comparing
two successive samplings of the input of the I/O line, the PIO Controller clock must be enabled. The Input Change
Interrupt is available, regardless of the configuration of the I/O line, i.e. configured as an input only, controlled by
the PIO Controller or assigned to a peripheral function.
When an input change is detected on an I/O line, the corresponding bit in PIO_ISR (Interrupt Status Register) is
set. If the corresponding bit in PIO_IMR is set, the PIO Controller interrupt line is asserted. The interrupt signals of
the thirty-two channels are ORed-wired together to generate a single interrupt signal to the Advanced Interrupt
Controller.
When the software reads PIO_ISR, all the interrupts are automatically cleared. This signifies that all the interrupts
that are pending when PIO_ISR is read must be handled.
Figure 30-6.
Input Change Interrupt Timings
MCK
Pin Level
PIO_ISR
Read PIO_ISR
430
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
APB Access
APB Access
30.5
I/O Lines Programming Example
The programing example as shown in Table 30-1 below is used to define the following configuration.

4-bit output port on I/O lines 0 to 3, (should be written in a single write operation), open-drain, with pull-up
resistor

Four output signals on I/O lines 4 to 7 (to drive LEDs for example), driven high and low, no pull-up resistor

Four input signals on I/O lines 8 to 11 (to read push-button states for example), with pull-up resistors, glitch
filters and input change interrupts

Four input signals on I/O line 12 to 15 to read an external device status (polled, thus no input change
interrupt), no pull-up resistor, no glitch filter

I/O lines 16 to 19 assigned to peripheral A functions with pull-up resistor

I/O lines 20 to 23 assigned to peripheral B functions, no pull-up resistor

I/O line 24 to 27 assigned to peripheral A with Input Change Interrupt and pull-up resistor
Table 30-1.
Programming Example
Register
Value to be Written
PIO_PER
0x0000 FFFF
PIO_PDR
0x0FFF 0000
PIO_OER
0x0000 00FF
PIO_ODR
0x0FFF FF00
PIO_IFER
0x0000 0F00
PIO_IFDR
0x0FFF F0FF
PIO_SODR
0x0000 0000
PIO_CODR
0x0FFF FFFF
PIO_IER
0x0F00 0F00
PIO_IDR
0x00FF F0FF
PIO_MDER
0x0000 000F
PIO_MDDR
0x0FFF FFF0
PIO_PUDR
0x00F0 00F0
PIO_PUER
0x0F0F FF0F
PIO_ASR
0x0F0F 0000
PIO_BSR
0x00F0 0000
PIO_OWER
0x0000 000F
PIO_OWDR
0x0FFF FFF0
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
431
30.6
Parallel Input/Output Controller (PIO) User Interface
Each I/O line controlled by the PIO Controller is associated with a bit in each of the PIO Controller User Interface
registers. Each register is 32 bits wide. If a parallel I/O line is not defined, writing to the corresponding bits has no
effect. Undefined bits read zero. If the I/O line is not multiplexed with any peripheral, the I/O line is controlled by the
PIO Controller and PIO_PSR returns 1 systematically.
Table 30-2.
Register Mapping
Offset
Register
Name
Access
Reset
0x0000
PIO Enable Register
PIO_PER
Write-only
–
0x0004
PIO Disable Register
PIO_PDR
Write-only
–
PIO_PSR
Read-only
(1)
0x0008
PIO Status Register
0x000C
Reserved
0x0010
Output Enable Register
PIO_OER
Write-only
–
0x0014
Output Disable Register
PIO_ODR
Write-only
–
0x0018
Output Status Register
PIO_OSR
Read-only
0x0000 0000
0x001C
Reserved
0x0020
Glitch Input Filter Enable Register
PIO_IFER
Write-only
–
0x0024
Glitch Input Filter Disable Register
PIO_IFDR
Write-only
–
0x0028
Glitch Input Filter Status Register
PIO_IFSR
Read-only
0x0000 0000
0x002C
Reserved
0x0030
Set Output Data Register
PIO_SODR
Write-only
–
0x0034
Clear Output Data Register
PIO_CODR
Write-only
0x0038
Output Data Status Register
PIO_ODSR
Read-only
or(2)
Read/Write
–
0x003C
Pin Data Status Register
PIO_PDSR
Read-only
(3)
0x0040
Interrupt Enable Register
PIO_IER
Write-only
–
0x0044
Interrupt Disable Register
PIO_IDR
Write-only
–
0x0048
Interrupt Mask Register
PIO_IMR
Read-only
0x00000000
PIO_ISR
Read-only
0x00000000
(4)
0x004C
Interrupt Status Register
0x0050
Multi-driver Enable Register
PIO_MDER
Write-only
–
0x0054
Multi-driver Disable Register
PIO_MDDR
Write-only
–
0x0058
Multi-driver Status Register
PIO_MDSR
Read-only
0x00000000
0x005C
Reserved
0x0060
Pull-up Disable Register
PIO_PUDR
Write-only
–
0x0064
Pull-up Enable Register
PIO_PUER
Write-only
–
0x0068
Pad Pull-up Status Register
PIO_PUSR
Read-only
0x00000000
0x006C
Reserved
0x0070
Peripheral A Select Register(5)
PIO_ASR
Write-only
–
0x0074
(5)
Peripheral B Select Register
PIO_BSR
Write-only
–
0x0078
AB Status Register(5)
PIO_ABSR
Read-only
0x00000000
432
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Table 30-2.
Register Mapping (Continued)
Offset
Register
0x007C–0x009C
Reserved
0x00A0
Output Write Enable
0x00A4
0x00A8
Name
Access
Reset
PIO_OWER
Write-only
–
Output Write Disable
PIO_OWDR
Write-only
–
Output Write Status Register
PIO_OWSR
Read-only
0x00000000
0x00AC
Reserved
Notes: 1. Reset value of PIO_PSR depends on the product implementation.
2. PIO_ODSR is Read-only or Read/Write depending on PIO_OWSR I/O lines.
3. Reset value of PIO_PDSR depends on the level of the I/O lines. Reading the I/O line levels requires the clock of the PIO
Controller to be enabled, otherwise PIO_PDSR reads the levels present on the I/O line at the time the clock was disabled.
4. PIO_ISR is reset at 0x0. However, the first read of the register may read a different value as input changes may have
occurred.
5. Only this set of registers clears the status by writing 1 in the first register and sets the status by writing 1 in the second
register.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
433
30.6.1 PIO Controller PIO Enable Register
Name:
PIO_PER
Address:
0xFFFFF200 (PIOA), 0xFFFFF400 (PIOB), 0xFFFFF600 (PIOC), 0xFFFFF800 (PIOD),
0xFFFFFA00 (PIOE)
Access:
Write-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0–P31: PIO Enable
0: No effect.
1: Enables the PIO to control the corresponding pin (disables peripheral control of the pin).
434
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
30.6.2 PIO Controller PIO Disable Register
Name:
PIO_PDR
Address:
0xFFFFF204 (PIOA), 0xFFFFF404 (PIOB), 0xFFFFF604 (PIOC), 0xFFFFF804 (PIOD),
0xFFFFFA04 (PIOE)
Access:
Write-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0–P31: PIO Disable
0: No effect.
1: Disables the PIO from controlling the corresponding pin (enables peripheral control of the pin).
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
435
30.6.3 PIO Controller PIO Status Register
Name:
PIO_PSR
Address:
0xFFFFF208 (PIOA), 0xFFFFF408 (PIOB), 0xFFFFF608 (PIOC), 0xFFFFF808 (PIOD),
0xFFFFFA08 (PIOE)
Access:
Read-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0–P31: PIO Status
0: PIO is inactive on the corresponding I/O line (peripheral is active).
1: PIO is active on the corresponding I/O line (peripheral is inactive).
436
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
30.6.4 PIO Controller Output Enable Register
Name:
PIO_OER
Address:
0xFFFFF210 (PIOA), 0xFFFFF410 (PIOB), 0xFFFFF610 (PIOC), 0xFFFFF810 (PIOD),
0xFFFFFA10 (PIOE)
Access:
Write-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0–P31: Output Enable
0: No effect.
1: Enables the output on the I/O line.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
437
30.6.5 PIO Controller Output Disable Register
Name:
PIO_ODR
Address:
0xFFFFF214 (PIOA), 0xFFFFF414 (PIOB), 0xFFFFF614 (PIOC), 0xFFFFF814 (PIOD),
0xFFFFFA14 (PIOE)
Access:
Write-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0–P31: Output Disable
0: No effect.
1: Disables the output on the I/O line.
438
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
30.6.6 PIO Controller Output Status Register
Name:
PIO_OSR
Address:
0xFFFFF218 (PIOA), 0xFFFFF418 (PIOB), 0xFFFFF618 (PIOC), 0xFFFFF818 (PIOD),
0xFFFFFA18 (PIOE)
Access:
Read-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0–P31: Output Status
0: The I/O line is a pure input.
1: The I/O line is enabled in output.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
439
30.6.7 PIO Controller Input Filter Enable Register
Name:
PIO_IFER
Address:
0xFFFFF220 (PIOA), 0xFFFFF420 (PIOB), 0xFFFFF620 (PIOC), 0xFFFFF820 (PIOD),
0xFFFFFA20 (PIOE)
Access:
Write-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0–P31: Input Filter Enable
0: No effect.
1: Enables the input glitch filter on the I/O line.
440
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
30.6.8 PIO Controller Input Filter Disable Register
Name:
PIO_IFDR
Address:
0xFFFFF224 (PIOA), 0xFFFFF424 (PIOB), 0xFFFFF624 (PIOC), 0xFFFFF824 (PIOD),
0xFFFFFA24 (PIOE)
Access:
Write-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0–P31: Input Filter Disable
0: No effect.
1: Disables the input glitch filter on the I/O line.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
441
30.6.9 PIO Controller Input Filter Status Register
Name:
PIO_IFSR
Address:
0xFFFFF228 (PIOA), 0xFFFFF428 (PIOB), 0xFFFFF628 (PIOC), 0xFFFFF828 (PIOD),
0xFFFFFA28 (PIOE)
Access:
Read-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0–P31: Input Filer Status
0: The input glitch filter is disabled on the I/O line.
1: The input glitch filter is enabled on the I/O line.
442
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
30.6.10 PIO Controller Set Output Data Register
Name:
PIO_SODR
Address:
0xFFFFF230 (PIOA), 0xFFFFF430 (PIOB), 0xFFFFF630 (PIOC), 0xFFFFF830 (PIOD),
0xFFFFFA30 (PIOE)
Access:
Write-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0–P31: Set Output Data
0: No effect.
1: Sets the data to be driven on the I/O line.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
443
30.6.11 PIO Controller Clear Output Data Register
Name:
PIO_CODR
Address:
0xFFFFF234 (PIOA), 0xFFFFF434 (PIOB), 0xFFFFF634 (PIOC), 0xFFFFF834 (PIOD),
0xFFFFFA34 (PIOE)
Access:
Write-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0–P31: Set Output Data
0: No effect.
1: Clears the data to be driven on the I/O line.
444
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
30.6.12 PIO Controller Output Data Status Register
Name:
PIO_ODSR
Address:
0xFFFFF238 (PIOA), 0xFFFFF438 (PIOB), 0xFFFFF638 (PIOC), 0xFFFFF838 (PIOD),
0xFFFFFA38 (PIOE)
Access:
Read-only or Read/Write
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0–P31: Output Data Status
0: The data to be driven on the I/O line is 0.
1: The data to be driven on the I/O line is 1.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
445
30.6.13 PIO Controller Pin Data Status Register
Name:
PIO_PDSR
Address:
0xFFFFF23C (PIOA), 0xFFFFF43C (PIOB), 0xFFFFF63C (PIOC), 0xFFFFF83C (PIOD),
0xFFFFFA3C (PIOE)
Access:
Read-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0–P31: Output Data Status
0: The I/O line is at level 0.
1: The I/O line is at level 1.
446
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
30.6.14 PIO Controller Interrupt Enable Register
Name:
PIO_IER
Address:
0xFFFFF240 (PIOA), 0xFFFFF440 (PIOB), 0xFFFFF640 (PIOC), 0xFFFFF840 (PIOD),
0xFFFFFA40 (PIOE)
Access:
Write-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0–P31: Input Change Interrupt Enable
0: No effect.
1: Enables the Input Change Interrupt on the I/O line.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
447
30.6.15 PIO Controller Interrupt Disable Register
Name:
PIO_IDR
Address:
0xFFFFF244 (PIOA), 0xFFFFF444 (PIOB), 0xFFFFF644 (PIOC), 0xFFFFF844 (PIOD),
0xFFFFFA44 (PIOE)
Access:
Write-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0–P31: Input Change Interrupt Disable
0: No effect.
1: Disables the Input Change Interrupt on the I/O line.
448
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
30.6.16 PIO Controller Interrupt Mask Register
Name:
PIO_IMR
Address:
0xFFFFF248 (PIOA), 0xFFFFF448 (PIOB), 0xFFFFF648 (PIOC), 0xFFFFF848 (PIOD),
0xFFFFFA48 (PIOE)
Access:
Read-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0–P31: Input Change Interrupt Mask
0: Input Change Interrupt is disabled on the I/O line.
1: Input Change Interrupt is enabled on the I/O line.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
449
30.6.17 PIO Controller Interrupt Status Register
Name:
PIO_ISR
Address:
0xFFFFF24C (PIOA), 0xFFFFF44C (PIOB), 0xFFFFF64C (PIOC), 0xFFFFF84C (PIOD),
0xFFFFFA4C (PIOE)
Access:
Read-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0–P31: Input Change Interrupt Status
0: No Input Change has been detected on the I/O line since PIO_ISR was last read or since reset.
1: At least one Input Change has been detected on the I/O line since PIO_ISR was last read or since reset.
450
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
30.6.18 PIO Multi-driver Enable Register
Name:
PIO_MDER
Address:
0xFFFFF250 (PIOA), 0xFFFFF450 (PIOB), 0xFFFFF650 (PIOC), 0xFFFFF850 (PIOD),
0xFFFFFA50 (PIOE)
Access:
Write-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0–P31: Multi Drive Enable
0: No effect.
1: Enables Multi Drive on the I/O line.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
451
30.6.19 PIO Multi-driver Disable Register
Name:
PIO_MDDR
Address:
0xFFFFF254 (PIOA), 0xFFFFF454 (PIOB), 0xFFFFF654 (PIOC), 0xFFFFF854 (PIOD),
0xFFFFFA54 (PIOE)
Access:
Write-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0–P31: Multi Drive Disable
0: No effect.
1: Disables Multi Drive on the I/O line.
452
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
30.6.20 PIO Multi-driver Status Register
Name:
PIO_MDSR
Address:
0xFFFFF258 (PIOA), 0xFFFFF458 (PIOB), 0xFFFFF658 (PIOC), 0xFFFFF858 (PIOD),
0xFFFFFA58 (PIOE)
Access:
Read-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0–P31: Multi Drive Status
0: The Multi Drive is disabled on the I/O line. The pin is driven at high and low level.
1: The Multi Drive is enabled on the I/O line. The pin is driven at low level only.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
453
30.6.21 PIO Pull Up Disable Register
Name:
PIO_PUDR
Address:
0xFFFFF260 (PIOA), 0xFFFFF460 (PIOB), 0xFFFFF660 (PIOC), 0xFFFFF860 (PIOD),
0xFFFFFA60 (PIOE)
Access:
Write-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0–P31: Pull Up Disable
0: No effect.
1: Disables the pull up resistor on the I/O line.
454
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
30.6.22 PIO Pull Up Enable Register
Name:
PIO_PUER
Address:
0xFFFFF264 (PIOA), 0xFFFFF464 (PIOB), 0xFFFFF664 (PIOC), 0xFFFFF864 (PIOD),
0xFFFFFA64 (PIOE)
Access:
Write-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0–P31: Pull Up Enable
0: No effect.
1: Enables the pull up resistor on the I/O line.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
455
30.6.23 PIO Pull Up Status Register
Name:
PIO_PUSR
Address:
0xFFFFF268 (PIOA), 0xFFFFF468 (PIOB), 0xFFFFF668 (PIOC), 0xFFFFF868 (PIOD),
0xFFFFFA68 (PIOE)
Access:
Read-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0–P31: Pull Up Status
0: Pull Up resistor is enabled on the I/O line.
1: Pull Up resistor is disabled on the I/O line.
456
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
30.6.24 PIO Peripheral A Select Register
Name:
PIO_ASR
Address:
0xFFFFF270 (PIOA), 0xFFFFF470 (PIOB), 0xFFFFF670 (PIOC), 0xFFFFF870 (PIOD),
0xFFFFFA70 (PIOE)
Access:
Write-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0–P31: Peripheral A Select
0: No effect.
1: Assigns the I/O line to the Peripheral A function.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
457
30.6.25 PIO Peripheral B Select Register
Name:
PIO_BSR
Address:
0xFFFFF274 (PIOA), 0xFFFFF474 (PIOB), 0xFFFFF674 (PIOC), 0xFFFFF874 (PIOD),
0xFFFFFA74 (PIOE)
Access:
Write-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0–P31: Peripheral B Select
0: No effect.
1: Assigns the I/O line to the peripheral B function.
458
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
30.6.26 PIO Peripheral A B Status Register
Name:
PIO_ABSR
Address:
0xFFFFF278 (PIOA), 0xFFFFF478 (PIOB), 0xFFFFF678 (PIOC), 0xFFFFF878 (PIOD),
0xFFFFFA78 (PIOE)
Access:
Read-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0–P31: Peripheral A B Status
0: The I/O line is assigned to the Peripheral A.
1: The I/O line is assigned to the Peripheral B.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
459
30.6.27 PIO Output Write Enable Register
Name:
PIO_OWER
Address:
0xFFFFF2A0 (PIOA), 0xFFFFF4A0 (PIOB), 0xFFFFF6A0 (PIOC), 0xFFFFF8A0 (PIOD),
0xFFFFFAA0 (PIOE)
Access:
Write-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0–P31: Output Write Enable
0: No effect.
1: Enables writing PIO_ODSR for the I/O line.
460
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
30.6.28 PIO Output Write Disable Register
Name:
PIO_OWDR
Address:
0xFFFFF2A4 (PIOA), 0xFFFFF4A4 (PIOB), 0xFFFFF6A4 (PIOC), 0xFFFFF8A4 (PIOD),
0xFFFFFAA4 (PIOE)
Access:
Write-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0–P31: Output Write Disable
0: No effect.
1: Disables writing PIO_ODSR for the I/O line.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
461
30.6.29 PIO Output Write Status Register
Name:
PIO_OWSR
Address:
0xFFFFF2A8 (PIOA), 0xFFFFF4A8 (PIOB), 0xFFFFF6A8 (PIOC), 0xFFFFF8A8 (PIOD),
0xFFFFFAA8 (PIOE)
Access:
Read-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0–P31: Output Write Status
0: Writing PIO_ODSR does not affect the I/O line.
1: Writing PIO_ODSR affects the I/O line.
462
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
31.
Serial Peripheral Interface (SPI)
31.1
Overview
The Serial Peripheral Interface (SPI) circuit is a synchronous serial data link that provides communication with
external devices in Master or Slave Mode. It also enables communication between processors if an external
processor is connected to the system.
The Serial Peripheral Interface is essentially a shift register that serially transmits data bits to other SPIs. During a
data transfer, one SPI system acts as the “master”' which controls the data flow, while the other devices act as
“slaves'' which have data shifted into and out by the master. Different CPUs can take turn being masters (Multiple
Master Protocol opposite to Single Master Protocol where one CPU is always the master while all of the others are
always slaves) and one master may simultaneously shift data into multiple slaves. However, only one slave may
drive its output to write data back to the master at any given time.
A slave device is selected when the master asserts its NSS signal. If multiple slave devices exist, the master
generates a separate slave select signal for each slave (NPCS).
The SPI system consists of two data lines and two control lines:
31.2

Master Out Slave In (MOSI): This data line supplies the output data from the master shifted into the input(s)
of the slave(s).

Master In Slave Out (MISO): This data line supplies the output data from a slave to the input of the master.
There may be no more than one slave transmitting data during any particular transfer.

Serial Clock (SPCK): This control line is driven by the master and regulates the flow of the data bits. The
master may transmit data at a variety of baud rates; the SPCK line cycles once for each bit that is
transmitted.

Slave Select (NSS): This control line allows slaves to be turned on and off by hardware.
Block Diagram
Figure 31-1.
Block Diagram
PDC
APB
SPCK
MISO
PMC
MOSI
MCK
SPI Interface
PIO
NPCS0/NSS
NPCS1
NPCS2
Interrupt Control
NPCS3
SPI Interrupt
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
463
31.3
Application Block Diagram
Figure 31-2.
Application Block Diagram: Single Master/Multiple Slave Implementation
SPI Master
SPCK
SPCK
MISO
MISO
MOSI
MOSI
NPCS0
NSS
Slave 0
SPCK
NPCS1
NPCS2
NC
NPCS3
MISO
Slave 1
MOSI
NSS
SPCK
MISO
Slave 2
MOSI
NSS
31.4
Signal Description
Table 31-1.
Signal Description
Type
Pin Name
Pin Description
Master
Slave
MISO
Master In Slave Out
Input
Output
MOSI
Master Out Slave In
Output
Input
SPCK
Serial Clock
Output
Input
NPCS1-NPCS3
Peripheral Chip Selects
Output
Unused
NPCS0/NSS
Peripheral Chip Select/Slave Select
Output
Input
31.5
Product Dependencies
31.5.1 I/O Lines
The pins used for interfacing the compliant external devices may be multiplexed with PIO lines. The programmer
must first program the PIO controllers to assign the SPI pins to their peripheral functions.
31.5.2 Power Management
The SPI may be clocked through the Power Management Controller (PMC), thus the programmer must first
configure the PMC to enable the SPI clock.
31.5.3 Interrupt
The SPI interface has an interrupt line connected to the Advanced Interrupt Controller (AIC). Handling the SPI
interrupt requires programming the AIC before configuring the SPI.
464
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
31.6
Functional Description
31.6.1 Modes of Operation
The SPI operates in Master Mode or in Slave Mode.
Operation in Master Mode is programmed by writing at 1 the MSTR bit in the Mode Register. The pins NPCS0 to
NPCS3 are all configured as outputs, the SPCK pin is driven, the MISO line is wired on the receiver input and the
MOSI line driven as an output by the transmitter.
If the MSTR bit is written at 0, the SPI operates in Slave Mode. The MISO line is driven by the transmitter output,
the MOSI line is wired on the receiver input, the SPCK pin is driven by the transmitter to synchronize the receiver.
The NPCS0 pin becomes an input, and is used as a Slave Select signal (NSS). The pins NPCS1 to NPCS3 are not
driven and can be used for other purposes.
The data transfers are identically programmable for both modes of operations. The baud rate generator is
activated only in Master Mode.
31.6.2 Data Transfer
Four combinations of polarity and phase are available for data transfers. The clock polarity is programmed with the
CPOL bit in the Chip Select Register. The clock phase is programmed with the NCPHA bit. These two parameters
determine the edges of the clock signal on which data is driven and sampled. Each of the two parameters has two
possible states, resulting in four possible combinations that are incompatible with one another. Thus, a
master/slave pair must use the same parameter pair values to communicate. If multiple slaves are used and fixed
in different configurations, the master must reconfigure itself each time it needs to communicate with a different
slave.
Table 31-2 shows the four modes and corresponding parameter settings.
Table 31-2.
SPI Bus Protocol Mode
SPI Mode
CPOL
NCPHA
0
0
1
1
0
0
2
1
1
3
1
0
Figure 31-3 and Figure 31-4 show examples of data transfers.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
465
Figure 31-3.
SPI Transfer Format (NCPHA = 1, 8 bits per transfer)
1
SPCK cycle (for reference)
2
3
4
6
5
7
8
SPCK
(CPOL = 0)
SPCK
(CPOL = 1)
MOSI
(from master)
MSB
MISO
(from slave)
MSB
6
5
4
3
2
1
LSB
6
5
4
3
2
1
LSB
*
NSS
(to slave)
* Not defined, but normally MSB of previous character received.
Figure 31-4.
SPI Transfer Format (NCPHA = 0, 8 bits per transfer)
1
SPCK cycle (for reference)
2
3
4
5
8
7
6
SPCK
(CPOL = 0)
SPCK
(CPOL = 1)
MOSI
(from master)
MISO
(from slave)
*
MSB
6
5
4
3
2
1
MSB
6
5
4
3
2
1
NSS
(to slave)
* Not defined but normally LSB of previous character transmitted.
466
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
LSB
LSB
31.6.3 Master Mode Operations
When configured in Master Mode, the SPI operates on the clock generated by the internal programmable baud
rate generator. It fully controls the data transfers to and from the slave(s) connected to the SPI bus. The SPI drives
the chip select line to the slave and the serial clock signal (SPCK).
The SPI features two holding registers, the Transmit Data Register and the Receive Data Register, and a single
Shift Register. The holding registers maintain the data flow at a constant rate.
After enabling the SPI, a data transfer begins when the processor writes to the SPI_TDR (Transmit Data Register).
The written data is immediately transferred in the Shift Register and transfer on the SPI bus starts. While the data
in the Shift Register is shifted on the MOSI line, the MISO line is sampled and shifted in the Shift Register.
Transmission cannot occur without reception.
Before writing the TDR, the PCS field must be set in order to select a slave.
If new data is written in SPI_TDR during the transfer, it stays in it until the current transfer is completed. Then, the
received data is transferred from the Shift Register to SPI_RDR, the data in SPI_TDR is loaded in the Shift
Register and a new transfer starts.
The transfer of a data written in SPI_TDR in the Shift Register is indicated by the TDRE bit (Transmit Data
Register Empty) in the Status Register (SPI_SR). When new data is written in SPI_TDR, this bit is cleared. The
TDRE bit is used to trigger the Transmit PDC channel.
The end of transfer is indicated by the TXEMPTY flag in the SPI_SR. If a transfer delay (DLYBCT) is greater than
0 for the last transfer, TXEMPTY is set after the completion of said delay. The master clock (MCK) can be switched
off at this time.
The transfer of received data from the Shift Register in SPI_RDR is indicated by the RDRF bit (Receive Data
Register Full) in the Status Register (SPI_SR). When the received data is read, the RDRF bit is cleared.
If the SPI_RDR (Receive Data Register) has not been read before new data is received, the Overrun Error bit
(OVRES) in SPI_SR is set. As long as this flag is set, data is loaded in SPI_RDR. The user has to read the status
register to clear the OVRES bit.
Figure 31-5, shows a block diagram of the SPI when operating in Master
Mode. Figure 31-6 on page 469 shows a flow chart describing how transfers are handled.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
467
31.6.3.1 Master Mode Block Diagram
Figure 31-5.
Master Mode Block Diagram
SPI_CSR0..3
SCBR
Baud Rate Generator
MCK
SPCK
SPI
Clock
SPI_CSR0..3
BITS
NCPHA
CPOL
LSB
MISO
SPI_RDR
RDRF
OVRES
RD
MSB
Shift Register
MOSI
SPI_TDR
TDRE
TD
SPI_CSR0..3
SPI_RDR
CSAAT
PCS
PS
NPCS3
PCSDEC
SPI_MR
PCS
0
NPCS2
Current
Peripheral
NPCS1
SPI_TDR
NPCS0
PCS
1
MSTR
MODF
NPCS0
MODFDIS
468
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
31.6.3.2 Master Mode Flow Diagram
Figure 31-6.
Master Mode Flow Diagram
SPI Enable
- NPCS defines the current Chip Select
- CSAAT, DLYBS, DLYBCT refer to the fields of the
Chip Select Register corresponding to the Current Chip Select
- When NPCS is 0xF, CSAAT is 0.
1
TDRE ?
0
CSAAT ?
PS ?
1
0
0
Fixed
peripheral
PS ?
1
Fixed
peripheral
0
1
Variable
peripheral
Variable
peripheral
SPI_TDR(PCS)
= NPCS ?
NPCS = SPI_MR(PCS)
SPI_MR(PCS)
= NPCS ?
no
no
NPCS = SPI_TDR(PCS)
yes
NPCS = 0xF
NPCS = 0xF
Delay DLYBCS
Delay DLYBCS
NPCS = SPI_TDR(PCS)
NPCS = SPI_MR(PCS),
SPI_TDR(PCS)
Delay DLYBS
Serializer = SPI_TDR(TD)
TDRE = 1
Data Transfer
SPI_RDR(RD) = Serializer
RDRF = 1
Delay DLYBCT
0
TDRE ?
1
1
CSAAT ?
0
NPCS = 0xF
Delay DLYBCS
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
469
31.6.3.3 Clock Generation
The SPI Baud rate clock is generated by dividing the Master Clock (MCK), by a value between 1 and 255.
This allows a maximum operating baud rate at up to Master Clock and a minimum operating baud rate of MCK
divided by 255.
Programming the SCBR field at 0 is forbidden. Triggering a transfer while SCBR is at 0 can lead to unpredictable
results.
At reset, SCBR is 0 and the user has to program it at a valid value before performing the first transfer.
The divisor can be defined independently for each chip select, as it has to be programmed in the SCBR field of the
Chip Select Registers. This allows the SPI to automatically adapt the baud rate for each interfaced peripheral
without reprogramming.
31.6.3.4 Transfer Delays
Figure 31-7 shows a chip select transfer change and consecutive transfers on the same chip select. Three delays
can be programmed to modify the transfer waveforms:

The delay between chip selects, programmable only once for all the chip selects by writing the DLYBCS field
in the Mode Register. Allows insertion of a delay between release of one chip select and before assertion of
a new one.

The delay before SPCK, independently programmable for each chip select by writing the field DLYBS.
Allows the start of SPCK to be delayed after the chip select has been asserted.

The delay between consecutive transfers, independently programmable for each chip select by writing the
DLYBCT field. Allows insertion of a delay between two transfers occurring on the same chip select
These delays allow the SPI to be adapted to the interfaced peripherals and their speed and bus release time.
Figure 31-7.
Programmable Delays
Chip Select 1
Chip Select 2
SPCK
DLYBCS
DLYBS
DLYBCT
DLYBCT
31.6.3.5 Peripheral Selection
The serial peripherals are selected through the assertion of the NPCS0 to NPCS3 signals. By default, all the
NPCS signals are high before and after each transfer.
The peripheral selection can be performed in two different ways:

Fixed Peripheral Select: SPI exchanges data with only one peripheral

Variable Peripheral Select: Data can be exchanged with more than one peripheral
Fixed Peripheral Select is activated by writing the PS bit to zero in SPI_MR (Mode Register). In this case, the
current peripheral is defined by the PCS field in SPI_MR and the PCS field in the SPI_TDR has no effect.
Variable Peripheral Select is activated by setting PS bit to one. The PCS field in SPI_TDR is used to select the
current peripheral. This means that the peripheral selection can be defined for each new data.
470
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
The Fixed Peripheral Selection allows buffer transfers with a single peripheral. Using the PDC is an optimal
means, as the size of the data transfer between the memory and the SPI is either 8 bits or 16 bits. However,
changing the peripheral selection requires the Mode Register to be reprogrammed.
The Variable Peripheral Selection allows buffer transfers with multiple peripherals without reprogramming the
Mode Register. Data written in SPI_TDR is 32 bits wide and defines the real data to be transmitted and the
peripheral it is destined to. Using the PDC in this mode requires 32-bit wide buffers, with the data in the Lisps and
the PCS and LASTXFER fields in the MSBs, however the SPI still controls the number of bits (8 to16) to be
transferred through MISO and MOSI lines with the chip select configuration registers. This is not the optimal
means in term of memory size for the buffers, but it provides a very effective means to exchange data with several
peripherals without any intervention of the processor.
31.6.3.6 Peripheral Chip Select Decoding
The user can program the SPI to operate with up to 15 peripherals by decoding the four Chip Select lines, NPCS0
to NPCS3 with an external logic. This can be enabled by writing the PCSDEC bit at 1 in the Mode Register
(SPI_MR).
When operating without decoding, the SPI makes sure that in any case only one chip select line is activated, i.e.
driven low at a time. If two bits are defined low in a PCS field, only the lowest numbered chip select is driven low.
When operating with decoding, the SPI directly outputs the value defined by the PCS field of either the Mode
Register or the Transmit Data Register (depending on PS).
As the SPI sets a default value of 0xF on the chip select lines (i.e. all chip select lines at 1) when not processing
any transfer, only 15 peripherals can be decoded.
The SPI has only four Chip Select Registers, not 15. As a result, when decoding is activated, each chip select
defines the characteristics of up to four peripherals. As an example, SPI_CRS0 defines the characteristics of the
externally decoded peripherals 0 to 3, corresponding to the PCS values 0x0 to 0x3. Thus, the user has to make
sure to connect compatible peripherals on the decoded chip select lines 0 to 3, 4 to 7, 8 to 11 and 12 to 14.
31.6.3.7 Peripheral Deselection
When operating normally, as soon as the transfer of the last data written in SPI_TDR is completed, the NPCS lines
all rise. This might lead to runtime error if the processor is too long in responding to an interrupt, and thus might
lead to difficulties for interfacing with some serial peripherals requiring the chip select line to remain active during a
full set of transfers.
To facilitate interfacing with such devices, the Chip Select Register can be programmed with the CSAAT bit (Chip
Select Active After Transfer) at 1. This allows the chip select lines to remain in their current state (low = active) until
transfer to another peripheral is required.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
471
Figure 31-8.
Peripheral Deselection
CSAAT = 0 and CSNAAT = 0
TDRE
NPCS[0..3]
CSAAT = 1 and CSNAAT= 0 / 1
DLYBCT
DLYBCT
A
A
A
A
DLYBCS
A
DLYBCS
PCS = A
PCS = A
Write SPI_TDR
TDRE
NPCS[0..3]
DLYBCT
DLYBCT
A
A
A
A
DLYBCS
A
DLYBCS
PCS=A
PCS = A
Write SPI_TDR
TDRE
NPCS[0..3]
DLYBCT
DLYBCT
A
B
A
B
DLYBCS
DLYBCS
PCS = B
PCS = B
Write SPI_TDR
31.6.3.8 Mode Fault Detection
A mode fault is detected when the SPI is programmed in Master Mode and a low level is driven by an external
master on the NPCS0/NSS signal. NPCS0, MOSI, MISO and SPCK must be configured in open drain through the
PIO controller, so that external pull up resistors are needed to guarantee high level.
When a mode fault is detected, the MODF bit in the SPI_SR is set until the SPI_SR is read and the SPI is
automatically disabled until re-enabled by writing the SPIEN bit in the SPI_CR (Control Register) at 1.
By default, the Mode Fault detection circuitry is enabled. The user can disable Mode Fault detection by setting the
MODFDIS bit in the SPI Mode Register (SPI_MR).
472
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
31.6.4 SPI Slave Mode
When operating in Slave Mode, the SPI processes data bits on the clock provided on the SPI clock pin (SPCK).
The SPI waits for NSS to go active before receiving the serial clock from an external master. When NSS falls, the
clock is validated on the serializer, which processes the number of bits defined by the BITS field of the Chip Select
Register 0 (SPI_CSR0). These bits are processed following a phase and a polarity defined respectively by the
NCPHA and CPOL bits of the SPI_CSR0. Note that BITS, CPOL and NCPHA of the other Chip Select Registers
have no effect when the SPI is programmed in Slave Mode.
The bits are shifted out on the MISO line and sampled on the MOSI line.
(For more information on BITS field, see also, the
Register” on page 485.)
(Note:)
below the register table; Section 31.7.9 “SPI Chip Select
When all the bits are processed, the received data is transferred in the Receive Data Register and the RDRF bit
rises. If the SPI_RDR (Receive Data Register) has not been read before new data is received, the Overrun Error
bit (OVRES) in SPI_SR is set. As long as this flag is set, data is loaded in SPI_RDR. The user has to read the
status register to clear the OVRES bit.
When a transfer starts, the data shifted out is the data present in the Shift Register. If no data has been written in
the Transmit Data Register (SPI_TDR), the last data received is transferred. If no data has been received since the
last reset, all bits are transmitted low, as the Shift Register resets at 0.
When a first data is written in SPI_TDR, it is transferred immediately in the Shift Register and the TDRE bit rises. If
new data is written, it remains in SPI_TDR until a transfer occurs, i.e. NSS falls and there is a valid clock on the
SPCK pin. When the transfer occurs, the last data written in SPI_TDR is transferred in the Shift Register and the
TDRE bit rises. This enables frequent updates of critical variables with single transfers.
Then, a new data is loaded in the Shift Register from the Transmit Data Register. In case no character is ready to
be transmitted, i.e. no character has been written in SPI_TDR since the last load from SPI_TDR to the Shift
Register, the Shift Register is not modified and the last received character is retransmitted.
Figure 31-9 shows a block diagram of the SPI when operating in Slave Mode.
Figure 31-9.
Slave Mode Functional Bloc Diagram
SPCK
NSS
SPI
Clock
SPIEN
SPIENS
SPIDIS
SPI_CSR0
BITS
NCPHA
CPOL
MOSI
LSB
SPI_RDR
RDRF
OVRES
RD
MSB
Shift Register
MISO
SPI_TDR
TD
TDRE
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
473
31.7
Serial Peripheral Interface (SPI) User Interface
Table 31-3.
Register Mapping
Offset
Name
Access
Reset
0x00
Control Register
SPI_CR
Write-only
–
0x04
Mode Register
SPI_MR
Read/Write
0x0
0x08
Receive Data Register
SPI_RDR
Read-only
0x0
0x0C
Transmit Data Register
SPI_TDR
Write-only
–
0x10
Status Register
SPI_SR
Read-only
0x000000F0
0x14
Interrupt Enable Register
SPI_IER
Write-only
–
0x18
Interrupt Disable Register
SPI_IDR
Write-only
–
0x1C
Interrupt Mask Register
SPI_IMR
Read-only
0x0
Reserved
–
–
–
0x30
Chip Select Register 0
SPI_CSR0
Read/Write
0x0
0x34
Chip Select Register 1
SPI_CSR1
Read/Write
0x0
0x38
Chip Select Register 2
SPI_CSR2
Read/Write
0x0
0x3C
Chip Select Register 3
SPI_CSR3
Read/Write
0x0
0x004C–0x00F8
Reserved
–
–
–
0x004C–0x00FC
Reserved
–
–
–
Reserved for the PDC
–
–
–
0x20–0x2C
0x100–0x124
474
Register
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
31.7.1 SPI Control Register
Name:
SPI_CR
Address:
0xFFFA4000 (0), 0xFFFA8000 (1)
Access:
Write-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
LASTXFER
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
SWRST
–
–
–
–
–
SPIDIS
SPIEN
• SPIEN: SPI Enable
0: No effect.
1: Enables the SPI to transfer and receive data.
• SPIDIS: SPI Disable
0: No effect.
1: Disables the SPI.
As soon as SPIDIS is set, SPI finishes its transfer.
All pins are set in input mode and no data is received or transmitted.
If a transfer is in progress, the transfer is finished before the SPI is disabled.
If both SPIEN and SPIDIS are equal to one when the control register is written, the SPI is disabled.
• SWRST: SPI Software Reset
0: No effect.
1: Reset the SPI. A software-triggered hardware reset of the SPI interface is performed.
The SPI is in slave mode after software reset.
PDC channels are not affected by software reset.
• LASTXFER: Last Transfer
0: No effect.
1: The current NPCS will be deasserted after the character written in TD has been transferred. When CSAAT is set, this
allows to close the communication with the current serial peripheral by raising the corresponding NPCS line as soon as TD
transfer has completed.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
475
31.7.2 SPI Mode Register
Name:
SPI_MR
Address:
0xFFFA4004 (0), 0xFFFA8004 (1)
Access:
Read/Write
31
30
29
28
27
26
19
18
25
24
17
16
DLYBCS
23
22
21
20
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
PCS
7
6
5
4
3
2
1
0
LLB
–
–
MODFDIS
–
PCSDEC
PS
MSTR
• MSTR: Master/Slave Mode
0: SPI is in Slave mode.
1: SPI is in Master mode.
• PS: Peripheral Select
0: Fixed Peripheral Select.
1: Variable Peripheral Select.
• PCSDEC: Chip Select Decode
0: The chip selects are directly connected to a peripheral device.
1: The four chip select lines are connected to a 4- to 16-bit decoder.
When PCSDEC equals one, up to 15 Chip Select signals can be generated with the four lines using an external 4- to 16-bit
decoder. The Chip Select Registers define the characteristics of the 15 chip selects according to the following rules:
SPI_CSR0 defines peripheral chip select signals 0 to 3.
SPI_CSR1 defines peripheral chip select signals 4 to 7.
SPI_CSR2 defines peripheral chip select signals 8 to 11.
SPI_CSR3 defines peripheral chip select signals 12 to 14.
• MODFDIS: Mode Fault Detection
0: Mode fault detection is enabled.
1: Mode fault detection is disabled.
• LLB: Local Loopback Enable
0: Local loopback path disabled.
1: Local loopback path enabled
LLB controls the local loopback on the data serializer for testing in Master Mode only. (MISO is internally connected on
MOSI.)
476
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
• PCS: Peripheral Chip Select
This field is only used if Fixed Peripheral Select is active (PS = 0).
If PCSDEC = 0:
PCS = xxx0
NPCS[3:0] = 1110
PCS = xx01
NPCS[3:0] = 1101
PCS = x011
NPCS[3:0] = 1011
PCS = 0111
NPCS[3:0] = 0111
PCS = 1111
forbidden (no peripheral is selected)
(x = don’t care)
If PCSDEC = 1:
NPCS[3:0] output signals = PCS.
• DLYBCS: Delay Between Chip Selects
This field defines the delay from NPCS inactive to the activation of another NPCS. The DLYBCS time guarantees nonoverlapping chip selects and solves bus contentions in case of peripherals having long data float times.
If DLYBCS is less than or equal to six, six MCK periods will be inserted by default.
Otherwise, the following equation determines the delay:
DLYBCS
Delay Between Chip Selects = ----------------------MCK
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
477
31.7.3 SPI Receive Data Register
Name:
SPI_RDR
Address:
0xFFFA4008 (0), 0xFFFA8008 (1)
Access:
Read-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
15
14
13
12
PCS
11
10
9
8
3
2
1
0
RD
7
6
5
4
RD
• RD: Receive Data
Data received by the SPI Interface is stored in this register right-justified. Unused bits read zero.
• PCS: Peripheral Chip Select
In Master Mode only, these bits indicate the value on the NPCS pins at the end of a transfer. Otherwise, these bits read
zero.
478
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
31.7.4 SPI Transmit Data Register
Name:
SPI_TDR
Address:
0xFFFA400C (0), 0xFFFA800C (1)
Access:
Write-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
LASTXFER
23
22
21
20
19
18
17
16
–
–
–
–
15
14
13
12
PCS
11
10
9
8
3
2
1
0
TD
7
6
5
4
TD
• TD: Transmit Data
Data to be transmitted by the SPI Interface is stored in this register. Information to be transmitted must be written to the
transmit data register in a right-justified format.
• PCS: Peripheral Chip Select
This field is only used if Variable Peripheral Select is active (PS = 1).
If PCSDEC = 0:
PCS = xxx0
NPCS[3:0] = 1110
PCS = xx01
NPCS[3:0] = 1101
PCS = x011
NPCS[3:0] = 1011
PCS = 0111
NPCS[3:0] = 0111
PCS = 1111
forbidden (no peripheral is selected)
(x = don’t care)
If PCSDEC = 1:
NPCS[3:0] output signals = PCS
• LASTXFER: Last Transfer
0: No effect.
1: The current NPCS will be deasserted after the character written in TD has been transferred. When CSAAT is set, this
allows to close the communication with the current serial peripheral by raising the corresponding NPCS line as soon as TD
transfer has completed.
This field is only used if Variable Peripheral Select is active (PS = 1).
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
479
31.7.5 SPI Status Register
Name:
SPI_SR
Address:
0xFFFA4010 (0), 0xFFFA8010 (1)
Access:
Read-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
SPIENS
15
14
13
12
11
10
9
8
–
–
–
–
–
–
TXEMPTY
NSSR
7
6
5
4
3
2
1
0
TXBUFE
RXBUFF
ENDTX
ENDRX
OVRES
MODF
TDRE
RDRF
• RDRF: Receive Data Register Full
0: No data has been received since the last read of SPI_RDR
1: Data has been received and the received data has been transferred from the serializer to SPI_RDR since the last read
of SPI_RDR.
• TDRE: Transmit Data Register Empty
0: Data has been written to SPI_TDR and not yet transferred to the serializer.
1: The last data written in the Transmit Data Register has been transferred to the serializer.
TDRE equals zero when the SPI is disabled or at reset. The SPI enable command sets this bit to one.
• MODF: Mode Fault Error
0: No Mode Fault has been detected since the last read of SPI_SR.
1: A Mode Fault occurred since the last read of the SPI_SR.
• OVRES: Overrun Error Status
0: No overrun has been detected since the last read of SPI_SR.
1: An overrun has occurred since the last read of SPI_SR.
An overrun occurs when SPI_RDR is loaded at least twice from the serializer since the last read of the SPI_RDR.
• ENDRX: End of RX buffer
0: The Receive Counter Register has not reached 0 since the last write in SPI_RCR(1) or SPI_RNCR(1).
1: The Receive Counter Register has reached 0 since the last write in SPI_RCR(1) or SPI_RNCR(1).
• ENDTX: End of TX buffer
0: The Transmit Counter Register has not reached 0 since the last write in SPI_TCR(1) or SPI_TNCR(1).
1: The Transmit Counter Register has reached 0 since the last write in SPI_TCR(1) or SPI_TNCR(1).
• RXBUFF: RX Buffer Full
0: SPI_RCR(1) or SPI_RNCR(1) has a value other than 0.
1: Both SPI_RCR(1) and SPI_RNCR(1) have a value of 0.
480
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
• TXBUFE: TX Buffer Empty
0: SPI_TCR(1) or SPI_TNCR(1) has a value other than 0.
1: Both SPI_TCR(1) and SPI_TNCR(1) have a value of 0.
• NSSR: NSS Rising
0: No rising edge detected on NSS pin since last read.
1: A rising edge occurred on NSS pin since last read.
• TXEMPTY: Transmission Registers Empty
0: As soon as data is written in SPI_TDR.
1: SPI_TDR and internal shifter are empty. If a transfer delay has been defined, TXEMPTY is set after the completion of
such delay.
• SPIENS: SPI Enable Status
0: SPI is disabled.
1: SPI is enabled.
Note:
1. SPI_RCR, SPI_RNCR, SPI_TCR, SPI_TNCR are physically located in the PDC.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
481
31.7.6 SPI Interrupt Enable Register
Name:
SPI_IER
Address:
0xFFFA4014 (0), 0xFFFA8014 (1)
Access:
Write-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
TXEMPTY
NSSR
7
6
5
4
3
2
1
0
TXBUFE
RXBUFF
ENDTX
ENDRX
OVRES
MODF
TDRE
RDRF
0: No effect.
1: Enables the corresponding interrupt.
• RDRF: Receive Data Register Full Interrupt Enable
• TDRE: SPI Transmit Data Register Empty Interrupt Enable
• MODF: Mode Fault Error Interrupt Enable
• OVRES: Overrun Error Interrupt Enable
• ENDRX: End of Receive Buffer Interrupt Enable
• ENDTX: End of Transmit Buffer Interrupt Enable
• RXBUFF: Receive Buffer Full Interrupt Enable
• TXBUFE: Transmit Buffer Empty Interrupt Enable
• NSSR: NSS Rising Interrupt Enable
• TXEMPTY: Transmission Registers Empty Enable
482
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
31.7.7 SPI Interrupt Disable Register
Name:
SPI_IDR
Address:
0xFFFA4018 (0), 0xFFFA8018 (1)
Access:
Write-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
TXEMPTY
NSSR
7
6
5
4
3
2
1
0
TXBUFE
RXBUFF
ENDTX
ENDRX
OVRES
MODF
TDRE
RDRF
0: No effect.
1: Disables the corresponding interrupt.
• RDRF: Receive Data Register Full Interrupt Disable
• TDRE: SPI Transmit Data Register Empty Interrupt Disable
• MODF: Mode Fault Error Interrupt Disable
• OVRES: Overrun Error Interrupt Disable
• ENDRX: End of Receive Buffer Interrupt Disable
• ENDTX: End of Transmit Buffer Interrupt Disable
• RXBUFF: Receive Buffer Full Interrupt Disable
• TXBUFE: Transmit Buffer Empty Interrupt Disable
• NSSR: NSS Rising Interrupt Disable
• TXEMPTY: Transmission Registers Empty Disable
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
483
31.7.8 SPI Interrupt Mask Register
Name:
SPI_IMR
Address:
0xFFFA401C (0), 0xFFFA801C (1)
Access:
Read-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
TXEMPTY
NSSR
7
6
5
4
3
2
1
0
TXBUFE
RXBUFF
ENDTX
ENDRX
OVRES
MODF
TDRE
RDRF
0: The corresponding interrupt is not enabled.
1: The corresponding interrupt is enabled.
• RDRF: Receive Data Register Full Interrupt Mask
• TDRE: SPI Transmit Data Register Empty Interrupt Mask
• MODF: Mode Fault Error Interrupt Mask
• OVRES: Overrun Error Interrupt Mask
• ENDRX: End of Receive Buffer Interrupt Mask
• ENDTX: End of Transmit Buffer Interrupt Mask
• RXBUFF: Receive Buffer Full Interrupt Mask
• TXBUFE: Transmit Buffer Empty Interrupt Mask
• NSSR: NSS Rising Interrupt Mask
• TXEMPTY: Transmission Registers Empty Mask
484
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
31.7.9 SPI Chip Select Register
Name:
SPI_CSR0... SPI_CSR3
Address:
0xFFFA4030 (0), 0xFFFA8030 (1)
Access:
Read/Write
31
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
DLYBCT
23
22
21
20
DLYBS
15
14
13
12
SCBR
7
6
5
4
BITS
3
2
1
0
CSAAT
–
NCPHA
CPOL
Note: SPI_CSRx registers must be written even if the user wants to use the defaults. The BITS field will not be updated with the
translated value unless the register is written.
• CPOL: Clock Polarity
0: The inactive state value of SPCK is logic level zero.
1: The inactive state value of SPCK is logic level one.
CPOL is used to determine the inactive state value of the serial clock (SPCK). It is used with NCPHA to produce the
required clock/data relationship between master and slave devices.
• NCPHA: Clock Phase
0: Data is changed on the leading edge of SPCK and captured on the following edge of SPCK.
1: Data is captured on the leading edge of SPCK and changed on the following edge of SPCK.
NCPHA determines which edge of SPCK causes data to change and which edge causes data to be captured. NCPHA is
used with CPOL to produce the required clock/data relationship between master and slave devices.
• CSAAT: Chip Select Active After Transfer
0: The Peripheral Chip Select Line rises as soon as the last transfer is achieved.
1: The Peripheral Chip Select does not rise after the last transfer is achieved. It remains active until a new transfer is
requested on a different chip select.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
485
• BITS: Bits Per Transfer (See the note below the register bitmap.)
The BITS field determines the number of data bits transferred. Reserved values should not be used.
BITS
Bits Per Transfer
0000
8
0001
9
0010
10
0011
11
0100
12
0101
13
0110
14
0111
15
1000
16
1001
Reserved
1010
Reserved
1011
Reserved
1100
Reserved
1101
Reserved
1110
Reserved
1111
Reserved
• SCBR: Serial Clock Baud Rate
In Master Mode, the SPI Interface uses a modulus counter to derive the SPCK baud rate from the Master Clock MCK. The
Baud rate is selected by writing a value from 1 to 255 in the SCBR field. The following equations determine the SPCK baud
rate:
MCK
SPCK Baudrate = --------------SCBR
Programming the SCBR field at 0 is forbidden. Triggering a transfer while SCBR is at 0 can lead to unpredictable results.
At reset, SCBR is 0 and the user has to program it at a valid value before performing the first transfer.
• DLYBS: Delay Before SPCK
This field defines the delay from NPCS valid to the first valid SPCK transition.
When DLYBS equals zero, the NPCS valid to SPCK transition is 1/2 the SPCK clock period.
Otherwise, the following equations determine the delay:
DLYBS
Delay Before SPCK = ------------------MCK
486
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
• DLYBCT: Delay Between Consecutive Transfers
This field defines the delay between two consecutive transfers with the same peripheral without removing the chip select.
The delay is always inserted after each transfer and before removing the chip select if needed.
When DLYBCT equals zero, no delay between consecutive transfers is inserted and the clock keeps its duty cycle over the
character transfers.
Otherwise, the following equation determines the delay:
32 × DLYBCT
Delay Between Consecutive Transfers = -----------------------------------MCK
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
487
32.
Two-wire Interface (TWI)
32.1
Description
The Two-wire Interface (TWI) interconnects components on a unique two-wire bus, made up of one clock line and
one data line with speeds of up to 400 kbits per second, based on a byte-oriented transfer format. It can be used
with any Atmel Two-wire Interface bus Serial EEPROM and I²C compatible device such as Real-time Clock (RTC),
Dot Matrix/Graphic LCD Controllers and Temperature Sensor, to name but a few. The TWI is programmable as
master transmitter or master receiver with sequential or single-byte access. A configurable baud rate generator
permits the output data rate to be adapted to a wide range of core clock frequencies. Table 32-1 below lists the
compatibility level of the Atmel Two-wire Interface and a full I2C compatible device.
Table 32-1.
Atmel TWI Compatibility with i2C Standard
I2C Standard
Atmel TWI
Standard Mode Speed (100 kHz)
Supported
Fast Mode Speed (400 kHz)
Supported
7 or 10 bits Slave Addressing
Supported
(1)
START BYTE
Not Supported
Repeated Start (Sr) Condition
Not Fully Supported(2)
ACK and NACK Management
Supported
Slope control and input filtering (Fast mode)
Not Supported
Clock stretching
Supported
Multi Master Capability
Not Supported
Notes:
32.2
START + b000000001 + Ack + Sr.
A repeated start condition is only supported in Master Receiver mode. See Section 32.8.5 “Internal Address” on
page 494.
Embedded Characteristics

Compatible with the Atmel Implementation of the AMBA APB Bridge

Compatible with Atmel Two-wire Interface Serial Memory and I²C Compatible Devices(1)

One, Two or Three Bytes Internal Address Registers for easy Serial Memory access

7-bit or 10-bit Slave Addressing

Sequential Read/Write Operations
Note:
488
1.
2.
1.
See Table 32-1 above for details on compatibility with I²C Standard.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
32.3
List of Abbreviations
Table 32-2.
32.4
Abbreviations
Abbreviation
Description
TWI
Two-wire Interface
A
Acknowledge
NA
Non Acknowledge
P
Stop
S
Start
Sr
Repeated Start
SADR
Slave Address
ADR
Any address except SADR
R
Read
W
Write
Block Diagram
Figure 32-1.
Block Diagram
APB Bridge
TWCK
PIO
PMC
MCK
TWD
Two-wire
Interface
TWI
Interrupt
AIC
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
489
32.5
Application Block Diagram
Figure 32-2.
Application Block Diagram
VDD
Rp
Host with
TWI
Interface
Rp
TWD
TWCK
Atmel TWI
Serial EEPROM
Slave 1
I²C RTC
I²C LCD
Controller
I²C Temp.
Sensor
Slave 2
Slave 3
Slave 4
Rp: Pull up value as given by the I²C Standard
32.6
I/O Lines Description
Table 32-3.
32.7
I/O Lines Description
Pin Name
Pin Description
Type
TWD
Two-wire Serial Data
Input/Output
TWCK
Two-wire Serial Clock
Input/Output
Product Dependencies
32.7.1 I/O Lines
Both TWD and TWCK are bidirectional lines, connected to a positive supply voltage via a current source or pull-up
resistor (see Figure 32-2). When the bus is free, both lines are high. The output stages of devices connected to the
bus must have an open-drain or open-collector to perform the wired-AND function.
The TWD and TWCK pins may be multiplexed with PIO lines. To enable the TWI, the programmer must perform
the following step:

Program the PIO controller to dedicate TWD and TWCK as peripheral lines.
The user must not program TWD and TWCK as open-drain. It is already done by the hardware.
32.7.2 Power Management

Enable the peripheral clock.
The TWI interface may be clocked through the Power Management Controller (PMC), thus the programmer must
first configure the PMC to enable the TWI clock.
32.7.3 Interrupt
The TWI interface has an interrupt line connected to the Advanced Interrupt Controller (AIC). In order to handle
interrupts, the AIC must be programmed before configuring the TWI.
490
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
32.8
Functional Description
32.8.1 Transfer format
The data put on the TWD line must be 8 bits long. Data is transferred MSB first; each byte must be followed by an
acknowledgement. The number of bytes per transfer is unlimited (see Figure 32-4).
Each transfer begins with a START condition and terminates with a STOP condition (see Figure 32-3).

A high-to-low transition on the TWD line while TWCK is high defines the START condition.

A low-to-high transition on the TWD line while TWCK is high defines a STOP condition.
Figure 32-3.
START and STOP Conditions
TWD
TWCK
Start
Figure 32-4.
Stop
Transfer Format
TWD
TWCK
Start
Address R/W
Ack
Data
Ack
Data
Ack
Stop
32.8.2 Modes of Operation
The TWI has two modes of operation:

Master transmitter mode

Master receiver mode
The TWI Control Register (TWI_CR) allows configuration of the interface in Master Mode. In this mode, it
generates the clock according to the value programmed in the Clock Waveform Generator Register (TWI_CWGR).
This register defines the TWCK signal completely, enabling the interface to be adapted to a wide range of clocks.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
491
32.8.3 Master Transmitter Mode
After the master initiates a Start condition when writing into the Transmit Holding Register, TWI_THR, it sends a 7bit slave address, configured in the Master Mode register (DADR in TWI_MMR), to notify the slave device. The bit
following the slave address indicates the transfer direction, 0 in this case (MREAD = 0 in TWI_MMR).
The TWI transfers require the slave to acknowledge each received byte. During the acknowledge clock pulse (9th
pulse), the master releases the data line (HIGH), enabling the slave to pull it down in order to generate the
acknowledge. The master polls the data line during this clock pulse and sets the Not Acknowledge bit (NACK) in
the status register if the slave does not acknowledge the byte. As with the other status bits, an interrupt can be
generated if enabled in the interrupt enable register (TWI_IER). If the slave acknowledges the byte, the data
written in the TWI_THR, is then shifted in the internal shifter and transferred. When an acknowledge is detected,
the TXRDY bit is set until a new write in the TWI_THR. When no more data is written into the TWI_THR, the
master generates a stop condition to end the transfer. The end of the complete transfer is marked by the
TWI_TXCOMP bit set to one. See Figure 32-5, Figure 32-6, and Figure 32-7.
Figure 32-5.
Master Write with One Data Byte
TWD
S
DADR
W
A
DATA
A
P
TXCOMP
TXRDY
STOP sent automaticaly
(ACK received and TXRDY = 1)
Write THR (DATA)
Figure 32-6.
Master Write with Multiple Data Byte
S
TWD
DADR
W
A
DATA n
A
DATA n+5
A
DATA n+x
A
P
TXCOMP
TXRDY
Write THR (Data n)
Figure 32-7.
TWD S
Write THR (Data n+1)
Write THR (Data n+x)
Last data sent
STOP sent automaticaly
(ACK received and TXRDY = 1)
Master Write with One Byte Internal Address and Multiple Data Bytes
DADR
W
A
IADR(7:0)
A
DATA n
A
DATA n+5
A
DATA n+x
A
P
TXCOMP
TXRDY
Write THR (Data n)
492
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Write THR (Data n+1)
Write THR (Data n+x) STOP sent automaticaly
Last data sent (ACK received and TXRDY = 1)
32.8.4 Master Receiver Mode
The read sequence begins by setting the START bit. After the start condition has been sent, the master sends a 7bit slave address to notify the slave device. The bit following the slave address indicates the transfer direction, 1 in
this case (MREAD = 1 in TWI_MMR). During the acknowledge clock pulse (9th pulse), the master releases the
data line (HIGH), enabling the slave to pull it down in order to generate the acknowledge. The master polls the
data line during this clock pulse and sets the NACK bit in the status register if the slave does not acknowledge the
byte.
If an acknowledge is received, the master is then ready to receive data from the slave. After data has been
received, the master sends an acknowledge condition to notify the slave that the data has been received except
for the last data, after the stop condition. See Figure 32-9. When the RXRDY bit is set in the status register, a
character has been received in the receive-holding register (TWI_RHR). The RXRDY bit is reset when reading the
TWI_RHR.
When a single data byte read is performed, with or without internal address (IADR), the START and STOP bits
must be set at the same time. See Figure 32-8. When a multiple data byte read is performed, with or without
internal address (IADR), the STOP bit must be set after the next-to-last data received. See Figure 32-9. For
Internal Address usage see Section 32.8.5.
Figure 32-8.
Master Read with One Data Byte
TWD
S
DADR
R
A
DATA
N
P
TXCOMP
Write START &
STOP Bit
RXRDY
Read RHR
Figure 32-9.
TWD
Master Read with Multiple Data Bytes
S
DADR
R
A
DATA n
A
DATA (n+1)
A
DATA (n+m)-1
A
DATA (n+m)
N
P
TXCOMP
Write START Bit
RXRDY
Read RHR
DATA n
Read RHR
DATA (n+1)
Read RHR
DATA (n+m)-1
Read RHR
DATA (n+m)
Write STOP Bit
after next-to-last data read
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
493
32.8.5 Internal Address
The TWI interface can perform various transfer formats: Transfers with 7-bit slave address devices and 10-bit
slave address devices.
32.8.5.1 7-bit Slave Addressing
When Addressing 7-bit slave devices, the internal address bytes are used to perform random address (read or
write) accesses to reach one or more data bytes, within a memory page location in a serial memory, for example.
When performing read operations with an internal address, the TWI performs a write operation to set the internal
address into the slave device, and then switch to Master Receiver mode. Note that the second start condition (after
sending the IADR) is sometimes called “repeated start” (Sr) in I2C fully-compatible devices. See Figure 32-10,
Figure 32-11 and Figure 32-12.
The three internal address bytes are configurable through the Master Mode register (TWI_MMR).
If the slave device supports only a 7-bit address, i.e. no internal address, IADRSZ must be set to 0.
In the figures below the following abbreviations are used:

S
Start

P
Stop

W
Write

R
Read

A
Acknowledge

N
Not Acknowledge

DADR
Device Address

IADR
Internal Address
Figure 32-10. Master Write with One, Two or Three Bytes Internal Address and One Data Byte
Three bytes internal address
TWD
S
DADR
W
A
IADR(23:16)
A
IADR(15:8)
A
IADR(7:0)
A
W
A
IADR(15:8)
A
IADR(7:0)
A
DATA
A
W
A
IADR(7:0)
A
DATA
A
DATA
A
P
Two bytes internal address
TWD
S
DADR
P
One byte internal address
TWD
S
DADR
P
Figure 32-11. Master Read with One, Two or Three Bytes Internal Address and One Data Byte
Three bytes internal address
TWD
S
DADR
W
A
IADR(23:16)
A
IADR(15:8)
A
IADR(7:0)
A
S
DADR
R
A
DATA
N
P
Two bytes internal address
TWD
S
DADR
W
A
IADR(15:8)
A
IADR(7:0)
A
IADR(7:0)
A
S
A
S
R
A
DADR
R
A
DATA
One byte internal address
TWD
494
S
DADR
W
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
DADR
DATA
N
P
N
P
32.8.5.2 10-bit Slave Addressing
For a slave address higher than 7 bits, the user must configure the address size (IADRSZ) and set the other slave
address bits in the internal address register (TWI_IADR). The two remaining Internal address bytes, IADR[15:8]
and IADR[23:16] can be used the same as in 7-bit Slave Addressing.
Example: Address a 10-bit device (10-bit device address is b1 b2 b3 b4 b5 b6 b7 b8 b9 b10)
1.
Program IADRSZ = 1,
2.
Program DADR with 1 1 1 1 0 b1 b2 (b1 is the MSB of the 10-bit address, b2, etc.)
3.
Program TWI_IADR with b3 b4 b5 b6 b7 b8 b9 b10 (b10 is the LSB of the 10-bit address)
Figure 32-12 below shows a byte write to an Atmel AT24LC512 EEPROM. This demonstrates the use of internal
addresses to access the device.
Figure 32-12.
Internal Address Usage
S
T
A
R
T
Device
Address
W
R
I
T
E
FIRST
WORD ADDRESS
SECOND
WORD ADDRESS
S
T
O
P
DATA
0
M
S
B
L R A
S / C
BW K
M
S
B
A
C
K
L A
SC
BK
A
C
K
32.8.6 Read/Write Flowcharts
The following flowcharts shown in Figure 32-13, Figure 32-14 on page 497, Figure 32-15 on page 498, Figure 3216 on page 499, Figure 32-17 on page 500 and Figure 32-18 on page 501 give examples for read and write
operations. A polling or interrupt method can be used to check the status bits. The interrupt method requires that
the interrupt enable register (TWI_IER) be configured first.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
495
Figure 32-13. TWI Write Operation with Single Data Byte without Internal Address
BEGIN
Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR
(Needed only once)
Set the Control register:
- Master enable
TWI_CR = MSEN
Set the Master Mode register:
- Device slave address (DADR)
- Transfer direction bit
Write ==> bit MREAD = 0
Load Transmit register
TWI_THR = Data to send
Read Status register
No
TXRDY = 1?
Yes
Read Status register
No
TXCOMP = 1?
Yes
Transfer finished
496
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Figure 32-14. TWI Write Operation with Single Data Byte and Internal Address
BEGIN
Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR
(Needed only once)
Set the Control register:
- Master enable
TWI_CR = MSEN
Set the Master Mode register:
- Device slave address (DADR)
- Internal address size (IADRSZ)
- Transfer direction bit
Write ==> bit MREAD = 0
Set the internal address
TWI_IADR = address
Load transmit register
TWI_THR = Data to send
Read Status register
No
TXRDY = 1?
Yes
Read Status register
TXCOMP = 1?
No
Yes
Transfer finished
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
497
Figure 32-15. TWI Write Operation with Multiple Data Bytes with or without Internal Address
BEGIN
Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR
(Needed only once)
Set the Control register:
- Master enable
TWI_CR = MSEN
Set the Master Mode register:
- Device slave address
- Internal address size (if IADR used)
- Transfer direction bit
Write ==> bit MREAD = 0
No
Internal address size = 0?
Set the internal address
TWI_IADR = address
Yes
Load Transmit register
TWI_THR = Data to send
Read Status register
TWI_THR = data to send
No
TXRDY = 1?
Yes
Data to send?
Yes
Read Status register
Yes
No
TXCOMP = 1?
END
498
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Figure 32-16. TWI Read Operation with Single Data Byte without Internal Address
BEGIN
Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR
(Needed only once)
Set the Control register:
- Master enable
TWI_CR = MSEN
Set the Master Mode register:
- Device slave address
- Transfer direction bit
Read ==> bit MREAD = 1
Start the transfer
TWI_CR = START | STOP
Read status register
RXRDY = 1?
No
Yes
Read Receive Holding Register
Read Status register
No
TXCOMP = 1?
Yes
END
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
499
Figure 32-17. TWI Read Operation with Single Data Byte and Internal Address
BEGIN
Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR
(Needed only once)
Set the Control register:
- Master enable
TWI_CR = MSEN
Set the Master Mode register:
- Device slave address
- Internal address size (IADRSZ)
- Transfer direction bit
Read ==> bit MREAD = 1
Set the internal address
TWI_IADR = address
Start the transfer
TWI_CR = START | STOP
Read Status register
No
RXRDY = 1?
Yes
Read Receive Holding register
Read Status register
No
TXCOMP = 1?
Yes
END
500
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Figure 32-18. TWI Read Operation with Multiple Data Bytes with or without Internal Address
BEGIN
Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR
(Needed only once)
Set the Control register:
- Master enable
TWI_CR = MSEN
Set the Master Mode register:
- Device slave address
- Internal address size (if IADR used)
- Transfer direction bit
Read ==> bit MREAD = 1
Internal address size = 0?
Set the internal address
TWI_IADR = address
Yes
Start the transfer
TWI_CR = START
Read Status register
RXRDY = 1?
No
Yes
Read Receive Holding register (TWI_RHR)
No
Last data to read
but one?
Yes
Stop the transfer
TWI_CR = STOP
Read Status register
No
RXRDY = 1?
Yes
Read Receive Holding register (TWI_RHR)
Read status register
TXCOMP = 1?
No
Yes
END
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
501
32.9
Two-wire Interface (TWI) User Interface
Table 32-4.
Register Mapping
Offset
Register
Name
Access
Reset
0x0000
Control Register
TWI_CR
Write-only
–
0x0004
Master Mode Register
TWI_MMR
Read/Write
0x0000
0x0008
Reserved
–
–
–
0x000C
Internal Address Register
TWI_IADR
Read/Write
0x0000
0x0010
Clock Waveform Generator Register
TWI_CWGR
Read/Write
0x0000
0x0020
Status Register
TWI_SR
Read-only
0x0008
0x0024
Interrupt Enable Register
TWI_IER
Write-only
–
0x0028
Interrupt Disable Register
TWI_IDR
Write-only
–
0x002C
Interrupt Mask Register
TWI_IMR
Read-only
0x0000
0x0030
Receive Holding Register
TWI_RHR
Read-only
0x0000
0x0034
Transmit Holding Register
TWI_THR
Write-only
–
Reserved
–
–
–
0x0038–0x00FC
502
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
32.9.1 TWI Control Register
Name:
TWI_CR
Access:
Write-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
SWRST
6
–
5
–
4
–
3
MSDIS
2
MSEN
1
STOP
0
START
• START: Send a START Condition
0: No effect.
1: A frame beginning with a START bit is transmitted according to the features defined in the mode register.
This action is necessary when the TWI peripheral wants to read data from a slave. When configured in Master Mode with a
write operation, a frame is sent as soon as the user writes a character in the Transmit Holding Register (TWI_THR).
• STOP: Send a STOP Condition
0: No effect.
1: STOP Condition is sent just after completing the current byte transmission in master read mode.
– In single data byte master read, the START and STOP must both be set.
– In multiple data bytes master read, the STOP must be set after the last data received but one.
– In master read mode, if a NACK bit is received, the STOP is automatically performed.
– In multiple data write operation, when both THR and shift register are empty, a STOP condition is automatically
sent.
• MSEN: TWI Master Transfer Enabled
0: No effect.
1: If MSDIS = 0, the master data transfer is enabled.
• MSDIS: TWI Master Transfer Disabled
0: No effect.
1: The master data transfer is disabled, all pending data is transmitted. The shifter and holding characters (if they contain
data) are transmitted in case of write operation. In read operation, the character being transferred must be completely
received before disabling.
• SWRST: Software Reset
0: No effect.
1: Equivalent to a system reset.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
503
32.9.2 TWI Master Mode Register
Name:
TWI_MMR
Access:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
21
20
19
DADR
18
17
16
15
–
14
–
13
–
12
MREAD
11
–
10
–
9
8
7
–
6
–
5
–
4
–
3
–
2
–
1
–
• IADRSZ: Internal Device Address Size
Value
Name
Description
0
NONE
No internal device address
1
1_BYTE
One-byte internal device address
2
2_BYTE
Two-byte internal device address
3
3_BYTE
Three-byte internal device address
• MREAD: Master Read Direction
0: Master write direction.
1: Master read direction.
• DADR: Device Address
The device address is used to access slave devices in read or write mode.
504
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
IADRSZ
0
–
32.9.3 TWI Internal Address Register
Name:
TWI_IADR
Access:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
22
21
20
19
18
17
16
11
10
9
8
3
2
1
0
IADR
15
14
13
12
IADR
7
6
5
4
IADR
• IADR: Internal Address
0, 1, 2 or 3 bytes depending on IADRSZ.
– Low significant byte address in 10-bit mode addresses.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
505
32.9.4 TWI Clock Waveform Generator Register
Name:
TWI_CWGR
Access:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
17
CKDIV
16
15
14
13
12
11
10
9
8
3
2
1
0
CHDIV
7
6
5
4
CLDIV
• CLDIV: Clock Low Divider
The SCL low period is defined as follows:
t low = ( ( CLDIV × 2
CKDIV
) + 3 ) × t MCK
• CHDIV: Clock High Divider
The SCL high period is defined as follows:
t high = ( ( CHDIV × 2
CKDIV
) + 3 ) × t MCK
• CKDIV: Clock Divider
The CKDIV is used to increase both SCL high and low periods.
506
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
32.9.5 TWI Status Register
Name:
TWI_SR
Access:
Read-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
ARBLST
8
NACK
7
UNRE
6
OVRE
5
–
4
–
3
–
2
TXRDY
1
RXRDY
0
TXCOMP
• TXCOMP: Transmission Completed
0: During the length of the current frame.
1: When both holding and shift registers are empty and STOP condition has been sent, or when MSEN is set (enable TWI).
• RXRDY: Receive Holding Register Ready
0: No character has been received since the last TWI_RHR read operation.
1: A byte has been received in the TWI_RHR since the last read.
• TXRDY: Transmit Holding Register Ready
0: The transmit holding register has not been transferred into shift register. Set to 0 when writing into TWI_THR.
1: As soon as data byte is transferred from TWI_THR to internal shifter or if a NACK error is detected, TXRDY is set at the
same time as TXCOMP and NACK. TXRDY is also set when MSEN is set (enable TWI).
• OVRE: Overrun Error (clear on read)
0: TWI_RHR has not been loaded while RXRDY was set.
1: TWI_RHR has been loaded while RXRDY was set. Reset by read in TWI_SR when TXCOMP is set.
• UNRE: Underrun Error
0: No underrun error.
1: No valid data in TWI_THR (TXRDY set) while trying to load the data shifter. This action automatically generated a
STOP bit in Master Mode. Reset by read in TWI_SR when TXCOMP is set.
• NACK: Not Acknowledged
0: Each data byte has been correctly received by the far-end side TWI slave component.
1: A data byte has not been acknowledged by the slave component. Set at the same time as TXCOMP. Reset after read.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
507
32.9.6 TWI Interrupt Enable Register
Name:
TWI_IER
Access:
Write-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
NACK
7
UNRE
6
OVRE
5
–
4
–
3
–
2
TXRDY
1
RXRDY
0
TXCOMP
• TXCOMP: Transmission Completed
0: During the length of the current frame.
1: When both holding and shift registers are empty and STOP condition has been sent, or when MSEN is set (enable TWI).
• RXRDY: Receive Holding Register Ready
0: No character has been received since the last TWI_RHR read operation.
1: A byte has been received in the TWI_RHR since the last read.
• TXRDY: Transmit Holding Register Ready
0: The transmit holding register has not been transferred into shift register. Set to 0 when writing into TWI_THR.
1: As soon as data byte is transferred from TWI_THR to internal shifter or if a NACK error is detected, TXRDY is set at the
same time as TXCOMP and NACK. TXRDY is also set when MSEN is set (enable TWI).
• OVRE: Overrun Error (clear on read)
0: TWI_RHR has not been loaded while RXRDY was set.
1: TWI_RHR has been loaded while RXRDY was set. Reset by read in TWI_SR when TXCOMP is set.
• UNRE: Underrun Error
0: No underrun error.
1: No valid data in TWI_THR (TXRDY set) while trying to load the data shifter. This action automatically generated a
STOP bit in Master Mode. Reset by read in TWI_SR when TXCOMP is set.
• NACK: Not Acknowledge
0: No effect.
1: Enables the corresponding interrupt.
508
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
32.9.7 TWI Interrupt Disable Register
Name:
TWI_IDR
Access:
Write-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
NACK
7
UNRE
6
OVRE
5
–
4
–
3
–
2
TXRDY
1
RXRDY
0
TXCOMP
• TXCOMP: Transmission Completed
0: During the length of the current frame.
1: When both holding and shift registers are empty and STOP condition has been sent, or when MSEN is set (enable TWI).
• RXRDY: Receive Holding Register Ready
0: No character has been received since the last TWI_RHR read operation.
1: A byte has been received in the TWI_RHR since the last read.
• TXRDY: Transmit Holding Register Ready
0: The transmit holding register has not been transferred into shift register. Set to 0 when writing into TWI_THR.
1: As soon as data byte is transferred from TWI_THR to internal shifter or if a NACK error is detected, TXRDY is set at the
same time as TXCOMP and NACK. TXRDY is also set when MSEN is set (enable TWI).
• OVRE: Overrun Error (clear on read)
0: TWI_RHR has not been loaded while RXRDY was set.
1: TWI_RHR has been loaded while RXRDY was set. Reset by read in TWI_SR when TXCOMP is set.
• UNRE: Underrun Error
0: No underrun error.
1: No valid data in TWI_THR (TXRDY set) while trying to load the data shifter. This action automatically generated a
STOP bit in Master Mode. Reset by read in TWI_SR when TXCOMP is set.
• NACK: Not Acknowledge
0: No effect.
1: Disables the corresponding interrupt.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
509
32.9.8 TWI Interrupt Mask Register
Name:
TWI_IMR
Access:
Read-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
NACK
7
UNRE
6
OVRE
5
–
4
–
3
–
2
TXRDY
1
RXRDY
0
TXCOMP
• TXCOMP: Transmission Completed
0: During the length of the current frame.
1: When both holding and shift registers are empty and STOP condition has been sent, or when MSEN is set (enable TWI).
• RXRDY: Receive Holding Register Ready
0: No character has been received since the last TWI_RHR read operation.
1: A byte has been received in the TWI_RHR since the last read.
• TXRDY: Transmit Holding Register Ready
0: The transmit holding register has not been transferred into shift register. Set to 0 when writing into TWI_THR.
1: As soon as data byte is transferred from TWI_THR to internal shifter or if a NACK error is detected, TXRDY is set at the
same time as TXCOMP and NACK. TXRDY is also set when MSEN is set (enable TWI).
• OVRE: Overrun Error (clear on read)
0: TWI_RHR has not been loaded while RXRDY was set.
1: TWI_RHR has been loaded while RXRDY was set. Reset by read in TWI_SR when TXCOMP is set.
• UNRE: Underrun Error
0: No underrun error.
1: No valid data in TWI_THR (TXRDY set) while trying to load the data shifter. This action automatically generated a
STOP bit in Master Mode. Reset by read in TWI_SR when TXCOMP is set.
• NACK: Not Acknowledge
0: The corresponding interrupt is disabled.
1: The corresponding interrupt is enabled.
510
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
32.9.9 TWI Receive Holding Register
Name:
TWI_RHR
Access:
Read-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
6
5
4
3
2
1
0
RXDATA
• RXDATA: Receive Holding Data
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
511
32.9.10 TWI Transmit Holding Register
Name:
TWI_THR
Access::
Write-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
6
5
4
3
2
1
0
TXDATA
• TXDATA: Transmit Holding Data
512
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
33.
Universal Synchronous Asynchronous Receiver Transmitter (USART)
33.1
Overview
The Universal Synchronous Asynchronous Receiver Transceiver (USART) provides one full duplex universal
synchronous asynchronous serial link. Data frame format is widely programmable (data length, parity, number of
stop bits) to support a maximum of standards. The receiver implements parity error, framing error and overrun
error detection. The receiver time-out enables handling variable-length frames and the transmitter timeguard
facilitates communications with slow remote devices. Multidrop communications are also supported through
address bit handling in reception and transmission.
The USART features three test modes: remote loopback, local loopback and automatic echo.
The USART supports specific operating modes providing interfaces on RS485 buses, with ISO7816 T = 0 or T = 1
smart card slots and infrared transceivers. The hardware handshaking feature enables an out-of-band flow control
by automatic management of the pins RTS and CTS.
The USART supports the connection to the Peripheral DMA Controller, which enables data transfers to the
transmitter and from the receiver. The PDC provides chained buffer management without any intervention of the
processor.
33.2
Block Diagram
Figure 33-1.
USART Block Diagram
Peripheral DMA
Controller
Channel
Channel
PIO
Controller
USART
RXD
Receiver
RTS
AIC
USART
Interrupt
TXD
Transmitter
CTS
PMC
MCK
DIV
Baud Rate
Generator
SCK
MCK/DIV
User Interface
SLCK
APB
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
513
33.3
Application Block Diagram
Figure 33-2.
Application Block Diagram
IrLAP
PPP
Serial
Driver
Field Bus
Driver
EMV
Driver
IrDA
Driver
USART
33.4
RS485
Drivers
Serial
Port
Differential
Bus
Smart
Card
Slot
IrDA
Transceivers
I/O Lines Description
Table 33-1.
514
RS232
Drivers
I/O Line Description
Name
Description
Type
SCK
Serial Clock
I/O
TXD
Transmit Serial Data
I/O
RXD
Receive Serial Data
Input
CTS
Clear to Send
Input
Low
RTS
Request to Send
Output
Low
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Active Level
33.5
Product Dependencies
33.5.1 I/O Lines
The pins used for interfacing the USART may be multiplexed with the PIO lines. The programmer must first
program the PIO controller to assign the desired USART pins to their peripheral function. If I/O lines of the USART
are not used by the application, they can be used for other purposes by the PIO Controller.
To prevent the TXD line from falling when the USART is disabled, the use of an internal pull up is mandatory. If the
hardware handshaking feature is used, the internal pull up on TXD must also be enabled.
33.5.2 Power Management
The USART is not continuously clocked. The programmer must first enable the USART Clock in the Power
Management Controller (PMC) before using the USART. However, if the application does not require USART
operations, the USART clock can be stopped when not needed and be restarted later. In this case, the USART will
resume its operations where it left off.
Configuring the USART does not require the USART clock to be enabled.
33.5.3 Interrupt
The USART interrupt line is connected on one of the internal sources of the Advanced Interrupt Controller. Using
the USART interrupt requires the AIC to be programmed first. Note that it is not recommended to use the USART
interrupt line in edge sensitive mode.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
515
33.6
Functional Description
The USART is capable of managing several types of serial synchronous or asynchronous communications.
It supports the following communication modes:


5- to 9-bit full-duplex asynchronous serial communication
̶
MSB- or LSB-first
̶
1, 1.5 or 2 stop bits
̶
Parity even, odd, marked, space or none
̶
By 8 or by 16 over-sampling receiver frequency
̶
Optional hardware handshaking
̶
Optional break management
̶
Optional multidrop serial communication
High-speed 5- to 9-bit full-duplex synchronous serial communication
̶
MSB- or LSB-first
̶
1 or 2 stop bits
̶
Parity even, odd, marked, space or none
̶
By 8 or by 16 over-sampling frequency
̶
Optional hardware handshaking
̶
Optional break management
̶
Optional multidrop serial communication

RS485 with driver control signal

ISO7816, T0 or T1 protocols for interfacing with smart cards
̶
NACK handling, error counter with repetition and iteration limit

InfraRed IrDA Modulation and Demodulation

Test modes
̶
Remote loopback, local loopback, automatic echo
33.6.1 Baud Rate Generator
The Baud Rate Generator provides the bit period clock named the Baud Rate Clock to both the receiver and the
transmitter.
The Baud Rate Generator clock source can be selected by setting the USCLKS field in the Mode Register
(US_MR) between:

the Master Clock MCK

a division of the Master Clock, the divider being product dependent, but generally set to 8

the external clock, available on the SCK pin
The Baud Rate Generator is based upon a 16-bit divider, which is programmed with the CD field of the Baud Rate
Generator Register (US_BRGR). If CD is programmed at 0, the Baud Rate Generator does not generate any
clock. If CD is programmed at 1, the divider is bypassed and becomes inactive.
If the external SCK clock is selected, the duration of the low and high levels of the signal provided on the SCK pin
must be longer than a Master Clock (MCK) period. The frequency of the signal provided on SCK must be at least
4.5 times lower than MCK.
516
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Figure 33-3.
Baud Rate Generator
USCLKS
MCK
MCK/DIV
SCK
Reserved
CD
CD
SCK
0
1
16-bit Counter
2
FIDI
>1
3
1
0
0
0
SYNC
OVER
Sampling
Divider
0
Baud Rate
Clock
1
1
SYNC
Sampling
Clock
USCLKS = 3
33.6.1.1 Baud Rate in Asynchronous Mode
If the USART is programmed to operate in asynchronous mode, the selected clock is first divided by CD, which is
field programmed in the Baud Rate Generator Register (US_BRGR). The resulting clock is provided to the receiver
as a sampling clock and then divided by 16 or 8, depending on the programming of the OVER bit in US_MR.
If OVER is set to 1, the receiver sampling is 8 times higher than the baud rate clock. If OVER is cleared, the
sampling is performed at 16 times the baud rate clock.
The following formula performs the calculation of the Baud Rate.
SelectedClock
Baudrate = -------------------------------------------( 8 ( 2 – Over )CD )
This gives a maximum baud rate of MCK divided by 8, assuming that MCK is the highest possible clock and that
OVER is programmed at 1.
33.6.1.2 Baud Rate Calculation Example
Table 33-2 shows calculations of CD to obtain a baud rate at 38400 bauds for different source clock frequencies.
This table also shows the actual resulting baud rate and the error.
Table 33-2.
Baud Rate Example (OVER = 0)
Source Clock
(MHz)
Expected Baud Rate
(bit/s)
Calculation Result
CD
Actual Baud Rate
(bit/s)
Error
3 686 400
38 400
6.00
6
38 400.00
0.00%
4 915 200
38 400
8.00
8
38 400.00
0.00%
5 000 000
38 400
8.14
8
39 062.50
1.70%
7 372 800
38 400
12.00
12
38 400.00
0.00%
8 000 000
38 400
13.02
13
38 461.54
0.16%
12 000 000
38 400
19.53
20
37 500.00
2.40%
12 288 000
38 400
20.00
20
38 400.00
0.00%
14 318 180
38 400
23.30
23
38 908.10
1.31%
14 745 600
38 400
24.00
24
38 400.00
0.00%
18 432 000
38 400
30.00
30
38 400.00
0.00%
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
517
Table 33-2.
Baud Rate Example (OVER = 0) (Continued)
Source Clock
(MHz)
Expected Baud Rate
(bit/s)
Calculation Result
CD
Actual Baud Rate
(bit/s)
Error
24 000 000
38 400
39.06
39
38 461.54
0.16%
24 576 000
38 400
40.00
40
38 400.00
0.00%
25 000 000
38 400
40.69
40
38 109.76
0.76%
32 000 000
38 400
52.08
52
38 461.54
0.16%
32 768 000
38 400
53.33
53
38 641.51
0.63%
33 000 000
38 400
53.71
54
38 194.44
0.54%
40 000 000
38 400
65.10
65
38 461.54
0.16%
50 000 000
38 400
81.38
81
38 580.25
0.47%
The baud rate is calculated with the following formula:
BaudRate = MCK ⁄ CD × 16
The baud rate error is calculated with the following formula. It is not recommended to work with an error higher
than 5%.
ExpectedBaudRate
Error = 1 –  ---------------------------------------------------
ActualBaudRate
518
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
33.6.1.3 Fractional Baud Rate in Asynchronous Mode
The Baud Rate generator previously defined is subject to the following limitation: the output frequency changes by
only integer multiples of the reference frequency. An approach to this problem is to integrate a fractional N clock
generator that has a high resolution. The generator architecture is modified to obtain Baud Rate changes by a
fraction of the reference source clock. This fractional part is programmed with the FP field in the Baud Rate
Generator Register (US_BRGR). If FP is not 0, the fractional part is activated. The resolution is one eighth of the
clock divider. This feature is only available when using USART normal mode. The fractional Baud Rate is
calculated using the following formula:
SelectedClock
Baudrate = --------------------------------------------------------------- 8 ( 2 – Over )  CD + FP
------- 


8 
The modified architecture is presented below:
Figure 33-4.
Fractional Baud Rate Generator
FP
USCLKS
CD
Modulus
Control
FP
MCK
MCK/DIV
SCK
Reserved
CD
SCK
0
1
2
16-bit Counter
3
glitch-free
logic
1
0
FIDI
>1
0
0
SYNC
OVER
Sampling
Divider
0
Baud Rate
Clock
1
1
SYNC
USCLKS = 3
Sampling
Clock
33.6.1.4 Baud Rate in Synchronous Mode
If the USART is programmed to operate in synchronous mode, the selected clock is simply divided by the field CD
in US_BRGR.
SelectedClock
BaudRate = -------------------------------------CD
In synchronous mode, if the external clock is selected (USCLKS = 3), the clock is provided directly by the signal on
the USART SCK pin. No division is active. The value written in US_BRGR has no effect. The external clock
frequency must be at least 4.5 times lower than the system clock.
When either the external clock SCK or the internal clock divided (MCK/DIV) is selected, the value programmed in
CD must be even if the user has to ensure a 50:50 mark/space ratio on the SCK pin. If the internal clock MCK is
selected, the Baud Rate Generator ensures a 50:50 duty cycle on the SCK pin, even if the value programmed in
CD is odd.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
519
33.6.1.5 Baud Rate in ISO 7816 Mode
The ISO7816 specification defines the bit rate with the following formula:
Di
B = ------ × f
Fi
where:

B is the bit rate

Di is the bit-rate adjustment factor

Fi is the clock frequency division factor

f is the ISO7816 clock frequency (Hz)
Di is a binary value encoded on a 4-bit field, named DI, as represented in Table 33-3.
Table 33-3.
Binary and Decimal Values for Di
DI field
0001
0010
0011
0100
0101
0110
1000
1001
1
2
4
8
16
32
12
20
Di (decimal)
Fi is a binary value encoded on a 4-bit field, named FI, as represented in Table 33-4.
Table 33-4.
Binary and Decimal Values for Fi
FI field
0000
0001
0010
0011
0100
0101
0110
1001
1010
1011
1100
1101
Fi (decimal
372
372
558
744
1116
1488
1860
512
768
1024
1536
2048
Table 33-5 shows the resulting Fi/Di Ratio, which is the ratio between the ISO7816 clock and the baud rate clock.
Table 33-5.
Possible Values for the Fi/Di Ratio
Fi/Di
372
558
744
1116
1488
1806
512
768
1024
1536
2048
1
372
558
744
1116
1488
1860
512
768
1024
1536
2048
2
186
279
372
558
744
930
256
384
512
768
1024
4
93
139.5
186
279
372
465
128
192
256
384
512
8
46.5
69.75
93
139.5
186
232.5
64
96
128
192
256
16
23.25
34.87
46.5
69.75
93
116.2
32
48
64
96
128
32
11.62
17.43
23.25
34.87
46.5
58.13
16
24
32
48
64
12
31
46.5
62
93
124
155
42.66
64
85.33
128
170.6
20
18.6
27.9
37.2
55.8
74.4
93
25.6
38.4
51.2
76.8
102.4
If the USART is configured in ISO7816 Mode, the clock selected by the USCLKS field in the Mode Register
(US_MR) is first divided by the value programmed in the field CD in the Baud Rate Generator Register
(US_BRGR). The resulting clock can be provided to the SCK pin to feed the smart card clock inputs. This means
that the CLKO bit can be set in US_MR.
This clock is then divided by the value programmed in the FI_DI_RATIO field in the FI_DI_Ratio register
(US_FIDI). This is performed by the Sampling Divider, which performs a division by up to 2047 in ISO7816 Mode.
The non-integer values of the Fi/Di Ratio are not supported and the user must program the FI_DI_RATIO field to a
value as close as possible to the expected value.
The FI_DI_RATIO field resets to the value 0x174 (372 in decimal) and is the most common divider between the
ISO7816 clock and the bit rate (Fi = 372, Di = 1).
520
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Figure 33-5 shows the relation between the Elementary Time Unit, corresponding to a bit time, and the ISO 7816
clock.
Figure 33-5.
Elementary Time Unit (ETU)
FI_DI_RATIO
ISO7816 Clock Cycles
ISO7816 Clock
on SCK
ISO7816 I/O Line
on TXD
1 ETU
33.6.2 Receiver and Transmitter Control
After reset, the receiver is disabled. The user must enable the receiver by setting the RXEN bit in the Control
Register (US_CR). However, the receiver registers can be programmed before the receiver clock is enabled.
After reset, the transmitter is disabled. The user must enable it by setting the TXEN bit in the Control Register
(US_CR). However, the transmitter registers can be programmed before being enabled.
The Receiver and the Transmitter can be enabled together or independently.
At any time, the software can perform a reset on the receiver or the transmitter of the USART by setting the
corresponding bit, RSTRX and RSTTX respectively, in the Control Register (US_CR). The software resets clear
the status flag and reset internal state machines but the user interface configuration registers hold the value
configured prior to software reset. Regardless of what the receiver or the transmitter is performing, the
communication is immediately stopped.
The user can also independently disable the receiver or the transmitter by setting RXDIS and TXDIS respectively
in US_CR. If the receiver is disabled during a character reception, the USART waits until the end of reception of
the current character, then the reception is stopped. If the transmitter is disabled while it is operating, the USART
waits the end of transmission of both the current character and character being stored in the Transmit Holding
Register (US_THR). If a timeguard is programmed, it is handled normally.
33.6.3 Synchronous and Asynchronous Modes
33.6.3.1 Transmitter Operations
The transmitter performs the same in both synchronous and asynchronous operating modes (SYNC = 0 or SYNC
= 1). One start bit, up to 9 data bits, one optional parity bit and up to two stop bits are successively shifted out on
the TXD pin at each falling edge of the programmed serial clock.
The number of data bits is selected by the CHRL field and the MODE 9 bit in the Mode Register (US_MR). Nine
bits are selected by setting the MODE 9 bit regardless of the CHRL field. The parity bit is set according to the PAR
field in US_MR. The even, odd, space, marked or none parity bit can be configured. The MSBF field in US_MR
configures which data bit is sent first. If written at 1, the most significant bit is sent first. At 0, the less significant bit
is sent first. The number of stop bits is selected by the NBSTOP field in US_MR. The 1.5 stop bit is supported in
asynchronous mode only.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
521
Figure 33-6.
Character Transmit
Example: 8-bit, Parity Enabled One Stop
Baud Rate
Clock
TXD
D0
Start
Bit
D1
D2
D3
D4
D5
D6
D7
Parity
Bit
Stop
Bit
The characters are sent by writing in the Transmit Holding Register (US_THR). The transmitter reports two status
bits in the Channel Status Register (US_CSR): TXRDY (Transmitter Ready), which indicates that US_THR is
empty and TXEMPTY, which indicates that all the characters written in US_THR have been processed. When the
current character processing is completed, the last character written in US_THR is transferred into the Shift
Register of the transmitter and US_THR becomes empty, thus TXRDY rises.
Both TXRDY and TXEMPTY bits are low when the transmitter is disabled. Writing a character in US_THR while
TXRDY is low has no effect and the written character is lost.
Figure 33-7.
Transmitter Status
Baud Rate
Clock
TXD
Start
D0
Bit
D1
D2
D3
D4
D5
D6
D7
Parity Stop Start
D0
Bit Bit Bit
D1
D2
D3
D4
D5
D6
D7
Parity Stop
Bit Bit
Write
US_THR
TXRDY
TXEMPTY
33.6.3.2 Asynchronous Receiver
If the USART is programmed in asynchronous operating mode (SYNC = 0), the receiver oversamples the RXD
input line. The oversampling is either 16 or 8 times the Baud Rate clock, depending on the OVER bit in the Mode
Register (US_MR).
The receiver samples the RXD line. If the line is sampled during one half of a bit time at 0, a start bit is detected
and data, parity and stop bits are successively sampled on the bit rate clock.
If the oversampling is 16, (OVER at 0), a start is detected at the eighth sample at 0. Then, data bits, parity bit and
stop bit are sampled on each 16 sampling clock cycle. If the oversampling is 8 (OVER at 1), a start bit is detected
at the fourth sample at 0. Then, data bits, parity bit and stop bit are sampled on each 8 sampling clock cycle.
The number of data bits, first bit sent and parity mode are selected by the same fields and bits as the transmitter,
i.e. respectively CHRL, MODE9, MSBF and PAR. For the synchronization mechanism only, the number of stop
bits has no effect on the receiver as it considers only one stop bit, regardless of the field NBSTOP, so that
resynchronization between the receiver and the transmitter can occur. Moreover, as soon as the stop bit is
sampled, the receiver starts looking for a new start bit so that resynchronization can also be accomplished when
the transmitter is operating with one stop bit.
522
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Figure 33-8 and Figure 33-9 illustrate start detection and character reception when USART operates in
asynchronous mode.
Figure 33-8.
Asynchronous Start Detection
Baud Rate
Clock
Sampling
Clock (x16)
RXD
Sampling
1
2
3
4
5
6
7
8
1
2
3
4
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16
D0
Sampling
Start
Detection
RXD
Sampling
1
Figure 33-9.
2
3
4
5
6
7
0 1
Start
Rejection
Asynchronous Character Reception
Example: 8-bit, Parity Enabled
Baud Rate
Clock
RXD
Start
Detection
16
16
16
16
16
16
16
16
16
16
samples samples samples samples samples samples samples samples samples samples
D0
D1
D2
D3
D4
D5
D6
D7
Parity
Bit
Stop
Bit
33.6.3.3 Synchronous Receiver
In synchronous mode (SYNC = 1), the receiver samples the RXD signal on each rising edge of the Baud Rate
Clock. If a low level is detected, it is considered as a start. All data bits, the parity bit and the stop bits are sampled
and the receiver waits for the next start bit. Synchronous mode operations provide a high speed transfer capability.
Configuration fields and bits are the same as in asynchronous mode.
Figure 33-10 illustrates a character reception in synchronous mode.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
523
Figure 33-10. Synchronous Mode Character Reception
Example: 8-bit, Parity Enabled 1 Stop
Baud Rate
Clock
RXD
Sampling
Start
D0
D1
D2
D3
D4
D5
D6
D7
Stop Bit
Parity Bit
33.6.3.4 Receiver Operations
When a character reception is completed, it is transferred to the Receive Holding Register (US_RHR) and the
RXRDY bit in the Status Register (US_CSR) rises. If a character is completed while the RXRDY is set, the OVRE
(Overrun Error) bit is set. The last character is transferred into US_RHR and overwrites the previous one. The
OVRE bit is cleared by writing the Control Register (US_CR) with the RSTSTA (Reset Status) bit at 1.
Figure 33-11. Receiver Status
Baud Rate
Clock
RXD
Start
D0
Bit
D1
D2
D3
Write
US_CR
Read
US_RHR
RXRDY
OVRE
524
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
D4
D5
D6
D7
Parity Stop Start
D0
Bit Bit Bit
D1
D2
D3
D4
D5
D6
D7
Parity Stop
Bit Bit
RSTSTA = 1
33.6.3.5 Parity
The USART supports five parity modes selected by programming the PAR field in the Mode Register (US_MR).
The PAR field also enables the Multidrop mode, see “Multidrop Mode” on page 526. Even and odd parity bit
generation and error detection are supported.
If even parity is selected, the parity generator of the transmitter drives the parity bit at 0 if a number of 1s in the
character data bit is even, and at 1 if the number of 1s is odd. Accordingly, the receiver parity checker counts the
number of received 1s and reports a parity error if the sampled parity bit does not correspond. If odd parity is
selected, the parity generator of the transmitter drives the parity bit at 1 if a number of 1s in the character data bit
is even, and at 0 if the number of 1s is odd. Accordingly, the receiver parity checker counts the number of received
1s and reports a parity error if the sampled parity bit does not correspond. If the mark parity is used, the parity
generator of the transmitter drives the parity bit at 1 for all characters. The receiver parity checker reports an error
if the parity bit is sampled at 0. If the space parity is used, the parity generator of the transmitter drives the parity bit
at 0 for all characters. The receiver parity checker reports an error if the parity bit is sampled at 1. If parity is
disabled, the transmitter does not generate any parity bit and the receiver does not report any parity error.
Table 33-6 shows an example of the parity bit for the character 0x41 (character ASCII “A”) depending on the
configuration of the USART. Because there are two bits at 1, 1 bit is added when a parity is odd, or 0 is added
when a parity is even.
Table 33-6.
Parity Bit Examples
Character
Hexadecimal
Binary
Parity Bit
Parity Mode
A
0x41
0100 0001
1
Odd
A
0x41
0100 0001
0
Even
A
0x41
0100 0001
1
Mark
A
0x41
0100 0001
0
Space
A
0x41
0100 0001
None
None
When the receiver detects a parity error, it sets the PARE (Parity Error) bit in the Channel Status Register
(US_CSR). The PARE bit can be cleared by writing the Control Register (US_CR) with the RSTSTA bit at 1. Figure
33-12 illustrates the parity bit status setting and clearing.
Figure 33-12. Parity Error
Baud Rate
Clock
RXD
Start
D0
Bit
D1
D2
D3
D4
D5
D6
D7
Bad Stop
Parity Bit
Bit
RSTSTA = 1
Write
US_CR
PARE
RXRDY
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
525
33.6.3.6 Multidrop Mode
If the PAR field in the Mode Register (US_MR) is programmed to the value 0x6 or 0x07, the USART runs in
Multidrop Mode. This mode differentiates the data characters and the address characters. Data is transmitted with
the parity bit at 0 and addresses are transmitted with the parity bit at 1.
If the USART is configured in multidrop mode, the receiver sets the PARE parity error bit when the parity bit is high
and the transmitter is able to send a character with the parity bit high when the Control Register is written with the
SENDA bit at 1.
To handle parity error, the PARE bit is cleared when the Control Register is written with the bit RSTSTA at 1.
The transmitter sends an address byte (parity bit set) when SENDA is written to US_CR. In this case, the next byte
written to US_THR is transmitted as an address. Any character written in US_THR without having written the
command SENDA is transmitted normally with the parity at 0.
33.6.3.7 Transmitter Timeguard
The timeguard feature enables the USART interface with slow remote devices.
The timeguard function enables the transmitter to insert an idle state on the TXD line between two characters. This
idle state actually acts as a long stop bit.
The duration of the idle state is programmed in the TG field of the Transmitter Timeguard Register (US_TTGR).
When this field is programmed at zero no timeguard is generated. Otherwise, the transmitter holds a high level on
TXD after each transmitted byte during the number of bit periods programmed in TG in addition to the number of
stop bits.
As illustrated in Figure 33-13, the behavior of TXRDY and TXEMPTY status bits is modified by the programming of
a timeguard. TXRDY rises only when the start bit of the next character is sent, and thus remains at 0 during the
timeguard transmission if a character has been written in US_THR. TXEMPTY remains low until the timeguard
transmission is completed as the timeguard is part of the current character being transmitted.
Figure 33-13. Timeguard Operations
TG = 4
TG = 4
Baud Rate
Clock
TXD
Start
D0
Bit
D1
D2
D3
D4
D5
D6
Write
US_THR
TXRDY
TXEMPTY
526
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
D7
Parity Stop
Bit Bit
Start
D0
Bit
D1
D2
D3
D4
D5
D6
D7
Parity Stop
Bit Bit
Table 33-7 indicates the maximum length of a timeguard period that the transmitter can handle in relation to the
function of the baud rate.
Table 33-7.
Maximum Timeguard Length Depending on Baud Rate
Baud Rate (bit/s)
Bit time (µs)
Timeguard (ms)
1200
833
212.50
9600
104
26.56
14400
69.4
17.71
19200
52.1
13.28
28800
34.7
8.85
33400
29.9
7.63
56000
17.9
4.55
57600
17.4
4.43
115200
8.7
2.21
33.6.3.8 Receiver Time-out
The Receiver Time-out provides support in handling variable-length frames. This feature detects an idle condition
on the RXD line. When a time-out is detected, the bit TIMEOUT in the Channel Status Register (US_CSR) rises
and can generate an interrupt, thus indicating to the driver an end of frame.
The time-out delay period (during which the receiver waits for a new character) is programmed in the TO field of
the Receiver Time-out Register (US_RTOR). If the TO field is programmed at 0, the Receiver Time-out is disabled
and no time-out is detected. The TIMEOUT bit in US_CSR remains at 0. Otherwise, the receiver loads a 16-bit
counter with the value programmed in TO. This counter is decremented at each bit period and reloaded each time
a new character is received. If the counter reaches 0, the TIMEOUT bit in the Status Register rises. Then, the user
can either:

Stop the counter clock until a new character is received. This is performed by writing the Control Register
(US_CR) with the STTTO (Start Time-out) bit at 1. In this case, the idle state on RXD before a new character
is received will not provide a time-out. This prevents having to handle an interrupt before a character is
received and allows waiting for the next idle state on RXD after a frame is received.

Obtain an interrupt while no character is received. This is performed by writing US_CR with the RETTO
(Reload and Start Time-out) bit at 1. If RETTO is performed, the counter starts counting down immediately
from the value TO. This enables generation of a periodic interrupt so that a user time-out can be handled, for
example when no key is pressed on a keyboard.
If STTTO is performed, the counter clock is stopped until a first character is received. The idle state on RXD before
the start of the frame does not provide a time-out. This prevents having to obtain a periodic interrupt and enables a
wait of the end of frame when the idle state on RXD is detected.
If RETTO is performed, the counter starts counting down immediately from the value TO. This enables generation
of a periodic interrupt so that a user time-out can be handled, for example when no key is pressed on a keyboard.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
527
Figure 33-14 shows the block diagram of the Receiver Time-out feature.
Figure 33-14. Receiver Time-out Block Diagram
TO
Baud Rate
Clock
1
D
Q
Clock
16-bit Time-out
Counter
16-bit
Value
=
STTTO
Character
Received
Load
Clear
TIMEOUT
0
RETTO
Table 33-8 gives the maximum time-out period for some standard baud rates.
Table 33-8.
528
Maximum Time-out Period
Baud Rate (bit/s)
Bit Time (µs)
Time-out (ms)
600
1 667
109 225
1200
833
54 613
2400
417
27 306
4800
208
13 653
9600
104
6 827
14400
69
4 551
19200
52
3 413
28800
35
2 276
33400
30
1 962
56000
18
1 170
57600
17
1 138
200000
5
328
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
33.6.3.9 Framing Error
The receiver is capable of detecting framing errors. A framing error happens when the stop bit of a received
character is detected at level 0. This can occur if the receiver and the transmitter are fully desynchronized.
A framing error is reported on the FRAME bit of the Channel Status Register (US_CSR). The FRAME bit is
asserted in the middle of the stop bit as soon as the framing error is detected. It is cleared by writing the Control
Register (US_CR) with the RSTSTA bit at 1.
Figure 33-15. Framing Error Status
Baud Rate
Clock
RXD
Start
D0
Bit
D1
D2
D3
D4
D5
D6
D7
Parity Stop
Bit Bit
RSTSTA = 1
Write
US_CR
FRAME
RXRDY
33.6.3.10 Transmit Break
The user can request the transmitter to generate a break condition on the TXD line. A break condition drives the
TXD line low during at least one complete character. It appears the same as a 0x00 character sent with the parity
and the stop bits at 0. However, the transmitter holds the TXD line at least during one character until the user
requests the break condition to be removed.
A break is transmitted by writing the Control Register (US_CR) with the STTBRK bit at 1. This can be performed at
any time, either while the transmitter is empty (no character in either the Shift Register or in US_THR) or when a
character is being transmitted. If a break is requested while a character is being shifted out, the character is first
completed before the TXD line is held low.
Once STTBRK command is requested further STTBRK commands are ignored until the end of the break is
completed.
The break condition is removed by writing US_CR with the STPBRK bit at 1. If the STPBRK is requested before
the end of the minimum break duration (one character, including start, data, parity and stop bits), the transmitter
ensures that the break condition completes.
The transmitter considers the break as though it is a character, i.e. the STTBRK and STPBRK commands are
taken into account only if the TXRDY bit in US_CSR is at 1 and the start of the break condition clears the TXRDY
and TXEMPTY bits as if a character is processed.
Writing US_CR with the both STTBRK and STPBRK bits at 1 can lead to an unpredictable result. All STPBRK
commands requested without a previous STTBRK command are ignored. A byte written into the Transmit Holding
Register while a break is pending, but not started, is ignored.
After the break condition, the transmitter returns the TXD line to 1 for a minimum of 12 bit times. Thus, the
transmitter ensures that the remote receiver detects correctly the end of break and the start of the next character.
If the timeguard is programmed with a value higher than 12, the TXD line is held high for the timeguard period.
After holding the TXD line for this period, the transmitter resumes normal operations.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
529
Figure 33-16 illustrates the effect of both the Start Break (STTBRK) and Stop Break (STPBRK) commands on the
TXD line.
Figure 33-16. Break Transmission
Baud Rate
Clock
TXD
Start
D0
Bit
D1
D2
D3
D4
D5
D6
D7
Parity Stop
Bit Bit
STTBRK = 1
Break Transmission
End of Break
STPBRK = 1
Write
US_CR
TXRDY
TXEMPTY
33.6.3.11 Receive Break
The receiver detects a break condition when all data, parity and stop bits are low. This corresponds to detecting a
framing error with data at 0x00, but FRAME remains low.
When the low stop bit is detected, the receiver asserts the RXBRK bit in US_CSR. This bit may be cleared by
writing the Control Register (US_CR) with the bit RSTSTA at 1.
An end of receive break is detected by a high level for at least 2/16 of a bit period in asynchronous operating mode
or one sample at high level in synchronous operating mode. The end of break detection also asserts the RXBRK
bit.
33.6.3.12 Hardware Handshaking
The USART features a hardware handshaking out-of-band flow control. The RTS and CTS pins are used to
connect with the remote device, as shown in Figure 33-17.
Figure 33-17. Connection with a Remote Device for Hardware Handshaking
USART
Remote
Device
TXD
RXD
RXD
TXD
CTS
RTS
RTS
CTS
Setting the USART to operate with hardware handshaking is performed by writing the USART_MODE field in the
Mode Register (US_MR) to the value 0x2.
The USART behavior when hardware handshaking is enabled is the same as the behavior in standard
synchronous or asynchronous mode, except that the receiver drives the RTS pin as described below and the level
on the CTS pin modifies the behavior of the transmitter as described below. Using this mode requires using the
PDC channel for reception. The transmitter can handle hardware handshaking in any case.
530
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Figure 33-18 shows how the receiver operates if hardware handshaking is enabled. The RTS pin is driven high if
the receiver is disabled and if the status RXBUFF (Receive Buffer Full) coming from the PDC channel is high.
Normally, the remote device does not start transmitting while its CTS pin (driven by RTS) is high. As soon as the
Receiver is enabled, the RTS falls, indicating to the remote device that it can start transmitting. Defining a new
buffer to the PDC clears the status bit RXBUFF and, as a result, asserts the pin RTS low.
Figure 33-18. Receiver Behavior when Operating with Hardware Handshaking
RXD
RXEN = 1
RXDIS = 1
Write
US_CR
RTS
RXBUFF
Figure 33-19 shows how the transmitter operates if hardware handshaking is enabled. The CTS pin disables the
transmitter. If a character is being processing, the transmitter is disabled only after the completion of the current
character and transmission of the next character happens as soon as the pin CTS falls.
Figure 33-19. Transmitter Behavior when Operating with Hardware Handshaking
CTS
TXD
33.6.4 ISO7816 Mode
The USART features an ISO7816-compatible operating mode. This mode permits interfacing with smart cards and
Security Access Modules (SAM) communicating through an ISO7816 link. Both T = 0 and T = 1 protocols defined
by the ISO7816 specification are supported.
Setting the USART in ISO7816 mode is performed by writing the USART_MODE field in the Mode Register
(US_MR) to the value 0x4 for protocol T = 0 and to the value 0x5 for protocol T = 1.
33.6.4.1 ISO7816 Mode Overview
The ISO7816 is a half duplex communication on only one bidirectional line. The baud rate is determined by a
division of the clock provided to the remote device (see “Baud Rate Generator” on page 516).
The USART connects to a smart card as shown in Figure 33-20. The TXD line becomes bidirectional and the Baud
Rate Generator feeds the ISO7816 clock on the SCK pin. As the TXD pin becomes bidirectional, its output remains
driven by the output of the transmitter but only when the transmitter is active while its input is directed to the input
of the receiver. The USART is considered as the master of the communication as it generates the clock.
Figure 33-20. Connection of a Smart Card to the USART
USART
SCK
TXD
CLK
I/O
Smart
Card
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
531
When operating in ISO7816, either in T = 0 or T = 1 modes, the character format is fixed. The configuration is 8
data bits, even parity and 1 or 2 stop bits, regardless of the values programmed in the CHRL, MODE9, PAR and
CHMODE fields. MSBF can be used to transmit LSB or MSB first. Parity Bit (PAR) can be used to transmit in
normal or inverse mode. Refer to “USART Mode Register” on page 543 and “PAR: Parity Type” on page 544.
The USART cannot operate concurrently in both receiver and transmitter modes as the communication is
unidirectional at a time. It has to be configured according to the required mode by enabling or disabling either the
receiver or the transmitter as desired. Enabling both the receiver and the transmitter at the same time in ISO7816
mode may lead to unpredictable results.
The ISO7816 specification defines an inverse transmission format. Data bits of the character must be transmitted
on the I/O line at their negative value. The USART does not support this format and the user has to perform an
exclusive OR on the data before writing it in the Transmit Holding Register (US_THR) or after reading it in the
Receive Holding Register (US_RHR).
33.6.4.2 Protocol T = 0
In T = 0 protocol, a character is made up of one start bit, eight data bits, one parity bit and one guard time, which
lasts two bit times. The transmitter shifts out the bits and does not drive the I/O line during the guard time.
If no parity error is detected, the I/O line remains at 1 during the guard time and the transmitter can continue with
the transmission of the next character, as shown in Figure 33-21.
If a parity error is detected by the receiver, it drives the I/O line at 0 during the guard time, as shown in Figure 3322. This error bit is also named NACK, for Non Acknowledge. In this case, the character lasts 1 bit time more, as
the guard time length is the same and is added to the error bit time which lasts 1 bit time.
When the USART is the receiver and it detects an error, it does not load the erroneous character in the Receive
Holding Register (US_RHR). It appropriately sets the PARE bit in the Status Register (US_SR) so that the
software can handle the error.
Figure 33-21. T = 0 Protocol without Parity Error
Baud Rate
Clock
RXD
Start
Bit
D0
D1
D2
D3
D4
D5
D6
D7
Parity Guard Guard Next
Bit Time 1 Time 2 Start
Bit
Figure 33-22. T = 0 Protocol with Parity Error
Baud Rate
Clock
Error
I/O
Start
Bit
D0
D1
D2
D3
D4
D5
D6
D7
Parity Guard
Bit Time 1
Guard Start
Time 2 Bit
D0
D1
Repetition
Receive Error Counter
The USART receiver also records the total number of errors. This can be read in the Number of Error (US_NER)
register. The NB_ERRORS field can record up to 255 errors. Reading US_NER automatically clears the
NB_ERRORS field.
532
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Receive NACK Inhibit
The USART can also be configured to inhibit an error. This can be achieved by setting the INACK bit in the Mode
Register (US_MR). If INACK is at 1, no error signal is driven on the I/O line even if a parity bit is detected, but the
INACK bit is set in the Status Register (US_SR). The INACK bit can be cleared by writing the Control Register
(US_CR) with the RSTNACK bit at 1.
Moreover, if INACK is set, the erroneous received character is stored in the Receive Holding Register, as if no
error occurred. However, the RXRDY bit does not raise.
Transmit Character Repetition
When the USART is transmitting a character and gets a NACK, it can automatically repeat the character before
moving on to the next one. Repetition is enabled by writing the MAX_ITERATION field in the Mode Register
(US_MR) at a value higher than 0. Each character can be transmitted up to eight times; the first transmission plus
seven repetitions.
If MAX_ITERATION does not equal zero, the USART repeats the character as many times as the value loaded in
MAX_ITERATION.
When the USART repetition number reaches MAX_ITERATION, the ITERATION bit is set in the Channel Status
Register (US_CSR). If the repetition of the character is acknowledged by the receiver, the repetitions are stopped
and the iteration counter is cleared.
The ITERATION bit in US_CSR can be cleared by writing the Control Register with the RSIT bit at 1.
Disable Successive Receive NACK
The receiver can limit the number of successive NACKs sent back to the remote transmitter. This is programmed
by setting the bit DSNACK in the Mode Register (US_MR). The maximum number of NACK transmitted is
programmed in the MAX_ITERATION field. As soon as MAX_ITERATION is reached, the character is considered
as correct, an acknowledge is sent on the line and the ITERATION bit in the Channel Status Register is set.
33.6.4.3 Protocol T = 1
When operating in ISO7816 protocol T = 1, the transmission is similar to an asynchronous format with only one
stop bit. The parity is generated when transmitting and checked when receiving. Parity error detection sets the
PARE bit in the Channel Status Register (US_CSR).
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
533
33.6.5 IrDA Mode
The USART features an IrDA mode supplying half-duplex point-to-point wireless communication. It embeds the
modulator and demodulator which allows a glueless connection to the infrared transceivers, as shown in Figure
33-23. The modulator and demodulator are compliant with the IrDA specification version 1.1 and support data
transfer speeds ranging from 2.4 kbit/s to 115.2 kbit/s.
The USART IrDA mode is enabled by setting the USART_MODE field in the Mode Register (US_MR) to the value
0x8. The IrDA Filter Register (US_IF) allows configuring the demodulator filter. The USART transmitter and
receiver operate in a normal asynchronous mode and all parameters are accessible. Note that the modulator and
the demodulator are activated.
Figure 33-23. Connection to IrDA Transceivers
USART
IrDA
Transceivers
Receiver
Demodulator
Transmitter
Modulator
RXD
RX
TX
TXD
The receiver and the transmitter must be enabled or disabled according to the direction of the transmission to be
managed.
To receive IrDA signals, the following needs to be done:
534

Disable TX and Enable RX

Configure the TXD pin as PIO and set it as an output at 0 (to avoid LED emission). Disable the internal pullup (better for power consumption).

Receive data
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
33.6.5.1 IrDA Modulation
For baud rates up to and including 115.2 kbit/s, the RZI modulation scheme is used. “0” is represented by a light
pulse of 3/16th of a bit time. Some examples of signal pulse duration are shown in Table 33-9.
Table 33-9.
IrDA Pulse Duration
Baud Rate
Pulse Duration (3/16)
2.4 kbit/s
78.13 µs
9.6 kbit/s
19.53 µs
19.2 kbit/s
9.77 µs
38.4 kbit/s
4.88 µs
57.6 kbit/s
3.26 µs
115.2 kbit/s
1.63 µs
Figure 33-24 shows an example of character transmission.
Figure 33-24. IrDA Modulation
Start
Bit
Transmitter
Output
0
Stop
Bit
Data Bits
1
0
1
0
0
1
1
0
1
TXD
Bit Period
3
16 Bit Period
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
535
33.6.5.2 IrDA Baud Rate
Table 33-10 gives some examples of CD values, baud rate error and pulse duration. Note that the requirement on
the maximum acceptable error of ±1.87% must be met.
Table 33-10.
536
IrDA Baud Rate Error
Peripheral Clock
Baud Rate (bit/s)
CD
Baud Rate Error
Pulse Time (µs)
3 686 400
115 200
2
0.00%
1.63
20 000 000
115 200
11
1.38%
1.63
32 768 000
115 200
18
1.25%
1.63
40 000 000
115 200
22
1.38%
1.63
3 686 400
57 600
4
0.00%
3.26
20 000 000
57 600
22
1.38%
3.26
32 768 000
57 600
36
1.25%
3.26
40 000 000
57 600
43
0.93%
3.26
3 686 400
38 400
6
0.00%
4.88
20 000 000
38 400
33
1.38%
4.88
32 768 000
38 400
53
0.63%
4.88
40 000 000
38 400
65
0.16%
4.88
3 686 400
19 200
12
0.00%
9.77
20 000 000
19 200
65
0.16%
9.77
32 768 000
19 200
107
0.31%
9.77
40 000 000
19 200
130
0.16%
9.77
3 686 400
9 600
24
0.00%
19.53
20 000 000
9 600
130
0.16%
19.53
32 768 000
9 600
213
0.16%
19.53
40 000 000
9 600
260
0.16%
19.53
3 686 400
2 400
96
0.00%
78.13
20 000 000
2 400
521
0.03%
78.13
32 768 000
2 400
853
0.04%
78.13
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
33.6.5.3 IrDA Demodulator
The demodulator is based on the IrDA Receive filter comprised of an 8-bit down counter which is loaded with the
value programmed in US_IF. When a falling edge is detected on the RXD pin, the Filter Counter starts counting
down at the Master Clock (MCK) speed. If a rising edge is detected on the RXD pin, the counter stops and is
reloaded with US_IF. If no rising edge is detected when the counter reaches 0, the input of the receiver is driven
low during one bit time.
Figure 33-25 illustrates the operations of the IrDA demodulator.
Figure 33-25. IrDA Demodulator Operations
MCK
RXD
Counter
Value
Receiver
Input
6
5
4 3
Pulse
Rejected
2
6
6
5
4
3
2
1
0
Pulse
Accepted
As the IrDA mode uses the same logic as the ISO7816, note that the FI_DI_RATIO field in US_FIDI must be set to
a value higher than 0 in order to assure IrDA communications operate correctly.
33.6.6 RS485 Mode
The USART features the RS485 mode to enable line driver control. While operating in RS485 mode, the USART
behaves as though in asynchronous or synchronous mode and configuration of all the parameters is possible. The
difference is that the RTS pin is driven high when the transmitter is operating. The behavior of the RTS pin is
controlled by the TXEMPTY bit. A typical connection of the USART to a RS485 bus is shown in Figure 33-26.
Figure 33-26. Typical Connection to a RS485 Bus
USART
RXD
TXD
Differential
Bus
RTS
The USART is set in RS485 mode by programming the USART_MODE field in the Mode Register (US_MR) to the
value 0x1.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
537
The RTS pin is at a level inverse to the TXEMPTY bit. Significantly, the RTS pin remains high when a timeguard is
programmed so that the line can remain driven after the last character completion. Figure 33-27 gives an example
of the RTS waveform during a character transmission when the timeguard is enabled.
Figure 33-27. Example of RTS Drive with Timeguard
TG = 4
Baud Rate
Clock
TXD
Start
D0
Bit
D1
D2
D3
D4
D5
D6
D7
Parity Stop
Bit Bit
Write
US_THR
TXRDY
TXEMPTY
RTS
33.6.7 Test Modes
The USART can be programmed to operate in three different test modes. The internal loopback capability allows
on-board diagnostics. In the loopback mode the USART interface pins are disconnected or not and reconfigured
for loopback internally or externally.
33.6.7.1 Normal Mode
Normal mode connects the RXD pin on the receiver input and the transmitter output on the TXD pin.
Figure 33-28. Normal Mode Configuration
RXD
Receiver
TXD
Transmitter
33.6.7.2 Automatic Echo Mode
Automatic echo mode allows bit-by-bit retransmission. When a bit is received on the RXD pin, it is sent to the TXD
pin, as shown in Figure 33-29. Programming the transmitter has no effect on the TXD pin. The RXD pin is still
connected to the receiver input, thus the receiver remains active.
Figure 33-29. Automatic Echo Mode Configuration
RXD
Receiver
TXD
Transmitter
538
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
33.6.7.3 Local Loopback Mode
Local loopback mode connects the output of the transmitter directly to the input of the receiver, as shown in Figure
33-30. The TXD and RXD pins are not used. The RXD pin has no effect on the receiver and the TXD pin is
continuously driven high, as in idle state.
Figure 33-30. Local Loopback Mode Configuration
RXD
Receiver
1
Transmitter
TXD
33.6.7.4 Remote Loopback Mode
Remote loopback mode directly connects the RXD pin to the TXD pin, as shown in Figure 33-31. The transmitter
and the receiver are disabled and have no effect. This mode allows bit-by-bit retransmission.
Figure 33-31. Remote Loopback Mode Configuration
Receiver
1
RXD
TXD
Transmitter
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
539
33.7
Universal Synchronous Asynchronous Receiver Transmitter (USART) User Interface
Table 33-12.
Register Mapping
Offset
Register
Name
Access
Reset
0x0000
Control Register
US_CR
Write-only
–
0x0004
Mode Register
US_MR
Read/Write
0x0
0x0008
Interrupt Enable Register
US_IER
Write-only
–
0x000C
Interrupt Disable Register
US_IDR
Write-only
–
0x0010
Interrupt Mask Register
US_IMR
Read-only
0x0
0x0014
Channel Status Register
US_CSR
Read-only
0x0
0x0018
Receiver Holding Register
US_RHR
Read-only
0x0
0x001C
Transmitter Holding Register
US_THR
Write-only
–
0x0020
Baud Rate Generator Register
US_BRGR
Read/Write
0x0
0x0024
Receiver Time-out Register
US_RTOR
Read/Write
0x0
0x0028
Transmitter Timeguard Register
US_TTGR
Read/Write
0x0
Reserved
–
–
–
0x0040
FI DI Ratio Register
US_FIDI
Read/Write
0x174
0x0044
Number of Errors Register
US_NER
Read-only
0x0
0x0048
Reserved
–
–
–
0x004C
IrDA Filter Register
US_IF
Read/Write
0x0
Reserved
–
–
–
Reserved for PDC Registers
–
–
–
0x2C–0x3C
0x5C–0xFC
0x100–0x128
540
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
33.7.1 USART Control Register
Name:
US_CR
Address:
0xFFF8C000 (0), 0xFFF90000 (1), 0xFFF94000 (2)
Access:
Write-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
RTSDIS
18
RTSEN
17
–
16
–
15
RETTO
14
RSTNACK
13
RSTIT
12
SENDA
11
STTTO
10
STPBRK
9
STTBRK
8
RSTSTA
7
TXDIS
6
TXEN
5
RXDIS
4
RXEN
3
RSTTX
2
RSTRX
1
–
0
–
• RSTRX: Reset Receiver
0: No effect.
1: Resets the receiver.
• RSTTX: Reset Transmitter
0: No effect.
1: Resets the transmitter.
• RXEN: Receiver Enable
0: No effect.
1: Enables the receiver, if RXDIS is 0.
• RXDIS: Receiver Disable
0: No effect.
1: Disables the receiver.
• TXEN: Transmitter Enable
0: No effect.
1: Enables the transmitter if TXDIS is 0.
• TXDIS: Transmitter Disable
0: No effect.
1: Disables the transmitter.
• RSTSTA: Reset Status Bits
0: No effect.
1: Resets the status bits PARE, FRAME, OVREand RXBRK in US_CSR.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
541
• STTBRK: Start Break
0: No effect.
1: Starts transmission of a break after the characters present in US_THR and the Transmit Shift Register have been transmitted. No effect if a break is already being transmitted.
• STPBRK: Stop Break
0: No effect.
1: Stops transmission of the break after a minimum of one character length and transmits a high level during 12-bit periods.
No effect if no break is being transmitted.
• STTTO: Start Time-out
0: No effect.
1: Starts waiting for a character before clocking the time-out counter. Resets the status bit TIMEOUT in US_CSR.
• SENDA: Send Address
0: No effect.
1: In Multidrop Mode only, the next character written to the US_THR is sent with the address bit set.
• RSTIT: Reset Iterations
0: No effect.
1: Resets ITERATION in US_CSR. No effect if the ISO7816 is not enabled.
• RSTNACK: Reset Non Acknowledge
0: No effect
1: Resets NACK in US_CSR.
• RETTO: Rearm Time-out
0: No effect
1: Restart Time-out
• RTSEN: Request to Send Enable
0: No effect.
1: Drives the pin RTS to 0.
• RTSDIS: Request to Send Disable
0: No effect.
1: Drives the pin RTS to 1.
542
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
33.7.2 USART Mode Register
Name:
US_MR
Address:
0xFFF8C004 (0), 0xFFF90004 (1), 0xFFF94004 (2)
Access:
Read/Write
31
–
30
–
29
–
28
FILTER
27
–
26
25
MAX_ITERATION
24
23
–
22
–
21
DSNACK
20
INACK
19
OVER
18
CLKO
17
MODE9
16
MSBF
14
13
12
11
10
PAR
9
8
SYNC
4
3
2
1
0
15
CHMODE
7
NBSTOP
6
5
CHRL
USCLKS
USART_MODE
• USART_MODE
USART_MODE
Mode of the USART
0
0
0
0
Normal
0
0
0
1
RS485
0
0
1
0
Hardware Handshaking
0
1
0
0
IS07816 Protocol: T = 0
0
1
1
0
IS07816 Protocol: T = 1
1
0
0
0
IrDA
Others
Reserved
• USCLKS: Clock Selection
USCLKS
Selected Clock
0
0
MCK
0
1
MCK/DIV (DIV = 8)
1
0
Reserved
1
1
SCK
• CHRL: Character Length.
CHRL
Character Length
0
0
5 bits
0
1
6 bits
1
0
7 bits
1
1
8 bits
• SYNC: Synchronous Mode Select
0: USART operates in Asynchronous Mode.
1: USART operates in Synchronous Mode.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
543
• PAR: Parity Type
PAR
Parity Type
0
0
0
Even parity
0
0
1
Odd parity
0
1
0
Parity forced to 0 (Space)
0
1
1
Parity forced to 1 (Mark)
1
0
x
No parity
1
1
x
Multidrop mode
• NBSTOP: Number of Stop Bits
NBSTOP
Asynchronous (SYNC = 0)
Synchronous (SYNC = 1)
0
0
1 stop bit
1 stop bit
0
1
1.5 stop bits
Reserved
1
0
2 stop bits
2 stop bits
1
1
Reserved
Reserved
• CHMODE: Channel Mode
CHMODE
Mode Description
0
0
Normal Mode
0
1
Automatic Echo. Receiver input is connected to the TXD pin.
1
0
Local Loopback. Transmitter output is connected to the Receiver Input.
1
1
Remote Loopback. RXD pin is internally connected to the TXD pin.
• MSBF: Bit Order
0: Least Significant Bit is sent/received first.
1: Most Significant Bit is sent/received first.
• MODE9: 9-bit Character Length
0: CHRL defines character length.
1: 9-bit character length.
• CLKO: Clock Output Select
0: The USART does not drive the SCK pin.
1: The USART drives the SCK pin if USCLKS does not select the external clock SCK.
• OVER: Oversampling Mode
0: 16x Oversampling.
1: 8x Oversampling.
• INACK: Inhibit Non Acknowledge
0: The NACK is generated.
1: The NACK is not generated.
544
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
• DSNACK: Disable Successive NACK
0: NACK is sent on the ISO line as soon as a parity error occurs in the received character (unless INACK is set).
1: Successive parity errors are counted up to the value specified in the MAX_ITERATION field. These parity errors generate a NACK on the ISO line. As soon as this value is reached, no additional NACK is sent on the ISO line. The flag
ITERATION is asserted.
• MAX_ITERATION
Defines the maximum number of iterations in mode ISO7816, protocol T = 0.
• FILTER: Infrared Receive Line Filter
0: The USART does not filter the receive line.
1: The USART filters the receive line using a three-sample filter (1/16-bit clock) (2 over 3 majority).
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
545
33.7.3 USART Interrupt Enable Register
Name:
US_IER
Address:
0xFFF8C008 (0), 0xFFF90008 (1), 0xFFF94008 (2)
Access:
Write-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
CTSIC
18
–
17
–
16
–
15
–
14
–
13
NACK
12
RXBUFF
11
TXBUFE
10
ITER
9
TXEMPTY
8
TIMEOUT
7
PARE
6
FRAME
5
OVRE
4
ENDTX
3
ENDRX
2
RXBRK
1
TXRDY
0
RXRDY
• RXRDY: RXRDY Interrupt Enable
• TXRDY: TXRDY Interrupt Enable
• RXBRK: Receiver Break Interrupt Enable
• ENDRX: End of Receive Transfer Interrupt Enable
• ENDTX: End of Transmit Interrupt Enable
• OVRE: Overrun Error Interrupt Enable
• FRAME: Framing Error Interrupt Enable
• PARE: Parity Error Interrupt Enable
• TIMEOUT: Time-out Interrupt Enable
• TXEMPTY: TXEMPTY Interrupt Enable
• ITER: Iteration Interrupt Enable
• TXBUFE: Buffer Empty Interrupt Enable
• RXBUFF: Buffer Full Interrupt Enable
• NACK: Non Acknowledge Interrupt Enable
• CTSIC: Clear to Send Input Change Interrupt Enable
546
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
33.7.4 USART Interrupt Disable Register
Name:
US_IDR
Address:
0xFFF8C00C (0), 0xFFF9000C (1), 0xFFF9400C (2)
Access:
Write-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
CTSIC
18
–
17
–
16
–
15
–
14
–
13
NACK
12
RXBUFF
11
TXBUFE
10
ITER
9
TXEMPTY
8
TIMEOUT
7
PARE
6
FRAME
5
OVRE
4
ENDTX
3
ENDRX
2
RXBRK
1
TXRDY
0
RXRDY
• RXRDY: RXRDY Interrupt Disable
• TXRDY: TXRDY Interrupt Disable
• RXBRK: Receiver Break Interrupt Disable
• ENDRX: End of Receive Transfer Interrupt Disable
• ENDTX: End of Transmit Interrupt Disable
• OVRE: Overrun Error Interrupt Disable
• FRAME: Framing Error Interrupt Disable
• PARE: Parity Error Interrupt Disable
• TIMEOUT: Time-out Interrupt Disable
• TXEMPTY: TXEMPTY Interrupt Disable
• ITER: Iteration Interrupt Enable
• TXBUFE: Buffer Empty Interrupt Disable
• RXBUFF: Buffer Full Interrupt Disable
• NACK: Non Acknowledge Interrupt Disable
• CTSIC: Clear to Send Input Change Interrupt Disable
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
547
33.7.5 USART Interrupt Mask Register
Name:
US_IMR
Address:
0xFFF8C010 (0), 0xFFF90010 (1), 0xFFF94010 (2)
Access:
Read-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
CTSIC
18
–
17
–
16
–
15
–
14
–
13
NACK
12
RXBUFF
11
TXBUFE
10
ITER
9
TXEMPTY
8
TIMEOUT
7
PARE
6
FRAME
5
OVRE
4
ENDTX
3
ENDRX
2
RXBRK
1
TXRDY
0
RXRDY
• RXRDY: RXRDY Interrupt Mask
• TXRDY: TXRDY Interrupt Mask
• RXBRK: Receiver Break Interrupt Mask
• ENDRX: End of Receive Transfer Interrupt Mask
• ENDTX: End of Transmit Interrupt Mask
• OVRE: Overrun Error Interrupt Mask
• FRAME: Framing Error Interrupt Mask
• PARE: Parity Error Interrupt Mask
• TIMEOUT: Time-out Interrupt Mask
• TXEMPTY: TXEMPTY Interrupt Mask
• ITER: Iteration Interrupt Enable
• TXBUFE: Buffer Empty Interrupt Mask
• RXBUFF: Buffer Full Interrupt Mask
• NACK: Non Acknowledge Interrupt Mask
• CTSIC: Clear to Send Input Change Interrupt Mask
548
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
33.7.6 USART Channel Status Register
Name:
US_CSR
Address:
0xFFF8C014 (0), 0xFFF90014 (1), 0xFFF94014 (2)
Access:
Read-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
CTS
22
–
21
–
20
–
19
CTSIC
18
–
17
–
16
–
15
–
14
–
13
NACK
12
RXBUFF
11
TXBUFE
10
ITER
9
TXEMPTY
8
TIMEOUT
7
PARE
6
FRAME
5
OVRE
4
ENDTX
3
ENDRX
2
RXBRK
1
TXRDY
0
RXRDY
• RXRDY: Receiver Ready
0: No complete character has been received since the last read of US_RHR or the receiver is disabled. If characters were
being received when the receiver was disabled, RXRDY changes to 1 when the receiver is enabled.
1: At least one complete character has been received and US_RHR has not yet been read.
• TXRDY: Transmitter Ready
0: A character is in the US_THR waiting to be transferred to the Transmit Shift Register, or an STTBRK command has
been requested, or the transmitter is disabled. As soon as the transmitter is enabled, TXRDY becomes 1.
1: There is no character in the US_THR.
• RXBRK: Break Received/End of Break
0: No Break received or End of Break detected since the last RSTSTA.
1: Break Received or End of Break detected since the last RSTSTA.
• ENDRX: End of Receiver Transfer
0: The End of Transfer signal from the Receive PDC channel is inactive.
1: The End of Transfer signal from the Receive PDC channel is active.
• ENDTX: End of Transmitter Transfer
0: The End of Transfer signal from the Transmit PDC channel is inactive.
1: The End of Transfer signal from the Transmit PDC channel is active.
• OVRE: Overrun Error
0: No overrun error has occurred since the last RSTSTA.
1: At least one overrun error has occurred since the last RSTSTA.
• FRAME: Framing Error
0: No stop bit has been detected low since the last RSTSTA.
1: At least one stop bit has been detected low since the last RSTSTA.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
549
• PARE: Parity Error
0: No parity error has been detected since the last RSTSTA.
1: At least one parity error has been detected since the last RSTSTA.
• TIMEOUT: Receiver Time-out
0: There has not been a time-out since the last Start Time-out command (STTTO in US_CR) or the Time-out Register is 0.
1: There has been a time-out since the last Start Time-out command (STTTO in US_CR).
• TXEMPTY: Transmitter Empty
0: There are characters in either US_THR or the Transmit Shift Register, or the transmitter is disabled.
1: There are no characters in US_THR, nor in the Transmit Shift Register.
• ITER: Max number of Repetitions Reached
0: Maximum number of repetitions has not been reached since the last RSTSTA.
1: Maximum number of repetitions has been reached since the last RSTSTA.
• TXBUFE: Transmission Buffer Empty
0: The signal Buffer Empty from the Transmit PDC channel is inactive.
1: The signal Buffer Empty from the Transmit PDC channel is active.
• RXBUFF: Reception Buffer Full
0: The signal Buffer Full from the Receive PDC channel is inactive.
1: The signal Buffer Full from the Receive PDC channel is active.
• NACK: Non Acknowledge
0: No Non Acknowledge has not been detected since the last RSTNACK.
1: At least one Non Acknowledge has been detected since the last RSTNACK.
• CTSIC: Clear to Send Input Change Flag
0: No input change has been detected on the CTS pin since the last read of US_CSR.
1: At least one input change has been detected on the CTS pin since the last read of US_CSR.
• CTS: Image of CTS Input
0: CTS is at 0.
1: CTS is at 1.
550
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
33.7.7 USART Receive Holding Register
Name:
US_RHR
Address:
0xFFF8C018 (0), 0xFFF90018 (1), 0xFFF94018 (2)
Access:
Read-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
RXSYNH
14
–
13
–
12
–
11
–
10
–
9
–
8
RXCHR
7
6
5
4
3
2
1
0
RXCHR
• RXCHR: Received Character
Last character received if RXRDY is set.
• RXSYNH: Received Sync
0: Last Character received is a Data.
1: Last Character received is a Command.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
551
33.7.8 USART Transmit Holding Register
Name:
US_THR
Address:
0xFFF8C01C (0), 0xFFF9001C (1), 0xFFF9401C (2)
Access:
Write-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
TXSYNH
14
–
13
–
12
–
11
–
10
–
9
–
8
TXCHR
7
6
5
4
3
2
1
0
TXCHR
• TXCHR: Character to be Transmitted
Next character to be transmitted after the current character if TXRDY is not set.
• TXSYNH: Sync Field to be transmitted
0: The next character sent is encoded as a data. Start Frame Delimiter is DATA SYNC.
1: The next character sent is encoded as a command. Start Frame Delimiter is COMMAND SYNC.
552
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
33.7.9 USART Baud Rate Generator Register
Name:
US_BRGR
Address:
0xFFF8C020 (0), 0xFFF90020 (1), 0xFFF94020 (2)
Access:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
17
FP–
16
15
14
13
12
11
10
9
8
3
2
1
0
CD
7
6
5
4
CD
• CD: Clock Divider
USART_MODE ≠ ISO7816
SYNC = 0
OVER = 0
CD
SYNC = 1
OVER = 1
0
1–65535
USART_MODE =
ISO7816
Baud Rate Clock Disabled
Baud Rate =
Baud Rate =
Baud Rate =
Selected Clock/16/CD
Selected Clock/8/CD
Selected Clock /CD
Baud Rate = Selected
Clock/CD/FI_DI_RATIO
• FP: Fractional Part
0: Fractional divider is disabled.
1–7: Baudrate resolution, defined by FP x 1/8.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
553
33.7.10 USART Receiver Time-out Register
Name:
US_RTOR
Address:
0xFFF8C024 (0), 0xFFF90024 (1), 0xFFF94024 (2)
Access:
Read/Write
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
14
13
12
11
10
9
8
3
2
1
0
TO
7
6
5
4
TO
• TO: Time-out Value
0: The Receiver Time-out is disabled.
1–65535: The Receiver Time-out is enabled and the Time-out delay is TO x Bit Period.
554
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
33.7.11 USART Transmitter Timeguard Register
Name:
US_TTGR
Address:
0xFFF8C028 (0), 0xFFF90028 (1), 0xFFF94028 (2)
Access:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
6
5
4
3
2
1
0
TG
• TG: Timeguard Value
0: The Transmitter Timeguard is disabled.
1–255: The Transmitter timeguard is enabled and the timeguard delay is TG x Bit Period.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
555
33.7.12 USART FI DI RATIO Register
Name:
US_FIDI
Address:
0xFFF8C040 (0), 0xFFF90040 (1), 0xFFF94040 (2)
Access:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
9
FI_DI_RATIO
8
7
6
5
4
3
2
1
0
FI_DI_RATIO
• FI_DI_RATIO: FI Over DI Ratio Value
0: If ISO7816 mode is selected, the Baud Rate Generator generates no signal.
1–2047: If ISO7816 mode is selected, the Baud Rate is the clock provided on SCK divided by FI_DI_RATIO.
556
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
33.7.13 USART Number of Errors Register
Name:
US_NER
Address:
0xFFF8C044 (0), 0xFFF90044 (1), 0xFFF94044 (2)
Access:
Read-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
6
5
4
3
2
1
0
NB_ERRORS
• NB_ERRORS: Number of Errors
Total number of errors that occurred during an ISO7816 transfer. This register automatically clears when read.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
557
33.7.14 USART IrDA FILTER Register
Name:
US_IF
Address:
0xFFF8C04C (0), 0xFFF9004C (1), 0xFFF9404C (2)
Access:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
6
5
4
3
2
1
0
IRDA_FILTER
• IRDA_FILTER: IrDA Filter
Sets the filter of the IrDA demodulator.
558
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
34.
Synchronous Serial Controller (SSC)
34.1
Overview
The Atmel Synchronous Serial Controller (SSC) provides a synchronous communication link with external devices.
It supports many serial synchronous communication protocols generally used in audio and telecom applications
such as I2S, Short Frame Sync, Long Frame Sync, etc.
The SSC contains an independent receiver and transmitter and a common clock divider. The receiver and the
transmitter each interface with three signals: the TD/RD signal for data, the TK/RK signal for the clock and the
TF/RF signal for the Frame Sync. The transfers can be programmed to start automatically or on different events
detected on the Frame Sync signal.
The SSC’s high-level of programmability and its two dedicated PDC channels of up to 32 bits permit a continuous
high bit rate data transfer without processor intervention.
Featuring connection to two PDC channels, the SSC permits interfacing with low processor overhead to the
following:
34.2

CODECs in master or slave mode

DAC through dedicated serial interface, particularly I2S

Magnetic card reader
Block Diagram
Figure 34-1.
Block Diagram
System
Bus
APB Bridge
PDC
Peripheral
Bus
TF
TK
PMC
TD
MCK
SSC Interface
PIO
RF
RK
Interrupt Control
RD
SSC Interrupt
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
559
34.3
Application Block Diagram
Figure 34-2.
Application Block Diagram
OS or RTOS Driver
Power
Management
Interrupt
Management
Test
Management
SSC
Serial AUDIO
34.4
Time Slot
Management
Frame
Management
Line Interface
Pin Name List
Table 34-1.
34.5
Codec
I/O Lines Description
Pin Name
Pin Description
Type
RF
Receiver Frame Synchro
Input/Output
RK
Receiver Clock
Input/Output
RD
Receiver Data
Input
TF
Transmitter Frame Synchro
Input/Output
TK
Transmitter Clock
Input/Output
TD
Transmitter Data
Output
Product Dependencies
34.5.1 I/O Lines
The pins used for interfacing the compliant external devices may be multiplexed with PIO lines.
Before using the SSC receiver, the PIO controller must be configured to dedicate the SSC receiver I/O lines to the
SSC peripheral mode.
Before using the SSC transmitter, the PIO controller must be configured to dedicate the SSC transmitter I/O lines
to the SSC peripheral mode.
34.5.2 Power Management
The SSC is not continuously clocked. The SSC interface may be clocked through the Power Management
Controller (PMC), therefore the programmer must first configure the PMC to enable the SSC clock.
34.5.3 Interrupt
The SSC interface has an interrupt line connected to the Advanced Interrupt Controller (AIC). Handling interrupts
requires programming the AIC before configuring the SSC.
All SSC interrupts can be enabled/disabled configuring the SSC Interrupt mask register. Each pending and
unmasked SSC interrupt will assert the SSC interrupt line. The SSC interrupt service routine can get the interrupt
origin by reading the SSC interrupt status register.
560
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
34.6
Functional Description
This section contains the functional description of the following: SSC Functional Block, Clock Management, Data
format, Start, Transmitter, Receiver and Frame Sync.
The receiver and transmitter operate separately. However, they can work synchronously by programming the
receiver to use the transmit clock and/or to start a data transfer when transmission starts. Alternatively, this can be
done by programming the transmitter to use the receive clock and/or to start a data transfer when reception starts.
The transmitter and the receiver can be programmed to operate with the clock signals provided on either the TK or
RK pins. This allows the SSC to support many slave-mode data transfers. The maximum clock speed allowed on
the TK and RK pins is the master clock divided by 2.
Figure 34-3.
SSC Functional Block Diagram
Transmitter
MCK
TK Input
Clock
Divider
Transmit Clock
Controller
RX clock
TF
RF
Start
Selector
TX clock
Clock Output
Controller
TK
Frame Sync
Controller
TF
Transmit Shift Register
TX PDC
APB
Transmit Holding
Register
TD
Transmit Sync
Holding Register
Load Shift
User
Interface
Receiver
RK Input
Receive Clock RX Clock
Controller
TX Clock
RF
TF
Start
Selector
Interrupt Control
RK
Frame Sync
Controller
RF
Receive Shift Register
RX PDC
PDC
Clock Output
Controller
Receive Holding
Register
RD
Receive Sync
Holding Register
Load Shift
AIC
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
561
34.6.1 Clock Management
The transmitter clock can be generated by:

an external clock received on the TK I/O pad

the receiver clock

the internal clock divider
The receiver clock can be generated by:

an external clock received on the RK I/O pad

the transmitter clock

the internal clock divider
Furthermore, the transmitter block can generate an external clock on the TK I/O pad, and the receiver block can
generate an external clock on the RK I/O pad.
This allows the SSC to support many Master and Slave Mode data transfers.
34.6.1.1 Clock Divider
Figure 34-4.
Divided Clock Block Diagram
Clock Divider
SSC_CMR
MCK
/2
12-bit Counter
Divided Clock
The Master Clock divider is determined by the 12-bit field DIV counter and comparator (so its maximal value is
4095) in the Clock Mode Register SSC_CMR, allowing a Master Clock division by up to 8190. The Divided Clock is
provided to both the Receiver and Transmitter. When this field is programmed to 0, the Clock Divider is not used
and remains inactive.
When DIV is set to a value equal to or greater than 1, the Divided Clock has a frequency of Master Clock divided
by 2 times DIV. Each level of the Divided Clock has a duration of the Master Clock multiplied by DIV. This ensures
a 50% duty cycle for the Divided Clock regardless of whether the DIV value is even or odd.
Figure 34-5.
Divided Clock Generation
Master Clock
Divided Clock
DIV = 1
Divided Clock Frequency = MCK/2
Master Clock
Divided Clock
DIV = 3
Divided Clock Frequency = MCK/6
562
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
34.6.1.2 Transmitter Clock Management
The transmitter clock is generated from the receiver clock or the divider clock or an external clock scanned on the
TK I/O pad. The transmitter clock is selected by the CKS field in SSC_TCMR (Transmit Clock Mode Register).
Transmit Clock can be inverted independently by the CKI bits in SSC_TCMR.
The transmitter can also drive the TK I/O pad continuously or be limited to the actual data transfer. The clock
output is configured by the SSC_TCMR. The Transmit Clock Inversion (CKI) bits have no effect on the clock
outputs. Programming the TCMR to select TK pin (CKS field) and at the same time Continuous Transmit Clock
(CKO field) might lead to unpredictable results.
Figure 34-6.
Transmitter Clock Management
TK (pin)
Clock
Output
Tri_state
Controller
MUX
Receiver
Clock
Divider
Clock
Data Transfer
CKO
CKS
INV
MUX
Tri-state
Controller
CKI
CKG
Transmitter
Clock
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
563
34.6.1.3 Receiver Clock Management
The receiver clock is generated from the transmitter clock or the divider clock or an external clock scanned on the
RK I/O pad. The Receive Clock is selected by the CKS field in SSC_RCMR (Receive Clock Mode Register).
Receive Clocks can be inverted independently by the CKI bits in SSC_RCMR.
The receiver can also drive the RK I/O pad continuously or be limited to the actual data transfer. The clock output
is configured by the SSC_RCMR. The Receive Clock Inversion (CKI) bits have no effect on the clock outputs.
Programming the RCMR register to select RK pin (CKS field) and at the same time Continuous Receive Clock
(CKO field) can lead to unpredictable results.
Figure 34-7.
Receiver Clock Management
RK (pin)
Tri-state
Controller
MUX
Clock
Output
Transmitter
Clock
Divider
Clock
Data Transfer
CKO
CKS
INV
MUX
Tri-state
Controller
CKI
CKG
Receiver
Clock
34.6.1.4 Serial Clock Ratio Considerations
The Transmitter and the Receiver can be programmed to operate with the clock signals provided on either the TK
or RK pins. This allows the SSC to support many slave-mode data transfers. In this case, the maximum clock
speed allowed on the RK pin is:
̶
Master Clock divided by 2 if Receiver Frame Synchro is input
̶
Master Clock divided by 3 if Receiver Frame Synchro is output
In addition, the maximum clock speed allowed on the TK pin is:
̶
̶
564
Master Clock divided by 6 if Transmit Frame Synchro is input
Master Clock divided by 2 if Transmit Frame Synchro is output
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
34.6.2 Transmitter Operations
A transmitted frame is triggered by a start event and can be followed by synchronization data before data
transmission.
The start event is configured by setting the Transmit Clock Mode Register (SSC_TCMR). See “Start” on page 566.
The frame synchronization is configured setting the Transmit Frame Mode Register (SSC_TFMR). See “Frame
Sync” on page 567.
To transmit data, the transmitter uses a shift register clocked by the transmitter clock signal and the start mode
selected in the SSC_TCMR. Data is written by the application to the SSC_THR then transferred to the shift register
according to the data format selected.
When both the SSC_THR and the transmit shift register are empty, the status flag TXEMPTY is set in SSC_SR.
When the Transmit Holding register is transferred in the Transmit shift register, the status flag TXRDY is set in
SSC_SR and additional data can be loaded in the holding register.
Figure 34-8.
Transmitter Block Diagram
SSC_CR.TXEN
SSC_SR.TXEN
SSC_CR.TXDIS
SSC_TFMR.DATDEF
1
RF
Transmitter Clock
TF
Start
Selector
TD
0
SSC_TFMR.MSBF
Transmit Shift Register
0
SSC_TFMR.FSDEN
SSC_TCMR.STTDLY
SSC_TFMR.DATLEN
SSC_TCMR.STTDLY
SSC_TFMR.FSDEN
SSC_TFMR.DATNB
SSC_THR
1
SSC_TSHR
SSC_TFMR.FSLEN
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
565
34.6.3 Receiver Operations
A received frame is triggered by a start event and can be followed by synchronization data before data
transmission.
The start event is configured setting the Receive Clock Mode Register (SSC_RCMR). See “Start” .
The frame synchronization is configured setting the Receive Frame Mode Register (SSC_RFMR). See “Frame
Sync” on page 567.
The receiver uses a shift register clocked by the receiver clock signal and the start mode selected in the
SSC_RCMR. The data is transferred from the shift register depending on the data format selected.
When the receiver shift register is full, the SSC transfers this data in the holding register, the status flag RXRDY is
set in SSC_SR and the data can be read in the receiver holding register. If another transfer occurs before read of
the RHR register, the status flag OVERUN is set in SSC_SR and the receiver shift register is transferred in the
RHR register.
Figure 34-9.
Receiver Block Diagram
SSC_CR.RXEN
SSC_SR.RXEN
SSC_CR.RXDIS
RF
Receiver Clock
TF
SSC_RFMR.MSBF
Start
Selector
SSC_RFMR.DATNB
Receive Shift Register
SSC_RSHR
SSC_RHR
SSC_RFMR.FSLEN
SSC_RFMR.DATLEN
RD
SSC_RCMR.STTDLY
34.6.4 Start
The transmitter and receiver can both be programmed to start their operations when an event occurs, respectively
in the Transmit Start Selection (START) field of SSC_TCMR and in the Receive Start Selection (START) field of
SSC_RCMR.
Under the following conditions the start event is independently programmable:

Continuous. In this case, the transmission starts as soon as a word is written in SSC_THR and the reception
starts as soon as the Receiver is enabled.

Synchronously with the transmitter/receiver

On detection of a falling/rising edge on TF/RF

On detection of a low level/high level on TF/RF

On detection of a level change or an edge on TF/RF
A start can be programmed in the same manner on either side of the Transmit/Receive Clock Register
(RCMR/TCMR). Thus, the start could be on TF (Transmit) or RF (Receive).
Moreover, the Receiver can start when data is detected in the bit stream with the Compare Functions.
Detection on TF/RF input/output is done by the field FSOS of the Transmit/Receive Frame Mode Register
(TFMR/RFMR).
566
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Figure 34-10. Transmit Start Mode
TK
TF
(Input)
Start = Low Level on TF
Start = Falling Edge on TF
Start = High Level on TF
Start = Rising Edge on TF
Start = Level Change on TF
Start = Any Edge on TF
TD
(Output)
TD
(Output)
X
BO
STTDLY
BO
X
B1
STTDLY
BO
X
TD
(Output)
B1
STTDLY
TD
(Output)
BO
X
B1
STTDLY
TD
(Output)
TD
(Output)
B1
BO
X
B1
BO
B1
STTDLY
X
B1
BO
BO
B1
STTDLY
Figure 34-11. Receive Pulse/Edge Start Modes
RK
RF
(Input)
Start = Low Level on RF
Start = Falling Edge on RF
Start = High Level on RF
Start = Rising Edge on RF
Start = Level Change on RF
Start = Any Edge on RF
RD
(Input)
RD
(Input)
X
BO
STTDLY
BO
X
B1
STTDLY
BO
X
RD
(Input)
B1
STTDLY
RD
(Input)
BO
X
B1
STTDLY
RD
(Input)
RD
(Input)
B1
BO
X
B1
BO
B1
STTDLY
X
BO
B1
BO
B1
STTDLY
34.6.5 Frame Sync
The Transmitter and Receiver Frame Sync pins, TF and RF, can be programmed to generate different kinds of
frame synchronization signals. The Frame Sync Output Selection (FSOS) field in the Receive Frame Mode
Register (SSC_RFMR) and in the Transmit Frame Mode Register (SSC_TFMR) are used to select the required
waveform.

Programmable low or high levels during data transfer are supported.

Programmable high levels before the start of data transfers or toggling are also supported.
If a pulse waveform is selected, the Frame Sync Length (FSLEN) field in SSC_RFMR and SSC_TFMR programs
the length of the pulse, from 1 bit time up to 16 bit time.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
567
The periodicity of the Receive and Transmit Frame Sync pulse output can be programmed through the Period
Divider Selection (PERIOD) field in SSC_RCMR and SSC_TCMR.
34.6.5.1 Frame Sync Data
Frame Sync Data transmits or receives a specific tag during the Frame Sync signal.
During the Frame Sync signal, the Receiver can sample the RD line and store the data in the Receive Sync
Holding Register and the transmitter can transfer Transmit Sync Holding Register in the Shifter Register. The data
length to be sampled/shifted out during the Frame Sync signal is programmed by the FSLEN field in
SSC_RFMR/SSC_TFMR and has a maximum value of 16.
Concerning the Receive Frame Sync Data operation, if the Frame Sync Length is equal to or lower than the delay
between the start event and the actual data reception, the data sampling operation is performed in the Receive
Sync Holding Register through the Receive Shift Register.
The Transmit Frame Sync Operation is performed by the transmitter only if the bit Frame Sync Data Enable
(FSDEN) in SSC_TFMR is set. If the Frame Sync length is equal to or lower than the delay between the start event
and the actual data transmission, the normal transmission has priority and the data contained in the Transmit Sync
Holding Register is transferred in the Transmit Register, then shifted out.
34.6.5.2 Frame Sync Edge Detection
The Frame Sync Edge detection is programmed by the FSEDGE field in SSC_RFMR/SSC_TFMR. This sets the
corresponding flags RXSYN/TXSYN in the SSC Status Register (SSC_SR) on frame synchro edge detection
(signals RF/TF).
34.6.6 Receive Compare Modes
Figure 34-12. Receive Compare Modes
RK
RD
(Input)
CMP0
CMP1
CMP2
CMP3
Ignored
B0
B1
B2
Start
FSLEN
Up to 16 Bits
(4 in This Example)
STDLY
DATLEN
34.6.6.1 Compare Functions
Length of the comparison patterns (Compare 0, Compare 1) and thus the number of bits they are compared to is
defined by FSLEN, but with a maximum value of 16 bits. Comparison is always done by comparing the last bits
received with the comparison pattern. Compare 0 can be one start event of the Receiver. In this case, the receiver
compares at each new sample the last bits received at the Compare 0 pattern contained in the Compare 0
Register (SSC_RC0R). When this start event is selected, the user can program the Receiver to start a new data
transfer either by writing a new Compare 0, or by receiving continuously until Compare 1 occurs. This selection is
done with the bit (STOP) in SSC_RCMR.
568
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
34.6.7 Data Format
The data framing format of both the transmitter and the receiver are programmable through the Transmitter Frame
Mode Register (SSC_TFMR) and the Receiver Frame Mode Register (SSC_RFMR). In either case, the user can
independently select:

the event that starts the data transfer (START)

the delay in number of bit periods between the start event and the first data bit (STTDLY)

the length of the data (DATLEN)

the number of data to be transferred for each start event (DATNB).

the length of synchronization transferred for each start event (FSLEN)

the bit sense: most or lowest significant bit first (MSBF)
Additionally, the transmitter can be used to transfer synchronization and select the level driven on the TD pin while
not in data transfer operation. This is done respectively by the Frame Sync Data Enable (FSDEN) and by the Data
Default Value (DATDEF) bits in SSC_TFMR.
Table 34-2.
Data Frame Registers
Transmitter
Receiver
Field
Length
Comment
SSC_TFMR
SSC_RFMR
DATLEN
Up to 32
Size of word
SSC_TFMR
SSC_RFMR
DATNB
Up to 16
Number of words transmitted in frame
SSC_TFMR
SSC_RFMR
MSBF
SSC_TFMR
SSC_RFMR
FSLEN
Up to 16
Size of Synchro data register
SSC_TFMR
DATDEF
0 or 1
Data default value ended
SSC_TFMR
FSDEN
Most significant bit first
Enable send SSC_TSHR
SSC_TCMR
SSC_RCMR
PERIOD
Up to 512
Frame size
SSC_TCMR
SSC_RCMR
STTDLY
Up to 255
Size of transmit start delay
Figure 34-13. Transmit and Receive Frame Format in Edge/Pulse Start Modes
Start
Start
PERIOD
TF/RF
(1)
FSLEN
TD
(If FSDEN = 1)
TD
(If FSDEN = 0)
RD
Sync Data
Default
From SSC_TSHR FromDATDEF
Data
Data
From SSC_THR
From SSC_THR
Default
Sync Data
From SSC_THR
Ignored
To SSC_RSHR
STTDLY
From SSC_THR
Data
Data
To SSC_RHR
To SSC_RHR
DATLEN
DATLEN
Sync Data
FromDATDEF
Data
Data
From DATDEF
Default
Default
From DATDEF
Ignored
Sync Data
DATNB
Note:
1.
Example of input on falling edge of TF/RF.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
569
Figure 34-14. Transmit Frame Format in Continuous Mode
Start
Data
TD
Default
Data
From SSC_THR
From SSC_THR
DATLEN
DATLEN
Start: 1. TXEMPTY set to 1
2. Write into the SSC_THR
Note:
1.
STTDLY is set to 0. In this example, SSC_THR is loaded twice. FSDEN value has no effect on the transmission.
SyncData cannot be output in continuous mode.
Figure 34-15. Receive Frame Format in Continuous Mode
Start = Enable Receiver
RD
Note:
1.
Data
Data
To SSC_RHR
To SSC_RHR
DATLEN
DATLEN
STTDLY is set to 0.
34.6.8 Loop Mode
The receiver can be programmed to receive transmissions from the transmitter. This is done by setting the Loop
Mode (LOOP) bit in SSC_RFMR. In this case, RD is connected to TD, RF is connected to TF and RK is connected
to TK.
570
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
34.6.9 Interrupt
Most bits in SSC_SR have a corresponding bit in interrupt management registers.
The SSC can be programmed to generate an interrupt when it detects an event. The interrupt is controlled by
writing SSC_IER (Interrupt Enable Register) and SSC_IDR (Interrupt Disable Register) These registers enable
and disable, respectively, the corresponding interrupt by setting and clearing the corresponding bit in SSC_IMR
(Interrupt Mask Register), which controls the generation of interrupts by asserting the SSC interrupt line connected
to the AIC.
Figure 34-16. Interrupt Block Diagram
SSC_IMR
SSC_IER
PDC
SSC_IDR
Set
Clear
TXBUFE
ENDTX
Transmitter
TXRDY
TXEMPTY
TXSYNC
Interrupt
Control
RXBUFF
ENDRX
SSC Interrupt
Receiver
RXRDY
OVRUN
RXSYNC
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
571
34.7
SSC Application Examples
The SSC can support several serial communication modes used in audio or high speed serial links. Some
standard applications are shown in the following figures. All serial link applications supported by the SSC are not
listed here.
Figure 34-17. Audio Application Block Diagram
Clock SCK
TK
Word Select WS
I2S
RECEIVER
TF
Data SD
SSC
TD
RD
Clock SCK
RF
Word Select WS
RK
MSB
Data SD
LSB
Right Channel
Left Channel
Figure 34-18. Codec Application Block Diagram
Serial Data Clock (SCLK)
TK
Frame sync (FSYNC)
TF
Serial Data Out
SSC
CODEC
TD
Serial Data In
RD
RF
Serial Data Clock (SCLK)
RK
Frame sync (FSYNC)
First Time Slot
Dstart
Serial Data Out
Serial Data In
572
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
MSB
Dend
Figure 34-19. Time Slot Application Block Diagram
SCLK
TK
FSYNC
TF
CODEC
First
Time Slot
Data Out
TD
SSC
RD
Data in
RF
RK
CODEC
Second
Time Slot
Serial Data Clock (SCLK)
Frame sync (FSYNC)
First Time Slot
Dstart
Second Time Slot
Dend
Serial Data Out
Serial Data in
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
573
34.8
Synchronous Serial Controller (SSC) User Interface
Table 34-3.
Offset
Register
Name
Access
Reset
0x0
Control Register
SSC_CR
Write-only
–
0x4
Clock Mode Register
SSC_CMR
Read/Write
0x0
0x8
Reserved
–
–
–
0xC
Reserved
–
–
–
0x10
Receive Clock Mode Register
SSC_RCMR
Read/Write
0x0
0x14
Receive Frame Mode Register
SSC_RFMR
Read/Write
0x0
0x18
Transmit Clock Mode Register
SSC_TCMR
Read/Write
0x0
0x1C
Transmit Frame Mode Register
SSC_TFMR
Read/Write
0x0
0x20
Receive Holding Register
SSC_RHR
Read-only
0x0
0x24
Transmit Holding Register
SSC_THR
Write-only
–
0x28
Reserved
–
–
–
0x2C
Reserved
–
–
–
0x30
Receive Sync. Holding Register
SSC_RSHR
Read-only
0x0
0x34
Transmit Sync. Holding Register
SSC_TSHR
Read/Write
0x0
0x38
Receive Compare 0 Register
SSC_RC0R
Read/Write
0x0
0x3C
Receive Compare 1 Register
SSC_RC1R
Read/Write
0x0
0x40
Status Register
SSC_SR
Read-only
0x000000CC
0x44
Interrupt Enable Register
SSC_IER
Write-only
–
0x48
Interrupt Disable Register
SSC_IDR
Write-only
–
0x4C
Interrupt Mask Register
SSC_IMR
Read-only
0x0
Reserved
–
–
–
Reserved for Peripheral Data Controller (PDC)
–
–
–
0x50–0xFC
0x100–0x124
574
Register Mapping
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
34.8.1 SSC Control Register
Name:
SSC_CR
Address:
0xFFF98000 (0), 0xFFF9C000 (1)
Access:
Write-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
SWRST
14
–
13
–
12
–
11
–
10
–
9
TXDIS
8
TXEN
7
–
6
–
5
–
4
–
3
–
2
–
1
RXDIS
0
RXEN
• RXEN: Receive Enable
0: No effect.
1: Enables Receive if RXDIS is not set.
• RXDIS: Receive Disable
0: No effect.
1: Disables Receive. If a character is currently being received, disables at end of current character reception.
• TXEN: Transmit Enable
0: No effect.
1: Enables Transmit if TXDIS is not set.
• TXDIS: Transmit Disable
0: No effect.
1: Disables Transmit. If a character is currently being transmitted, disables at end of current character transmission.
• SWRST: Software Reset
0: No effect.
1: Performs a software reset. Has priority on any other bit in SSC_CR.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
575
34.8.2 SSC Clock Mode Register
Name:
SSC_CMR
Address:
0xFFF98004 (0), 0xFFF9C004 (1)
Access:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
10
9
8
7
6
5
4
1
0
DIV
3
2
DIV
• DIV: Clock Divider
0: The Clock Divider is not active.
Any Other Value: The Divided Clock equals the Master Clock divided by 2 times DIV. The maximum bit rate is MCK/2. The
minimum bit rate is MCK/2 x 4095 = MCK/8190.
576
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
34.8.3 SSC Receive Clock Mode Register
Name:
SSC_RCMR
Address:
0xFFF98010 (0), 0xFFF9C010 (1)
Access:
Read/Write
31
30
29
28
27
26
25
24
19
18
17
16
10
9
8
PERIOD
23
22
21
20
STTDLY
15
–
7
14
–
13
–
12
STOP
11
6
5
CKI
4
3
CKO
CKG
START
2
1
0
CKS
• CKS: Receive Clock Selection
CKS
Selected Receive Clock
0x0
Divided Clock
0x1
TK Clock signal
0x2
RK pin
0x3
Reserved
• CKO: Receive Clock Output Mode Selection
CKO
Receive Clock Output Mode
RK pin
0x0
None
0x1
Continuous Receive Clock
Output
0x2
Receive Clock only during data transfers
Output
0x3–0x7
Input-only
Reserved
• CKI: Receive Clock Inversion
0: The data inputs (Data and Frame Sync signals) are sampled on Receive Clock falling edge. The Frame Sync signal output is shifted out on Receive Clock rising edge.
1: The data inputs (Data and Frame Sync signals) are sampled on Receive Clock rising edge. The Frame Sync signal output is shifted out on Receive Clock falling edge.
CKI affects only the Receive Clock and not the output clock signal.
• CKG: Receive Clock Gating Selection
CKG
Receive Clock Gating
0x0
None, continuous clock
0x1
Receive Clock enabled only if RF Low
0x2
Receive Clock enabled only if RF High
0x3
Reserved
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
577
• START: Receive Start Selection
START
Receive Start
0x0
Continuous, as soon as the receiver is enabled, and immediately after the end of transfer of the previous data.
0x1
Transmit start
0x2
Detection of a low level on RF signal
0x3
Detection of a high level on RF signal
0x4
Detection of a falling edge on RF signal
0x5
Detection of a rising edge on RF signal
0x6
Detection of any level change on RF signal
0x7
Detection of any edge on RF signal
0x8
Compare 0
0x9–0xF
Reserved
• STOP: Receive Stop Selection
0: After completion of a data transfer when starting with a Compare 0, the receiver stops the data transfer and waits for a
new compare 0.
1: After starting a receive with a Compare 0, the receiver operates in a continuous mode until a Compare 1 is detected.
• STTDLY: Receive Start Delay
If STTDLY is not 0, a delay of STTDLY clock cycles is inserted between the start event and the actual start of reception.
When the Receiver is programmed to start synchronously with the Transmitter, the delay is also applied.
Note: It is very important that STTDLY be set carefully. If STTDLY must be set, it should be done in relation to TAG
(Receive Sync Data) reception.
• PERIOD: Receive Period Divider Selection
This field selects the divider to apply to the selected Receive Clock in order to generate a new Frame Sync Signal. If 0, no
PERIOD signal is generated. If not 0, a PERIOD signal is generated each 2 x (PERIOD+1) Receive Clock.
578
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
34.8.4 SSC Receive Frame Mode Register
Name:
SSC_RFMR
Address:
0xFFF98014 (0), 0xFFF9C014 (1)
Access:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
FSEDGE
23
–
22
21
FSOS
20
19
18
17
16
15
–
14
–
13
–
12
–
11
9
8
7
MSBF
6
–
5
LOOP
4
3
1
0
FSLEN
10
DATNB
2
DATLEN
• DATLEN: Data Length
0: Forbidden value (1-bit data length not supported).
Any other value: The bit stream contains DATLEN + 1 data bits. Moreover, it defines the transfer size performed by the
PDC2 assigned to the Receiver. If DATLEN is lower or equal to 7, data transfers are in bytes. If DATLEN is between 8 and
15 (included), half-words are transferred, and for any other value, 32-bit words are transferred.
• LOOP: Loop Mode
0: Normal operating mode.
1: RD is driven by TD, RF is driven by TF and TK drives RK.
• MSBF: Most Significant Bit First
0: The lowest significant bit of the data register is sampled first in the bit stream.
1: The most significant bit of the data register is sampled first in the bit stream.
• DATNB: Data Number per Frame
This field defines the number of data words to be received after each transfer start, which is equal to (DATNB + 1).
• FSLEN: Receive Frame Sync Length
This field defines the number of bits sampled and stored in the Receive Sync Data Register. When this mode is selected by
the START field in the Receive Clock Mode Register, it also determines the length of the sampled data to be compared to
the Compare 0 or Compare 1 register.
• FSOS: Receive Frame Sync Output Selection
FSOS
Selected Receive Frame Sync Signal
RF Pin
0x0
None
0x1
Negative Pulse
Output
0x2
Positive Pulse
Output
0x3
Driven Low during data transfer
Output
0x4
Driven High during data transfer
Output
0x5
Toggling at each start of data transfer
Output
0x6–0x7
Reserved
Input-only
Undefined
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
579
• FSEDGE: Frame Sync Edge Detection
Determines which edge on Frame Sync will generate the interrupt RXSYN in the SSC Status Register.
FSEDGE
580
Frame Sync Edge Detection
0x0
Positive Edge Detection
0x1
Negative Edge Detection
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
34.8.5 SSC Transmit Clock Mode Register
Name:
SSC_TCMR
Address:
0xFFF98018 (0), 0xFFF9C018 (1)
Access:
Read/Write
31
30
29
28
27
26
25
24
19
18
17
16
10
9
8
PERIOD
23
22
21
20
STTDLY
15
–
7
14
–
13
–
12
–
11
6
5
CKI
4
3
CKO
CKG
START
2
1
0
CKS
• CKS: Transmit Clock Selection
CKS
Selected Transmit Clock
0x0
Divided Clock
0x1
RK Clock signal
0x2
TK Pin
0x3
Reserved
• CKO: Transmit Clock Output Mode Selection
CKO
Transmit Clock Output Mode
TK pin
0x0
None
0x1
Continuous Transmit Clock
Output
0x2
Transmit Clock only during data transfers
Output
0x3–0x7
Input-only
Reserved
• CKI: Transmit Clock Inversion
0: The data outputs (Data and Frame Sync signals) are shifted out on Transmit Clock falling edge. The Frame sync signal
input is sampled on Transmit clock rising edge.
1: The data outputs (Data and Frame Sync signals) are shifted out on Transmit Clock rising edge. The Frame sync signal
input is sampled on Transmit clock falling edge.
CKI affects only the Transmit Clock and not the output clock signal.
• CKG: Transmit Clock Gating Selection
CKG
Transmit Clock Gating
0x0
None, continuous clock
0x1
Transmit Clock enabled only if TF Low
0x2
Transmit Clock enabled only if TF High
0x3
Reserved
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
581
• START: Transmit Start Selection
START
Transmit Start
0x0
Continuous, as soon as a word is written in the SSC_THR Register (if Transmit is enabled), and
immediately after the end of transfer of the previous data.
0x1
Receive start
0x2
Detection of a low level on TF signal
0x3
Detection of a high level on TF signal
0x4
Detection of a falling edge on TF signal
0x5
Detection of a rising edge on TF signal
0x6
Detection of any level change on TF signal
0x7
Detection of any edge on TF signal
0x8–0xF
Reserved
• STTDLY: Transmit Start Delay
If STTDLY is not 0, a delay of STTDLY clock cycles is inserted between the start event and the actual start of transmission
of data. When the Transmitter is programmed to start synchronously with the Receiver, the delay is also applied.
Note: STTDLY must be set carefully. If STTDLY is too short in respect to TAG (Transmit Sync Data) emission, data is emitted instead of the end of TAG.
• PERIOD: Transmit Period Divider Selection
This field selects the divider to apply to the selected Transmit Clock to generate a new Frame Sync Signal. If 0, no period
signal is generated. If not 0, a period signal is generated at each 2 x (PERIOD+1) Transmit Clock.
582
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
34.8.6 SSC Transmit Frame Mode Register
Name:
SSC_TFMR
Address:
0xFFF9801C (0), 0xFFF9C01C (1)
Access:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
FSEDGE
23
FSDEN
22
21
FSOS
20
19
18
17
16
15
–
14
–
13
–
12
–
11
9
8
7
MSBF
6
–
5
DATDEF
4
3
1
0
FSLEN
10
DATNB
2
DATLEN
• DATLEN: Data Length
0: Forbidden value (1-bit data length not supported).
Any other value: The bit stream contains DATLEN + 1 data bits. Moreover, it defines the transfer size performed by the
PDC2 assigned to the Transmit. If DATLEN is lower or equal to 7, data transfers are bytes, if DATLEN is between 8 and 15
(included), half-words are transferred, and for any other value, 32-bit words are transferred.
• DATDEF: Data Default Value
This bit defines the level driven on the TD pin while out of transmission. Note that if the pin is defined as multi-drive by the
PIO Controller, the pin is enabled only if the SCC TD output is 1.
• MSBF: Most Significant Bit First
0: The lowest significant bit of the data register is shifted out first in the bit stream.
1: The most significant bit of the data register is shifted out first in the bit stream.
• DATNB: Data Number per frame
This field defines the number of data words to be transferred after each transfer start, which is equal to (DATNB +1).
• FSLEN: Transmit Frame Sync Length
This field defines the length of the Transmit Frame Sync signal and the number of bits shifted out from the Transmit Sync
Data Register if FSDEN is 1.
• FSOS: Transmit Frame Sync Output Selection
FSOS
Selected Transmit Frame Sync Signal
TF Pin
0x0
None
0x1
Negative Pulse
Output
0x2
Positive Pulse
Output
0x3
Driven Low during data transfer
Output
0x4
Driven High during data transfer
Output
0x5
Toggling at each start of data transfer
Output
0x6–0x7
Reserved
Input-only
Undefined
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
583
• FSDEN: Frame Sync Data Enable
0: The TD line is driven with the default value during the Transmit Frame Sync signal.
1: SSC_TSHR value is shifted out during the transmission of the Transmit Frame Sync signal.
• FSEDGE: Frame Sync Edge Detection
Determines which edge on frame sync will generate the interrupt TXSYN (Status Register).
FSEDGE
584
Frame Sync Edge Detection
0x0
Positive Edge Detection
0x1
Negative Edge Detection
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
34.8.7 SSC Receive Holding Register
Name:
SSC_RHR
Address:
0xFFF98020 (0), 0xFFF9C020 (1)
Access:
Read-only
31
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
RDAT
23
22
21
20
RDAT
15
14
13
12
RDAT
7
6
5
4
RDAT
• RDAT: Receive Data
Right aligned regardless of the number of data bits defined by DATLEN in SSC_RFMR.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
585
34.8.8 SSC Transmit Holding Register
Name:
SSC_THR
Address:
0xFFF98024 (0), 0xFFF9C024 (1)
Access:
Write-only
31
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
TDAT
23
22
21
20
TDAT
15
14
13
12
TDAT
7
6
5
4
TDAT
• TDAT: Transmit Data
Right aligned regardless of the number of data bits defined by DATLEN in SSC_TFMR.
586
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
34.8.9 SSC Receive Synchronization Holding Register
Name:
SSC_RSHR
Address:
0xFFF98030 (0), 0xFFF9C030 (1)
Access:
Read-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
14
13
12
11
10
9
8
3
2
1
0
RSDAT
7
6
5
4
RSDAT
• RSDAT: Receive Synchronization Data
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
587
34.8.10 SSC Transmit Synchronization Holding Register
Name:
SSC_TSHR
Address:
0xFFF98034 (0), 0xFFF9C034 (1)
Access:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
14
13
12
11
10
9
8
3
2
1
0
TSDAT
7
6
5
4
TSDAT
• TSDAT: Transmit Synchronization Data
588
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
34.8.11 SSC Receive Compare 0 Register
Name:
SSC_RC0R
Address:
0xFFF98038 (0), 0xFFF9C038 (1)
Access:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
14
13
12
11
10
9
8
3
2
1
0
CP0
7
6
5
4
CP0
• CP0: Receive Compare Data 0
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
589
34.8.12 SSC Receive Compare 1 Register
Name:
SSC_RC1R
Address:
0xFFF9803C (0), 0xFFF9C03C (1)
Access:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
14
13
12
11
10
9
8
3
2
1
0
CP1
7
6
5
4
CP1
• CP1: Receive Compare Data 1
590
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
34.8.13 SSC Status Register
Name:
SSC_SR
Address:
0xFFF98040 (0), 0xFFF9C040 (1)
Access:
Read-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
RXEN
16
TXEN
15
–
14
–
13
–
12
–
11
RXSYN
10
TXSYN
9
CP1
8
CP0
7
RXBUFF
6
ENDRX
5
OVRUN
4
RXRDY
3
TXBUFE
2
ENDTX
1
TXEMPTY
0
TXRDY
• TXRDY: Transmit Ready
0: Data has been loaded in SSC_THR and is waiting to be loaded in the Transmit Shift Register (TSR).
1: SSC_THR is empty.
• TXEMPTY: Transmit Empty
0: Data remains in SSC_THR or is currently transmitted from TSR.
1: Last data written in SSC_THR has been loaded in TSR and last data loaded in TSR has been transmitted.
• ENDTX: End of Transmission
0: The register SSC_TCR has not reached 0 since the last write in SSC_TCR or SSC_TNCR.
1: The register SSC_TCR has reached 0 since the last write in SSC_TCR or SSC_TNCR.
• TXBUFE: Transmit Buffer Empty
0: SSC_TCR or SSC_TNCR have a value other than 0.
1: Both SSC_TCR and SSC_TNCR have a value of 0.
• RXRDY: Receive Ready
0: SSC_RHR is empty.
1: Data has been received and loaded in SSC_RHR.
• OVRUN: Receive Overrun
0: No data has been loaded in SSC_RHR while previous data has not been read since the last read of the Status Register.
1: Data has been loaded in SSC_RHR while previous data has not yet been read since the last read of the Status Register.
• ENDRX: End of Reception
0: Data is written on the Receive Counter Register or Receive Next Counter Register.
1: End of PDC transfer when Receive Counter Register has arrived at zero.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
591
• RXBUFF: Receive Buffer Full
0: SSC_RCR or SSC_RNCR have a value other than 0.
1: Both SSC_RCR and SSC_RNCR have a value of 0.
• CP0: Compare 0
0: A compare 0 has not occurred since the last read of the Status Register.
1: A compare 0 has occurred since the last read of the Status Register.
• CP1: Compare 1
0: A compare 1 has not occurred since the last read of the Status Register.
1: A compare 1 has occurred since the last read of the Status Register.
• TXSYN: Transmit Sync
0: A Tx Sync has not occurred since the last read of the Status Register.
1: A Tx Sync has occurred since the last read of the Status Register.
• RXSYN: Receive Sync
0: An Rx Sync has not occurred since the last read of the Status Register.
1: An Rx Sync has occurred since the last read of the Status Register.
• TXEN: Transmit Enable
0: Transmit is disabled.
1: Transmit is enabled.
• RXEN: Receive Enable
0: Receive is disabled.
1: Receive is enabled.
592
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
34.8.14 SSC Interrupt Enable Register
Name:
SSC_IER
Address:
0xFFF98044 (0), 0xFFF9C044 (1)
Access:
Write-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
RXSYN
10
TXSYN
9
CP1
8
CP0
7
RXBUFF
6
ENDRX
5
OVRUN
4
RXRDY
3
TXBUFE
2
ENDTX
1
TXEMPTY
0
TXRDY
• TXRDY: Transmit Ready Interrupt Enable
0: No effect.
1: Enables the Transmit Ready Interrupt.
• TXEMPTY: Transmit Empty Interrupt Enable
0: No effect.
1: Enables the Transmit Empty Interrupt.
• ENDTX: End of Transmission Interrupt Enable
0: No effect.
1: Enables the End of Transmission Interrupt.
• TXBUFE: Transmit Buffer Empty Interrupt Enable
0: No effect.
1: Enables the Transmit Buffer Empty Interrupt
• RXRDY: Receive Ready Interrupt Enable
0: No effect.
1: Enables the Receive Ready Interrupt.
• OVRUN: Receive Overrun Interrupt Enable
0: No effect.
1: Enables the Receive Overrun Interrupt.
• ENDRX: End of Reception Interrupt Enable
0: No effect.
1: Enables the End of Reception Interrupt.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
593
• RXBUFF: Receive Buffer Full Interrupt Enable
0: No effect.
1: Enables the Receive Buffer Full Interrupt.
• CP0: Compare 0 Interrupt Enable
0: No effect.
1: Enables the Compare 0 Interrupt.
• CP1: Compare 1 Interrupt Enable
0: No effect.
1: Enables the Compare 1 Interrupt.
• TXSYN: Tx Sync Interrupt Enable
0: No effect.
1: Enables the Tx Sync Interrupt.
• RXSYN: Rx Sync Interrupt Enable
0: No effect.
1: Enables the Rx Sync Interrupt.
594
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
34.8.15 SSC Interrupt Disable Register
Name:
SSC_IDR
Address:
0xFFF98048 (0), 0xFFF9C048 (1)
Access:
Write-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
RXSYN
10
TXSYN
9
CP1
8
CP0
7
RXBUFF
6
ENDRX
5
OVRUN
4
RXRDY
3
TXBUFE
2
ENDTX
1
TXEMPTY
0
TXRDY
• TXRDY: Transmit Ready Interrupt Disable
0: No effect.
1: Disables the Transmit Ready Interrupt.
• TXEMPTY: Transmit Empty Interrupt Disable
0: No effect.
1: Disables the Transmit Empty Interrupt.
• ENDTX: End of Transmission Interrupt Disable
0: No effect.
1: Disables the End of Transmission Interrupt.
• TXBUFE: Transmit Buffer Empty Interrupt Disable
0: No effect.
1: Disables the Transmit Buffer Empty Interrupt.
• RXRDY: Receive Ready Interrupt Disable
0: No effect.
1: Disables the Receive Ready Interrupt.
• OVRUN: Receive Overrun Interrupt Disable
0: No effect.
1: Disables the Receive Overrun Interrupt.
• ENDRX: End of Reception Interrupt Disable
0: No effect.
1: Disables the End of Reception Interrupt.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
595
• RXBUFF: Receive Buffer Full Interrupt Disable
0: No effect.
1: Disables the Receive Buffer Full Interrupt.
• CP0: Compare 0 Interrupt Disable
0: No effect.
1: Disables the Compare 0 Interrupt.
• CP1: Compare 1 Interrupt Disable
0: No effect.
1: Disables the Compare 1 Interrupt.
• TXSYN: Tx Sync Interrupt Enable
0: No effect.
1: Disables the Tx Sync Interrupt.
• RXSYN: Rx Sync Interrupt Enable
0: No effect.
1: Disables the Rx Sync Interrupt.
596
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
34.8.16 SSC Interrupt Mask Register
Name:
SSC_IMR
Address:
0xFFF9804C (0), 0xFFF9C04C (1)
Access:
Read-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
RXSYN
10
TXSYN
9
CP1
8
CP0
7
RXBUF
6
ENDRX
5
OVRUN
4
RXRDY
3
TXBUFE
2
ENDTX
1
TXEMPTY
0
TXRDY
• TXRDY: Transmit Ready Interrupt Mask
0: The Transmit Ready Interrupt is disabled.
1: The Transmit Ready Interrupt is enabled.
• TXEMPTY: Transmit Empty Interrupt Mask
0: The Transmit Empty Interrupt is disabled.
1: The Transmit Empty Interrupt is enabled.
• ENDTX: End of Transmission Interrupt Mask
0: The End of Transmission Interrupt is disabled.
1: The End of Transmission Interrupt is enabled.
• TXBUFE: Transmit Buffer Empty Interrupt Mask
0: The Transmit Buffer Empty Interrupt is disabled.
1: The Transmit Buffer Empty Interrupt is enabled.
• RXRDY: Receive Ready Interrupt Mask
0: The Receive Ready Interrupt is disabled.
1: The Receive Ready Interrupt is enabled.
• OVRUN: Receive Overrun Interrupt Mask
0: The Receive Overrun Interrupt is disabled.
1: The Receive Overrun Interrupt is enabled.
• ENDRX: End of Reception Interrupt Mask
0: The End of Reception Interrupt is disabled.
1: The End of Reception Interrupt is enabled.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
597
• RXBUFF: Receive Buffer Full Interrupt Mask
0: The Receive Buffer Full Interrupt is disabled.
1: The Receive Buffer Full Interrupt is enabled.
• CP0: Compare 0 Interrupt Mask
0: The Compare 0 Interrupt is disabled.
1: The Compare 0 Interrupt is enabled.
• CP1: Compare 1 Interrupt Mask
0: The Compare 1 Interrupt is disabled.
1: The Compare 1 Interrupt is enabled.
• TXSYN: Tx Sync Interrupt Mask
0: The Tx Sync Interrupt is disabled.
1: The Tx Sync Interrupt is enabled.
• RXSYN: Rx Sync Interrupt Mask
0: The Rx Sync Interrupt is disabled.
1: The Rx Sync Interrupt is enabled.
598
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
35.
AC97 Controller (AC97C)
35.1
Overview
The AC97 Controller is the hardware implementation of the AC97 digital controller (DC’97) compliant with AC97
Component Specification 2.2. The AC97 Controller communicates with an audio codec (AC97) or a modem codec
(MC’97) via the AC-link digital serial interface. All digital audio, modem and handset data streams, as well as
control (command/status) informations are transferred in accordance to the AC-link protocol.
The AC97 Controller features a Peripheral DMA Controller (PDC) for audio streaming transfers. It also supports
variable sampling rate and four Pulse Code Modulation (PCM) sample resolutions of 10, 16, 18 and 20 bits.
35.2
Block Diagram
Figure 35-1.
Functional Block Diagram
MCK Clock Domain
Slot Number
SYNC
AC97 Slot Controller
Slot Number
16/20 bits
Slot #0
Transmit Shift Register
M
AC97 Tag Controller
Receive Shift Register
Slot #0,1
U
AC97 CODEC Channel
AC97C_COTHR
AC97C_CORHR
X
Slot #1,2
Slot #2
SDATA_OUT
Transmit Shift Register
Receive Shift Register
SDATA_IN
AC97 Channel A
Transmit Shift Register
AC97C_CATHR
AC97C_CARHR
Slot #3...12
Receive Shift Register
D
E
BITCLK
AC97C Interrupt
M
AC97 Channel B
Transmit Shift Register
AC97C_CBTHR
U
Slot #3...12
AC97C_CBRHR
MCK
Receive Shift Register
X
User Interface
Bit Clock Domain
APB Interface
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
599
35.3
Pin Name List
Table 35-1.
I/O Lines Description
Pin Name
Pin Description
Type
AC97CK
12.288-MHz bit-rate clock
Input
AC97RX
Receiver Data (Referred as SDATA_IN in AC-link spec)
Input
AC97FS
48-kHz frame indicator and synchronizer
Output
AC97TX
Transmitter Data (Referred as SDATA_OUT in AC-link spec)
Output
The AC97 reset signal provided to the primary codec can be generated by a PIO.
35.4
Application Block Diagram
Figure 35-2.
Application Block diagram
AC-link
AC 97 Controller
PIOx
AC97_RESET
AC97_SYNC
AC97FS
AC97_BITCLK
AC97CK
AC97TX
AC97_SDATA_OUT
AC97_SDATA_IN
AC97RX
600
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
AC'97 Primary Codec
35.5
Product Dependencies
35.5.1 I/O Lines
The pins used for interfacing the compliant external devices may be multiplexed with PIO lines.
Before using the AC97 Controller receiver, the PIO controller must be configured in order for the AC97C receiver
I/O lines to be in AC97 Controller peripheral mode.
Before using the AC97 Controller transmitter, the PIO controller must be configured in order for the AC97C
transmitter I/O lines to be in AC97 Controller peripheral mode.
35.5.2 Power Management
The AC97 Controller is not continuously clocked. Its interface may be clocked through the Power Management
Controller (PMC), therefore the programmer must first configure the PMC to enable the AC97 Controller clock.
The AC97 Controller has two clock domains. The first one is supplied by PMC and is equal to MCK. The second
one is AC97CK which is sent by the AC97 Codec (Bit clock).
Signals that cross the two clock domains are re-synchronized. MCK clock frequency must be higher than the
AC97CK (Bit Clock) clock frequency.
35.5.3 Interrupt
The AC97 Controller interface has an interrupt line connected to the Advanced Interrupt Controller (AIC). Handling
interrupts requires programming the AIC before configuring the AC97C.
All AC97 Controller interrupts can be enabled/disabled by writing to the AC97 Controller Interrupt Enable/Disable
Registers. Each pending and unmasked AC97 Controller interrupt will assert the interrupt line. The AC97
Controller interrupt service routine can get the interrupt source in two steps:

Reading and ANDing AC97 Controller Interrupt Mask Register (AC97C_IMR) and AC97 Controller Status
Register (AC97C_SR).

Reading AC97 Controller Channel x Status Register (AC97C_CxSR).
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
601
35.6
Functional Description
35.6.1 Protocol overview
AC-link protocol is a bidirectional, fixed clock rate, serial digital stream. AC-link handles multiple input and output
Pulse Code Modulation PCM audio streams, as well as control register accesses employing a Time Division
Multiplexed (TDM) scheme that divides each audio frame in 12 outgoing and 12 incoming 20-bit wide data slots.
Figure 35-3.
Bidirectional AC-link Frame with Slot Assignment
Slot #
0
1
2
3
4
5
6
7
8
9
10
11
12
PCM
L SURR
PCM
R SURR
PCM
LFE
LINE 2
DAC
HSET
DAC
IO
CTRL
RSVED
RSVED
LINE 2
ADC
HSET
ADC
IO
STATUS
AC97FS
AC97TX
(Controller Output)
TAG
CMD
ADDR
CMD
DATA
PCM
L Front
PCM
R Front
LINE 1
DAC
PCM
Center
AC97RX
(Codec output)
TAG
STATUS
ADDR
STATUS
DATA
PCM
LEFT
PCM
RIGHT
LINE 1
DAC
PCM
MIC
Table 35-2.
AC-link Output Slots Transmitted from the AC97C Controller
Slot #
Pin Description
0
TAG
1
Command Address Port
2
Command Data Port
3,4
PCM playback Left/Right Channel
5
Modem Line 1 Output Channel
6, 7, 8
PCM Center/Left Surround/Right Surround
9
PCM LFE DAC
10
Modem Line 2 Output Channel
11
Modem Handset Output Channel
12
Modem GPIO Control Channel
Table 35-3.
602
RSVED
AC-link Input Slots Transmitted from the AC97C Controller
Slot #
Pin Description
0
TAG
1
Status Address Port
2
Status Data Port
3,4
PCM playback Left/Right Channel
5
Modem Line 1 ADC
6
Dedicated Microphone ADC
7, 8, 9
Vendor Reserved
10
Modem Line 2 ADC
11
Modem Handset Input ADC
12
Modem IO Status
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
35.6.1.1 Slot Description
35.6.1.2 Tag Slot
The tag slot, or slot 0, is a 16-bit wide slot that always goes at the beginning of an outgoing or incoming frame.
Within tag slot, the first bit is a global bit that flags the entire frame validity. The next 12 bit positions sampled by
the AC97 Controller indicate which of the corresponding 12 time slots contain valid data. The slot’s last two bits
(combined) called Codec ID, are used to distinguish primary and secondary codec.
The 16-bit wide tag slot of the output frame is automatically generated by the AC97 Controller according to the
transmit request of each channel and to the SLOTREQ from the previous input frame, sent by the AC97 Codec, in
Variable Sample Rate mode.
35.6.1.3 Codec Slot 1
The command/status slot is a 20-bit wide slot used to control features, and monitors status for AC97 Codec
functions.
The control interface architecture supports up to sixty-four 16-bit wide read-write registers. Only the even registers
are currently defined and addressed.
Slot 1’s bitmap is the following:

Bit 19 is for read-write command, 1 = read, 0 = write.

Bits [18:12] are for control register index.

Bits [11:0] are reserved.
35.6.1.4 Codec Slot 2
Slot 2 is a 20-bit wide slot used to carry 16-bit wide AC97 Codec control register data. If the current command port
operation is a read, the entire slot time is stuffed with zeros. Its bitmap is the following:

Bits [19:4] are the control register data

Bits [3:0] are reserved and stuffed with zeros.
35.6.1.5 Data Slots [3:12]
Slots [3:12] are 20-bit wide data slots, they usually carry audio PCM or/and modem I/O data.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
603
35.6.2 AC97 Controller Channel Organization
The AC97 Controller features a Codec channel and two logical channels: Channel A, Channel B.
The Codec channel controls AC97 Codec registers, it enables write and read configuration values in order to bring
the AC97 Codec to an operating state. The Codec channel always runs slot 1 and slot 2 exclusively, in both input
and output directions.
Channel A, Channel B transfer data to/from AC97 codec. All audio samples and modem data must transit by
these two channels. However, Channel A is connected to PDC channels thus making it suitable for audio
streaming applications.
Each slot of the input or the output frame that belongs to this range [3 to 12] can be operated by Channel A or
Channel B . The slot to channel assignment is configured by two registers:

AC97 Controller Input Channel Assignment Register (AC97C_ICA)

AC97 Controller Output Channel Assignment Register (AC97C_OCA)
The AC97 Controller Input Channel Assignment Register (AC97C_ICA) configures the input slot to channel
assignment. The AC97 Controller Output Channel Assignment Register (AC97C_OCA) configures the output slot
to channel assignment.
A slot can be left unassigned to a channel by the AC97 Controller. Slots 0, 1,and 2 cannot be assigned to Channel
A, or to Channel Bthrough the AC97C_OCA and AC97C_ICA Registers.
The width of sample data, that transit via the Channel varies and can take one of these values; 10, 16, 18 or 20
bits.
Figure 35-4.
Logical Channel Assignment
Slot #
0
1
2
3
4
5
6
7
PCM
L Front
PCM
R Front
LINE 1
DAC
PCM
Center
PCM
L SURR
LINE 1
DAC
PCM
MIC
RSVED
8
9
10
11
12
PCM
R SURR
PCM
LFE
LINE 2
DAC
HSET
DAC
IO
CTRL
RSVED
RSVED
LINE 2
ADC
HSET
ADC
IO
STATUS
AC97FS
AC97TX
(Controller Output)
TAG
CMD
ADDR
CMD
DATA
Codec Channel
Channel A
AC97C_OCA = 0x0000_0209
AC97RX
(Codec output)
TAG
STATUS
ADDR
STATUS
DATA
Codec Channel
AC97C_ICA = 0x0000_0009
604
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
PCM
LEFT
PCM
RIGHT
Channel A
35.6.2.1 AC97 Controller Setup
The following operations must be performed in order to bring the AC97 Controller into an operating state:
1.
Enable the AC97 Controller clock in the PMC controller.
2.
Turn on AC97 function by enabling the ENA bit in AC97 Controller Mode Register (AC97C_MR).
3.
Configure the input channel assignment by controlling the AC97 Controller Input Assignment Register
(AC97C_ICA).
4.
Configure the output channel assignment by controlling the AC97 Controller Input Assignment Register
(AC97C_OCA).
5.
Configure sample width for Channel A, Channel Bby writing the SIZE bit field in AC97C Channel x Mode
Register (AC97C_CAMR), (AC97C_CBMR). The application can write 10, 16, 18,or 20-bit wide PCM
samples through the AC97 interface and they will be transferred into 20-bit wide slots.
6.
Configure data Endianness for Channel A, Channel B by writing CEM bit field in (AC97C_CAMR),
(AC97C_CBMR) register. Data on the AC-link are shifted MSB first. The application can write little- or bigendian data to the AC97 Controller interface.
7.
Configure the PIO controller to drive the RESET signal of the external Codec. The RESET signal must fulfill
external AC97 Codec timing requirements.
8.
Enable Channel A and/or Channel B by writing CEN bit field in AC97C_CxMR.
35.6.2.2 Transmit Operation
The application must perform the following steps in order to send data via a channel to the AC97 Codec:

Check if previous data has been sent by polling TXRDY flag in the AC97C Channel x Status Register
(AC97_CxSR). x being one of the two channels.

Write data to the AC97 Controller Channel x Transmit Holding Register (AC97C_CxTHR).
Once data has been transferred to the Channel x Shift Register, the TXRDY flag is automatically set by the AC97
Controller which allows the application to start a new write action. The application can also wait for an interrupt
notice associated with TXRDY in order to send data. The interrupt remains active until TXRDY flag is cleared.
Figure 35-5.
Audio Transfer (PCM L Front, PCM R Front) on Channel x
Slot #
0
1
2
CMD
ADDR
CMD
DATA
3
4
5
6
7
8
9
10
11
12
AC97FS
AC97TX
(Controller Output)
TAG
PCM
L Front
PCM
R Front
LINE 1
DAC
PCM
Center
PCM
L SURR
PCM
R SURR
PCM
LFE
LINE 2
DAC
HSET
DAC
IO
CTRL
TXRDYCx
(AC97C_SR)
TXEMPTY
(AC97C_SR)
Write access to
AC97C_THRx
PCM L Front
transfered to the shift register
PCM R Front
transfered to the shift register
The TXEMPTY flag in the AC97 Controller Channel x Status Register (AC97C_CxSR) is set when all requested
transmissions for a channel have been shifted on the AC-link. The application can either poll TXEMPTY flag in
AC97C_CxSR or wait for an interrupt notice associated with the same flag.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
605
In most cases, the AC97 Controller is embedded in chips that target audio player devices. In such cases, the AC97
Controller is exposed to heavy audio transfers. Using the polling technique increases processor overhead and may
fail to keep the required pace under an operating system. In order to avoid these polling drawbacks, the application
can perform audio streams by using PDC connected to channel A, which reduces processor overhead and
increases performance especially under an operating system.
The PDC transmit counter values must be equal to the number of PCM samples to be transmitted, each sample
goes in one slot.
35.6.2.3 AC97 Output Frame
The AC97 Controller outputs a thirteen-slot frame on the AC-Link. The first slot (tag slot or slot 0) flags the validity
of the entire frame and the validity of each slot; whether a slot carries valid data or not. Slots 1 and 2 are used if the
application performs control and status monitoring actions on AC97 Codec control/status registers. Slots [3:12] are
used according to the content of the AC97 Controller Output Channel Assignment Register (AC97C_OCA). If the
application performs many transmit requests on a channel, some of the slots associated to this channel or all of
them will carry valid data.
35.6.2.4 Receive Operation
The AC97 Controller can also receive data from AC97 Codec. Data is received in the channel’s shift register and
then transferred to the AC97 Controller Channel x Read Holding Register. To read the newly received data, the
application must perform the following steps:

Poll RXRDY flag in AC97 Controller Channel x Status Register (AC97C_CxSR). x being one of the two
channels.

Read data from AC97 Controller Channel x Read Holding Register.
The application can also wait for an interrupt notice in order to read data from AC97C_CxRHR. The interrupt
remains active until RXRDY is cleared by reading AC97C_CxSR.
The RXRDY flag in AC97C_CxSR is set automatically when data is received in the Channel x shift register. Data is
then shifted to AC97C_CxRHR.
Figure 35-6.
Audio Transfer (PCM L Front, PCM R Front) on Channel x
Slot #
0
1
2
TAG
STATUS
ADDR
STATUS
DATA
3
4
5
6
7
8
9
RSVED
RSVED
10
11
12
AC97FS
AC97RX
(Codec output)
PCM
LEFT
PCM
RIGHT
LINE 1
DAC
PCM
MIC
RSVED
LINE 2
ADC
HSET
ADC
IO
STATUS
RXRDYCx
(AC97C_SR)
Read access to
AC97C_RHRx
If the previously received data has not been read by the application, the new data overwrites the data already
waiting in AC97C_CxRHR, therefore the OVRUN flag in AC97C_CxSR is raised. The application can either poll
the OVRUN flag in AC97C_CxSR or wait for an interrupt notice. The interrupt remains active until the OVRUN flag
in AC97C_CxSR is set.
The AC97 Controller can also be used in sound recording devices in association with an AC97 Codec. The AC97
Controller may also be exposed to heavy PCM transfers. The application can use the PDC connected to channel A
in order to reduce processor overhead and increase performance especially under an operating system.
The PDC receive counter values must be equal to the number of PCM samples to be received, each sample goes
in one slot.
606
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
35.6.2.5 AC97 Input Frame
The AC97 Controller receives a thirteen slot frame on the AC-Link sent by the AC97 Codec. The first slot (tag slot
or slot 0) flags the validity of the entire frame and the validity of each slot; whether a slot carries valid data or not.
Slots 1 and 2 are used if the application requires status informations from AC97 Codec. Slots [3:12] are used
according to AC97 Controller Output Channel Assignment Register (AC97C_ICA) content. The AC97 Controller
will not receive any data from any slot if AC97C_ICA is not assigned to a channel in input.
35.6.2.6 Configuring and Using Interrupts
Instead of polling flags in AC97 Controller Global Status Register (AC97C_SR) and in AC97 Controller Channel x
Status Register (AC97C_CxSR), the application can wait for an interrupt notice. The following steps show how to
configure and use interrupts correctly:

Set the interruptible flag in AC97 Controller Channel x Mode Register (AC97C_CxMR).

Set the interruptible event and channel event in AC97 Controller Interrupt Enable Register (AC97C_IER).
The interrupt handler must read both AC97 Controller Global Status Register (AC97C_SR) and AC97 Controller
Interrupt Mask Register (AC97C_IMR) and AND them to get the real interrupt source. Furthermore, to get which
event was activated, the interrupt handler has to read AC97 Controller Channel x Status Register (AC97C_CxSR),
x being the channel whose event triggers the interrupt.
The application can disable event interrupts by writing in AC97 Controller Interrupt Disable Register (AC97C_IDR).
The AC97 Controller Interrupt Mask Register (AC97C_IMR) shows which event can trigger an interrupt and which
one cannot.
35.6.2.7 Endianness
Endianness can be managed automatically for each channel, except for the Codec channel, by writing to Channel
Endianness Mode (CEM) in AC97C_CxMR. This enables transferring data on AC-link in Big Endian format without
any additional operation.
35.6.2.8 To Transmit a Word Stored in Big Endian Format on AC-link
Word to be written in AC97 Controller Channel x Transmit Holding Register (AC97C_CxTHR) (as it is stored in
memory or microprocessor register).
31
24
23
16
Byte0[7:0]
15
Byte1[7:0]
8
7
Byte2[7:0]
0
Byte3[7:0]
Word stored in Channel x Transmit Holding Register (AC97C_CxTHR) (data to transmit).
31
24
23
–
20
19
16
Byte2[3:0]
–
15
8
7
Byte1[7:0]
0
Byte0[7:0]
Data transmitted on appropriate slot: data[19:0] = {Byte2[3:0], Byte1[7:0], Byte0[7:0]}.
35.6.2.9 To Transmit A Halfword Stored in Big Indian Format on AC-link
Halfword to be written in AC97 Controller Channel x Transmit Holding Register (AC97C_CxTHR).
31
24
23
–
16
15
–
8
7
Byte0[7:0]
0
Byte1[7:0]
Halfword stored in AC97 Controller Channel x Transmit Holding Register (AC97C_CxTHR) (data to transmit).
31
24
–
23
16
–
15
8
Byte1[7:0]
7
0
Byte0[7:0]
Data emitted on related slot: data[19:0] = {0x0, Byte1[7:0], Byte0[7:0]}.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
607
35.6.2.10To Transmit a10-bit Sample Stored in Big Endian Format on AC-link
Halfword to be written in AC97 Controller Channel x Transmit Holding Register (AC97C_CxTHR).
31
24
23
16
–
15
–
8
7
Byte0[7:0]
0
{0x00, Byte1[1:0]}
Halfword stored in AC97 Controller Channel x Transmit Holding Register (AC97C_CxTHR) (data to transmit).
31
2423
1615
–
–
10
–
9
87
Byte1
[1:0]
0
Byte0[7:0]
Data emitted on related slot: data[19:0] = {0x000, Byte1[1:0], Byte0[7:0]}.
35.6.2.11To Receive Word transfers
Data received on appropriate slot: data[19:0] = {Byte2[3:0], Byte1[7:0], Byte0[7:0]}.
Word stored in AC97 Controller Channel x Receive Holding Register (AC97C_CxRHR) (Received Data).
31
24
23
–
20
19
16
Byte2[3:0]
–
15
8
7
Byte1[7:0]
0
Byte0[7:0]
Data is read from AC97 Controller Channel x Receive Holding Register (AC97C_CxRHR) when Channel x data
size is greater than 16 bits and when big-endian mode is enabled (data written to memory).
31
24
23
Byte0[7:0]
16
15
Byte1[7:0]
8
7
0
{0x0, Byte2[3:0]}
0x00
35.6.2.12To Receive Halfword Transfers
Data received on appropriate slot: data[19:0] = {0x0, Byte1[7:0], Byte0[7:0]}.
Halfword stored in AC97 Controller Channel x Receive Holding Register (AC97C_CxRHR) (Received Data).
31
24
23
–
16
15
–
8
7
Byte1[7:0]
0
Byte0[7:0]
Data is read from AC97 Controller Channel x Receive Holding Register (AC97C_CxRHR) when data size is equal
to 16 bits and when big-endian mode is enabled.
31
24
23
–
16
15
–
8
7
Byte0[7:0]
0
Byte1[7:0]
35.6.2.13To Receive 10-bit Samples
Data received on appropriate slot: data[19:0] = {0x000, Byte1[1:0], Byte0[7:0]}.Halfword stored in AC97 Controller
Channel x Receive Holding Register (AC97C_CxRHR) (Received Data)
31
24
23
–
16
–
15
10
–
9
8
Byte1
[1:0]
7
0
Byte0[7:0]
Data read from AC97 Controller Channel x Receive Holding Register (AC97C_CxRHR) when data size is equal to
10 bits and when big-endian mode is enabled.
31
24
23
–
608
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
16
–
15
Byte0[7:0]
8
7
3
0x00
1
0
Byte1
[1:0]
35.6.3 Variable Sample Rate
The problem of variable sample rate can be summarized by a simple example. When passing a 44.1 kHz stream
across the AC-link, for every 480 audio output frames that are sent across, 441 of them must contain valid sample
data. The new AC97 standard approach calls for the addition of “on-demand” slot request flags. The AC97 Codec
examines its sample rate control register, the state of its FIFOs, and the incoming SDATA_OUT tag bits (slot 0) of
each output frame and then determines which SLOTREQ bits to set active (low). These bits are passed from the
AC97 Codec to the AC97 Controller in slot 1/SLOTREQ in every audio input frame. Each time the AC97 controller
sees one or more of the newly defined slot request flags set active (low) in a given audio input frame, it must pass
along the next PCM sample for the corresponding slot(s) in the AC-link output frame that immediately follows.
The variable Sample Rate mode is enabled by performing the following steps:

Setting the VRA bit in the AC97 Controller Mode Register (AC97C_MR).

Enable Variable Rate mode in the AC97 Codec by performing a transfer on the Codec channel.
Slot 1 of the input frame is automatically interpreted as SLOTREQ signaling bits. The AC97 Controller will
automatically fill the active slots according to both SLOTREQ and AC97C_OCA register in the next transmitted
frame.
35.6.4 Power Management
35.6.4.1 Powering Down the AC-Link
The AC97 Codecs can be placed in low power mode. The application can bring AC97 Codec to a power down
state by performing sequential writes to AC97 Codec powerdown register. Both the bit clock (clock delivered by
AC97 Codec, AC97CK) and the input line (AC97RX) are held at a logic low voltage level. This puts AC97 Codec in
power down state while all its registers are still holding current values. Without the bit clock, the AC-link is
completely in a power down state.
The AC97 Controller should not attempt to play or capture audio data until it has awakened AC97 Codec.
To set the AC97 Codec in low power mode, the PR4 bit in the AC97 Codec powerdown register (Codec address
0x26) must be set to 1. Then the primary Codec drives both AC97CK and AC97RX to a low logic voltage level.
The following operations must be done to put AC97 Codec in low power mode:

Disable Channel A clearing CEN field in the AC97C_CAMR.

Disable Channel B clearing CEN field in the AC97C_CBMR.

Write 0x2680 value in the AC97C_COTHR.

Poll the TXEMPTY flag in AC97C_CxSR registers for the two channels.
At this point AC97 Codec is in low power mode.
35.6.4.2 Waking up the AC-link
There are two methods to bring the AC-link out of low power mode. Regardless of the method, it is always the
AC97 Controller that performs the wake-up.
35.6.4.3 Wake-up Triggered by the AC97 Controller
The AC97 Controller can wake up the AC97 Codec by issuing either a cold or a warm reset.
The AC97 Controller can also wake up the AC97 Codec by asserting AC97FS signal, however this action should
not be performed for a minimum period of four audio frames following the frame in which the powerdown was
issued.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
609
35.6.4.4 Wake-up Triggered by the AC97 Codec
This feature is implemented in AC97 modem codecs that need to report events such as Caller-ID and wake-up on
ring.
The AC97 Codec can drive AC97RX signal from low to high level and holding it high until the controller issues
either a cold or a worm reset. The AC97RX rising edge is asynchronously (regarding AC97FS) detected by the
AC97 Controller. If WKUP bit is enabled in AC97C_IMR, an interrupt is triggered that wakes up the AC97
Controller which should then immediately issue a cold or a warm reset.
If the processor needs to be awakened by an external event, the AC97RX signal must be externally connected to
the WAKEUP entry of the system controller.
Figure 35-7.
AC97 Power-Down/Up Sequence
Wake Event
Power Down Frame
Sleep State
Warm Reset
New Audio Frame
AC97CK
AC97FS
AC97TX
TAG
Write to
0x26
Data
PR4
TAG
Slot1
Slot2
AC97RX
TAG
Write to
0x26
Data
PR4
TAG
Slot1
Slot2
35.6.4.5 AC97 Codec Reset
There are three ways to reset an AC97 Codec.
35.6.4.6 Cold AC97 Reset
A cold reset is generated by asserting the RESET signal low for the minimum specified time (depending on the
AC97 Codec) and then by de-asserting RESET high. AC97CK and AC97FS is reactivated and all AC97 Codec
registers are set to their default power-on values. Transfers on AC-link can resume.
The RESET signal will be controlled via a PIO line. This is how an application should perform a cold reset:

Clear and set ENA flag in the AC97C_MR to reset the AC97 Controller

Clear PIO line output controlling the AC97 RESET signal

Wait for the minimum specified time

Set PIO line output controlling the AC97 RESET signal
AC97CK, the clock provided by AC97 Codec, is detected by the controller.
35.6.4.7 Warm AC97 Reset
A warm reset reactivates the AC-link without altering AC97 Codec registers. A warm reset is signaled by driving
AC97FX signal high for a minimum of 1us in the absence of AC97CK. In the absence of AC97CK, AC97FX is
treated as an asynchronous (regarding AC97FX) input used to signal a warm reset to AC97 Codec.
This is the right way to perform a warm reset:

Set WRST in the AC97C_MR.

Wait for at least 1us

Clear WRST in the AC97C_MR.
The application can check that operations have resumed by checking SOF flag in the AC97C_SR or wait for an
interrupt notice if SOF is enabled in AC97C_IMR.
610
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
35.7
AC97 Controller (AC97C) User Interface
Table 35-4.
Register Mapping
Offset
Register
Name
Access
Reset
0x0–0x4
Reserved
–
–
–
0x8
Mode Register
AC97C_MR
Read/Write
0x0
0xC
Reserved
–
–
–
0x10
Input Channel Assignment Register
AC97C_ICA
Read/Write
0x0
0x14
Output Channel Assignment Register
AC97C_OCA
Read/Write
0x0
Reserved
–
–
–
0x20
Channel A Receive Holding Register
AC97C_CARHR
Read-only
0x0
0x24
Channel A Transmit Holding Register
AC97C_CATHR
Write-only
–
0x28
Channel A Status Register
AC97C_CASR
Read-only
0x0
0x2C
Channel A Mode Register
AC97C_CAMR
Read/Write
0x0
0x30
Channel B Receive Holding Register
AC97C_CBRHR
Read-only
0x0
0x34
Channel B Transmit Holding Register
AC97C_CBTHR
Write-only
–
0x38
Channel B Status Register
AC97C_CBSR
Read-only
0x0
0x3C
Channel B Mode Register
AC97C_CBMR
Read/Write
0x0
0x40
Codec Channel Receive Holding Register
AC97C_CORHR
Read-only
0x0
0x44
Codec Channel Transmit Holding Register
AC97C_COTHR
Write-only
–
0x48
Codec Status Register
AC97C_COSR
Read-only
0x0
0x4C
Codec Mode Register
AC97C_COMR
Read/Write
0x0
0x50
Status Register
AC97C_SR
Read-only
0x0
0x54
Interrupt Enable Register
AC97C_IER
Write-only
–
0x58
Interrupt Disable Register
AC97C_IDR
Write-only
–
0x5C
Interrupt Mask Register
AC97C_IMR
Read-only
0x0
Reserved
–
–
–
Reserved for Peripheral DMA Controller (PDC)
registers related to channel transfers
–
–
–
0x18–0x1C
0x60–0xFB
0x100–0x124
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
611
35.7.1 AC97 Controller Mode Register
Name:
AC97C_MR
Address:
0xFFFA0008
Access:
Read/Write
31
–
23
–
15
–
7
–
30
–
22
–
14
–
6
–
29
–
21
–
13
–
5
–
28
–
20
–
12
–
4
–
27
–
19
–
11
–
3
–
26
–
18
–
10
–
2
VRA
• VRA: Variable Rate (for Data Slots 3-12)
0: Variable Rate is inactive. (48 KHz only)
1: Variable Rate is active.
• WRST: Warm Reset
0: Warm Reset is inactive.
1: Warm Reset is active.
• ENA: AC97 Controller Global Enable
0: No effect. AC97 function as well as access to other AC97 Controller registers are disabled.
1: Activates the AC97 function.
612
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
25
–
17
–
9
–
1
WRST
24
–
16
–
8
–
0
ENA
35.7.2 AC97 Controller Input Channel Assignment Register
Name:
AC97C_ICA
Address:
0xFFFA0010
Access:
Read/Write
31
–
23
30
–
22
CHID10
14
15
CHID8
7
6
29
21
13
CHID7
5
CHID5
28
CHID12
20
12
4
CHID4
27
26
19
CHID9
11
18
3
25
CHID11
17
24
16
CHID8
10
CHID6
2
9
1
CHID3
8
CHID5
0
• CHIDx: Channel ID for the input slot x
CHIDx
Selected Receive Channel
0x0
None. No data will be received during this slot time
0x1
Channel A data will be received during this slot time.
0x2
Channel B data will be received during this slot time
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
613
35.7.3 AC97 Controller Output Channel Assignment Register
Name:
AC97C_OCA
Address:
0xFFFA0014
Access:
Read/Write
31
–
23
30
–
22
CHID10
14
15
CHID8
7
6
29
21
13
CHID7
5
CHID5
28
CHID12
20
12
4
CHID4
27
26
19
CHID9
11
18
3
• CHIDx: Channel ID for the output slot x
CHIDx
614
Selected Transmit Channel
0x0
None. No data will be transmitted during this slot time
0x1
Channel A data will be transferred during this slot time.
0x2
Channel B data will be transferred during this slot time
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
25
CHID11
17
24
16
CHID8
10
CHID6
2
9
1
CHID3
8
CHID5
0
35.7.4 AC97 Controller Codec Channel Receive Holding Register
Name:
AC97C_CORHR
Address:
0xFFFA0040
Access:
Read-only
31
–
23
–
15
30
–
22
–
14
29
–
21
–
13
28
–
20
–
12
7
6
5
4
27
–
19
–
11
26
–
18
–
10
25
–
17
–
9
24
–
16
–
8
3
2
1
0
SDATA
SDATA
• SDATA: Status Data
Data sent by the CODEC in the third AC97 input frame slot (Slot 2).
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
615
35.7.5 AC97 Controller Codec Channel Transmit Holding Register
Name:
AC97C_COTHR
Address:
0xFFFA0044
Access:
Write-only
31
–
23
READ
15
30
–
22
29
–
21
28
–
20
14
13
12
27
–
19
CADDR
11
26
–
18
25
–
17
24
–
16
10
9
8
3
2
1
0
CDATA
7
6
5
4
CDATA
• READ: Read-write command
0: Write operation to the CODEC register indexed by the CADDR address.
1: Read operation to the CODEC register indexed by the CADDR address.
This flag is sent during the second AC97 frame slot
• CADDR: CODEC control register index
Data sent to the CODEC in the second AC97 frame slot.
• CDATA: Command Data
Data sent to the CODEC in the third AC97 frame slot (Slot 2).
616
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
35.7.6 AC97 Controller Channel A, Channel B, Receive Holding Register
Name:
AC97C_CARHR, AC97C_CBRHR
Address:
0xFFFA0020
Address:
0xFFFA0030
Access:
Read-only
31
–
23
–
15
30
–
22
–
14
29
–
21
–
13
28
–
20
–
12
27
–
19
26
–
18
25
–
17
24
–
16
11
10
9
8
3
2
1
0
RDATA
RDATA
7
6
5
4
RDATA
• RDATA: Receive Data
Received Data on channel x.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
617
35.7.7 AC97 Controller Channel A, Channel B, Transmit Holding Register
Name:
AC97C_CATHR, AC97C_CBTHR
Address:
0xFFFA0024
Address:
0xFFFA0034
Access:
Write-only
31
–
23
–
15
30
–
22
–
14
29
–
21
–
13
28
–
20
–
12
27
–
19
26
–
18
25
–
17
24
–
16
11
10
9
8
3
2
1
0
TDATA
TDATA
7
6
5
4
TDATA
• TDATA: Transmit Data
Data to be sent on channel x.
618
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
35.7.8 AC97 Controller Channel A Status Register
Name:
AC97C_CASR
Address:
0xFFFA0028
Access:
Read-only
31
–
23
–
15
RXBUFF
7
–
30
–
22
–
14
ENDRX
6
–
29
–
21
–
13
–
5
OVRUN
28
–
20
–
12
–
4
RXRDY
27
–
19
–
11
TXBUFE
3
–
26
–
18
–
10
ENDTX
2
UNRUN
25
–
17
–
9
–
1
TXEMPTY
24
–
16
–
8
–
0
TXRDY
• TXRDY: Channel Transmit Ready
0: Data has been loaded in Channel Transmit Register and is waiting to be loaded in the Channel Transmit Shift Register.
1: Channel Transmit Register is empty.
• TXEMPTY: Channel Transmit Empty
0: Data remains in the Channel Transmit Register or is currently transmitted from the Channel Transmit Shift Register.
1: Data in the Channel Transmit Register have been loaded in the Channel Transmit Shift Register and sent to the codec.
• UNRUN: Transmit Underrun
Active only when Variable Rate Mode is enabled (VRA bit set in the AC97C_MR). Automatically cleared by a processor
read operation.
0: No data has been requested from the channel since the last read of the Status Register, or data has been available each
time the CODEC requested new data from the channel since the last read of the Status Register.
1: Data has been emitted while no valid data to send has been previously loaded into the Channel Transmit Shift Register
since the last read of the Status Register.
• RXRDY: Channel Receive Ready
0: Channel Receive Holding Register is empty.
1: Data has been received and loaded in Channel Receive Holding Register.
• OVRUN: Receive Overrun
Automatically cleared by a processor read operation.
0: No data has been loaded in the Channel Receive Holding Register while previous data has not been read since the last
read of the Status Register.
1: Data has been loaded in the Channel Receive Holding Register while previous data has not yet been read since the last
read of the Status Register.
• ENDTX: End of Transmission for Channel A
0: The register AC97C_CATCR has not reached 0 since the last write in AC97C_CATCR or AC97C_CANCR.
1: The register AC97C_CATCR has reached 0 since the last write in AC97C_CATCR or AC97C_CATNCR.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
619
• TXBUFE: Transmit Buffer Empty for Channel A
0: AC97C_CATCR or AC97C_CATNCR have a value other than 0.
1: Both AC97C_CATCR and AC97C_CATNCR have a value of 0.
• ENDRX: End of Reception for Channel A
0: The register AC97C_CARCR has not reached 0 since the last write in AC97C_CARCR or AC97C_CARNCR.
1: The register AC97C_CARCR has reached 0 since the last write in AC97C_CARCR or AC97C_CARNCR.
• RXBUFF: Receive Buffer Full for Channel A
0: AC97C_CARCR or AC97C_CARNCR have a value other than 0.
1: Both AC97C_CARCR and AC97C_CARNCR have a value of 0.
620
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
35.7.9 AC97 Controller Channel B Status Register
Name:
AC97C_CBSR
Address:
0xFFFA0038
Access:
Read-only
31
–
23
–
15
–
7
–
30
–
22
–
14
–
6
–
29
–
21
–
13
–
5
OVRUN
28
–
20
–
12
–
4
RXRDY
27
–
19
–
11
–
3
–
26
–
18
–
10
–
2
UNRUN
25
–
17
–
9
–
1
TXEMPTY
24
–
16
–
8
–
0
TXRDY
• TXRDY: Channel Transmit Ready
0: Data has been loaded in Channel Transmit Register and is waiting to be loaded in the Channel Transmit Shift Register.
1: Channel Transmit Register is empty.
• TXEMPTY: Channel Transmit Empty
0: Data remains in the Channel Transmit Register or is currently transmitted from the Channel Transmit Shift Register.
1: Data in the Channel Transmit Register have been loaded in the Channel Transmit Shift Register and sent to the codec.
• UNRUN: Transmit Underrun
Active only when Variable Rate Mode is enabled (VRA bit set in the AC97C_MR). Automatically cleared by a processor
read operation.
0: No data has been requested from the channel since the last read of the Status Register, or data has been available each
time the CODEC requested new data from the channel since the last read of the Status Register.
1: Data has been emitted while no valid data to send has been previously loaded into the Channel Transmit Shift Register
since the last read of the Status Register.
• RXRDY: Channel Receive Ready
0: Channel Receive Holding Register is empty.
1: Data has been received and loaded in Channel Receive Holding Register.
• OVRUN: Receive Overrun
Automatically cleared by a processor read operation.
0: No data has been loaded in the Channel Receive Holding Register while previous data has not been read since the last
read of the Status Register.
1: Data has been loaded in the Channel Receive Holding Register while previous data has not yet been read since the last
read of the Status Register.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
621
35.7.10 AC97 Controller Codec Status Register
Name:
AC97C_COSR
Address:
0xFFFA0048
Access:
Read-only
31
–
23
–
15
–
7
–
30
–
22
–
14
–
6
–
29
–
21
–
13
–
5
OVRUN
28
–
20
–
12
–
4
RXRDY
27
–
19
–
11
–
3
–
26
–
18
–
10
–
2
UNRUN
25
–
17
–
9
–
1
TXEMPTY
24
–
16
–
8
–
0
TXRDY
• TXRDY: Channel Transmit Ready
0: Data has been loaded in Channel Transmit Register and is waiting to be loaded in the Channel Transmit Shift Register.
1: Channel Transmit Register is empty.
• TXEMPTY: Channel Transmit Empty
0: Data remains in the Channel Transmit Register or is currently transmitted from the Channel Transmit Shift Register.
1: Data in the Channel Transmit Register have been loaded in the Channel Transmit Shift Register and sent to the codec.
• UNRUN: Transmit Underrun
Active only when Variable Rate Mode is enabled (VRA bit set in the AC97C_MR). Automatically cleared by a processor
read operation.
0: No data has been requested from the channel since the last read of the Status Register, or data has been available each
time the CODEC requested new data from the channel since the last read of the Status Register.
1: Data has been emitted while no valid data to send has been previously loaded into the Channel Transmit Shift Register
since the last read of the Status Register.
• RXRDY: Channel Receive Ready
0: Channel Receive Holding Register is empty.
1: Data has been received and loaded in Channel Receive Holding Register.
• OVRUN: Receive Overrun
Automatically cleared by a processor read operation.
0: No data has been loaded in the Channel Receive Holding Register while previous data has not been read since the last
read of the Status Register.
1: Data has been loaded in the Channel Receive Holding Register while previous data has not yet been read since the last
read of the Status Register.
622
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
35.7.11 AC97 Controller Channel A Mode Register
Name:
AC97C_CAMR
Address:
0xFFFA002C
Access:
Read/Write
31
–
23
–
15
RXBUFF
7
–
30
–
22
PDCEN
14
ENDRX
6
–
29
–
21
CEN
13
–
5
OVRUN
28
–
20
–
12
–
4
RXRDY
27
–
19
–
11
TXBUFE
3
–
26
–
18
CEM
10
ENDTX
2
UNRUN
25
–
17
24
–
16
SIZE
9
–
1
TXEMPTY
8
–
0
TXRDY
• TXRDY: Channel Transmit Ready Interrupt Enable
• TXEMPTY: Channel Transmit Empty Interrupt Enable
• UNRUN: Transmit Underrun Interrupt Enable
• RXRDY: Channel Receive Ready Interrupt Enable
• OVRUN: Receive Overrun Interrupt Enable
• ENDTX: End of Transmission for Channel A Interrupt Enable
• TXBUFE: Transmit Buffer Empty for Channel A Interrupt Enable
0: Read: the corresponding interrupt is disabled. Write: disables the corresponding interrupt.
1: Read: the corresponding interrupt is enabled. Write: enables the corresponding interrupt.
• ENDRX: End of Reception for Channel A Interrupt Enable
0: Read: the corresponding interrupt is disabled. Write: disables the corresponding interrupt.
1: Read: the corresponding interrupt is enabled. Write: enables the corresponding interrupt.
• RXBUFF: Receive Buffer Full for Channel A Interrupt Enable
0: Read: the corresponding interrupt is disabled. Write: disables the corresponding interrupt.
1: Read: the corresponding interrupt is enabled. Write: enables the corresponding interrupt.
• SIZE: Channel A Data Size
SIZE Encoding
SIZE
Selected Data Size
0x0
20 bits
0x1
18 bits
0x2
16 bits
0x3
10 bits
Note: Each time slot in the data phase is 20 bit long. For example, if a 16-bit sample stream is being played to an AC 97 DAC, the first
16 bit positions are presented to the DAC MSB-justified. They are followed by the next four bit positions that the AC97 Controller
fills with zeroes. This process ensures that the least significant bits do not introduce any DC biasing, regardless of the
implemented DAC’s resolution (16-, 18-, or 20-bit)
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
623
• CEM: Channel A Endian Mode
0: Transferring Data through Channel A is straight forward (Little-Endian).
1: Transferring Data through Channel A from/to a memory is performed with from/to Big-Endian format translation.
• CEN: Channel A Enable
0: Data transfer is disabled on Channel A.
1: Data transfer is enabled on Channel A.
• PDCEN: Peripheral Data Controller Channel Enable
0: Channel A is not transferred through a Peripheral Data Controller Channel. Related PDC flags are ignored or not
generated.
1: Channel A is transferred through a Peripheral Data Controller Channel. Related PDC flags are taken into account or
generated.
624
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
35.7.12 AC97 Controller Channel B Mode Register
Name:
AC97C_CBMR
Address:
0xFFFA003C
Access:
Read/Write
31
–
23
–
15
–
7
–
30
–
22
–
14
–
6
–
29
–
21
CEN
13
–
5
OVRUN
28
–
20
–
12
–
4
RXRDY
27
–
19
–
11
–
3
–
26
–
18
CEM
10
–
2
UNRUN
25
–
17
24
–
16
SIZE
9
–
1
TXEMPTY
8
–
0
TXRDY
• TXRDY: Channel Transmit Ready Interrupt Enable
• TXEMPTY: Channel Transmit Empty Interrupt Enable
• UNRUN: Transmit Underrun Interrupt Enable
• RXRDY: Channel Receive Ready Interrupt Enable
• OVRUN: Receive Overrun Interrupt Enable
• ENDTX: End of Transmission for Channel B Interrupt Enable
• TXBUFE: Transmit Buffer Empty for Channel B Interrupt Enable
0: Read: the corresponding interrupt is disabled. Write: disables the corresponding interrupt.
1: Read: the corresponding interrupt is enabled. Write: enables the corresponding interrupt.
• ENDRX: End of Reception for Channel B Interrupt Enable
0: Read: the corresponding interrupt is disabled. Write: disables the corresponding interrupt.
1: Read: the corresponding interrupt is enabled. Write: enables the corresponding interrupt.
• RXBUFF: Receive Buffer Full for Channel B Interrupt Enable
0: Read: the corresponding interrupt is disabled. Write: disables the corresponding interrupt.
1: Read: the corresponding interrupt is enabled. Write: enables the corresponding interrupt.
• SIZE: Channel B Data Size
SIZE Encoding
SIZE
Selected Data Size
0x0
20 bits
0x1
18 bits
0x2
16 bits
0x3
10 bits
Note: Each time slot in the data phase is 20 bit long. For example, if a 16-bit sample stream is being played to an AC 97 DAC, the first
16 bit positions are presented to the DAC MSB-justified. They are followed by the next four bit positions that the AC97 Controller
fills with zeroes. This process ensures that the least significant bits do not introduce any DC biasing, regardless of the
implemented DAC’s resolution (16-, 18-, or 20-bit)
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
625
• CEM: Channel B Endian Mode
0: Transferring Data through Channel B is straight forward (Little-Endian).
1: Transferring Data through Channel B from/to a memory is performed with from/to Big-Endian format translation.
• CEN: Channel B Enable
0: Data transfer is disabled on Channel B.
1: Data transfer is enabled on Channel B.
626
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
35.7.13 AC97 Controller Codec Mode Register
Name:
AC97C_COMR
Address:
0xFFFA004C
Access:
Read/Write
31
–
23
–
15
–
7
–
30
–
22
–
14
–
6
–
29
–
21
–
13
–
5
OVRUN
28
–
20
–
12
–
4
RXRDY
27
–
19
–
11
–
3
–
26
–
18
–
10
–
2
UNRUN
25
–
17
–
9
–
1
TXEMPTY
24
–
16
–
8
–
0
TXRDY
• TXRDY: Channel Transmit Ready Interrupt Enable
• TXEMPTY: Channel Transmit Empty Interrupt Enable
• UNRUN: Transmit Underrun Interrupt Enable
• RXRDY: Channel Receive Ready Interrupt Enable
• OVRUN: Receive Overrun Interrupt Enable
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
627
35.7.14 AC97 Controller Status Register
Name:
AC97C_SR
Address:
0xFFFA0050
Access:
Read-only
31
–
23
–
15
–
7
–
30
–
22
–
14
–
6
–
29
–
21
–
13
–
5
28
–
20
–
12
–
4
CBEVT
27
–
19
–
11
–
3
CAEVT
26
–
18
–
10
–
2
COEVT
25
–
17
–
9
–
1
WKUP
24
–
16
–
8
–
0
SOF
WKUP and SOF flags in AC97C_SR are automatically cleared by a processor read operation.
• SOF: Start Of Frame
0: No Start of Frame has been detected since the last read of the Status Register.
1: At least one Start of frame has been detected since the last read of the Status Register.
• WKUP: Wake Up detection
0: No Wake-up has been detected.
1: At least one rising edge on SDATA_IN has been asynchronously detected. That means AC97 Codec has notified a
wake-up.
• COEVT: CODEC Channel Event
A Codec channel event occurs when AC97C_COSR AND AC97C_COMR is not 0. COEVT flag is automatically cleared
when the channel event condition is cleared.
0: No event on the CODEC channel has been detected since the last read of the Status Register.
1: At least one event on the CODEC channel is active.
• CAEVT: Channel A Event
A channel A event occurs when AC97C_CASR AND AC97C_CAMR is not 0. CAEVT flag is automatically cleared when
the channel event condition is cleared.
0: No event on the channel A has been detected since the last read of the Status Register.
1: At least one event on the channel A is active.
• CBEVT: Channel B Event
A channel B event occurs when AC97C_CBSR AND AC97C_CBMR is not 0. CBEVT flag is automatically cleared when
the channel event condition is cleared.
0: No event on the channel B has been detected since the last read of the Status Register.
1: At least one event on the channel B is active.
628
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
35.7.15 AC97 Codec Controller Interrupt Enable Register
Name:
AC97C_IER
Address:
0xFFFA0054
Access:
Write-only
31
–
23
–
15
–
7
–
30
–
22
–
14
–
6
–
29
–
21
–
13
–
5
28
–
20
–
12
–
4
CBEVT
27
–
19
–
11
–
3
CAEVT
26
–
18
–
10
–
2
COEVT
25
–
17
–
9
–
1
WKUP
24
–
16
–
8
–
0
SOF
• SOF: Start Of Frame
• WKUP: Wake Up
• COEVT: Codec Event
• CAEVT: Channel A Event
• CBEVT: Channel B Event
0: No Effect.
1: Enables the corresponding interrupt.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
629
35.7.16 AC97 Controller Interrupt Disable Register
Name:
AC97C_IDR
Address:
0xFFFA0058
Access:
Write-only
31
–
23
–
15
–
7
–
30
–
22
–
14
–
6
–
29
–
21
–
13
–
5
• SOF: Start Of Frame
• WKUP: Wake Up
• COEVT: Codec Event
• CAEVT: Channel A Event
• CBEVT: Channel B Event
0: No Effect.
1: Disables the corresponding interrupt.
630
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
28
–
20
–
12
–
4
CBEVT
27
–
19
–
11
–
3
CAEVT
26
–
18
–
10
–
2
COEVT
25
–
17
–
9
–
1
WKUP
24
–
16
–
8
–
0
SOF
35.7.17 AC97 Controller Interrupt Mask Register
Name:
AC97C_IMR
Address:
0xFFFA005C
Access:
Read-only
31
–
23
–
15
–
7
–
30
–
22
–
14
–
6
–
29
–
21
–
13
–
5
28
–
20
–
12
–
4
CBEVT
27
–
19
–
11
–
3
CAEVT
26
–
18
–
10
–
2
COEVT
25
–
17
–
9
–
1
WKUP
24
–
16
–
8
–
0
SOF
• SOF: Start Of Frame
• WKUP: Wake Up
• COEVT: Codec Event
• CAEVT: Channel A Event
• CBEVT: Channel B Event
0: The corresponding interrupt is disabled.
1: The corresponding interrupt is enabled.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
631
36.
Controller Area Network (CAN)
36.1
Overview
The CAN controller provides all the features required to implement the serial communication protocol CAN defined
by Robert Bosch GmbH, the CAN specification as referred to by ISO/11898A (2.0 Part A and 2.0 Part B) for high
speeds and ISO/11519-2 for low speeds. The CAN Controller is able to handle all types of frames (Data, Remote,
Error and Overload) and achieves a bitrate of 1 Mbit/sec.
CAN controller accesses are made through configuration registers. 16 independent message objects (mailboxes)
are implemented.
Any mailbox can be programmed as a reception buffer block (even non-consecutive buffers). For the reception of
defined messages, one or several message objects can be masked without participating in the buffer feature. An
interrupt is generated when the buffer is full. According to the mailbox configuration, the first message received
can be locked in the CAN controller registers until the application acknowledges it, or this message can be
discarded by new received messages.
Any mailbox can be programmed for transmission. Several transmission mailboxes can be enabled in the same
time. A priority can be defined for each mailbox independently.
An internal 16-bit timer is used to stamp each received and sent message. This timer starts counting as soon as
the CAN controller is enabled. This counter can be reset by the application or automatically after a reception in the
last mailbox in Time Triggered Mode.
The CAN controller offers optimized features to support the Time Triggered Communication (TTC) protocol.
632
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
36.2
Block Diagram
Figure 36-1.
CAN Block Diagram
Controller Area Network
CANRX
CAN Protocol Controller
PIO
CANTX
Error Counter
Mailbox
Priority
Encoder
Control
&
Status
MB0
MB1
MCK
PMC
MBx
(x = number of mailboxes - 1)
CAN Interrupt
User Interface
Internal Bus
36.3
Application Block Diagram
Figure 36-2.
36.4
Application Block Diagram
Layers
Implementation
CAN-based Profiles
Software
CAN-based Application Layer
Software
CAN Data Link Layer
CAN Controller
CAN Physical Layer
Transceiver
I/O Lines Description
Table 36-1.
I/O Lines Description
Name
Description
Type
CANRX
CAN Receive Serial Data
Input
CANTX
CAN Transmit Serial Data
Output
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
633
36.5
Product Dependencies
36.5.1 I/O Lines
The pins used for interfacing the CAN may be multiplexed with the PIO lines. The programmer must first program
the PIO controller to assign the desired CAN pins to their peripheral function. If I/O lines of the CAN are not used
by the application, they can be used for other purposes by the PIO Controller.
36.5.2 Power Management
The programmer must first enable the CAN clock in the Power Management Controller (PMC) before using the
CAN.
A Low-power Mode is defined for the CAN controller: If the application does not require CAN operations, the CAN
clock can be stopped when not needed and be restarted later. Before stopping the clock, the CAN Controller must
be in Low-power Mode to complete the current transfer. After restarting the clock, the application must disable the
Low-power Mode of the CAN controller.
36.5.3 Interrupt
The CAN interrupt line is connected on one of the internal sources of the Advanced Interrupt Controller. Using the
CAN interrupt requires the AIC to be programmed first. Note that it is not recommended to use the CAN interrupt
line in edge-sensitive mode.
36.6
CAN Controller Features
36.6.1 CAN Protocol Overview
The Controller Area Network (CAN) is a multi-master serial communication protocol that efficiently supports realtime control with a very high level of security with bit rates up to 1 Mbit/s.
The CAN protocol supports four different frame types:

Data frames: They carry data from a transmitter node to the receiver nodes. The overall maximum data
frame length is 108 bits for a standard frame and 128 bits for an extended frame.

Remote frames: A destination node can request data from the source by sending a remote frame with an
identifier that matches the identifier of the required data frame. The appropriate data source node then
sends a data frame as a response to this node request.

Error frames: An error frame is generated by any node that detects a bus error.

Overload frames: They provide an extra delay between the preceding and the successive data frames or
remote frames.
The Atmel CAN controller provides the CPU with full functionality of the CAN protocol V2.0 Part A and V2.0 Part B.
It minimizes the CPU load in communication overhead. The Data Link Layer and part of the physical layer are
automatically handled by the CAN controller itself.
The CPU reads or writes data or messages via the CAN controller mailboxes. An identifier is assigned to each
mailbox. The CAN controller encapsulates or decodes data messages to build or to decode bus data frames.
Remote frames, error frames and overload frames are automatically handled by the CAN controller under
supervision of the software application.
36.6.2 Mailbox Organization
The CAN module has 16 buffers, also called channels or mailboxes. An identifier that corresponds to the CAN
identifier is defined for each active mailbox. Message identifiers can match the standard frame identifier or the
extended frame identifier. This identifier is defined for the first time during the CAN initialization, but can be
634
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
dynamically reconfigured later so that the mailbox can handle a new message family. Several mailboxes can be
configured with the same ID.
Each mailbox can be configured in receive or in transmit mode independently. The mailbox object type is defined
in the MOT field of the CAN_MMRx.
36.6.2.1 Message Acceptance Procedure
If the MIDE field in the CAN_MIDx register is set, the mailbox can handle the extended format identifier; otherwise,
the mailbox handles the standard format identifier. Once a new message is received, its ID is masked with the
CAN_MAMx value and compared with the CAN_MIDx value. If accepted, the message ID is copied to the
CAN_MIDx register.
Figure 36-3.
Message Acceptance Procedure
CAN_MAMx
CAN_MIDx
&
Message Received
&
==
No
Message Refused
Yes
Message Accepted
CAN_MFIDx
If a mailbox is dedicated to receiving several messages (a family of messages) with different IDs, the acceptance
mask defined in the CAN_MAMx register must mask the variable part of the ID family. Once a message is
received, the application must decode the masked bits in the CAN_MIDx. To speed up the decoding, masked bits
are grouped in the family ID register (CAN_MFIDx).
For example, if the following message IDs are handled by the same mailbox:
ID0 101000100100010010000100 0 11 00b
ID1 101000100100010010000100 0 11 01b
ID2 101000100100010010000100 0 11 10b
ID3 101000100100010010000100 0 11 11b
ID4 101000100100010010000100 1 11 00b
ID5 101000100100010010000100 1 11 01b
ID6 101000100100010010000100 1 11 10b
ID7 101000100100010010000100 1 11 11b
The CAN_MIDx and CAN_MAMx of Mailbox x must be initialized to the corresponding values:
CAN_MIDx = 001 101000100100010010000100 x 11 xxb
CAN_MAMx = 001 111111111111111111111111 0 11 00b
If Mailbox x receives a message with ID6, then CAN_MIDx and CAN_MFIDx are set:
CAN_MIDx = 001 101000100100010010000100 1 11 10b
CAN_MFIDx = 00000000000000000000000000000110b
If the application associates a handler for each message ID, it may define an array of pointers to functions:
void (*pHandler[8])(void);
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
635
When a message is received, the corresponding handler can be invoked using CAN_MFIDx register and there is
no need to check masked bits:
unsigned int MFID0_register;
MFID0_register = Get_CAN_MFID0_Register();
// Get_CAN_MFID0_Register() returns the value of the CAN_MFID0 register
pHandler[MFID0_register]();
36.6.2.2 Receive Mailbox
When the CAN module receives a message, it looks for the first available mailbox with the lowest number and
compares the received message ID with the mailbox ID. If such a mailbox is found, then the message is stored in
its data registers. Depending on the configuration, the mailbox is disabled as long as the message has not been
acknowledged by the application (Receive only), or, if new messages with the same ID are received, then they
overwrite the previous ones (Receive with overwrite).
It is also possible to configure a mailbox in Consumer Mode. In this mode, after each transfer request, a remote
frame is automatically sent. The first answer received is stored in the corresponding mailbox data registers.
Several mailboxes can be chained to receive a buffer. They must be configured with the same ID in Receive Mode,
except for the last one, which can be configured in Receive with Overwrite Mode. The last mailbox can be used to
detect a buffer overflow.
Mailbox Object Type
Receive
Receive with overwrite
Consumer
Description
The first message received is stored in mailbox data registers. Data remain available until the next transfer
request.
The last message received is stored in mailbox data register. The next message always overwrites the
previous one. The application has to check whether a new message has not overwritten the current one
while reading the data registers.
A remote frame is sent by the mailbox. The answer received is stored in mailbox data register. This extends
Receive mailbox features. Data remain available until the next transfer request.
36.6.2.3 Transmit Mailbox
When transmitting a message, the message length and data are written to the transmit mailbox with the correct
identifier. For each transmit mailbox, a priority is assigned. The controller automatically sends the message with
the highest priority first (set with the field PRIOR in CAN_MMRx).
It is also possible to configure a mailbox in Producer Mode. In this mode, when a remote frame is received, the
mailbox data are sent automatically. By enabling this mode, a producer can be done using only one mailbox
instead of two: one to detect the remote frame and one to send the answer.
Mailbox Object Type
Transmit
Description
The message stored in the mailbox data registers will try to win the bus arbitration immediately or later
according to or not the Time Management Unit configuration (see Section 36.6.3).
The application is notified that the message has been sent or aborted.
Producer
636
The message prepared in the mailbox data registers will be sent after receiving the next remote frame. This
extends transmit mailbox features.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
36.6.3 Time Management Unit
The CAN Controller integrates a free-running 16-bit internal timer. The counter is driven by the bit clock of the CAN
bus line. It is enabled when the CAN controller is enabled (CANEN set in the CAN_MR). It is automatically cleared
in the following cases:

after a reset

when the CAN controller is in Low-power Mode is enabled (LPM bit set in the CAN_MR and SLEEP bit set in
the CAN_SR)

after a reset of the CAN controller (CANEN bit in the CAN_MR)

in Time-triggered Mode, when a message is accepted by the last mailbox (rising edge of the MRDY signal in
the CAN_MSRlast_mailbox_number register).
The application can also reset the internal timer by setting TIMRST in the CAN_TCR. The current value of the
internal timer is always accessible by reading the CAN_TIM register.
When the timer rolls-over from FFFFh to 0000h, TOVF (Timer Overflow) signal in the CAN_SR is set. TOVF bit in
the CAN_SR is cleared by reading the CAN_SR. Depending on the corresponding interrupt mask in the CAN_IMR,
an interrupt is generated while TOVF is set.
In a CAN network, some CAN devices may have a larger counter. In this case, the application can also decide to
freeze the internal counter when the timer reaches FFFFh and to wait for a restart condition from another device.
This feature is enabled by setting TIMFRZ in the CAN_MR. The CAN_TIM register is frozen to the FFFFh value. A
clear condition described above restarts the timer. A timer overflow (TOVF) interrupt is triggered.
To monitor the CAN bus activity, the CAN_TIM register is copied to the CAN _TIMESTP register after each start of
frame or end of frame and a TSTP interrupt is triggered. If TEOF bit in the CAN_MR is set, the value is captured at
each End Of Frame, else it is captured at each Start Of Frame. Depending on the corresponding mask in the
CAN_IMR, an interrupt is generated while TSTP is set in the CAN_SR. TSTP bit is cleared by reading the
CAN_SR.
The time management unit can operate in one of the two following modes:

Timestamping mode: The value of the internal timer is captured at each Start Of Frame or each End Of
Frame

Time Triggered mode: A mailbox transfer operation is triggered when the internal timer reaches the mailbox
trigger.
Timestamping Mode is enabled by clearing TTM field in the CAN_MR. Time Triggered Mode is enabled by setting
TTM field in the CAN_MR.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
637
36.6.4 CAN 2.0 Standard Features
36.6.4.1 CAN Bit Timing Configuration
All controllers on a CAN bus must have the same bit rate and bit length. At different clock frequencies of the
individual controllers, the bit rate has to be adjusted by the time segments.
The CAN protocol specification partitions the nominal bit time into four different segments:
Figure 36-4.
Partition of the CAN Bit Time
NOMINAL BIT TIME
SYNC_SEG
PROP_SEG
PHASE_SEG1
PHASE_SEG2
Sample Point

TIME QUANTUM
The TIME QUANTUM (TQ) is a fixed unit of time derived from the MCK period. The total number of TIME
QUANTA in a bit time is programmable from 8 to 25.
SYNC SEG: SYNChronization Segment.
This part of the bit time is used to synchronize the various nodes on the bus. An edge is expected to lie within this
segment. It is 1 TQ long.

PROP SEG: PROPagation Segment.
This part of the bit time is used to compensate for the physical delay times within the network. It is twice the sum of
the signal’s propagation time on the bus line, the input comparator delay, and the output driver delay. It is
programmable to be 1,2,..., 8 TQ long.
This parameter is defined in the PROPAG field of the ”CAN Baudrate Register”.

PHASE SEG1, PHASE SEG2: PHASE Segment 1 and 2.
The Phase-Buffer-Segments are used to compensate for edge phase errors. These segments can be lengthened
(PHASE SEG1) or shortened (PHASE SEG2) by resynchronization.
Phase Segment 1 is programmable to be 1,2,..., 8 TQ long.
Phase Segment 2 length has to be at least as long as the Information Processing Time (IPT) and may not be more
than the length of Phase Segment 1.
These parameters are defined in the PHASE1 and PHASE2 fields of the ”CAN Baudrate Register”.

INFORMATION PROCESSING TIME:
The Information Processing Time (IPT) is the time required for the logic to determine the bit level of a sampled bit.
The IPT begins at the sample point, is measured in TQ and is fixed at 2 TQ for the Atmel CAN. Since Phase
Segment 2 also begins at the sample point and is the last segment in the bit time, PHASE SEG2 shall not be less
than the IPT.

SAMPLE POINT:
The SAMPLE POINT is the point in time at which the bus level is read and interpreted as the value of that
respective bit. Its location is at the end of PHASE_SEG1.

SJW: ReSynchronization Jump Width.
The ReSynchronization Jump Width defines the limit to the amount of lengthening or shortening of the Phase
Segments.
638
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
SJW is programmable to be the minimum of PHASE SEG1 and 4 TQ.
If the SMP field in the CAN_BR is set, then the incoming bit stream is sampled three times with a period of half a
CAN clock period, centered on sample point.
In the CAN controller, the length of a bit on the CAN bus is determined by the parameters (BRP, PROPAG,
PHASE1 and PHASE2).
t BIT = t CSC + t PRS + t PHS1 + t PHS2
The time quantum is calculated as follows:
t CSC = ( BRP + 1 ) ⁄ MCK
Note: The BRP field must be within the range [1, 0x7F], i.e., BRP = 0 is not authorized.
t PRS = t CSC × ( PROPAG + 1 )
t PHS1 = t CSC × ( PHASE1 + 1 )
t PHS2 = t CSC × ( PHASE2 + 1 )
To compensate for phase shifts between clock oscillators of different controllers on the bus, the CAN controller
must resynchronize on any relevant signal edge of the current transmission. The resynchronization shortens or
lengthens the bit time so that the position of the sample point is shifted with regard to the detected edge. The
resynchronization jump width (SJW) defines the maximum of time by which a bit period may be shortened or
lengthened by resynchronization.
t SJW = t CSC × ( SJW + 1 )
Figure 36-5.
CAN Bit Timing
MCK
CAN Clock
tCSC
tPRS
tPHS1
tPHS2
NOMINAL BIT TIME
SYNC_
SEG
PROP_SEG
PHASE_SEG1
PHASE_SEG2
Sample Point
Transmission Point
Example of bit timing determination for CAN baudrate of 500 Kbit/s:
MCK = 48MHz
CAN baudrate= 500kbit/s => bit time= 2us
Delay of the bus driver: 50 ns
Delay of the receiver: 30ns
Delay of the bus line (20m): 110ns
The total number of time quanta in a bit time must be comprised between 8 and
25. If we fix the bit time to 16 time quanta:
Tcsc = 1 time quanta = bit time / 16 = 125 ns
=> BRP = (Tcsc x MCK) - 1 = 5
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
639
The propagation segment time is equal to twice the sum of the signal’s
propagation time on the bus line, the receiver delay and the output driver
delay:
Tprs = 2 * (50+30+110) ns = 380 ns = 3 Tcsc
=> PROPAG = Tprs/Tcsc - 1 = 2
The remaining time for the two phase segments is:
Tphs1 + Tphs2 = bit time - Tcsc - Tprs = (16 - 1 - 3)Tcsc
Tphs1 + Tphs2 = 12 Tcsc
Because this number is even, we choose Tphs2 = Tphs1 (else we would choose Tphs2
= Tphs1 + Tcsc)
Tphs1 = Tphs2 = (12/2) Tcsc = 6 Tcsc
=> PHASE1 = PHASE2 = Tphs1/Tcsc - 1 = 5
The resynchronization jump width must be comprised between 1 Tcsc and the
minimum of 4 Tcsc and Tphs1. We choose its maximum value:
Tsjw = Min(4 Tcsc,Tphs1) = 4 Tcsc
=> SJW = Tsjw/Tcsc - 1 = 3
Finally: CAN_BR = 0x00053255
36.6.4.2 CAN Bus Synchronization
Two types of synchronization are distinguished: “hard synchronization” at the start of a frame and
“resynchronization” inside a frame. After a hard synchronization, the bit time is restarted with the end of the
SYNC_SEG segment, regardless of the phase error. Resynchronization causes a reduction or increase in the bit
time so that the position of the sample point is shifted with respect to the detected edge.
The effect of resynchronization is the same as that of hard synchronization when the magnitude of the phase error
of the edge causing the resynchronization is less than or equal to the programmed value of the resynchronization
jump width (tSJW).
When the magnitude of the phase error is larger than the resynchronization jump width and
640

the phase error is positive, then PHASE_SEG1 is lengthened by an amount equal to the resynchronization
jump width.

the phase error is negative, then PHASE_SEG2 is shortened by an amount equal to the resynchronization
jump width.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Figure 36-6.
CAN Resynchronization
THE PHASE ERROR IS POSITIVE
(the transmitter is slower than the receiver)
Nominal
Sample point
Sample point
after resynchronization
Received
data bit
Nominal bit time
(before resynchronization)
SYNC_
SEG
PROP_SEG
PHASE_SEG1 PHASE_SEG2
Phase error (max Tsjw)
Phase error
Bit time with
resynchronization
SYNC_
SEG
SYNC_
SEG
PROP_SEG
PHASE_SEG1
THE PHASE ERROR IS NEGATIVE
(the transmitter is faster than the receiver)
PHASE_SEG2
Sample point
after resynchronization
SYNC_
SEG
Nominal
Sample point
Received
data bit
Nominal bit time
(before resynchronization)
PHASE_SEG2
SYNC_
SEG
PROP_SEG
PHASE_SEG1 PHASE_SEG2
SYNC_
SEG
Phase error
Bit time with
resynchronization
PHASE_ SYNC_
SEG2 SEG
PROP_SEG
PHASE_SEG1 PHASE_SEG2
SYNC_
SEG
Phase error (max Tsjw)
36.6.4.3 Autobaud Mode
The autobaud feature is enabled by setting the ABM field in the CAN_MR. In this mode, the CAN controller is only
listening to the line without acknowledging the received messages. It can not send any message. The errors flags
are updated. The bit timing can be adjusted until no error occurs (good configuration found). In this mode, the error
counters are frozen. To go back to the standard mode, the ABM bit must be cleared in the CAN_MR.
36.6.4.4 Error Detection
There are five different error types that are not mutually exclusive. Each error concerns only specific fields of the
CAN data frame (refer to the Bosch CAN specification for their correspondence):

CRC error (CERR bit in the CAN_SR): With the CRC, the transmitter calculates a checksum for the CRC bit
sequence from the Start of Frame bit until the end of the Data Field. This CRC sequence is transmitted in the
CRC field of the Data or Remote Frame.

Bit-stuffing error (SERR bit in the CAN_SR): If a node detects a sixth consecutive equal bit level during the
bit-stuffing area of a frame, it generates an Error Frame starting with the next bit-time.

Bit error (BERR bit in CAN_SR): A bit error occurs if a transmitter sends a dominant bit but detects a
recessive bit on the bus line, or if it sends a recessive bit but detects a dominant bit on the bus line. An error
frame is generated and starts with the next bit time.

Form Error (FERR bit in the CAN_SR): If a transmitter detects a dominant bit in one of the fix-formatted
segments CRC Delimiter, ACK Delimiter or End of Frame, a form error has occurred and an error frame is
generated.

Acknowledgment error (AERR bit in the CAN_SR): The transmitter checks the Acknowledge Slot, which is
transmitted by the transmitting node as a recessive bit, contains a dominant bit. If this is the case, at least
one other node has received the frame correctly. If not, an Acknowledge Error has occurred and the
transmitter will start in the next bit-time an Error Frame transmission.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
641
36.6.4.5 Fault Confinement
To distinguish between temporary and permanent failures, every CAN controller has two error counters: REC
(Receive Error Counter) and TEC (Transmit Error Counter). The two counters are incremented upon detected
errors and are decremented upon correct transmissions or receptions, respectively. Depending on the counter
values, the state of the node changes: the initial state of the CAN controller is Error Active, meaning that the
controller can send Error Active flags. The controller changes to the Error Passive state if there is an accumulation
of errors. If the CAN controller fails or if there is an extreme accumulation of errors, there is a state transition to Bus
Off.
Figure 36-7.
Line Error Mode
Init
TEC > 127
or
REC > 127
ERROR
PASSIVE
ERROR
ACTIVE
TEC < 127
and
REC < 127
128 occurences of 11 consecutive recessive bits
or
CAN controller reset
BUS OFF
TEC > 255
An error active unit takes part in bus communication and sends an active error frame when the CAN controller
detects an error.
An error passive unit cannot send an active error frame. It takes part in bus communication, but when an error is
detected, a passive error frame is sent. Also, after a transmission, an error passive unit waits before initiating
further transmission.
A bus off unit is not allowed to have any influence on the bus.
For fault confinement, two errors counters (TEC and REC) are implemented. These counters are accessible via
the CAN_ECR. The state of the CAN controller is automatically updated according to these counter values. If the
CAN controller is in Error Active state, then the ERRA bit is set in the CAN_SR. The corresponding interrupt is
pending while the interrupt is not masked in the CAN_IMR. If the CAN controller is in Error Passive Mode, then the
ERRP bit is set in the CAN_SR and an interrupt remains pending while the ERRP bit is set in the CAN_IMR. If the
CAN is in Bus Off Mode, then the BOFF bit is set in the CAN_SR. As for ERRP and ERRA, an interrupt is pending
while the BOFF bit is set in the CAN_IMR.
When one of the error counters values exceeds 96, an increased error rate is indicated to the controller through
the WARN bit in CAN_SR, but the node remains error active. The corresponding interrupt is pending while the
interrupt is set in the CAN_IMR.
Refer to the Bosch CAN specification v2.0 for details on fault confinement.
36.6.4.6 Error Interrupt Handler
WARN, BOFF, ERRA and ERRP (CAN_SR) represent the current status of the CAN bus and are not latched.
They reflect the current TEC and REC (CAN_ECR) values as described in Section 36.6.4.5 “Fault Confinement”.
Based on that, if these bits are used as an interrupt, the user can enter into an interrupt and not see the
corresponding status register if the TEC and REC counter have changed their state. When entering Bus Off Mode,
the only way to exit from this state is 128 occurrences of 11 consecutive recessive bits or a CAN controller reset.
642
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
In Error Active Mode, the user reads:

ERRA = 1

ERRP = 0

BOFF = 0
In Error Passive Mode, the user reads:

ERRA = 0

ERRP = 1

BOFF = 0
In Bus Off Mode, the user reads:

ERRA = 0

ERRP = 1

BOFF = 1
The CAN interrupt handler should do the following:

Only enable one error mode interrupt at a time.

Look at and check the REC and TEC values in the interrupt handler to determine the current state.
36.6.4.7 Overload
The overload frame is provided to request a delay of the next data or remote frame by the receiver node (“Request
overload frame”) or to signal certain error conditions (“Reactive overload frame”) related to the intermission field
respectively.
Reactive overload frames are transmitted after detection of the following error conditions:

Detection of a dominant bit during the first two bits of the intermission field

Detection of a dominant bit in the last bit of EOF by a receiver, or detection of a dominant bit by a receiver or
a transmitter at the last bit of an error or overload frame delimiter
The CAN controller can generate a request overload frame automatically after each message sent to one of the
CAN controller mailboxes. This feature is enabled by setting the OVL bit in the CAN_MR.
Reactive overload frames are automatically handled by the CAN controller even if the OVL bit in the CAN_MR is
not set. An overload flag is generated in the same way as an error flag, but error counters do not increment.
36.6.5 Low-power Mode
In Low-power Mode, the CAN controller cannot send or receive messages. All mailboxes are inactive.
In Low-power Mode, the SLEEP signal in the CAN_SR is set; otherwise, the WAKEUP signal in the CAN_SR is
set. These two fields are exclusive except after a CAN controller reset (WAKEUP and SLEEP are stuck at 0 after a
reset). After power-up reset, the Low-power Mode is disabled and the WAKEUP bit is set in the CAN_SR only after
detection of 11 consecutive recessive bits on the bus.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
643
36.6.5.1 Enabling Low-power Mode
A software application can enable Low-power Mode by setting the LPM bit in the CAN_MR global register. The
CAN controller enters Low-power Mode once all pending transmit messages are sent.
When the CAN controller enters Low-power Mode, the SLEEP signal in the CAN_SR is set. Depending on the
corresponding mask in the CAN_IMR, an interrupt is generated while SLEEP is set.
The SLEEP signal in the CAN_SR is automatically cleared once WAKEUP is set. The WAKEUP signal is
automatically cleared once SLEEP is set.
Reception is disabled while the SLEEP signal is set to one in the CAN_SR. It is important to note that those
messages with higher priority than the last message transmitted can be received between the LPM command and
entry in Low-power Mode.
Once in Low-power Mode, the CAN controller clock can be switched off by programming the chip’s Power
Management Controller (PMC). The CAN controller drains only the static current.
Error counters are disabled while the SLEEP signal is set to one.
Thus, to enter Low-power Mode, the software application must:
̶
Set LPM field in the CAN_MR
̶
Wait for SLEEP signal rising
Now the CAN Controller clock can be disabled. This is done by programming the Power Management Controller
(PMC).
Figure 36-8.
Enabling Low-power Mode
Arbitration lost
Mailbox 1
CAN BUS
Mailbox 3
LPEN= 1
LPM
(CAN_MR)
SLEEP
(CAN_SR)
WAKEUP
(CAN_SR)
MRDY
(CAN_MSR1)
MRDY
(CAN_MSR3)
CAN_TIM
644
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
0x0
36.6.5.2 Disabling Low-power Mode
The CAN controller can be awake after detecting a CAN bus activity. Bus activity detection is done by an external
module that may be embedded in the chip. When it is notified of a CAN bus activity, the software application
disables Low-power Mode by programming the CAN controller.
To disable Low-power Mode, the software application must:
̶
Enable the CAN Controller clock. This is done by programming the Power Management Controller
(PMC).
̶
Clear the LPM field in the CAN_MR
The CAN controller synchronizes itself with the bus activity by checking for eleven consecutive “recessive” bits.
Once synchronized, the WAKEUP signal in the CAN_SR is set.
Depending on the corresponding mask in the CAN_IMR, an interrupt is generated while WAKEUP is set. The
SLEEP signal in the CAN_SR is automatically cleared once WAKEUP is set. WAKEUP signal is automatically
cleared once SLEEP is set.
If no message is being sent on the bus, then the CAN controller is able to send a message eleven bit times after
disabling Low-power Mode.
If there is bus activity when Low-power mode is disabled, the CAN controller is synchronized with the bus activity
in the next interframe. The previous message is lost (see Figure 36-9).
Figure 36-9.
Disabling Low-power Mode
Bus Activity Detected
CAN BUS
LPM
(CAN_MR)
Message lost
Message x
Interframe synchronization
SLEEP
(CAN_SR)
WAKEUP
(CAN_SR)
MRDY
(CAN_MSRx)
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
645
36.7
Functional Description
36.7.1 CAN Controller Initialization
After power-up reset, the CAN controller is disabled. The CAN controller clock must be activated by the Power
Management Controller (PMC) and the CAN controller interrupt line must be enabled by the interrupt controller
(AIC).
The CAN controller must be initialized with the CAN network parameters. The CAN_BR defines the sampling point
in the bit time period. CAN_BR must be set before the CAN controller is enabled by setting the CANEN field in the
CAN_MR.
The CAN controller is enabled by setting the CANEN flag in the CAN_MR. At this stage, the internal CAN controller
state machine is reset, error counters are reset to 0, error flags are reset to 0.
Once the CAN controller is enabled, bus synchronization is done automatically by scanning eleven recessive bits.
The WAKEUP bit in the CAN_SR is automatically set to 1 when the CAN controller is synchronized (WAKEUP and
SLEEP are stuck at 0 after a reset).
The CAN controller can start listening to the network in Autobaud Mode. In this case, the error counters are locked
and a mailbox may be configured in Receive Mode. By scanning error flags, the CAN_BR values synchronized
with the network. Once no error has been detected, the application disables the Autobaud Mode, clearing the ABM
field in the CAN_MR.
Figure 36-10. Possible Initialization Procedure
Enable CAN Controller Clock
(PMC)
Enable CAN Controller Interrupt Line
(AIC)
Configure a Mailbox in Reception Mode
Change CAN_BR value
(ABM == 1 and CANEN == 1)
Errors ?
(CAN_SR or CAN_MSRx)
No
ABM = 0 and CANEN = 0
CANEN = 1 (ABM == 0)
End of Initialization
646
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Yes
36.7.2 CAN Controller Interrupt Handling
There are two different types of interrupts. One type of interrupt is a message-object related interrupt, the other is
a system interrupt that handles errors or system-related interrupt sources.
All interrupt sources can be masked by writing the corresponding field in the CAN_IDR. They can be unmasked by
writing to the CAN_IER. After a power-up reset, all interrupt sources are disabled (masked). The current mask
status can be checked by reading the CAN_IMR.
The CAN_SR gives all interrupt source states.
The following events may initiate one of the two interrupts:

Message object interrupt
̶
̶
Data registers in the mailbox object are available to the application. In Receive Mode, a new message
was received. In Transmit Mode, a message was transmitted successfully.

A sent transmission was aborted.
System interrupts
̶
Bus off interrupt: The CAN module enters the bus off state.
̶
Error passive interrupt: The CAN module enters Error Passive Mode.
̶
Error Active Mode: The CAN module is neither in Error Passive Mode nor in Bus Off mode.
̶
Warn Limit interrupt: The CAN module is in Error-active Mode, but at least one of its error counter
value exceeds 96.
̶
Wake-up interrupt: This interrupt is generated after a wake-up and a bus synchronization.
̶
Sleep interrupt: This interrupt is generated after a Low-power Mode enable once all pending
messages in transmission have been sent.
̶
Internal timer counter overflow interrupt: This interrupt is generated when the internal timer rolls over.
̶
Timestamp interrupt: This interrupt is generated after the reception or the transmission of a start of
frame or an end of frame. The value of the internal counter is copied in the CAN_TIMESTP register.
All interrupts are cleared by clearing the interrupt source except for the internal timer counter overflow interrupt and
the timestamp interrupt. These interrupts are cleared by reading the CAN_SR.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
647
36.7.3 CAN Controller Message Handling
36.7.3.1 Receive Handling
Two modes are available to configure a mailbox to receive messages. In Receive Mode, the first message
received is stored in the mailbox data register. In Receive with Overwrite Mode, the last message received is
stored in the mailbox.
36.7.3.2 Simple Receive Mailbox
A mailbox is in Receive Mode once the MOT field in the CAN_MMRx has been configured. Message ID and
Message Acceptance Mask must be set before the Receive Mode is enabled.
After Receive Mode is enabled, the MRDY flag in the CAN_MSR is automatically cleared until the first message is
received. When the first message has been accepted by the mailbox, the MRDY flag is set. An interrupt is pending
for the mailbox while the MRDY flag is set. This interrupt can be masked depending on the mailbox flag in the
CAN_IMR global register.
Message data are stored in the mailbox data register until the software application notifies that data processing
has ended. This is done by asking for a new transfer command, setting the MTCR flag in the CAN_MCRx. This
automatically clears the MRDY signal.
The MMI flag in the CAN_MSRx notifies the software that a message has been lost by the mailbox. This flag is set
when messages are received while MRDY is set in the CAN_MSRx. This flag is cleared by reading the
CAN_MSRs register. A receive mailbox prevents from overwriting the first message by new ones while MRDY flag
is set in the CAN_MSRx. See Figure 36-11.
Figure 36-11. Receive Mailbox
Message ID = CAN_MIDx
CAN BUS
Message 1
Message 2 lost
Message 3
MRDY
(CAN_MSRx)
MMI
(CAN_MSRx)
(CAN_MDLx
CAN_MDHx)
Message 1
Message 3
MTCR
(CAN_MCRx)
Reading CAN_MSRx
Reading CAN_MDHx & CAN_MDLx
Writing CAN_MCRx
Note:
648
In the case of ARM architecture, CAN_MSRx, CAN_MDLx, CAN_MDHx can be read using an optimized ldm
assembler instruction.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
36.7.3.3 Receive with Overwrite Mailbox
A mailbox is in Receive with Overwrite Mode once the MOT field in the CAN_MMRx has been configured.
Message ID and Message Acceptance masks must be set before Receive Mode is enabled.
After Receive Mode is enabled, the MRDY flag in the CAN_MSR is automatically cleared until the first message is
received. When the first message has been accepted by the mailbox, the MRDY flag is set. An interrupt is pending
for the mailbox while the MRDY flag is set. This interrupt is masked depending on the mailbox flag in the CAN_IMR
global register.
If a new message is received while the MRDY flag is set, this new message is stored in the mailbox data register,
overwriting the previous message. The MMI flag in the CAN_MSRx notifies the software that a message has been
dropped by the mailbox. This flag is cleared when reading the CAN_MSRx.
The CAN controller may store a new message in the CAN data registers while the application reads them. To
check that CAN_MDHx and CAN_MDLx do not belong to different messages, the application must check the MMI
field in the CAN_MSRx before and after reading CAN_MDHx and CAN_MDLx. If the MMI flag is set again after the
data registers have been read, the software application has to re-read CAN_MDHx and CAN_MDLx (see Figure
36-12).
Figure 36-12. Receive with Overwrite Mailbox
Message ID = CAN_MIDx
CAN BUS
Message 1
Message 2
Message 3
Message 4
MRDY
(CAN_MSRx)
MMI
(CAN_MSRx)
(CAN_MDLx
CAN_MDHx)
Message 1
Message 2
Message 3
Message 4
MTCR
(CAN_MCRx)
Reading CAN_MSRx
Reading CAN_MDHx & CAN_MDLx
Writing CAN_MCRx
36.7.3.4 Chaining Mailboxes
Several mailboxes may be used to receive a buffer split into several messages with the same ID. In this case, the
mailbox with the lowest number is serviced first. In the receive and receive with overwrite modes, the field PRIOR
in the CAN_MMRx has no effect. If Mailbox 0 and Mailbox 5 accept messages with the same ID, the first message
is received by Mailbox 0 and the second message is received by Mailbox 5. Mailbox 0 must be configured in
Receive Mode (i.e., the first message received is considered) and Mailbox 5 must be configured in Receive with
Overwrite Mode. Mailbox 0 cannot be configured in Receive with Overwrite Mode; otherwise, all messages are
accepted by this mailbox and Mailbox 5 is never serviced.
If several mailboxes are chained to receive a buffer split into several messages, all mailboxes except the last one
(with the highest number) must be configured in Receive Mode. The first message received is handled by the first
mailbox, the second one is refused by the first mailbox and accepted by the second mailbox, the last message is
accepted by the last mailbox and refused by previous ones (see Figure 36-13).
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
649
Figure 36-13. Chaining Three Mailboxes to Receive a Buffer Split into Three Messages
Buffer split in 3 messages
CAN BUS
Message s1
Message s2
Message s3
MRDY
(CAN_MSRx)
MMI
(CAN_MSRx)
MRDY
(CAN_MSRy)
MMI
(CAN_MSRy)
MRDY
(CAN_MSRz)
MMI
(CAN_MSRz)
Reading CAN_MSRx, CAN_MSRy and CAN_MSRz
Reading CAN_MDH & CAN_MDL for mailboxes x, y and z
Writing MBx MBy MBz in CAN_TCR
If the number of mailboxes is not sufficient (the MMI flag of the last mailbox raises), the user must read each data
received on the last mailbox in order to retrieve all the messages of the buffer split (see Figure 36-14).
Figure 36-14. Chaining Three Mailboxes to Receive a Buffer Split into Four Messages
Buffer split in 4 messages
CAN BUS
Message s2
Message s1
Message s3
Message s4
MRDY
(CAN_MSRx)
MMI
(CAN_MSRx)
MRDY
(CAN_MSRy)
MMI
(CAN_MSRy)
MRDY
(CAN_MSRz)
MMI
(CAN_MSRz)
Reading CAN_MSRx, CAN_MSRy and CAN_MSRz
Reading CAN_MDH & CAN_MDL for mailboxes x, y and z
Writing MBx MBy MBz in CAN_TCR
650
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
36.7.3.5 Transmission Handling
A mailbox is in Transmit Mode once the MOT field in the CAN_MMRx has been configured. Message ID and
Message Acceptance mask must be set before Receive Mode is enabled.
After Transmit Mode is enabled, the MRDY flag in the CAN_MSR is automatically set until the first command is
sent. When the MRDY flag is set, the software application can prepare a message to be sent by writing to the
CAN_MDx registers. The message is sent once the software asks for a transfer command setting the MTCR bit
and the message data length in the CAN_MCRx.
The MRDY flag remains at zero as long as the message has not been sent or aborted. It is important to note that
no access to the mailbox data register is allowed while the MRDY flag is cleared. An interrupt is pending for the
mailbox while the MRDY flag is set. This interrupt can be masked depending on the mailbox flag in the CAN_IMR
global register.
It is also possible to send a remote frame setting the MRTR bit instead of setting the MDLC field. The answer to
the remote frame is handled by another reception mailbox. In this case, the device acts as a consumer but with the
help of two mailboxes. It is possible to handle the remote frame emission and the answer reception using only one
mailbox configured in Consumer Mode. Refer to the section “Remote Frame Handling” on page 652.
Several messages can try to win the bus arbitration in the same time. The message with the highest priority is sent
first. Several transfer request commands can be generated at the same time by setting MBx bits in the CAN_TCR.
The priority is set in the PRIOR field of the CAN_MMRx. Priority 0 is the highest priority, priority 15 is the lowest
priority. Thus it is possible to use a part of the message ID to set the PRIOR field. If two mailboxes have the same
priority, the message of the mailbox with the lowest number is sent first. Thus if mailbox 0 and mailbox 5 have the
same priority and have a message to send at the same time, then the message of the mailbox 0 is sent first.
Setting the MACR bit in the CAN_MCRx aborts the transmission. Transmission for several mailboxes can be
aborted by writing MBx fields in the CAN_ACR. If the message is being sent when the abort command is set, then
the application is notified by the MRDY bit set and not the MABT in the CAN_MSRx. Otherwise, if the message
has not been sent, then the MRDY and the MABT are set in the CAN_MSR.
When the bus arbitration is lost by a mailbox message, the CAN controller tries to win the next bus arbitration with
the same message if this one still has the highest priority. Messages to be sent are re-tried automatically until they
win the bus arbitration. This feature can be disabled by setting the bit DRPT in the CAN_MR. In this case if the
message was not sent the first time it was transmitted to the CAN transceiver, it is automatically aborted. The
MABT flag is set in the CAN_MSRx until the next transfer command.
Figure 36-15 shows three MBx message attempts being made (MRDY of MBx set to 0).
The first MBx message is sent, the second is aborted and the last one is trying to be aborted but too late because
it has already been transmitted to the CAN transceiver.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
651
Figure 36-15. Transmitting Messages
MBx message
CAN BUS
MBx message
MRDY
(CAN_MSRx)
MABT
(CAN_MSRx)
MTCR
(CAN_MCRx)
MACR
(CAN_MCRx)
Abort MBx message
Try to Abort MBx message
Reading CAN_MSRx
Writing CAN_MDHx &
CAN_MDLx
36.7.3.6 Remote Frame Handling
Producer/consumer model is an efficient means of handling broadcasted messages. The push model allows a
producer to broadcast messages; the pull model allows a customer to ask for messages.
Figure 36-16. Producer / Consumer Model
Producer
Request
PUSH MODEL
CAN Data Frame
Consumer
Indication(s)
PULL MODEL
Producer
Indications
Response
Consumer
CAN Remote Frame
Request(s)
CAN Data Frame
Confirmation(s)
In Pull Mode, a consumer transmits a remote frame to the producer. When the producer receives a remote frame,
it sends the answer accepted by one or many consumers. Using transmit and receive mailboxes, a consumer must
dedicate two mailboxes, one in Transmit Mode to send remote frames, and at least one in Receive Mode to
capture the producer’s answer. The same structure is applicable to a producer: one reception mailbox is required
to get the remote frame and one transmit mailbox to answer.
Mailboxes can be configured in Producer or Consumer Mode. A lonely mailbox can handle the remote frame and
the answer. With 16 mailboxes, the CAN controller can handle 16 independent producers/consumers.
652
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
36.7.3.7 Producer Configuration
A mailbox is in Producer Mode once the MOT field in the CAN_MMRx has been configured. Message ID and
Message Acceptance masks must be set before Receive Mode is enabled.
After Producer Mode is enabled, the MRDY flag in the CAN_MSR is automatically set until the first transfer
command. The software application prepares data to be sent by writing to the CAN_MDHx and the CAN_MDLx
registers, then by setting the MTCR bit in the CAN_MCRx. Data is sent after the reception of a remote frame as
soon as it wins the bus arbitration.
The MRDY flag remains at zero as long as the message has not been sent or aborted. No access to the mailbox
data register can be done while MRDY flag is cleared. An interrupt is pending for the mailbox while the MRDY flag
is set. This interrupt can be masked according to the mailbox flag in the CAN_IMR global register.
If a remote frame is received while no data are ready to be sent (signal MRDY set in the CAN_MSRx), then the
MMI signal is set in the CAN_MSRx. This bit is cleared by reading the CAN_MSRx.
The MRTR field in the CAN_MSRx has no meaning. This field is used only when using Receive and Receive with
Overwrite modes.
After a remote frame has been received, the mailbox functions like a transmit mailbox. The message with the
highest priority is sent first. The transmitted message may be aborted by setting the MACR bit in the CAN_MCR.
Please refer to the section “Transmission Handling” on page 651.
Figure 36-17. Producer Handling
Remote Frame
CAN BUS
Message 1
Remote Frame
Remote Frame
Message 2
MRDY
(CAN_MSRx)
MMI
(CAN_MSRx)
Reading CAN_MSRx
MTCR
(CAN_MCRx)
(CAN_MDLx
CAN_MDHx)
Message 1
Message 2
36.7.3.8 Consumer Configuration
A mailbox is in Consumer Mode once the MOT field in the CAN_MMRx has been configured. Message ID and
Message Acceptance masks must be set before Receive Mode is enabled.
After Consumer Mode is enabled, the MRDY flag in the CAN_MSR is automatically cleared until the first transfer
request command. The software application sends a remote frame by setting the MTCR bit in the CAN_MCRx or
the MBx bit in the global CAN_TCR. The application is notified of the answer by the MRDY flag set in the
CAN_MSRx. The application can read the data contents in the CAN_MDHx and CAN_MDLx registers. An interrupt
is pending for the mailbox while the MRDY flag is set. This interrupt can be masked according to the mailbox flag
in the CAN_IMR global register.
The MRTR bit in the CAN_MCRx has no effect. This field is used only when using Transmit Mode.
After a remote frame has been sent, the consumer mailbox functions as a reception mailbox. The first message
received is stored in the mailbox data registers. If other messages intended for this mailbox have been sent while
the MRDY flag is set in the CAN_MSRx, they will be lost. The application is notified by reading the MMI field in the
CAN_MSRx. The read operation automatically clears the MMI flag.
If several messages are answered by the Producer, the CAN controller may have one mailbox in consumer
configuration, zero or several mailboxes in Receive Mode and one mailbox in Receive with Overwrite Mode. In this
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
653
case, the consumer mailbox must have a lower number than the Receive with Overwrite mailbox. The transfer
command can be triggered for all mailboxes at the same time by setting several MBx fields in the CAN_TCR.
Figure 36-18. Consumer Handling
Message x
Remote Frame
CAN BUS
Remote Frame
Message y
MRDY
(CAN_MSRx)
MMI
(CAN_MSRx)
MTCR
(CAN_MCRx)
(CAN_MDLx
CAN_MDHx)
Message y
Message x
36.7.4 CAN Controller Timing Modes
Using the free running 16-bit internal timer, the CAN controller can be set in one of the two following timing modes:

Timestamping Mode: The value of the internal timer is captured at each Start Of Frame or each End Of
Frame.

Time Triggered Mode: The mailbox transfer operation is triggered when the internal timer reaches the
mailbox trigger.
Timestamping Mode is enabled by clearing the TTM bit in the CAN_MR. Time Triggered Mode is enabled by
setting the TTM bit in the CAN_MR.
36.7.4.1 Timestamping Mode
Each mailbox has its own timestamp value. Each time a message is sent or received by a mailbox, the 16-bit value
MTIMESTAMP of the CAN_TIMESTP register is transferred to the LSB bits of the CAN_MSRx. The value read in
the CAN_MSRx corresponds to the internal timer value at the Start Of Frame or the End Of Frame of the message
handled by the mailbox.
Figure 36-19. Mailbox Timestamp
Start of Frame
CAN BUS
Message 1
End of Frame
Message 2
CAN_TIM
TEOF
(CAN_MR)
TIMESTAMP
(CAN_TSTP)
Timestamp 1
MTIMESTAMP
(CAN_MSRx)
Timestamp 1
MTIMESTAMP
(CAN_MSRy)
654
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Timestamp 2
Timestamp 2
36.7.4.2 Time Triggered Mode
In Time Triggered Mode, basic cycles can be split into several time windows. A basic cycle starts with a reference
message. Each time a window is defined from the reference message, a transmit operation should occur within a
pre-defined time window. A mailbox must not win the arbitration in a previous time window, and it must not be
retried if the arbitration is lost in the time window.
Figure 36-20. Time Triggered Principle
Time Cycle
Reference
Message
Reference
Message
Time Windows for Messages
Global Time
Time Trigger Mode is enabled by setting the TTM field in the CAN_MR. In Time Triggered Mode, as in Timestamp
Mode, the CAN_TIMESTP field captures the values of the internal counter, but the MTIMESTAMP fields in the
CAN_MSRx registers are not active and are read at 0.
36.7.4.3 Synchronization by a Reference Message
In Time Triggered Mode, the internal timer counter is automatically reset when a new message is received in the
last mailbox. This reset occurs after the reception of the End Of Frame on the rising edge of the MRDY signal in
the CAN_MSRx. This allows synchronization of the internal timer counter with the reception of a reference
message and the start a new time window.
36.7.4.4 Transmitting within a Time Window
A time mark is defined for each mailbox. It is defined in the 16-bit MTIMEMARK field of the CAN_MMRx. At each
internal timer clock cycle, the value of the CAN_TIM is compared with each mailbox time mark. When the internal
timer counter reaches the MTIMEMARK value, an internal timer event for the mailbox is generated for the mailbox.
In Time Triggered Mode, transmit operations are delayed until the internal timer event for the mailbox. The
application prepares a message to be sent by setting the MTCR in the CAN_MCRx. The message is not sent until
the CAN_TIM value is less than the MTIMEMARK value defined in the CAN_MMRx.
If the transmit operation is failed, i.e., the message loses the bus arbitration and the next transmit attempt is
delayed until the next internal time trigger event. This prevents overlapping the next time window, but the message
is still pending and is retried in the next time window when CAN_TIM value equals the MTIMEMARK value. It is
also possible to prevent a retry by setting the DRPT field in the CAN_MR.
36.7.4.5 Freezing the Internal Timer Counter
The internal counter can be frozen by setting TIMFRZ in the CAN_MR. This prevents an unexpected roll-over
when the counter reaches FFFFh. When this occurs, it automatically freezes until a new reset is issued, either due
to a message received in the last mailbox or any other reset counter operations. The TOVF bit in the CAN_SR is
set when the counter is frozen. The TOVF bit in the CAN_SR is cleared by reading the CAN_SR. Depending on
the corresponding interrupt mask in the CAN_IMR, an interrupt is generated when TOVF is set.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
655
Figure 36-21. Time Triggered Operations
Message x
Arbitration Lost
End of Frame
CAN BUS
Reference
Message
Message y
Internal Counter Reset
CAN_TIM
Cleared by software
MRDY
(CAN_MSRlast_mailbox_number)
Timer Event x
MTIMEMARKx == CAN_TIM
MRDY
(CAN_MSRx)
MTIMEMARKy == CAN_TIM
Timer Event y
MRDY
(CAN_MSRy)
Time Window
Basic Cycle
Message x
Arbitration Win
End of Frame
CAN BUS
Reference
Message
Message x
Internal Counter Reset
CAN_TIM
Cleared by software
MRDY
(CAN_MSRlast_mailbox_number)
Timer Event x
MTIMEMARKx == CAN_TIM
MRDY
(CAN_MSRx)
Time Window
Basic Cycle
656
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Message y
Arbitration Win
36.8
Controller Area Network (CAN) User Interface
Table 36-2.
Register Mapping
Offset
Register
Name
Access
Reset
0x0000
Mode Register
CAN_MR
Read/Write
0x0
0x0004
Interrupt Enable Register
CAN_IER
Write-only
–
0x0008
Interrupt Disable Register
CAN_IDR
Write-only
–
0x000C
Interrupt Mask Register
CAN_IMR
Read-only
0x0
0x0010
Status Register
CAN_SR
Read-only
0x0
0x0014
Baudrate Register
CAN_BR
Read/Write
0x0
0x0018
Timer Register
CAN_TIM
Read-only
0x0
0x001C
Timestamp Register
CAN_TIMESTP
Read-only
0x0
0x0020
Error Counter Register
CAN_ECR
Read-only
0x0
0x0024
Transfer Command Register
CAN_TCR
Write-only
–
0x0028
Abort Command Register
CAN_ACR
Write-only
–
Reserved
–
–
–
0x0200 + mb_num * 0x20 + 0x00
Mailbox Mode Register(1)
CAN_MMR
Read/Write
0x0
0x0200 + mb_num * 0x20 + 0x04
Mailbox Acceptance Mask Register
CAN_MAM
Read/Write
0x0
0x0200 + mb_num * 0x20 + 0x08
Mailbox ID Register
CAN_MID
Read/Write
0x0
0x0200 + mb_num * 0x20 + 0x0C
Mailbox Family ID Register
CAN_MFID
Read-only
0x0
0x0200 + mb_num * 0x20 + 0x10
Mailbox Status Register
CAN_MSR
Read-only
0x0
0x0200 + mb_num * 0x20 + 0x14
Mailbox Data Low Register
CAN_MDL
Read/Write
0x0
0x0200 + mb_num * 0x20 + 0x18
Mailbox Data High Register
CAN_MDH
Read/Write
0x0
0x0200 + mb_num * 0x20 + 0x1C
Mailbox Control Register
CAN_MCR
Write-only
–
0x0100–0x01FC
Note:
1. Mailbox number ranges from 0 to 15.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
657
36.8.1 CAN Mode Register
Name:
CAN_MR
Address:
0xFFFAC000
Access:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
25
24
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
DRPT
6
TIMFRZ
5
TTM
4
TEOF
3
OVL
2
ABM
1
LPM
0
CANEN
• CANEN: CAN Controller Enable
0: The CAN Controller is disabled.
1: The CAN Controller is enabled.
• LPM: Disable/Enable Low Power Mode
0: Disable Low Power Mode.
1: Enable Low Power Mode.
CAN controller enters Low Power Mode once all pending messages have been transmitted.
• ABM: Disable/Enable Autobaud/Listen mode
0: Disable Autobaud/listen mode.
1: Enable Autobaud/listen mode.
• OVL: Disable/Enable Overload Frame
0: No overload frame is generated.
1: An overload frame is generated after each successful reception for mailboxes configured in Receive with/without overwrite Mode, Producer and Consumer.
• TEOF: Timestamp messages at each end of Frame
0: The value of CAN_TIM is captured in the CAN_TIMESTP register at each Start Of Frame.
1: The value of CAN_TIM is captured in the CAN_TIMESTP register at each End Of Frame.
• TTM: Disable/Enable Time Triggered Mode
0: Time Triggered Mode is disabled.
1: Time Triggered Mode is enabled.
• TIMFRZ: Enable Timer Freeze
0: The internal timer continues to be incremented after it reached 0xFFFF.
1: The internal timer stops incrementing after reaching 0xFFFF. It is restarted after a timer reset. See “Freezing the Internal
Timer Counter” on page 655.
658
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
• DRPT: Disable Repeat
0: When a transmit mailbox loses the bus arbitration, the transfer request remains pending.
1: When a transmit mailbox lose the bus arbitration, the transfer request is automatically aborted. It automatically raises the
MABT and MRDT flags in the corresponding CAN_MSRx.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
659
36.8.2 CAN Interrupt Enable Register
Name:
CAN_IER
Address:
0xFFFAC004
Access:
Write-only
31
–
30
–
29
–
28
BERR
27
FERR
26
AERR
25
SERR
24
CERR
23
TSTP
22
TOVF
21
WAKEUP
20
SLEEP
19
BOFF
18
ERRP
17
WARN
16
ERRA
15
MB15
14
MB14
13
MB13
12
MB12
11
MB11
10
MB10
9
MB9
8
MB8
7
MB7
6
MB6
5
MB5
4
MB4
3
MB3
2
MB2
1
MB1
0
MB0
• MBx: Mailbox x Interrupt Enable
0: No effect.
1: Enable Mailbox x interrupt.
• ERRA: Error Active Mode Interrupt Enable
0: No effect.
1: Enable ERRA interrupt.
• WARN: Warning Limit Interrupt Enable
0: No effect.
1: Enable WARN interrupt.
• ERRP: Error Passive Mode Interrupt Enable
0: No effect.
1: Enable ERRP interrupt.
• BOFF: Bus Off Mode Interrupt Enable
0: No effect.
1: Enable BOFF interrupt.
• SLEEP: Sleep Interrupt Enable
0: No effect.
1: Enable SLEEP interrupt.
• WAKEUP: Wakeup Interrupt Enable
0: No effect.
1: Enable SLEEP interrupt.
660
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
• TOVF: Timer Overflow Interrupt Enable
0: No effect.
1: Enable TOVF interrupt.
• TSTP: TimeStamp Interrupt Enable
0: No effect.
1: Enable TSTP interrupt.
• CERR: CRC Error Interrupt Enable
0: No effect.
1: Enable CRC Error interrupt.
• SERR: Stuffing Error Interrupt Enable
0: No effect.
1: Enable Stuffing Error interrupt.
• AERR: Acknowledgment Error Interrupt Enable
0: No effect.
1: Enable Acknowledgment Error interrupt.
• FERR: Form Error Interrupt Enable
0: No effect.
1: Enable Form Error interrupt.
• BERR: Bit Error Interrupt Enable
0: No effect.
1: Enable Bit Error interrupt.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
661
36.8.3 CAN Interrupt Disable Register
Name:
CAN_IDR
Address:
0xFFFAC008
Access:
Write-only
31
–
30
–
29
–
28
BERR
27
FERR
26
AERR
25
SERR
24
CERR
23
TSTP
22
TOVF
21
WAKEUP
20
SLEEP
19
BOFF
18
ERRP
17
WARN
16
ERRA
15
MB15
14
MB14
13
MB13
12
MB12
11
MB11
10
MB10
9
MB9
8
MB8
7
MB7
6
MB6
5
MB5
4
MB4
3
MB3
2
MB2
1
MB1
0
MB0
• MBx: Mailbox x Interrupt Disable
0: No effect.
1: Disable Mailbox x interrupt.
• ERRA: Error Active Mode Interrupt Disable
0: No effect.
1: Disable ERRA interrupt.
• WARN: Warning Limit Interrupt Disable
0: No effect.
1: Disable WARN interrupt.
• ERRP: Error Passive Mode Interrupt Disable
0: No effect.
1: Disable ERRP interrupt.
• BOFF: Bus Off Mode Interrupt Disable
0: No effect.
1: Disable BOFF interrupt.
• SLEEP: Sleep Interrupt Disable
0: No effect.
1: Disable SLEEP interrupt.
• WAKEUP: Wakeup Interrupt Disable
0: No effect.
1: Disable WAKEUP interrupt.
662
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
• TOVF: Timer Overflow Interrupt
0: No effect.
1: Disable TOVF interrupt.
• TSTP: TimeStamp Interrupt Disable
0: No effect.
1: Disable TSTP interrupt.
• CERR: CRC Error Interrupt Disable
0: No effect.
1: Disable CRC Error interrupt.
• SERR: Stuffing Error Interrupt Disable
0: No effect.
1: Disable Stuffing Error interrupt.
• AERR: Acknowledgment Error Interrupt Disable
0: No effect.
1: Disable Acknowledgment Error interrupt.
• FERR: Form Error Interrupt Disable
0: No effect.
1: Disable Form Error interrupt.
• BERR: Bit Error Interrupt Disable
0: No effect.
1: Disable Bit Error interrupt.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
663
36.8.4 CAN Interrupt Mask Register
Name:
CAN_IMR
Address:
0xFFFAC00C
Access:
Read-only
31
–
30
–
29
–
28
BERR
27
FERR
26
AERR
25
SERR
24
CERR
23
TSTP
22
TOVF
21
WAKEUP
20
SLEEP
19
BOFF
18
ERRP
17
WARN
16
ERRA
15
MB15
14
MB14
13
MB13
12
MB12
11
MB11
10
MB10
9
MB9
8
MB8
7
MB7
6
MB6
5
MB5
4
MB4
3
MB3
2
MB2
1
MB1
0
MB0
• MBx: Mailbox x Interrupt Mask
0: Mailbox x interrupt is disabled.
1: Mailbox x interrupt is enabled.
• ERRA: Error Active Mode Interrupt Mask
0: ERRA interrupt is disabled.
1: ERRA interrupt is enabled.
• WARN: Warning Limit Interrupt Mask
0: Warning Limit interrupt is disabled.
1: Warning Limit interrupt is enabled.
• ERRP: Error Passive Mode Interrupt Mask
0: ERRP interrupt is disabled.
1: ERRP interrupt is enabled.
• BOFF: Bus Off Mode Interrupt Mask
0: BOFF interrupt is disabled.
1: BOFF interrupt is enabled.
• SLEEP: Sleep Interrupt Mask
0: SLEEP interrupt is disabled.
1: SLEEP interrupt is enabled.
• WAKEUP: Wakeup Interrupt Mask
0: WAKEUP interrupt is disabled.
1: WAKEUP interrupt is enabled.
664
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
• TOVF: Timer Overflow Interrupt Mask
0: TOVF interrupt is disabled.
1: TOVF interrupt is enabled.
• TSTP: Timestamp Interrupt Mask
0: TSTP interrupt is disabled.
1: TSTP interrupt is enabled.
• CERR: CRC Error Interrupt Mask
0: CRC Error interrupt is disabled.
1: CRC Error interrupt is enabled.
• SERR: Stuffing Error Interrupt Mask
0: Bit Stuffing Error interrupt is disabled.
1: Bit Stuffing Error interrupt is enabled.
• AERR: Acknowledgment Error Interrupt Mask
0: Acknowledgment Error interrupt is disabled.
1: Acknowledgment Error interrupt is enabled.
• FERR: Form Error Interrupt Mask
0: Form Error interrupt is disabled.
1: Form Error interrupt is enabled.
• BERR: Bit Error Interrupt Mask
0: Bit Error interrupt is disabled.
1: Bit Error interrupt is enabled.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
665
36.8.5 CAN Status Register
Name:
CAN_SR
Address:
0xFFFAC010
Access:
Read-only
31
OVLSY
30
TBSY
29
RBSY
28
BERR
27
FERR
26
AERR
25
SERR
24
CERR
23
TSTP
22
TOVF
21
WAKEUP
20
SLEEP
19
BOFF
18
ERRP
17
WARN
16
ERRA
15
MB15
14
MB14
13
MB13
12
MB12
11
MB11
10
MB10
9
MB9
8
MB8
7
MB7
6
MB6
5
MB5
4
MB4
3
MB3
2
MB2
1
MB1
0
MB0
• MBx: Mailbox x Event
0: No event occurred on Mailbox x.
1: An event occurred on Mailbox x.
An event corresponds to MRDY, MABT fields in the CAN_MSRx.
• ERRA: Error Active Mode
0: CAN controller is not in Error Active Mode.
1: CAN controller is in Error Active Mode.
This flag is set depending on TEC and REC counter values. It is set when node is neither in Error Passive Mode nor in Bus
Off Mode.
This flag is automatically reset when above condition is not satisfied. Refer to Section 36.6.4.6 “Error Interrupt Handler” on
page 642 for more information.
• WARN: Warning Limit
0: CAN controller Warning Limit is not reached.
1: CAN controller Warning Limit is reached.
This flag is set depending on TEC and REC counter values. It is set when at least one of the counter values exceeds 96.
This flag is automatically reset when above condition is not satisfied. Refer to Section 36.6.4.6 “Error Interrupt Handler” on
page 642 for more information.
• ERRP: Error Passive Mode
0: CAN controller is not in Error Passive Mode.
1: CAN controller is in Error Passive Mode.
This flag is set depending on TEC and REC counters values.
A node is error passive when TEC counter is greater or equal to 128 (decimal) or when the REC counter is greater or equal
to 128 (decimal).
This flag is automatically reset when above condition is not satisfied. Refer to Section 36.6.4.6 “Error Interrupt Handler” on
page 642 for more information.
666
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
• BOFF: Bus Off Mode
0: CAN controller is not in Bus Off Mode.
1: CAN controller is in Bus Off Mode.
This flag is set depending on TEC counter value. A node is bus off when TEC counter is greater or equal to 256 (decimal).
This flag is automatically reset when above condition is not satisfied. Refer to Section 36.6.4.6 “Error Interrupt Handler” on
page 642 for more information.
• SLEEP: CAN controller in Low power Mode
0: CAN controller is not in low power mode.
1: CAN controller is in low power mode.
This flag is automatically reset when Low power mode is disabled
• WAKEUP: CAN controller is not in Low power Mode
0: CAN controller is in low power mode.
1: CAN controller is not in low power mode.
When a WAKEUP event occurs, the CAN controller is synchronized with the bus activity. Messages can be transmitted or
received. The CAN controller clock must be available when a WAKEUP event occurs. This flag is automatically reset when
the CAN Controller enters Low Power mode.
• TOVF: Timer Overflow
0: The timer has not rolled-over FFFFh to 0000h.
1: The timer rolls-over FFFFh to 0000h.
This flag is automatically cleared by reading CAN_SR.
• TSTP Timestamp
0: No bus activity has been detected.
1: A start of frame or an end of frame has been detected (according to the TEOF field in the CAN_MR).
This flag is automatically cleared by reading the CAN_SR.
• CERR: Mailbox CRC Error
0: No CRC error occurred during a previous transfer.
1: A CRC error occurred during a previous transfer.
A CRC error has been detected during last reception.
This flag is automatically cleared by reading CAN_SR.
• SERR: Mailbox Stuffing Error
0: No stuffing error occurred during a previous transfer.
1: A stuffing error occurred during a previous transfer.
A form error results from the detection of more than five consecutive bit with the same polarity.
This flag is automatically cleared by reading CAN_SR.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
667
• AERR: Acknowledgment Error
0: No acknowledgment error occurred during a previous transfer.
1: An acknowledgment error occurred during a previous transfer.
An acknowledgment error is detected when no detection of the dominant bit in the acknowledge slot occurs.
This flag is automatically cleared by reading CAN_SR.
• FERR: Form Error
0: No form error occurred during a previous transfer
1: A form error occurred during a previous transfer
A form error results from violations on one or more of the fixed form of the following bit fields:
– CRC delimiter
– ACK delimiter
– End of frame
– Error delimiter
– Overload delimiter
This flag is automatically cleared by reading CAN_SR.
• BERR: Bit Error
0: No bit error occurred during a previous transfer.
1: A bit error occurred during a previous transfer.
A bit error is set when the bit value monitored on the line is different from the bit value sent.
This flag is automatically cleared by reading CAN_SR.
• RBSY: Receiver busy
0: CAN receiver is not receiving a frame.
1: CAN receiver is receiving a frame.
Receiver busy. This status bit is set by hardware while CAN receiver is acquiring or monitoring a frame (remote, data, overload or error frame). It is automatically reset when CAN is not receiving.
• TBSY: Transmitter busy
0: CAN transmitter is not transmitting a frame.
1: CAN transmitter is transmitting a frame.
Transmitter busy. This status bit is set by hardware while CAN transmitter is generating a frame (remote, data, overload or
error frame). It is automatically reset when CAN is not transmitting.
• OVLSY: Overload busy
0: CAN transmitter is not transmitting an overload frame.
1: CAN transmitter is transmitting a overload frame.
It is automatically reset when the bus is not transmitting an overload frame.
668
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
36.8.6 CAN Baudrate Register
Name:
CAN_BR
Address:
0xFFFAC014
Access:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
SMP
23
–
22
21
20
19
BRP
18
17
16
15
–
14
–
13
12
11
–
10
9
PROPAG
8
7
–
6
5
PHASE1
4
3
–
2
1
PHASE2
0
SJW
Any modification on one of the fields of the CAN_BR must be done while CAN module is disabled.
To compute the different Bit Timings, please refer to the Section 36.6.4.1 “CAN Bit Timing Configuration” on page 638.
• PHASE2: Phase 2 segment
This phase is used to compensate the edge phase error.
t PHS2 = t CSC × ( PHASE2 + 1 )
Warning:
PHASE2 value must be different from 0.
• PHASE1: Phase 1 segment
This phase is used to compensate for edge phase error.
t PHS1 = t CSC × ( PHASE1 + 1 )
• PROPAG: Programming time segment
This part of the bit time is used to compensate for the physical delay times within the network.
t PRS = t CSC × ( PROPAG + 1 )
• SJW: Re-synchronization jump width
To compensate for phase shifts between clock oscillators of different controllers on bus. The controller must re-synchronize on any relevant signal edge of the current transmission. The synchronization jump width defines the maximum of
clock cycles a bit period may be shortened or lengthened by re-synchronization.
t SJW = t CSC × ( SJW + 1 )
• BRP: Baudrate Prescaler.
This field allows user to program the period of the CAN system clock to determine the individual bit timing.
t CSC = ( BRP + 1 ) ⁄ MCK
The BRP field must be within the range [1, 0x7F], i.e., BRP = 0 is not authorized.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
669
• SMP: Sampling Mode
0: The incoming bit stream is sampled once at sample point.
1: The incoming bit stream is sampled three times with a period of a MCK clock period, centered on sample point.
SMP Sampling Mode is automatically disabled if BRP = 0.
670
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
36.8.7 CAN Timer Register
Name:
CAN_TIM
Address:
0xFFFAC018
Access:
Read-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
TIMER15
14
TIMER14
13
TIMER13
12
TIMER12
11
TIMER11
10
TIMER10
9
TIMER9
8
TIMER8
7
TIMER7
6
TIMER6
5
TIMER5
4
TIMER4
3
TIMER3
2
TIMER2
1
TIMER1
0
TIMER0
• TIMERx: Timer
This field represents the internal CAN controller 16-bit timer value.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
671
36.8.8 CAN Timestamp Register
Name:
CAN_TIMESTP
Address:
0xFFFAC01C
Access:
Read-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
14
13
12
11
10
9
8
MTIMESTAMP15MTIMESTAMP14MTIMESTAMP13MTIMESTAMP12MTIMESTAMP11MTIMESTAMP10 MTIMESTAMP9 MTIMESTAMP8
7
6
5
4
3
2
1
0
MTIMESTAMP7 MTIMESTAMP6 MTIMESTAMP5 MTIMESTAMP4 MTIMESTAMP3 MTIMESTAMP2 MTIMESTAMP1 MTIMESTAMP0
• MTIMESTAMPx: Timestamp
This field represents the internal CAN controller 16-bit timer value.
If the TEOF bit is cleared in the CAN_MR, the internal Timer Counter value is captured in the MTIMESTAMP field at each
start of frame. Else the value is captured at each end of frame. When the value is captured, the TSTP flag is set in the
CAN_SR. If the TSTP mask in the CAN_IMR is set, an interrupt is generated while TSTP flag is set in the CAN_SR. This
flag is cleared by reading the CAN_SR.
Note: The CAN_TIMESTP register is reset when the CAN is disabled then enabled thanks to the CANEN bit in the CAN_MR.
672
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
36.8.9 CAN Error Counter Register
Name:
CAN_ECR
Address:
0xFFFAC020
Access:
Read-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
22
21
20
19
18
17
16
11
–
10
–
9
–
8
–
3
2
1
0
TEC
15
–
14
–
13
–
12
–
7
6
5
4
REC
• REC: Receive Error Counter
When a receiver detects an error, REC will be increased by one, except when the detected error is a BIT ERROR while
sending an ACTIVE ERROR FLAG or an OVERLOAD FLAG.
When a receiver detects a dominant bit as the first bit after sending an ERROR FLAG, REC is increased by 8.
When a receiver detects a BIT ERROR while sending an ACTIVE ERROR FLAG, REC is increased by 8.
Any node tolerates up to 7 consecutive dominant bits after sending an ACTIVE ERROR FLAG, PASSIVE ERROR FLAG or
OVERLOAD FLAG. After detecting the 14th consecutive dominant bit (in case of an ACTIVE ERROR FLAG or an OVERLOAD FLAG) or after detecting the 8th consecutive dominant bit following a PASSIVE ERROR FLAG, and after each
sequence of additional eight consecutive dominant bits, each receiver increases its REC by 8.
After successful reception of a message, REC is decreased by 1 if it was between 1 and 127. If REC was 0, it stays 0, and
if it was greater than 127, then it is set to a value between 119 and 127.
• TEC: Transmit Error Counter
When a transmitter sends an ERROR FLAG, TEC is increased by 8 except when
– the transmitter is error passive and detects an ACKNOWLEDGMENT ERROR because of not detecting a
dominant ACK and does not detect a dominant bit while sending its PASSIVE ERROR FLAG.
– the transmitter sends an ERROR FLAG because a STUFF ERROR occurred during arbitration and should
have been recessive and has been sent as recessive but monitored as dominant.
When a transmitter detects a BIT ERROR while sending an ACTIVE ERROR FLAG or an OVERLOAD FLAG, the TEC will
be increased by 8.
Any node tolerates up to 7 consecutive dominant bits after sending an ACTIVE ERROR FLAG, PASSIVE ERROR FLAG or
OVERLOAD FLAG. After detecting the 14th consecutive dominant bit (in case of an ACTIVE ERROR FLAG or an OVERLOAD FLAG) or after detecting the 8th consecutive dominant bit following a PASSIVE ERROR FLAG, and after each
sequence of additional eight consecutive dominant bits every transmitter increases its TEC by 8.
After a successful transmission the TEC is decreased by 1 unless it was already 0.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
673
36.8.10 CAN Transfer Command Register
Name:
CAN_TCR
Address:
0xFFFAC024
Access:
Write-only
31
TIMRST
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
MB15
14
MB14
13
MB13
12
MB12
11
MB11
10
MB10
9
MB9
8
MB8
7
MB7
6
MB6
5
MB5
4
MB4
3
MB3
2
MB2
1
MB1
0
MB0
This register initializes several transfer requests at the same time.
• MBx: Transfer Request for Mailbox x
Mailbox Object Type
Description
Receive
It receives the next message.
Receive with overwrite
This triggers a new reception.
Transmit
Sends data prepared in the mailbox as soon as possible.
Consumer
Sends a remote frame.
Producer
Sends data prepared in the mailbox after receiving a remote frame from a consumer.
This flag clears the MRDY and MABT flags in the corresponding CAN_MSRx.
When several mailboxes are requested to be transmitted simultaneously, they are transmitted in turn, starting with the
mailbox with the highest priority. If several mailboxes have the same priority, then the mailbox with the lowest number is
sent first (i.e., MB0 will be transferred before MB1).
• TIMRST: Timer Reset
Resets the internal timer counter. If the internal timer counter is frozen, this command automatically re-enables it. This
command is useful in Time Triggered mode.
674
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
36.8.11 CAN Abort Command Register
Name:
CAN_ACR
Address:
0xFFFAC028
Access:
Write-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
MB15
14
MB14
13
MB13
12
MB12
11
MB11
10
MB10
9
MB9
8
MB8
7
MB7
6
MB6
5
MB5
4
MB4
3
MB3
2
MB2
1
MB1
0
MB0
This register initializes several abort requests at the same time.
• MBx: Abort Request for Mailbox x
Mailbox Object Type
Description
Receive
No action
Receive with overwrite
No action
Transmit
Cancels transfer request if the message has not been transmitted to the CAN transceiver.
Consumer
Cancels the current transfer before the remote frame has been sent.
Producer
Cancels the current transfer. The next remote frame is not serviced.
It is possible to set MACR field (in the CAN_MCRx) for each mailbox.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
675
36.8.12 CAN Message Mode Register
Name:
CAN_MMRx [x=0..15]
Address:
0xFFFAC200 [0], 0xFFFAC220 [1], 0xFFFAC240 [2], 0xFFFAC260 [3], 0xFFFAC280 [4],
0xFFFAC2A0 [5], 0xFFFAC2C0 [6], 0xFFFAC2E0 [7], 0xFFFAC300 [8], 0xFFFAC320 [9],
0xFFFAC340 [10], 0xFFFAC360 [11], 0xFFFAC380 [12], 0xFFFAC3A0 [13], 0xFFFAC3C0 [14],
0xFFFAC3E0 [15]
Access:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
23
–
22
–
21
–
20
–
19
18
25
24
MOT
17
16
PRIOR
15
14
13
12
11
10
9
8
MTIMEMARK15 MTIMEMARK14 MTIMEMARK13 MTIMEMARK12 MTIMEMARK11 MTIMEMARK10 MTIMEMARK9 MTIMEMARK8
7
6
5
4
3
2
1
0
MTIMEMARK7 MTIMEMARK6 MTIMEMARK5 MTIMEMARK4 MTIMEMARK3 MTIMEMARK2 MTIMEMARK1 MTIMEMARK0
• MTIMEMARKx: Mailbox Timemark
This field is active in Time Triggered Mode. Transmit operations are allowed when the internal timer counter reaches the
Mailbox Timemark. See “Transmitting within a Time Window” on page 655.
In Timestamp Mode, MTIMEMARK is set to 0.
• PRIOR: Mailbox Priority
This field has no effect in receive and receive with overwrite modes. In these modes, the mailbox with the lowest number is
serviced first.
When several mailboxes try to transmit a message at the same time, the mailbox with the highest priority is serviced first. If
several mailboxes have the same priority, the mailbox with the lowest number is serviced first (i.e., MBx0 is serviced before
MBx 15 if they have the same priority).
• MOT: Mailbox Object Type
This field allows the user to define the type of the mailbox. All mailboxes are independently configurable. Five different
types are possible for each mailbox:
MOT
Mailbox Object Type
0
0
0
Mailbox is disabled. This prevents receiving or transmitting any messages with this mailbox.
0
0
1
Reception Mailbox. Mailbox is configured for reception. If a message is received while the mailbox data register
is full, it is discarded.
0
1
0
Reception mailbox with overwrite. Mailbox is configured for reception. If a message is received while the mailbox
is full, it overwrites the previous message.
0
1
1
Transmit mailbox. Mailbox is configured for transmission.
1
0
0
Consumer Mailbox. Mailbox is configured in reception but behaves as a Transmit Mailbox, i.e., it sends a remote
frame and waits for an answer.
1
0
1
Producer Mailbox. Mailbox is configured in transmission but also behaves like a reception mailbox, i.e., it waits to
receive a Remote Frame before sending its contents.
1
1
X
Reserved
676
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
36.8.13 CAN Message Acceptance Mask Register
Name:
CAN_MAMx [x=0..15]
Address:
0xFFFAC204 [0], 0xFFFAC224 [1], 0xFFFAC244 [2], 0xFFFAC264 [3], 0xFFFAC284 [4],
0xFFFAC2A4 [5], 0xFFFAC2C4 [6], 0xFFFAC2E4 [7], 0xFFFAC304 [8], 0xFFFAC324 [9],
0xFFFAC344 [10], 0xFFFAC364 [11], 0xFFFAC384 [12], 0xFFFAC3A4 [13], 0xFFFAC3C4 [14],
0xFFFAC3E4 [15]
Access:
Read/Write
31
–
30
–
29
MIDE
23
22
21
28
27
26
MIDvA
25
20
19
18
17
MIDvA
15
14
13
24
16
MIDvB
12
11
10
9
8
3
2
1
0
MIDvB
7
6
5
4
MIDvB
To prevent concurrent access with the internal CAN core, the application must disable the mailbox before writing to
CAN_MAMx registers.
• MIDvB: Complementary bits for identifier in extended frame mode
Acceptance mask for corresponding field of the message IDvB register of the mailbox.
• MIDvA: Identifier for standard frame mode
Acceptance mask for corresponding field of the message IDvA register of the mailbox.
• MIDE: Identifier Version
0: Compares IDvA from the received frame with the CAN_MIDx register masked with CAN_MAMx register.
1: Compares IDvA and IDvB from the received frame with the CAN_MIDx register masked with CAN_MAMx register.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
677
36.8.14 CAN Message ID Register
Name:
CAN_MIDx [x=0..15]
Address:
0xFFFAC208 [0], 0xFFFAC228 [1], 0xFFFAC248 [2], 0xFFFAC268 [3], 0xFFFAC288 [4],
0xFFFAC2A8 [5], 0xFFFAC2C8 [6], 0xFFFAC2E8 [7], 0xFFFAC308 [8], 0xFFFAC328 [9],
0xFFFAC348 [10], 0xFFFAC368 [11], 0xFFFAC388 [12], 0xFFFAC3A8 [13], 0xFFFAC3C8 [14],
0xFFFAC3E8 [15]
Access:
Read/Write
31
–
30
–
29
MIDE
23
22
21
28
27
26
MIDvA
25
20
19
18
17
MIDvA
15
14
13
24
16
MIDvB
12
11
10
9
8
3
2
1
0
MIDvB
7
6
5
4
MIDvB
To prevent concurrent access with the internal CAN core, the application must disable the mailbox before writing to
CAN_MIDx registers.
• MIDvB: Complementary bits for identifier in extended frame mode
If MIDE is cleared, MIDvB value is 0.
• MIDE: Identifier Version
This bit allows the user to define the version of messages processed by the mailbox. If set, mailbox is dealing with version
2.0 Part B messages; otherwise, mailbox is dealing with version 2.0 Part A messages.
• MIDvA: Identifier for standard frame mode
678
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
36.8.15 CAN Message Family ID Register
Name:
CAN_MFIDx [x=0..15]
Address:
0xFFFAC20C [0], 0xFFFAC22C [1], 0xFFFAC24C [2], 0xFFFAC26C [3], 0xFFFAC28C [4],
0xFFFAC2AC [5], 0xFFFAC2CC [6], 0xFFFAC2EC [7], 0xFFFAC30C [8], 0xFFFAC32C [9],
0xFFFAC34C [10], 0xFFFAC36C [11], 0xFFFAC38C [12], 0xFFFAC3AC [13], 0xFFFAC3CC [14],
0xFFFAC3EC [15]
Access:
Read-only
31
–
30
–
29
–
28
23
22
21
20
27
26
MFID
25
24
19
18
17
16
11
10
9
8
3
2
1
0
MFID
15
14
13
12
MFID
7
6
5
4
MFID
• MFID: Family ID
This field contains the concatenation of CAN_MIDx register bits masked by the CAN_MAMx register. This field is useful to
speed up message ID decoding. The message acceptance procedure is described below.
As an example:
CAN_MIDx = 0x305A4321
CAN_MAMx = 0x3FF0F0FF
CAN_MFIDx = 0x000000A3
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
679
36.8.16 CAN Message Status Register
Name:
CAN_MSRx [x=0..15]
Address:
0xFFFAC210 [0], 0xFFFAC230 [1], 0xFFFAC250 [2], 0xFFFAC270 [3], 0xFFFAC290 [4], 0xFFFAC2B0 [5],
0xFFFAC2D0 [6], 0xFFFAC2F0 [7], 0xFFFAC310 [8], 0xFFFAC330 [9], 0xFFFAC350 [10],
0xFFFAC370 [11], 0xFFFAC390 [12], 0xFFFAC3B0 [13], 0xFFFAC3D0 [14], 0xFFFAC3F0 [15]
Access:
Read-only
31
–
30
–
29
–
28
–
27
–
26
–
23
MRDY
22
MABT
21
–
20
MRTR
19
18
25
–
24
MMI
17
16
MDLC
15
14
13
12
11
10
9
8
MTIMESTAMP15MTIMESTAMP14MTIMESTAMP13MTIMESTAMP12MTIMESTAMP11MTIMESTAMP10 MTIMESTAMP9 MTIMESTAMP8
7
6
5
4
3
2
1
0
MTIMESTAMP7 MTIMESTAMP6 MTIMESTAMP5 MTIMESTAMP4 MTIMESTAMP3 MTIMESTAMP2 MTIMESTAMP1 MTIMESTAMP0
These register fields are updated each time a message transfer is received or aborted.
MMI is cleared by reading the CAN_MSRx.
MRDY, MABT are cleared by writing MTCR or MACR in the CAN_MCRx.
Warning:
MRTR and MDLC state depends partly on the mailbox object type.
• MTIMESTAMPx: Timer value
This field is updated only when time-triggered operations are disabled (TTM cleared in CAN_MR). If the TEOF field in the
CAN_MR is cleared, TIMESTAMP is the internal timer value at the start of frame of the last message received or sent by
the mailbox. If the TEOF field in the CAN_MR is set, TIMESTAMP is the internal timer value at the end of frame of the last
message received or sent by the mailbox.
In Time Triggered Mode, MTIMESTAMP is set to 0.
• MDLC: Mailbox Data Length Code
Mailbox Object Type
Description
Receive
Length of the first mailbox message received
Receive with overwrite
Length of the last mailbox message received
Transmit
No action
Consumer
Length of the mailbox message received
Producer
Length of the mailbox message to be sent after the remote frame reception
• MRTR: Mailbox Remote Transmission Request
Mailbox Object Type
Description
Receive
The first frame received has the RTR bit set.
Receive with overwrite
The last frame received has the RTR bit set.
Transmit
Reserved
Consumer
Reserved. After setting the MOT field in the CAN_MMR, MRTR is reset to 1.
Producer
Reserved. After setting the MOT field in the CAN_MMR, MRTR is reset to 0.
680
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
• MABT: Mailbox Message Abort
An interrupt is triggered when MABT is set.
0: Previous transfer is not aborted.
1: Previous transfer has been aborted.
This flag is cleared by writing to CAN_MCRx
Mailbox Object Type
Description
Receive
Reserved
Receive with overwrite
Reserved
Transmit
Previous transfer has been aborted
Consumer
The remote frame transfer request has been aborted.
Producer
The response to the remote frame transfer has been aborted.
• MRDY: Mailbox Ready
An interrupt is triggered when MRDY is set.
0: Mailbox data registers can not be read/written by the software application. CAN_MDx are locked by the CAN_MDx.
1: Mailbox data registers can be read/written by the software application.
This flag is cleared by writing to CAN_MCRx.
Mailbox Object Type
Description
Receive
At least one message has been received since the last mailbox transfer order. Data from the first frame
received can be read in the CAN_MDxx registers.
After setting the MOT field in the CAN_MMR, MRDY is reset to 0.
Receive with overwrite
At least one frame has been received since the last mailbox transfer order. Data from the last frame
received can be read in the CAN_MDxx registers.
After setting the MOT field in the CAN_MMR, MRDY is reset to 0.
Transmit
Consumer
Mailbox data have been transmitted.
After setting the MOT field in the CAN_MMR, MRDY is reset to 1.
At least one message has been received since the last mailbox transfer order. Data from the first message
received can be read in the CAN_MDxx registers.
After setting the MOT field in the CAN_MMR, MRDY is reset to 0.
Producer
A remote frame has been received, mailbox data have been transmitted.
After setting the MOT field in the CAN_MMR, MRDY is reset to 1.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
681
• MMI: Mailbox Message Ignored
0: No message has been ignored during the previous transfer
1: At least one message has been ignored during the previous transfer
Cleared by reading the CAN_MSRx.
Mailbox Object Type
Description
Receive
Set when at least two messages intended for the mailbox have been sent. The first one is available in the
mailbox data register. Others have been ignored. A mailbox with a lower priority may have accepted the
message.
Receive with overwrite
Set when at least two messages intended for the mailbox have been sent. The last one is available in the
mailbox data register. Previous ones have been lost.
Transmit
Reserved
Consumer
A remote frame has been sent by the mailbox but several messages have been received. The first one is
available in the mailbox data register. Others have been ignored. Another mailbox with a lower priority may
have accepted the message.
Producer
A remote frame has been received, but no data are available to be sent.
682
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
36.8.17 CAN Message Data Low Register
Name:
CAN_MDLx [x=0..15]
Address:
0xFFFAC214 [0], 0xFFFAC234 [1], 0xFFFAC254 [2], 0xFFFAC274 [3], 0xFFFAC294 [4],
0xFFFAC2B4 [5], 0xFFFAC2D4 [6], 0xFFFAC2F4 [7], 0xFFFAC314 [8], 0xFFFAC334 [9],
0xFFFAC354 [10], 0xFFFAC374 [11], 0xFFFAC394 [12], 0xFFFAC3B4 [13], 0xFFFAC3D4 [14],
0xFFFAC3F4 [15]
Access:
Read/Write
31
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
MDL
23
22
21
20
MDL
15
14
13
12
MDL
7
6
5
4
MDL
• MDL: Message Data Low Value
When MRDY field is set in the CAN_MSRx, the lower 32 bits of a received message can be read or written by the software
application. Otherwise, the MDL value is locked by the CAN controller to send/receive a new message.
In Receive with overwrite, the CAN controller may modify MDL value while the software application reads MDH and MDL
registers. To check that MDH and MDL do not belong to different messages, the application has to check the MMI field in
the CAN_MSRx. In this mode, the software application must re-read CAN_MDH and CAN_MDL, while the MMI bit in the
CAN_MSRx is set.
Bytes are received/sent on the bus in the following order:
1.
CAN_MDL[7:0]
2.
CAN_MDL[15:8]
3.
CAN_MDL[23:16]
4.
CAN_MDL[31:24]
5.
CAN_MDH[7:0]
6.
CAN_MDH[15:8]
7.
CAN_MDH[23:16]
8.
CAN_MDH[31:24]
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
683
36.8.18 CAN Message Data High Register
Name:
CAN_MDHx [x=0..15]
Address:
0xFFFAC218 [0], 0xFFFAC238 [1], 0xFFFAC258 [2], 0xFFFAC278 [3], 0xFFFAC298 [4],
0xFFFAC2B8 [5], 0xFFFAC2D8 [6], 0xFFFAC2F8 [7], 0xFFFAC318 [8], 0xFFFAC338 [9],
0xFFFAC358 [10], 0xFFFAC378 [11], 0xFFFAC398 [12], 0xFFFAC3B8 [13], 0xFFFAC3D8 [14],
0xFFFAC3F8 [15]
Access:
Read/Write
31
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
MDH
23
22
21
20
MDH
15
14
13
12
MDH
7
6
5
4
MDH
• MDH: Message Data High Value
When MRDY field is set in the CAN_MSRx, the upper 32 bits of a received message are read or written by the software
application. Otherwise, the MDH value is locked by the CAN controller to send/receive a new message.
In Receive with overwrite, the CAN controller may modify MDH value while the software application reads MDH and MDL
registers. To check that MDH and MDL do not belong to different messages, the application has to check the MMI field in
the CAN_MSRx. In this mode, the software application must re-read CAN_MDH and CAN_MDL, while the MMI bit in the
CAN_MSRx is set.
Bytes are received/sent on the bus in the following order:
684
1.
CAN_MDL[7:0]
2.
CAN_MDL[15:8]
3.
CAN_MDL[23:16]
4.
CAN_MDL[31:24]
5.
CAN_MDH[7:0]
6.
CAN_MDH[15:8]
7.
CAN_MDH[23:16]
8.
CAN_MDH[31:24]
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
36.8.19 CAN Message Control Register
Name:
CAN_MCRx [x=0..15]
Address:
0xFFFAC21C [0], 0xFFFAC23C [1], 0xFFFAC25C [2], 0xFFFAC27C [3], 0xFFFAC29C [4],
0xFFFAC2BC [5], 0xFFFAC2DC [6], 0xFFFAC2FC [7], 0xFFFAC31C [8], 0xFFFAC33C [9],
0xFFFAC35C [10], 0xFFFAC37C [11], 0xFFFAC39C [12], 0xFFFAC3BC [13], 0xFFFAC3DC [14],
0xFFFAC3FC [15]
Access:
Write-only
31
–
30
–
29
–
28
–
27
–
26
–
23
MTCR
22
MACR
21
–
20
MRTR
19
18
15
–
14
13
–
12
11
–
7
–
6
5
–
4
3
–
–
–
–
–
25
24
–
–
17
16
10
9
–
–
8
–
2
–
1
0
–
–
MDLC
• MDLC: Mailbox Data Length Code
Mailbox Object Type
Description
Receive
No action.
Receive with overwrite
No action.
Transmit
Length of the mailbox message.
Consumer
No action.
Producer
Length of the mailbox message to be sent after the remote frame reception.
• MRTR: Mailbox Remote Transmission Request
Mailbox Object Type
Description
Receive
No action
Receive with overwrite
No action
Transmit
Set the RTR bit in the sent frame
Consumer
No action, the RTR bit in the sent frame is set automatically
Producer
No action
Consumer situations can be handled automatically by setting the mailbox object type in Consumer. This requires only one
mailbox.
It can also be handled using two mailboxes, one in reception, the other in transmission. The MRTR and the MTCR bits
must be set in the same time.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
685
• MACR: Abort Request for Mailbox x
Mailbox Object Type
Description
Receive
No action
Receive with overwrite
No action
Transmit
Cancels transfer request if the message has not been transmitted to the CAN transceiver.
Consumer
Cancels the current transfer before the remote frame has been sent.
Producer
Cancels the current transfer. The next remote frame will not be serviced.
It is possible to set MACR field for several mailboxes in the same time, setting several bits to the CAN_ACR.
• MTCR: Mailbox Transfer Command
Mailbox Object Type
Receive
Receive with overwrite
Transmit
Description
Allows the reception of the next message.
Triggers a new reception.
Sends data prepared in the mailbox as soon as possible.
Consumer
Sends a remote transmission frame.
Producer
Sends data prepared in the mailbox after receiving a remote frame from a Consumer.
This flag clears the MRDY and MABT flags in the CAN_MSRx.
When several mailboxes are requested to be transmitted simultaneously, they are transmitted in turn. The mailbox with the
highest priority is serviced first. If several mailboxes have the same priority, the mailbox with the lowest number is serviced
first (i.e., MBx0 will be serviced before MBx 15 if they have the same priority).
It is possible to set MTCR for several mailboxes at the same time by writing to the CAN_TCR.
686
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
37.
Pulse Width Modulation Controller (PWM)
37.1
Overview
The PWM macrocell controls several channels independently. Each channel controls one square output
waveform. Characteristics of the output waveform such as period, duty-cycle and polarity are configurable through
the user interface. Each channel selects and uses one of the clocks provided by the clock generator. The clock
generator provides several clocks resulting from the division of the PWM macrocell master clock.
All PWM macrocell accesses are made through APB mapped registers.
Channels can be synchronized, to generate non overlapped waveforms. All channels integrate a double buffering
system in order to prevent an unexpected output waveform while modifying the period or the duty-cycle.
37.2
Block Diagram
Figure 37-1.
Pulse Width Modulation Controller Block Diagram
PWM
Controller
PWMx
Channel
Period
PWMx
Update
Duty Cycle
Clock
Selector
Comparator
PWMx
Counter
PIO
PWM0
Channel
Period
PWM0
Update
Duty Cycle
Clock
Selector
PMC
MCK
Clock Generator
Comparator
PWM0
Counter
APB Interface
Interrupt Generator
AIC
APB
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
687
37.3
I/O Lines Description
Each channel outputs one waveform on one external I/O line.
Table 37-1.
37.4
I/O Line Description
Name
Description
Type
PWMx
PWM Waveform Output for channel x
Output
Product Dependencies
37.4.1 I/O Lines
The pins used for interfacing the PWM may be multiplexed with PIO lines. The programmer must first program the
PIO controller to assign the desired PWM pins to their peripheral function. If I/O lines of the PWM are not used by
the application, they can be used for other purposes by the PIO controller.
All of the PWM outputs may or may not be enabled. If an application requires only four channels, then only four
PIO lines will be assigned to PWM outputs.
37.4.2 Power Management
The PWM is not continuously clocked. The programmer must first enable the PWM clock in the Power
Management Controller (PMC) before using the PWM. However, if the application does not require PWM
operations, the PWM clock can be stopped when not needed and be restarted later. In this case, the PWM will
resume its operations where it left off.
Configuring the PWM does not require the PWM clock to be enabled.
37.4.3 Interrupt Sources
The PWM interrupt line is connected on one of the internal sources of the Advanced Interrupt Controller. Using the
PWM interrupt requires the AIC to be programmed first. Note that it is not recommended to use the PWM interrupt
line in edge sensitive mode.
37.5
Functional Description
The PWM macrocell is primarily composed of a clock generator module and four channels.
̶
688
Clocked by the system clock, MCK, the clock generator module provides 13 clocks.
̶
Each channel can independently choose one of the clock generator outputs.
̶
Each channel generates an output waveform with attributes that can be defined independently for
each channel through the user interface registers.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
37.5.1 PWM Clock Generator
Figure 37-2.
Functional View of the Clock Generator Block Diagram
MCK
modulo n counter
MCK
MCK/2
MCK/4
MCK/8
MCK/16
MCK/32
MCK/64
MCK/128
MCK/256
MCK/512
MCK/1024
Divider A
PREA
clkA
DIVA
PWM_MR
Divider B
PREB
clkB
DIVB
PWM_MR
Caution: Before using the PWM macrocell, the programmer must first enable the PWM clock in the Power
Management Controller (PMC).
The PWM macrocell master clock, MCK, is divided in the clock generator module to provide different clocks
available for all channels. Each channel can independently select one of the divided clocks.
The clock generator is divided in three blocks:
̶
̶
a modulo n counter which provides 11 clocks: fMCK, fMCK/2, fMCK/4, fMCK/8, fMCK/16, fMCK/32, fMCK/64,
fMCK/128, fMCK/256, fMCK/512, fMCK/1024
two linear dividers (1, 1/2, 1/3, ... 1/255) that provide two separate clocks: clkA and clkB
Each linear divider can independently divide one of the clocks of the modulo n counter. The selection of the clock
to be divided is made according to the PREA (PREB) field of the PWM Mode register (PWM_MR). The resulting
clock clkA (clkB) is the clock selected divided by DIVA (DIVB) field value in the PWM Mode register (PWM_MR).
After a reset of the PWM controller, DIVA (DIVB) and PREA (PREB) in the PWM Mode register are set to 0. This
implies that after reset clkA (clkB) are turned off.
At reset, all clocks provided by the modulo n counter are turned off except clock “clk”. This situation is also true
when the PWM master clock is turned off through the Power Management Controller.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
689
37.5.2 PWM Channel
37.5.2.1 Block Diagram
Figure 37-3.
Functional View of the Channel Block Diagram
inputs
from clock
generator
Channel
Clock
Selector
Internal
Counter
Comparator
PWMx output waveform
inputs from
APB bus
Each of the four channels is composed of three blocks:

A clock selector which selects one of the clocks provided by the clock generator described in Section 37.5.1
“PWM Clock Generator” on page 689.

An internal counter clocked by the output of the clock selector. This internal counter is incremented or
decremented according to the channel configuration and comparators events. The size of the internal
counter is 16 bits.

A comparator used to generate events according to the internal counter value. It also computes the PWMx
output waveform according to the configuration.
37.5.2.2 Waveform Properties
The different properties of output waveforms are:

the internal clock selection. The internal channel counter is clocked by one of the clocks provided by the
clock generator described in the previous section. This channel parameter is defined in the CPRE field of the
PWM_CMRx. This field is reset at 0.

the waveform period. This channel parameter is defined in the CPRD field of the PWM_CPRDx register.
- If the waveform is left aligned, then the output waveform period depends on the counter source clock and
can be calculated:
By using the Master Clock (MCK) divided by an X given prescaler value
(with X being 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, or 1024), the resulting period formula will be:
(-----------------------------X × CPRD )MCK
By using a Master Clock divided by one of both DIVA or DIVB divider, the formula becomes, respectively:
(----------------------------------------CRPD × DIVA )( CRPD × DIVAB )
or ---------------------------------------------MCK
MCK
If the waveform is center aligned then the output waveform period depends on the counter source clock and
can be calculated:
By using the Master Clock (MCK) divided by an X given prescaler value
(with X being 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, or 1024). The resulting period formula will be:
(---------------------------------------2 × X × CPRD )
MCK
By using a Master Clock divided by one of both DIVA or DIVB divider, the formula becomes, respectively:
(--------------------------------------------------2 × CPRD × DIVA )
( 2 × CPRD × DIVB )
or --------------------------------------------------MCK
MCK
690
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16

the waveform duty cycle. This channel parameter is defined in the CDTY field of the PWM_CDTYx
register.
If the waveform is left aligned then:
( period – 1 ⁄ fchannel_x_clock × CDTY )
duty cycle = ---------------------------------------------------------------------------------------------------period
If the waveform is center aligned, then:
( ( period ⁄ 2 ) – 1 ⁄ fchannel_x_clock × CDTY ) )
duty cycle = ------------------------------------------------------------------------------------------------------------------( period ⁄ 2 )

the waveform polarity. At the beginning of the period, the signal can be at high or low level. This property is
defined in the CPOL field of the PWM_CMRx. By default the signal starts by a low level.

the waveform alignment. The output waveform can be left or center aligned. Center aligned waveforms can
be used to generate non overlapped waveforms. This property is defined in the CALG field of the
PWM_CMRx. The default mode is left aligned.
Figure 37-4.
Non Overlapped Center Aligned Waveforms
No overlap
PWM0
PWM1
Period
Note:
See Figure 37-5 on page 692 for a detailed description of center aligned waveforms.
When center aligned, the internal channel counter increases up to CPRD and.decreases down to 0. This ends the
period.
When left aligned, the internal channel counter increases up to CPRD and is reset. This ends the period.
Thus, for the same CPRD value, the period for a center aligned channel is twice the period for a left aligned
channel.
Waveforms are fixed at 0 when:

CDTY = CPRD and CPOL = 0

CDTY = 0 and CPOL = 1
Waveforms are fixed at 1 (once the channel is enabled) when:

CDTY = 0 and CPOL = 0

CDTY = CPRD and CPOL = 1
The waveform polarity must be set before enabling the channel. This immediately affects the channel output level.
Changes on channel polarity are not taken into account while the channel is enabled.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
691
Figure 37-5.
Waveform Properties
PWM_MCKx
CHIDx(PWM_SR)
CHIDx(PWM_ENA)
CHIDx(PWM_DIS)
Center Aligned
CALG(PWM_CMRx) = 1
PWM_CCNTx
CPRD(PWM_CPRDx)
CDTY(PWM_CDTYx)
Period
Output Waveform PWMx
CPOL(PWM_CMRx) = 0
Output Waveform PWMx
CPOL(PWM_CMRx) = 1
CHIDx(PWM_ISR)
Left Aligned
CALG(PWM_CMRx) = 0
PWM_CCNTx
CPRD(PWM_CPRDx)
CDTY(PWM_CDTYx)
Period
Output Waveform PWMx
CPOL(PWM_CMRx) = 0
Output Waveform PWMx
CPOL(PWM_CMRx) = 1
CHIDx(PWM_ISR)
692
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
37.5.3 PWM Controller Operations
37.5.3.1 Initialization
Before enabling the output channel, this channel must have been configured by the software application:

Configuration of the clock generator if DIVA and DIVB are required

Selection of the clock for each channel (CPRE field in the PWM_CMRx)

Configuration of the waveform alignment for each channel (CALG field in the PWM_CMRx)

Configuration of the period for each channel (CPRD in the PWM_CPRDx register). Writing in PWM_CPRDx
Register is possible while the channel is disabled. After validation of the channel, the user must use
PWM_CUPDx Register to update PWM_CPRDx as explained below.

Configuration of the duty cycle for each channel (CDTY in the PWM_CDTYx register). Writing in
PWM_CDTYx Register is possible while the channel is disabled. After validation of the channel, the user
must use PWM_CUPDx Register to update PWM_CDTYx as explained below.

Configuration of the output waveform polarity for each channel (CPOL in the PWM_CMRx)

Enable Interrupts (Writing CHIDx in the PWM_IER)

Enable the PWM channel (Writing CHIDx in the PWM_ENA register)
It is possible to synchronize different channels by enabling them at the same time by means of writing
simultaneously several CHIDx bits in the PWM_ENA register.

In such a situation, all channels may have the same clock selector configuration and the same period
specified.
37.5.3.2 Source Clock Selection Criteria
The large number of source clocks can make selection difficult. The relationship between the value in the Period
Register (PWM_CPRDx) and the Duty Cycle Register (PWM_CDTYx) can help the user in choosing. The event
number written in the Period Register gives the PWM accuracy. The Duty Cycle quantum cannot be lower than
1/PWM_CPRDx value. The higher the value of PWM_CPRDx, the greater the PWM accuracy.
For example, if the user sets 15 (in decimal) in PWM_CPRDx, the user is able to set a value between 1 up to 14 in
PWM_CDTYx Register. The resulting duty cycle quantum cannot be lower than 1/15 of the PWM period.
37.5.3.3 Changing the Duty Cycle or the Period
It is possible to modulate the output waveform duty cycle or period.
To prevent unexpected output waveform, the user must use the update register (PWM_CUPDx) to change
waveform parameters while the channel is still enabled. The user can write a new period value or duty cycle value
in the update register (PWM_CUPDx). This register holds the new value until the end of the current cycle and
updates the value for the next cycle. Depending on the CPD field in the PWM_CMRx, PWM_CUPDx either
updates PWM_CPRDx or PWM_CDTYx. Note that even if the update register is used, the period must not be
smaller than the duty cycle.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
693
Figure 37-6.
Synchronized Period or Duty Cycle Update
User's Writing
PWM_CUPDx Value
0
1
PWM_CPRDx
PWM_CMRx. CPD
PWM_CDTYx
End of Cycle
To prevent overwriting the PWM_CUPDx by software, the user can use status events in order to synchronize his
software. Two methods are possible. In both, the user must enable the dedicated interrupt in PWM_IER at PWM
Controller level.
The first method (polling method) consists of reading the relevant status bit in PWM_ISR Register according to the
enabled channel(s). See Figure 37-7.
The second method uses an Interrupt Service Routine associated with the PWM channel.
Note:
Reading the PWM_ISR automatically clears CHIDx flags.
Figure 37-7.
Polling Method
PWM_ISR Read
Acknowledgement and clear previous register state
Writing in CPD field
Update of the Period or Duty Cycle
CHIDx = 1
YES
Writing in PWM_CUPDx
The last write has been taken into account
Note:
694
Polarity and alignment can be modified only when the channel is disabled.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
37.5.3.4 Interrupts
Depending on the interrupt mask in the PWM_IMR, an interrupt is generated at the end of the corresponding
channel period. The interrupt remains active until a read operation in the PWM_ISR occurs.
A channel interrupt is enabled by setting the corresponding bit in the PWM_IER. A channel interrupt is disabled by
setting the corresponding bit in the PWM_IDR.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
695
37.6
Pulse Width Modulation Controller (PWM) User Interface
Table 37-2.
Register Mapping
(1)
Register
Name
Access
Reset
0x00
PWM Mode Register
PWM_MR
Read/Write
0
0x04
PWM Enable Register
PWM_ENA
Write-only
–
0x08
PWM Disable Register
PWM_DIS
Write-only
–
0x0C
PWM Status Register
PWM_SR
Read-only
0
0x10
PWM Interrupt Enable Register
PWM_IER
Write-only
–
0x14
PWM Interrupt Disable Register
PWM_IDR
Write-only
–
0x18
PWM Interrupt Mask Register
PWM_IMR
Read-only
0
0x1C
PWM Interrupt Status Register
PWM_ISR
Read-only
0
0x4C–0xFC
Reserved
–
–
–
0x100–0x1FC
Reserved
–
–
–
0x200 + ch_num * 0x20 + 0x00
PWM Channel Mode Register
PWM_CMR
Read/Write
0x0
0x200 + ch_num * 0x20 + 0x04
PWM Channel Duty Cycle Register
PWM_CDTY
Read/Write
0x0
0x200 + ch_num * 0x20 + 0x08
PWM Channel Period Register
PWM_CPRD
Read/Write
0x0
0x200 + ch_num * 0x20 + 0x0C
PWM Channel Counter Register
PWM_CCNT
Read-only
0x0
0x200 + ch_num * 0x20 + 0x10
PWM Channel Update Register
PWM_CUPD
Write-only
–
Offset
Note:
696
1. Some registers are indexed with “ch_num” index ranging from 0 to 3.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
37.6.1 PWM Mode Register
Name:
PWM_MR
Address:
0xFFFB8000
Access:
Read/Write
31
–
30
–
29
–
28
–
27
26
23
22
21
20
19
18
11
10
25
24
17
16
9
8
1
0
PREB
DIVB
15
–
14
–
13
–
12
–
7
6
5
4
PREA
3
2
DIVA
• DIVA, DIVB: CLKA, CLKB Divide Factor
DIVA, DIVB
CLKA, CLKB
0
CLKA, CLKB clock is turned off
1
CLKA, CLKB clock is clock selected by PREA, PREB
2–255
CLKA, CLKB clock is clock selected by PREA, PREB divided by DIVA, DIVB factor.
• PREA, PREB
PREA, PREB
Divider Input Clock
0
0
0
0
MCK.
0
0
0
1
MCK/2
0
0
1
0
MCK/4
0
0
1
1
MCK/8
0
1
0
0
MCK/16
0
1
0
1
MCK/32
0
1
1
0
MCK/64
0
1
1
1
MCK/128
1
0
0
0
MCK/256
1
0
0
1
MCK/512
1
0
1
0
MCK/1024
Other
Reserved
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
697
37.6.2 PWM Enable Register
Name:
PWM_ENA
Address:
0xFFFB8004
Access:
Write-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
–
6
–
5
–
4
–
3
CHID3
2
CHID2
1
CHID1
0
CHID0
• CHIDx: Channel ID
0: No effect.
1: Enable PWM output for channel x.
698
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
37.6.3 PWM Disable Register
Name:
PWM_DIS
Address:
0xFFFB8008
Access:
Write-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
–
6
–
5
–
4
–
3
CHID3
2
CHID2
1
CHID1
0
CHID0
• CHIDx: Channel ID
0: No effect.
1: Disable PWM output for channel x.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
699
37.6.4 PWM Status Register
Name:
PWM_SR
Address:
0xFFFB800C
Access:
Read-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
–
6
–
5
–
4
–
3
CHID3
2
CHID2
1
CHID1
0
CHID0
• CHIDx: Channel ID
0: PWM output for channel x is disabled.
1: PWM output for channel x is enabled.
700
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
37.6.5 PWM Interrupt Enable Register
Name:
PWM_IER
Address:
0xFFFB8010
Access:
Write-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
–
6
–
5
–
4
–
3
CHID3
2
CHID2
1
CHID1
0
CHID0
• CHIDx: Channel ID.
0: No effect.
1: Enable interrupt for PWM channel x.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
701
37.6.6 PWM Interrupt Disable Register
Name:
PWM_IDR
Address:
0xFFFB8014
Access:
Write-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
–
6
–
5
–
4
–
3
CHID3
2
CHID2
1
CHID1
0
CHID0
• CHIDx: Channel ID.
0: No effect.
1: Disable interrupt for PWM channel x.
702
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
37.6.7 PWM Interrupt Mask Register
Name:
PWM_IMR
Address:
0xFFFB8018
Access:
Read-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
–
6
–
5
–
4
–
3
CHID3
2
CHID2
1
CHID1
0
CHID0
• CHIDx: Channel ID.
0: Interrupt for PWM channel x is disabled.
1: Interrupt for PWM channel x is enabled.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
703
37.6.8 PWM Interrupt Status Register
Name:
PWM_ISR
Address:
0xFFFB801C
Access:
Read-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
–
6
–
5
–
4
–
3
CHID3
2
CHID2
1
CHID1
0
CHID0
• CHIDx: Channel ID
0: No new channel period has been achieved since the last read of the PWM_ISR.
1: At least one new channel period has been achieved since the last read of the PWM_ISR.
Note: Reading PWM_ISR automatically clears CHIDx flags.
704
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
37.6.9 PWM Channel Mode Register
Name:
PWM_CMR[0..3]
Address:
0xFFFB8200 [0], 0xFFFB8220 [1], 0xFFFB8240 [2], 0xFFFB8260 [3]
Access:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
CPD
9
CPOL
8
CALG
7
–
6
–
5
–
4
–
3
2
1
0
CPRE
• CPRE: Channel Pre-scaler
CPRE
Channel Pre-scaler
0
0
0
0
MCK
0
0
0
1
MCK/2
0
0
1
0
MCK/4
0
0
1
1
MCK/8
0
1
0
0
MCK/16
0
1
0
1
MCK/32
0
1
1
0
MCK/64
0
1
1
1
MCK/128
1
0
0
0
MCK/256
1
0
0
1
MCK/512
1
0
1
0
MCK/1024
1
0
1
1
CLKA
1
1
0
0
CLKB
Other
Reserved
• CALG: Channel Alignment
0: The period is left aligned.
1: The period is center aligned.
• CPOL: Channel Polarity
0: The output waveform starts at a low level.
1: The output waveform starts at a high level.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
705
• CPD: Channel Update Period
0: Writing to the PWM_CUPDx will modify the duty cycle at the next period start event.
1: Writing to the PWM_CUPDx will modify the period at the next period start event.
706
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
37.6.10 PWM Channel Duty Cycle Register
Name:
PWM_CDTY[0..3]
Address:
0xFFFB8204 [0], 0xFFFB8224 [1], 0xFFFB8244 [2], 0xFFFB8264 [3]
Access:
Read/Write
31
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
CDTY
23
22
21
20
CDTY
15
14
13
12
CDTY
7
6
5
4
CDTY
Only the first 16 bits (internal channel counter size) are significant.
• CDTY: Channel Duty Cycle
Defines the waveform duty cycle. This value must be defined between 0 and CPRD (PWM_CPRx).
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
707
37.6.11 PWM Channel Period Register
Name:
PWM_CPRD[0..3]
Address:
0xFFFB8208 [0], 0xFFFB8228 [1], 0xFFFB8248 [2], 0xFFFB8268 [3]
Access:
Read/Write
31
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
CPRD
23
22
21
20
CPRD
15
14
13
12
CPRD
7
6
5
4
CPRD
Only the first 16 bits (internal channel counter size) are significant.
• CPRD: Channel Period
If the waveform is left-aligned, then the output waveform period depends on the counter source clock and can be
calculated:
– By using the Master Clock (MCK) divided by an X given prescaler value (with X being 1, 2, 4, 8, 16, 32, 64,
128, 256, 512, or 1024). The resulting period formula will be:
(-----------------------------X × CPRD )MCK
– By using a Master Clock divided by one of both DIVA or DIVB divider, the formula becomes, respectively:
(----------------------------------------CRPD × DIVA )( CRPD × DIVAB )
or ---------------------------------------------MCK
MCK
If the waveform is center-aligned, then the output waveform period depends on the counter source clock and can be
calculated:
– By using the Master Clock (MCK) divided by an X given prescaler value (with X being 1, 2, 4, 8, 16, 32, 64,
128, 256, 512, or 1024). The resulting period formula will be:
(---------------------------------------2 × X × CPRD )
MCK
– By using a Master Clock divided by one of both DIVA or DIVB divider, the formula becomes, respectively:
(--------------------------------------------------2 × CPRD × DIVA )
( 2 × CPRD × DIVB )
or --------------------------------------------------MCK
MCK
708
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
37.6.12 PWM Channel Counter Register
Name:
PWM_CCNT[0..3]
Address:
0xFFFB820C [0], 0xFFFB822C [1], 0xFFFB824C [2], 0xFFFB826C [3]
Access:
Read-only
31
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
CNT
23
22
21
20
CNT
15
14
13
12
CNT
7
6
5
4
CNT
• CNT: Channel Counter Register
Internal counter value. This register is reset when:
• the channel is enabled (writing CHIDx in the PWM_ENA register).
• the counter reaches CPRD value defined in the PWM_CPRDx register if the waveform is left aligned.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
709
37.6.13 PWM Channel Update Register
Name:
PWM_CUPD[0..3]
Address:
0xFFFB8210 [0], 0xFFFB8230 [1], 0xFFFB8250 [2], 0xFFFB8270 [3]
Access:
Write-only
31
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
CUPD
23
22
21
20
CUPD
15
14
13
12
CUPD
7
6
5
4
CUPD
This register acts as a double buffer for the period or the duty cycle. This prevents an unexpected waveform when modifying the waveform period or duty-cycle.
Only the first 16 bits (internal channel counter size) are significant.
CPD (PWM_CMRx)
710
Description
0
The duty-cycle (CDTY in the PWM_CDTYx register) is updated with the CUPD value at the beginning of the
next period.
1
The period (CPRD in the PWM_CPRDx register) is updated with the CUPD value at the beginning of the next
period.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
38.
Timer Counter (TC)
38.1
Description
The Timer Counter (TC) includes three identical 16-bit Timer Counter channels.
Each channel can be independently programmed to perform a wide range of functions including frequency
measurement, event counting, interval measurement, pulse generation, delay timing and pulse width modulation.
Each channel has three external clock inputs, five internal clock inputs and two multi-purpose input/output signals
which can be configured by the user. Each channel drives an internal interrupt signal which can be programmed to
generate processor interrupts.
The Timer Counter block has two global registers which act upon all three TC channels.
The Block Control Register allows the three channels to be started simultaneously with the same instruction.
The Block Mode Register defines the external clock inputs for each channel, allowing them to be chained.
Table 38-1 gives the assignment of the device Timer Counter clock inputs common to Timer Counter 0 to 2.
Table 38-1.
38.2
Timer Counter Clock Assignment
Name
Definition
TIMER_CLOCK1
MCK/2
TIMER_CLOCK2
MCK/8
TIMER_CLOCK3
MCK/32
TIMER_CLOCK4
MCK/128
TIMER_CLOCK5
SLCK
Embedded Characteristics

One TC block of three 16-bit Timer Counter channels

Each channel can be individually programmed to perform a wide range of functions including:


̶
Frequency Measurement
̶
Event Counting
̶
Interval Measurement
̶
Pulse Generation
̶
Delay Timing
̶
Pulse Width Modulation
̶
Up/down Capabilities
Each channel is user-configurable and contains:
̶
Three external clock inputs
̶
Five internal clock inputs
̶
Two multi-purpose input/output signals
A TC block contains two global registers that act on all three TC Channels
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
711
38.3
Block Diagram
Figure 38-1.
Timer Counter Block Diagram
Parallel I/O
Controller
TIMER_CLOCK1
TCLK0
TIMER_CLOCK2
TIOA1
TIOA2
TIMER_CLOCK3
XC0
TCLK1
XC1
TCLK2
XC2
Timer/Counter
Channel 0
TIOA
TIOA0
TIOB0
TIOA0
TIOB
TIMER_CLOCK4
TIMER_CLOCK5
TIOB0
TC0XC0S
SYNC
TCLK0
TCLK1
TCLK2
INT0
TCLK0
TCLK1
XC0
TIOA0
XC1
Timer/Counter
Channel 1
TIOA
TIOA1
TIOB1
TIOA1
TIOB
TIOA2
TIOB1
XC2
TCLK2
SYNC
TC1XC1S
TCLK0
XC0
TCLK1
XC1
Timer/Counter
Channel 2
INT1
TIOA
TIOA2
TIOB2
TIOA2
TIOB
TCLK2
XC2
TIOA0
TC2XC2S
TIOA1
TIOB2
SYNC
INT2
Timer Counter
Advanced
Interrupt
Controller
Table 38-2.
Channel Signal Description
Signal Name
XC0, XC1, XC2
Capture Mode: Timer Counter Input
Waveform Mode: Timer Counter Output
TIOB
Capture Mode: Timer Counter Input
Waveform Mode: Timer Counter Input/Output
SYNC
Interrupt Signal Output
Synchronization Input Signal
Pin Name List
Table 38-3.
712
External Clock Inputs
TIOA
INT
38.4
Description
TC Pin List
Pin Name
Description
Type
TCLK0–TCLK2
External Clock Input
Input
TIOA0–TIOA2
I/O Line A
I/O
TIOB0–TIOB2
I/O Line B
I/O
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
38.5
Product Dependencies
38.5.1 I/O Lines
The pins used for interfacing the compliant external devices may be multiplexed with PIO lines. The programmer
must first program the PIO controllers to assign the TC pins to their peripheral functions.
38.5.2 Power Management
The TC is clocked through the Power Management Controller (PMC), thus the programmer must first configure the
PMC to enable the Timer Counter clock.
38.5.3 Interrupt
The TC has an interrupt line connected to the Advanced Interrupt Controller (AIC). Handling the TC interrupt
requires programming the AIC before configuring the TC.
38.6
Functional Description
38.6.1 TC Description
The three channels of the Timer Counter are independent and identical in operation. The registers for channel
programming are listed in Table 38-4 on page 725.
38.6.2 16-bit Counter
Each channel is organized around a 16-bit counter. The value of the counter is incremented at each positive edge
of the selected clock. When the counter has reached the value 0xFFFF and passes to 0x0000, an overflow occurs
and the COVFS bit in TC_SR (Status Register) is set.
The current value of the counter is accessible in real time by reading the Counter Value Register, TC_CV. The
counter can be reset by a trigger. In this case, the counter value passes to 0x0000 on the next valid edge of the
selected clock.
38.6.3 Clock Selection
At block level, input clock signals of each channel can either be connected to the external inputs TCLK0, TCLK1 or
TCLK2, or be connected to the internal I/O signals TIOA0, TIOA1 or TIOA2 for chaining by programming the
TC_BMR (Block Mode). See Figure 38-2 on page 714.
Each channel can independently select an internal or external clock source for its counter:

Internal clock signals: TIMER_CLOCK1, TIMER_CLOCK2, TIMER_CLOCK3, TIMER_CLOCK4,
TIMER_CLOCK5

External clock signals: XC0, XC1 or XC2
This selection is made by the TCCLKS bits in the TC Channel Mode Register.
The selected clock can be inverted with the CLKI bit in TC_CMR. This allows counting on the opposite edges of
the clock.
The burst function allows the clock to be validated when an external signal is high. The BURST parameter in the
Mode Register defines this signal (none, XC0, XC1, XC2). See Figure 38-3 on page 714.
Note:
In all cases, if an external clock is used, the duration of each of its levels must be longer than the master clock period.
The external clock frequency must be at least 2.5 times lower than the master clock
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
713
Figure 38-2.
Clock Chaining Selection
TC0XC0S
Timer/Counter
Channel 0
TCLK0
TIOA1
XC0
TIOA2
TIOA0
XC1 = TCLK1
XC2 = TCLK2
TIOB0
SYNC
TC1XC1S
Timer/Counter
Channel 1
TCLK1
XC0 = TCLK2
TIOA0
TIOA1
XC1
TIOA2
XC2 = TCLK2
TIOB1
SYNC
Timer/Counter
Channel 2
TC2XC2S
XC0 = TCLK0
TCLK2
TIOA2
XC1 = TCLK1
TIOA0
XC2
TIOB2
TIOA1
SYNC
Figure 38-3.
Clock Selection
TCCLKS
TIMER_CLOCK1
TIMER_CLOCK2
CLKI
TIMER_CLOCK3
TIMER_CLOCK4
TIMER_CLOCK5
Selected
Clock
XC0
XC1
XC2
BURST
1
714
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
38.6.4 Clock Control
The clock of each counter can be controlled in two different ways: it can be enabled/disabled and started/stopped.
See Figure 38-4.

The clock can be enabled or disabled by the user with the CLKEN and the CLKDIS commands in the Control
Register. In Capture Mode it can be disabled by an RB load event if LDBDIS is set to 1 in TC_CMR. In
Waveform Mode, it can be disabled by an RC Compare event if CPCDIS is set to 1 in TC_CMR. When
disabled, the start or the stop actions have no effect: only a CLKEN command in the Control Register can reenable the clock. When the clock is enabled, the CLKSTA bit is set in the Status Register.

The clock can also be started or stopped: a trigger (software, synchro, external or compare) always starts
the clock. The clock can be stopped by an RB load event in Capture Mode (LDBSTOP = 1 in TC_CMR) or a
RC compare event in Waveform Mode (CPCSTOP = 1 in TC_CMR). The start and the stop commands have
effect only if the clock is enabled.
Figure 38-4.
Clock Control
Selected
Clock
Trigger
CLKSTA
Q
Q
S
CLKEN
CLKDIS
S
R
R
Counter
Clock
Stop
Event
Disable
Event
38.6.5 TC Operating Modes
Each channel can independently operate in two different modes:

Capture Mode provides measurement on signals.

Waveform Mode provides wave generation.
The TC Operating Mode is programmed with the WAVE bit in the TC Channel Mode Register.
In Capture Mode, TIOA and TIOB are configured as inputs.
In Waveform Mode, TIOA is always configured to be an output and TIOB is an output if it is not selected to be the
external trigger.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
715
38.6.6 Trigger
A trigger resets the counter and starts the counter clock. Three types of triggers are common to both modes, and a
fourth external trigger is available to each mode.
The following triggers are common to both modes:

Software Trigger: Each channel has a software trigger, available by setting SWTRG in TC_CCR.

SYNC: Each channel has a synchronization signal SYNC. When asserted, this signal has the same effect as
a software trigger. The SYNC signals of all channels are asserted simultaneously by writing TC_BCR (Block
Control) with SYNC set.

Compare RC Trigger: RC is implemented in each channel and can provide a trigger when the counter value
matches the RC value if CPCTRG is set in TC_CMR.
The channel can also be configured to have an external trigger. In Capture Mode, the external trigger signal can be
selected between TIOA and TIOB. In Waveform Mode, an external event can be programmed on one of the
following signals: TIOB, XC0, XC1 or XC2. This external event can then be programmed to perform a trigger by
setting ENETRG in TC_CMR.
If an external trigger is used, the duration of the pulses must be longer than the master clock period in order to be
detected.
Regardless of the trigger used, it will be taken into account at the following active edge of the selected clock. This
means that the counter value can be read differently from zero just after a trigger, especially when a low frequency
signal is selected as the clock.
38.6.7 Capture Operating Mode
This mode is entered by clearing the WAVE parameter in TC_CMR (Channel Mode Register).
Capture Mode allows the TC channel to perform measurements such as pulse timing, frequency, period, duty
cycle and phase on TIOA and TIOB signals which are considered as inputs.
Figure 38-5 shows the configuration of the TC channel when programmed in Capture Mode.
38.6.8 Capture Registers A and B
Registers A and B (RA and RB) are used as capture registers. This means that they can be loaded with the
counter value when a programmable event occurs on the signal TIOA.
The LDRA parameter in TC_CMR defines the TIOA edge for the loading of register A, and the LDRB parameter
defines the TIOA edge for the loading of Register B.
RA is loaded only if it has not been loaded since the last trigger or if RB has been loaded since the last loading of
RA.
RB is loaded only if RA has been loaded since the last trigger or the last loading of RB.
Loading RA or RB before the read of the last value loaded sets the Overrun Error Flag (LOVRS) in TC_SR (Status
Register). In this case, the old value is overwritten.
38.6.9 Trigger Conditions
In addition to the SYNC signal, the software trigger and the RC compare trigger, an external trigger can be defined.
The ABETRG bit in TC_CMR selects TIOA or TIOB input signal as an external trigger. The ETRGEDG parameter
defines the edge (rising, falling or both) detected to generate an external trigger. If ETRGEDG = 0 (none), the
external trigger is disabled.
716
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
MTIOA
MTIOB
1
If RA is not loaded
or RB is Loaded
Edge
Detector
ETRGEDG
SWTRG
Timer/Counter Channel
ABETRG
BURST
CLKI
R
S
OVF
LDRB
Edge
Detector
Edge
Detector
Capture
Register A
LDBSTOP
R
S
CLKEN
LDRA
If RA is Loaded
CPCTRG
16-bit Counter
RESET
Trig
CLK
Q
Q
CLKSTA
LDBDIS
Capture
Register B
CLKDIS
TC1_SR
TIOA
TIOB
SYNC
XC2
XC1
XC0
TIMER_CLOCK5
TIMER_CLOCK4
TIMER_CLOCK3
TIMER_CLOCK2
TIMER_CLOCK1
TCCLKS
Compare RC =
Register C
COVFS
INT
Figure 38-5.
Capture Mode
CPCS
LOVRS
LDRBS
ETRGS
LDRAS
TC1_IMR
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
SAM9263 [DATASHEET]
717
38.6.10 Waveform Operating Mode
Waveform operating mode is entered by setting the WAVE parameter in TC_CMR (Channel Mode Register).
In Waveform Operating Mode the TC channel generates 1 or 2 PWM signals with the same frequency and
independently programmable duty cycles, or generates different types of one-shot or repetitive pulses.
In this mode, TIOA is configured as an output and TIOB is defined as an output if it is not used as an external event
(EEVT parameter in TC_CMR).
Figure 38-6 shows the configuration of the TC channel when programmed in Waveform Operating Mode.
38.6.11 Waveform Selection
Depending on the WAVSEL parameter in TC_CMR (Channel Mode Register), the behavior of TC_CV varies.
With any selection, RA, RB and RC can all be used as compare registers.
RA Compare is used to control the TIOA output, RB Compare is used to control the TIOB output (if correctly
configured) and RC Compare is used to control TIOA and/or TIOB outputs.
718
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
TIOB
SYNC
XC2
XC1
XC0
TIMER_CLOCK5
TIMER_CLOCK4
TIMER_CLOCK3
TIMER_CLOCK2
TIMER_CLOCK1
1
EEVT
BURST
TCCLKS
Timer/Counter Channel
Edge
Detector
EEVTEDG
SWTRG
ENETRG
CLKI
Trig
CLK
R
S
OVF
WAVSEL
RESET
16-bit Counter
WAVSEL
Q
Compare RA =
Register A
Q
CLKSTA
Compare RC =
Compare RB =
CPCSTOP
CPCDIS
Register C
CLKDIS
Register B
R
S
CLKEN
CPAS
INT
BSWTRG
BEEVT
BCPB
BCPC
ASWTRG
AEEVT
ACPA
ACPC
Output Controller
Output Controller
TIOB
MTIOB
TIOA
MTIOA
Figure 38-6.
Waveform Mode
CPCS
CPBS
COVFS
TC1_SR
ETRGS
TC1_IMR
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
SAM9263 [DATASHEET]
719
38.6.11.1 WAVSEL = 00
When WAVSEL = 00, the value of TC_CV is incremented from 0 to 0xFFFF. Once 0xFFFF has been reached, the
value of TC_CV is reset. Incrementation of TC_CV starts again and the cycle continues. See Figure 38-7.
An external event trigger or a software trigger can reset the value of TC_CV. It is important to note that the trigger
may occur at any time. See Figure 38-8.
RC Compare cannot be programmed to generate a trigger in this configuration. At the same time, RC Compare
can stop the counter clock (CPCSTOP = 1 in TC_CMR) and/or disable the counter clock (CPCDIS = 1 in
TC_CMR).
Figure 38-7.
WAVSEL = 00 Without Trigger
Counter Value
Counter cleared by compare match with 0xFFFF
0xFFFF
RC
RB
RA
Time
Waveform Examples
TIOB
TIOA
Figure 38-8.
WAVSEL = 00 With Trigger
Counter Value
Counter cleared by compare match with 0xFFFF
0xFFFF
RC
Counter cleared by trigger
RB
RA
Waveform Examples
TIOB
TIOA
720
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Time
38.6.11.2 WAVSEL = 10
When WAVSEL = 10, the value of TC_CV is incremented from 0 to the value of RC, then automatically reset on a
RC Compare. Once the value of TC_CV has been reset, it is then incremented and so on. See Figure 38-9.
It is important to note that TC_CV can be reset at any time by an external event or a software trigger if both are
programmed correctly. See Figure 38-10.
In addition, RC Compare can stop the counter clock (CPCSTOP = 1 in TC_CMR) and/or disable the counter clock
(CPCDIS = 1 in TC_CMR).
Figure 38-9.
WAVSEL = 10 Without Trigger
Counter Value
0xFFFF
Counter cleared by compare match with RC
RC
RB
RA
Time
Waveform Examples
TIOB
TIOA
Figure 38-10. WAVSEL = 10 With Trigger
Counter Value
0xFFFF
Counter cleared by compare match with RC
Counter cleared by trigger
RC
RB
RA
Waveform Examples
Time
TIOB
TIOA
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
721
38.6.11.3 WAVSEL = 01
When WAVSEL = 01, the value of TC_CV is incremented from 0 to 0xFFFF. Once 0xFFFF is reached, the value of
TC_CV is decremented to 0, then re-incremented to 0xFFFF and so on. See Figure 38-11.
A trigger such as an external event or a software trigger can modify TC_CV at any time. If a trigger occurs while
TC_CV is incrementing, TC_CV then decrements. If a trigger is received while TC_CV is decrementing, TC_CV
then increments. See Figure 38-12.
RC Compare cannot be programmed to generate a trigger in this configuration.
At the same time, RC Compare can stop the counter clock (CPCSTOP = 1) and/or disable the counter clock
(CPCDIS = 1).
Figure 38-11. WAVSEL = 01 Without Trigger
Counter Value
Counter decremented by compare match with 0xFFFF
0xFFFF
RC
RB
RA
Time
Waveform Examples
TIOB
TIOA
Figure 38-12. WAVSEL = 01 With Trigger
Counter Value
Counter decremented by compare match with 0xFFFF
0xFFFF
Counter decremented
by trigger
RC
RB
Counter incremented
by trigger
RA
Waveform Examples
TIOB
TIOA
722
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Time
38.6.11.4 WAVSEL = 11
When WAVSEL = 11, the value of TC_CV is incremented from 0 to RC. Once RC is reached, the value of TC_CV
is decremented to 0, then re-incremented to RC and so on. See Figure 38-13.
A trigger such as an external event or a software trigger can modify TC_CV at any time. If a trigger occurs while
TC_CV is incrementing, TC_CV then decrements. If a trigger is received while TC_CV is decrementing, TC_CV
then increments. See Figure 38-14.
RC Compare can stop the counter clock (CPCSTOP = 1) and/or disable the counter clock (CPCDIS = 1).
Figure 38-13. WAVSEL = 11 Without Trigger
Counter Value
0xFFFF
Counter decremented by compare match with RC
RC
RB
RA
Time
Waveform Examples
TIOB
TIOA
Figure 38-14. WAVSEL = 11 With Trigger
Counter Value
0xFFFF
Counter decremented by compare match with RC
RC
RB
Counter decremented
by trigger
Counter incremented
by trigger
RA
Waveform Examples
Time
TIOB
TIOA
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
723
38.6.12 External Event/Trigger Conditions
An external event can be programmed to be detected on one of the clock sources (XC0, XC1, XC2) or TIOB. The
external event selected can then be used as a trigger.
The EEVT parameter in TC_CMR selects the external trigger. The EEVTEDG parameter defines the trigger edge
for each of the possible external triggers (rising, falling or both). If EEVTEDG is cleared (none), no external event
is defined.
If TIOB is defined as an external event signal (EEVT = 0), TIOB is no longer used as an output and the compare
register B is not used to generate waveforms and subsequently no IRQs. In this case the TC channel can only
generate a waveform on TIOA.
When an external event is defined, it can be used as a trigger by setting bit ENETRG in TC_CMR.
As in Capture Mode, the SYNC signal and the software trigger are also available as triggers. RC Compare can
also be used as a trigger depending on the parameter WAVSEL.
38.6.13 Output Controller
The output controller defines the output level changes on TIOA and TIOB following an event. TIOB control is used
only if TIOB is defined as output (not as an external event).
The following events control TIOA and TIOB: software trigger, external event and RC compare. RA compare
controls TIOA and RB compare controls TIOB. Each of these events can be programmed to set, clear or toggle the
output as defined in the corresponding parameter in TC_CMR.
724
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
38.7
Timer Counter (TC) User Interface
Table 38-4.
Register Mapping
Offset(1)
Register
Name
Access
Reset
0x00 + channel * 0x40 + 0x00
Channel Control Register
TC_CCR
Write-only
–
0x00 + channel * 0x40 + 0x04
Channel Mode Register
TC_CMR
Read/Write
0
0x00 + channel * 0x40 + 0x08
Reserved
–
–
–
0x00 + channel * 0x40 + 0x0C
Reserved
–
–
–
0x00 + channel * 0x40 + 0x10
Counter Value
TC_CV
0x00 + channel * 0x40 + 0x14
Notes:
Register A
TC_RA
Read-only
Read/Write
0
(2)
0
(2)
0
0x00 + channel * 0x40 + 0x18
Register B
TC_RB
Read/Write
0x00 + channel * 0x40 + 0x1C
Register C
TC_RC
Read/Write
0
0x00 + channel * 0x40 + 0x20
Status Register
TC_SR
Read-only
0
0x00 + channel * 0x40 + 0x24
Interrupt Enable Register
TC_IER
Write-only
–
0x00 + channel * 0x40 + 0x28
Interrupt Disable Register
TC_IDR
Write-only
–
0x00 + channel * 0x40 + 0x2C
Interrupt Mask Register
TC_IMR
Read-only
0
0xC0
Block Control Register
TC_BCR
Write-only
–
0xC4
Block Mode Register
TC_BMR
Read/Write
0
0xFC
Reserved
–
–
–
1. Channel index ranges from 0 to 2.
2. Read-only if WAVE = 0
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
725
38.7.1 TC Block Control Register
Name:
TC_BCR
Address:
0xFFF7C0C0
Access:
Write-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
–
–
–
–
–
–
–
SYNC
• SYNC: Synchro Command
0: No effect.
1: Asserts the SYNC signal which generates a software trigger simultaneously for each of the channels.
726
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
38.7.2 TC Block Mode Register
Name:
TC_BMR
Address:
0xFFF7C0C4
Access:
Read/Write
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
–
–
TC2XC2S
TC1XC1S
0
TC0XC0S
• TC0XC0S: External Clock Signal 0 Selection
Value
Signal Connected to XC0
0
0
TCLK0
0
1
none
1
0
TIOA1
1
1
TIOA2
• TC1XC1S: External Clock Signal 1 Selection
Value
Signal Connected to XC1
0
0
TCLK1
0
1
none
1
0
TIOA0
1
1
TIOA2
• TC2XC2S: External Clock Signal 2 Selection
Value
Signal Connected to XC2
0
0
TCLK2
0
1
none
1
0
TIOA0
1
1
TIOA1
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
727
38.7.3 TC Channel Control Register
Name:
TC_CCRx [x = 0..2]
Address:
0xFFF7C000 (0)[0], 0xFFF7C040 (0)[1], 0xFFF7C080 (0)[2]
Access:
Write-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
–
–
–
–
–
SWTRG
CLKDIS
CLKEN
• CLKEN: Counter Clock Enable Command
0: No effect.
1: Enables the clock if CLKDIS is not 1.
• CLKDIS: Counter Clock Disable Command
0: No effect.
1: Disables the clock.
• SWTRG: Software Trigger Command
0: No effect.
1: A software trigger is performed: the counter is reset and the clock is started.
728
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
38.7.4 TC Channel Mode Register: Capture Mode
Name:
TC_CMRx [x = 0..2] (WAVE = 0)
Address:
0xFFF7C004 (0)[0], 0xFFF7C044 (0)[1], 0xFFF7C084 (0)[2]
Access:
Read/Write
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
–
–
–
–
15
14
13
12
11
10
WAVE
CPCTRG
–
–
–
ABETRG
7
6
5
3
2
LDBDIS
LDBSTOP
4
BURST
16
LDRB
CLKI
LDRA
9
8
ETRGEDG
1
0
TCCLKS
• TCCLKS: Clock Selection
Value
Clock Selected
0
0
0
TIMER_CLOCK1
0
0
1
TIMER_CLOCK2
0
1
0
TIMER_CLOCK3
0
1
1
TIMER_CLOCK4
1
0
0
TIMER_CLOCK5
1
0
1
XC0
1
1
0
XC1
1
1
1
XC2
• CLKI: Clock Invert
0: Counter is incremented on rising edge of the clock.
1: Counter is incremented on falling edge of the clock.
• BURST: Burst Signal Selection
Value
0
0
The clock is not gated by an external signal.
0
1
XC0 is ANDed with the selected clock.
1
0
XC1 is ANDed with the selected clock.
1
1
XC2 is ANDed with the selected clock.
• LDBSTOP: Counter Clock Stopped with RB Loading
0: Counter clock is not stopped when RB loading occurs.
1: Counter clock is stopped when RB loading occurs.
• LDBDIS: Counter Clock Disable with RB Loading
0: Counter clock is not disabled when RB loading occurs.
1: Counter clock is disabled when RB loading occurs.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
729
• ETRGEDG: External Trigger Edge Selection
Value
Edge
0
0
none
0
1
rising edge
1
0
falling edge
1
1
each edge
• ABETRG: TIOA or TIOB External Trigger Selection
0: TIOB is used as an external trigger.
1: TIOA is used as an external trigger.
• CPCTRG: RC Compare Trigger Enable
0: RC Compare has no effect on the counter and its clock.
1: RC Compare resets the counter and starts the counter clock.
• WAVE
0: Capture Mode is enabled.
1: Capture Mode is disabled (Waveform Mode is enabled).
• LDRA: RA Loading Selection
Value
Edge
0
0
none
0
1
rising edge of TIOA
1
0
falling edge of TIOA
1
1
each edge of TIOA
• LDRB: RB Loading Selection
Value
Edge
0
0
none
0
1
rising edge of TIOA
1
0
falling edge of TIOA
1
1
each edge of TIOA
730
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
38.7.5 TC Channel Mode Register: Waveform Mode
Name:
TC_CMRx [x = 0..2] (WAVE = 1)
Address:
0xFFF7C004 (0)[0], 0xFFF7C044 (0)[1], 0xFFF7C084 (0)[2]
Access:
Read/Write
31
30
29
BSWTRG
23
22
27
20
19
AEEVT
14
WAVE
7
6
CPCDIS
CPCSTOP
25
24
BCPB
18
17
16
ACPC
13
12
WAVSEL
26
BCPC
21
ASWTRG
15
28
BEEVT
11
ENETRG
5
4
BURST
ACPA
10
9
EEVT
3
CLKI
8
EEVTEDG
2
1
0
TCCLKS
• TCCLKS: Clock Selection
Value
Clock Selected
0
0
0
TIMER_CLOCK1
0
0
1
TIMER_CLOCK2
0
1
0
TIMER_CLOCK3
0
1
1
TIMER_CLOCK4
1
0
0
TIMER_CLOCK5
1
0
1
XC0
1
1
0
XC1
1
1
1
XC2
• CLKI: Clock Invert
0: Counter is incremented on rising edge of the clock.
1: Counter is incremented on falling edge of the clock.
• BURST: Burst Signal Selection
Value
0
0
The clock is not gated by an external signal.
0
1
XC0 is ANDed with the selected clock.
1
0
XC1 is ANDed with the selected clock.
1
1
XC2 is ANDed with the selected clock.
• CPCSTOP: Counter Clock Stopped with RC Compare
0: Counter clock is not stopped when counter reaches RC.
1: Counter clock is stopped when counter reaches RC.
• CPCDIS: Counter Clock Disable with RC Compare
0: Counter clock is not disabled when counter reaches RC.
1: Counter clock is disabled when counter reaches RC.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
731
• EEVTEDG: External Event Edge Selection
Value
Edge
0
0
none
0
1
rising edge
1
0
falling edge
1
1
each edge
• EEVT: External Event Selection
Value
Signal selected as external event
TIOB Direction
0
0
TIOB
input (1)
0
1
XC0
output
1
0
XC1
output
1
1
XC2
output
Note:
1. If TIOB is chosen as the external event signal, it is configured as an input and no longer generates waveforms and
subsequently no IRQs.
• ENETRG: External Event Trigger Enable
0: The external event has no effect on the counter and its clock. In this case, the selected external event only controls the
TIOA output.
1: The external event resets the counter and starts the counter clock.
• WAVSEL: Waveform Selection
Value
Effect
0
0
UP mode without automatic trigger on RC Compare
1
0
UP mode with automatic trigger on RC Compare
0
1
UPDOWN mode without automatic trigger on RC Compare
1
1
UPDOWN mode with automatic trigger on RC Compare
• WAVE
0: Waveform Mode is disabled (Capture Mode is enabled).
1: Waveform Mode is enabled.
• ACPA: RA Compare Effect on TIOA
Value
Effect
0
0
none
0
1
set
1
0
clear
1
1
toggle
732
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
• ACPC: RC Compare Effect on TIOA
Value
Effect
0
0
none
0
1
set
1
0
clear
1
1
toggle
• AEEVT: External Event Effect on TIOA
Value
Effect
0
0
none
0
1
set
1
0
clear
1
1
toggle
• ASWTRG: Software Trigger Effect on TIOA
Value
Effect
0
0
none
0
1
set
1
0
clear
1
1
toggle
• BCPB: RB Compare Effect on TIOB
Value
Effect
0
0
none
0
1
set
1
0
clear
1
1
toggle
• BCPC: RC Compare Effect on TIOB
Value
Effect
0
0
none
0
1
set
1
0
clear
1
1
toggle
• BEEVT: External Event Effect on TIOB
Value
Effect
0
0
none
0
1
set
1
0
clear
1
1
toggle
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
733
• BSWTRG: Software Trigger Effect on TIOB
Value
Effect
0
0
none
0
1
set
1
0
clear
1
1
toggle
734
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
38.7.6 TC Counter Value Register
Name:
TC_CVx [x = 0..2]
Address:
0xFFF7C010 (0)[0], 0xFFF7C050 (0)[1], 0xFFF7C090 (0)[2]
Access:
Read-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
3
2
1
0
CV
7
6
5
4
CV
• CV: Counter Value
CV contains the counter value in real time.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
735
38.7.7 TC Register A
Name:
TC_RAx [x = 0..2]
Address:
0xFFF7C014 (0)[0], 0xFFF7C054 (0)[1], 0xFFF7C094 (0)[2]
Access:
Read-only if WAVE = 0, Read/Write if WAVE = 1
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
3
2
1
0
RA
7
6
5
4
RA
• RA: Register A
RA contains the Register A value in real time.
736
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
38.7.8 TC Register B
Name:
TC_RBx [x = 0..2]
Address:
0xFFF7C018 (0)[0], 0xFFF7C058 (0)[1], 0xFFF7C098 (0)[2]
Access:
Read-only if WAVE = 0, Read/Write if WAVE = 1
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
3
2
1
0
RB
7
6
5
4
RB
• RB: Register B
RB contains the Register B value in real time.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
737
38.7.9 TC Register C
Name:
TC_RCx [x = 0..2]
Address:
0xFFF7C01C (0)[0], 0xFFF7C05C (0)[1], 0xFFF7C09C (0)[2]
Access:
Read/Write
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
3
2
1
0
RC
7
6
5
4
RC
• RC: Register C
RC contains the Register C value in real time.
738
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
38.7.10 TC Status Register
Name:
TC_SRx [x = 0..2]
Address:
0xFFF7C020 (0)[0], 0xFFF7C060 (0)[1], 0xFFF7C0A0 (0)[2]
Access:
Read-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
MTIOB
MTIOA
CLKSTA
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
ETRGS
LDRBS
LDRAS
CPCS
CPBS
CPAS
LOVRS
COVFS
• COVFS: Counter Overflow Status
0: No counter overflow has occurred since the last read of the Status Register.
1: A counter overflow has occurred since the last read of the Status Register.
• LOVRS: Load Overrun Status
0: Load overrun has not occurred since the last read of the Status Register or WAVE = 1.
1: RA or RB have been loaded at least twice without any read of the corresponding register since the last read of the Status Register, if WAVE = 0.
• CPAS: RA Compare Status
0: RA Compare has not occurred since the last read of the Status Register or WAVE = 0.
1: RA Compare has occurred since the last read of the Status Register, if WAVE = 1.
• CPBS: RB Compare Status
0: RB Compare has not occurred since the last read of the Status Register or WAVE = 0.
1: RB Compare has occurred since the last read of the Status Register, if WAVE = 1.
• CPCS: RC Compare Status
0: RC Compare has not occurred since the last read of the Status Register.
1: RC Compare has occurred since the last read of the Status Register.
• LDRAS: RA Loading Status
0: RA Load has not occurred since the last read of the Status Register or WAVE = 1.
1: RA Load has occurred since the last read of the Status Register, if WAVE = 0.
• LDRBS: RB Loading Status
0: RB Load has not occurred since the last read of the Status Register or WAVE = 1.
1: RB Load has occurred since the last read of the Status Register, if WAVE = 0.
• ETRGS: External Trigger Status
0: External trigger has not occurred since the last read of the Status Register.
1: External trigger has occurred since the last read of the Status Register.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
739
• CLKSTA: Clock Enabling Status
0: Clock is disabled.
1: Clock is enabled.
• MTIOA: TIOA Mirror
0: TIOA is low. If WAVE = 0, this means that TIOA pin is low. If WAVE = 1, this means that TIOA is driven low.
1: TIOA is high. If WAVE = 0, this means that TIOA pin is high. If WAVE = 1, this means that TIOA is driven high.
• MTIOB: TIOB Mirror
0: TIOB is low. If WAVE = 0, this means that TIOB pin is low. If WAVE = 1, this means that TIOB is driven low.
1: TIOB is high. If WAVE = 0, this means that TIOB pin is high. If WAVE = 1, this means that TIOB is driven high.
740
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
38.7.11 TC Interrupt Enable Register
Name:
TC_IERx [x = 0..2]
Address:
0xFFF7C024 (0)[0], 0xFFF7C064 (0)[1], 0xFFF7C0A4 (0)[2]
Access:
Write-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
ETRGS
LDRBS
LDRAS
CPCS
CPBS
CPAS
LOVRS
COVFS
• COVFS: Counter Overflow
0: No effect.
1: Enables the Counter Overflow Interrupt.
• LOVRS: Load Overrun
0: No effect.
1: Enables the Load Overrun Interrupt.
• CPAS: RA Compare
0: No effect.
1: Enables the RA Compare Interrupt.
• CPBS: RB Compare
0: No effect.
1: Enables the RB Compare Interrupt.
• CPCS: RC Compare
0: No effect.
1: Enables the RC Compare Interrupt.
• LDRAS: RA Loading
0: No effect.
1: Enables the RA Load Interrupt.
• LDRBS: RB Loading
0: No effect.
1: Enables the RB Load Interrupt.
• ETRGS: External Trigger
0: No effect.
1: Enables the External Trigger Interrupt.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
741
38.7.12 TC Interrupt Disable Register
Name:
TC_IDRx [x = 0..2]
Address:
0xFFF7C028 (0)[0], 0xFFF7C068 (0)[1], 0xFFF7C0A8 (0)[2]
Access:
Write-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
ETRGS
LDRBS
LDRAS
CPCS
CPBS
CPAS
LOVRS
COVFS
• COVFS: Counter Overflow
0: No effect.
1: Disables the Counter Overflow Interrupt.
• LOVRS: Load Overrun
0: No effect.
1: Disables the Load Overrun Interrupt (if WAVE = 0).
• CPAS: RA Compare
0: No effect.
1: Disables the RA Compare Interrupt (if WAVE = 1).
• CPBS: RB Compare
0: No effect.
1: Disables the RB Compare Interrupt (if WAVE = 1).
• CPCS: RC Compare
0: No effect.
1: Disables the RC Compare Interrupt.
• LDRAS: RA Loading
0: No effect.
1: Disables the RA Load Interrupt (if WAVE = 0).
• LDRBS: RB Loading
0: No effect.
1: Disables the RB Load Interrupt (if WAVE = 0).
• ETRGS: External Trigger
0: No effect.
1: Disables the External Trigger Interrupt.
742
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
38.7.13 TC Interrupt Mask Register
Name:
TC_IMRx [x = 0..2]
Address:
0xFFF7C02C (0)[0], 0xFFF7C06C (0)[1], 0xFFF7C0AC (0)[2]
Access:
Read-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
ETRGS
LDRBS
LDRAS
CPCS
CPBS
CPAS
LOVRS
COVFS
• COVFS: Counter Overflow
0: The Counter Overflow Interrupt is disabled.
1: The Counter Overflow Interrupt is enabled.
• LOVRS: Load Overrun
0: The Load Overrun Interrupt is disabled.
1: The Load Overrun Interrupt is enabled.
• CPAS: RA Compare
0: The RA Compare Interrupt is disabled.
1: The RA Compare Interrupt is enabled.
• CPBS: RB Compare
0: The RB Compare Interrupt is disabled.
1: The RB Compare Interrupt is enabled.
• CPCS: RC Compare
0: The RC Compare Interrupt is disabled.
1: The RC Compare Interrupt is enabled.
• LDRAS: RA Loading
0: The Load RA Interrupt is disabled.
1: The Load RA Interrupt is enabled.
• LDRBS: RB Loading
0: The Load RB Interrupt is disabled.
1: The Load RB Interrupt is enabled.
• ETRGS: External Trigger
0: The External Trigger Interrupt is disabled.
1: The External Trigger Interrupt is enabled.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
743
39.
MultiMedia Card Interface (MCI)
39.1
Description
The MultiMedia Card Interface (MCI) supports the MultiMedia Card (MMC) Specification V3.31, the SDIO
Specification V1.1 and the SD Memory Card Specification V1.0.
The MCI includes a command register, response registers, data registers, timeout counters and error detection
logic that automatically handle the transmission of commands and, when required, the reception of the associated
responses and data with a limited processor overhead.
The MCI supports stream, block and multi-block data read and write, and is compatible with the Peripheral DMA
Controller (PDC) channels, minimizing processor intervention for large buffer transfers.
The MCI operates at a rate of up to Master Clock divided by 2 and supports the interfacing of two slots. Each slot
may be used to interface with a MultiMedia Card bus (up to 30 cards) or with an SD Memory Card. Only one slot
can be selected at a time (slots are multiplexed). A bit field in the SD Card Register performs this selection.
The SD Memory Card communication is based on a 9-pin interface (clock, command, four data and three power
lines) and the MultiMedia Card on a 7-pin interface (clock, command, one data, three power lines and one
reserved for future use).
The SD Memory Card interface also supports MultiMedia Card operations. The main differences between SD and
MultiMedia Cards are the initialization process and the bus topology.
39.2
Embedded Characteristics

Compatible with SD Memory Card Specification Version 1.0

Compatible with MultiMedia Card Specification Version 3.31

Compatible with SDIO Specification Version 1.1

Cards Clock Rate Up to Master Clock Divided by 2

Embedded Power Management to Slow Down Clock Rate When Not Used

Supports two multiplexed slots
̶
Each slot for either a MultiMedia Card Bus (up to 30 cards) or an SD Memory Card

Support for Stream, Block and Multi-block Data Read and Write

Supports Connection to Peripheral DMA Controller (PDC)
̶
744
Minimizes Processor Intervention for Large Buffer Transfers
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
39.3
Block Diagram
Figure 39-1.
Block Diagram
APB Bridge
PDC
APB
MCCK(1)
MCCDA(1)
MCDA0(1)
PMC
MCK
MCDA1(1)
MCDA2(1)
MCDA3(1)
MCI Interface
PIO
MCCDB(1)
MCDB0(1)
MCDB1(1)
MCDB2(1)
Interrupt Control
MCDB3(1)
MCI Interrupt
Note:
1.
When several MCI (x MCI) are embedded in a product, MCCK refers to MCIx_CK, MCCDA to MCIx_CDA,
MCCDB to MCIx_CDB,MCDAy to MCIx_DAy, MCDBy to MCIx_DBy.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
745
39.4
Application Block Diagram
Figure 39-2.
Application Block Diagram
Application Layer
ex: File System, Audio, Security, etc.
Physical Layer
MCI Interface
1 2 3 4 5 6 78
1234567
9
SDCard
MMC
39.5
Pin Name List
Table 39-1.
I/O Lines Description
(1)
Pin Name
Pin Description
Type(2)
Comments
MCCDA/MCCDB
Command/response
I/O/PP/OD
CMD of an MMC or SDCard/SDIO
MCCK
Clock
I/O
CLK of an MMC or SD Card/SDIO
MCDA0–MCDA3
Data 0..3 of Slot A
I/O/PP
DAT0 of an MMC
DAT[0..3] of an SD Card/SDIO
MCDB0–MCDB3
Data 0..3 of Slot B
I/O/PP
DAT0 of an MMC
DAT[0..3] of an SD Card/SDIO
Notes:
1.
2.
746
When several MCI (x MCI) are embedded in a product, MCCK refers to MCIx_CK, MCCDA to MCIx_CDA,
MCCDB to MCIx_CDB, MCDAy to MCIx_DAy, MCDBy to MCIx_DBy.
I: Input, O: Output, PP: Push/Pull, OD: Open Drain
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
39.6
Product Dependencies
39.6.1
I/O Lines
The pins used for interfacing the MultiMedia Cards or SD Cards may be multiplexed with PIO lines. The
programmer must first program the PIO controllers to assign the peripheral functions to MCI pins.
39.6.2
Power Management
The MCI may be clocked through the Power Management Controller (PMC), so the programmer must first
configure the PMC to enable the MCI clock.
39.6.3
Interrupt
The MCI interface has an interrupt line connected to the Advanced Interrupt Controller (AIC).
Handling the MCI interrupt requires programming the AIC before configuring the MCI.
39.7
Bus Topology
Figure 39-3.
MultiMedia Memory Card Bus Topology
1234567
MMC
The MultiMedia Card communication is based on a 7-pin serial bus interface. It has three communication lines and
four supply lines.
Table 39-2.
Bus Topology
Description
MCI Pin Name(2)
(Slot z)
NC
Not connected
–
CMD
I/O/PP/OD
Command/response
MCCDz
3
VSS1
S
Supply voltage ground
VSS
4
VDD
S
Supply voltage
VDD
5
CLK
I/O
Clock
MCCK
6
VSS2
S
Supply voltage ground
VSS
7
DAT[0]
I/O/PP
Data 0
MCDz0
Pin Number
Name
Type
1
RSV
2
Notes:
1.
2.
(1)
I: Input, O: Output, PP: Push/Pull, OD: Open Drain.
When several MCI (x MCI) are embedded in a product, MCCK refers to MCIx_CK, MCCDA to MCIx_CDA,
MCCDB to MCIx_CDB, MCDAy to MCIx_DAy, MCDBy to MCIx_DBy.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
747
Figure 39-4.
MMC Bus Connections (One Slot)
MCI
MCDA0
MCCDA
MCCK
Note:
1234567
1234567
1234567
MMC1
MMC2
MMC3
When several MCI (x MCI) are embedded in a product, MCCK refers to MCIx_CK, MCCDA to MCIx_CDA MCDAy to
MCIx_DAy.
Figure 39-5.
SD Memory Card Bus Topology
1 2 3 4 5 6 78
9
SD CARD
The SD Memory Card bus includes the signals listed in Table 39-3.
Table 39-3.
SD Memory Card Bus Signals
Description
MCI Pin Name(2)
(Slot z)
I/O/PP
Card detect/ Data line Bit 3
MCDz3
CMD
PP
Command/response
MCCDz
3
VSS1
S
Supply voltage ground
VSS
4
VDD
S
Supply voltage
VDD
5
CLK
I/O
Clock
MCCK
6
VSS2
S
Supply voltage ground
VSS
7
DAT[0]
I/O/PP
Data line Bit 0
MCDz0
8
DAT[1]
I/O/PP
Data line Bit 1 or Interrupt
MCDz1
9
DAT[2]
I/O/PP
Data line Bit 2
MCDz2
Pin Number
Name
Type
1
CD/DAT[3]
2
1.
2.
Figure 39-6.
I: Input, O: Output, PP: Push Pull, OD: Open Drain
When several MCI (x MCI) are embedded in a product, MCCK refers to MCIx_CK, MCCDA to MCIx_CDA,
MCCDB to MCIx_CDB, MCDAy to MCIx_DAy, MCDBy to MCIx_DBy.
SD Card Bus Connections with One Slot
MCDA0 - MCDA3
MCCK
SD CARD
9
MCCDA
1 2 3 4 5 6 78
Notes:
(1)
Note:
748
When several MCI (x MCI) are embedded in a product, MCCK refers to MCIx_CK, MCCDA to MCIx_CDA MCDAy to
MCIx_DAy.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
SD Card Bus Connections with Two Slots
1 2 3 4 5 6 78
Figure 39-7.
MCDA0 - MCDA3
MCCK
1 2 3 4 5 6 78
9
MCCDA
SD CARD 1
MCDB0 - MCDB3
9
MCCDB
SD CARD 2
Note:
When several MCI (x MCI) are embedded in a product, MCCK refers to MCIx_CK,MCCDA to MCIx_CDA, MCDAy to
MCIx_DAy, MCCDB to MCIx_CDB, MCDBy to MCIx_DBy.
Figure 39-8.
Mixing MultiMedia and SD Memory Cards with Two Slots
MCDA0
MCCDA
MCCK
1234567
MMC1
MMC2
MMC3
SD CARD
9
MCCDB
1234567
1 2 3 4 5 6 78
MCDB0 - MCDB3
1234567
Note:
When several MCI (x MCI) are embedded in a product, MCCK refers to MCIx_CK, MCCDA to MCIx_CDA, MCDAy to
MCIx_DAy, MCCDB to MCIx_CDB, MCDBy to MCIx_DBy.
When the MCI is configured to operate with SD memory cards, the width of the data bus can be selected in the
MCI_SDCR. Clearing the SDCBUS bit in this register means that the width is one bit; setting it means that the
width is four bits. In the case of multimedia cards, only the data line 0 is used. The other data lines can be used as
independent PIOs.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
749
39.8
MultiMedia Card Operations
After a power-on reset, the cards are initialized by a special message-based MultiMedia Card bus protocol. Each
message is represented by one of the following tokens:

Command: A command is a token that starts an operation. A command is sent from the host either to a
single card (addressed command) or to all connected cards (broadcast command). A command is
transferred serially on the CMD line.

Response: A response is a token which is sent from an addressed card or (synchronously) from all
connected cards to the host as an answer to a previously received command. A response is transferred
serially on the CMD line.

Data: Data can be transferred from the card to the host or vice versa. Data is transferred via the data line.
Card addressing is implemented using a session address assigned during the initialization phase by the bus
controller to all currently connected cards. Their unique CID number identifies individual cards.
The structure of commands, responses and data blocks is described in the MultiMedia-Card System Specification.
See also Table 39-4 on page 751.
MultiMedia Card bus data transfers are composed of these tokens.
There are different types of operations. Addressed operations always contain a command and a response token.
In addition, some operations have a data token; the others transfer their information directly within the command or
response structure. In this case, no data token is present in an operation. The bits on the DAT and the CMD lines
are transferred synchronous to the clock MCI Clock.
Two types of data transfer commands are defined:

Sequential commands: These commands initiate a continuous data stream. They are terminated only when
a stop command follows on the CMD line. This mode reduces the command overhead to an absolute
minimum.

Block-oriented commands: These commands send a data block succeeded by CRC bits.
Both read and write operations allow either single or multiple block transmission. A multiple block transmission is
terminated when a stop command follows on the CMD line similarly to the sequential read or when a multiple block
transmission has a pre-defined block count (See “Data Transfer Operation” on page 753.).
The MCI provides a set of registers to perform the entire range of MultiMedia Card operations.
39.8.1
Command - Response Operation
After reset, the MCI is disabled and becomes valid after setting the MCIEN bit in the MCI_CR Control Register.
The PWSEN bit saves power by dividing the MCI clock by 2PWSDIV + 1 when the bus is inactive.
The two bits, RDPROOF and WRPROOF in the MCI Mode Register (MCI_MR) allow stopping the MCI Clock
during read or write access if the internal FIFO is full. This will guarantee data integrity, not bandwidth.
The command and the response of the card are clocked out with the rising edge of the MCI Clock.
All the timings for MultiMedia Card are defined in the MultiMedia Card System Specification.
The two bus modes (open drain and push/pull) needed to process all the operations are defined in the MCI
command register. The MCI_CMDR allows a command to be carried out.
For example, to perform an ALL_SEND_CID command:
Host Command
CMD
750
S
T
Content
CRC
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
NID Cycles
E
Z
******
Response
Z
S
T
CID Content
High Impedance State
Z
Z
Z
The command ALL_SEND_CID and the fields and values for the MCI_CMDR are described in Table 39-4 and
Table 39-5.
Table 39-4.
ALL_SEND_CID Command Description
CMD Index
Type
Argument
Response
Abbreviation
Command Description
CMD2
bcr
[31:0] stuff bits
R2
ALL_SEND_CID
Asks all cards to send their CID numbers on the CMD line
Note: bcr means broadcast command with response.
Table 39-5.
Fields and Values for MCI_CMDR Command Register
Field
Value
CMDNB (command number)
2 (CMD2)
RSPTYP (response type)
2 (R2: 136 bits response)
SPCMD (special command)
0 (not a special command)
OPCMD (open drain command)
1
MAXLAT (max latency for command to response)
0 (NID cycles ==> 5 cycles)
TRCMD (transfer command)
0 (No transfer)
TRDIR (transfer direction)
X (available only in transfer command)
TRTYP (transfer type)
X (available only in transfer command)
IOSPCMD (SDIO special command)
0 (not a special command)
The MCI_ARGR contains the argument field of the command.
To send a command, the user must perform the following steps:

Fill the argument register (MCI_ARGR) with the command argument.

Set the command register (MCI_CMDR) (see Table 39-5).
The command is sent immediately after writing the command register. The status bit CMDRDY in the status
register (MCI_SR) is asserted when the command is completed.
While the card maintains a busy indication (at the end of a STOP_TRANSMISSION command CMD12, for
example), a new command shall not be sent. The NOTBUSY flag in the status register (MCI_SR) is asserted when
the card releases the busy indication.
If the command requires a response, it can be read in the MCI response register (MCI_RSPR). The response size
can be from 48 bits up to 136 bits depending on the command. The MCI embeds an error detection to prevent any
corrupted data during the transfer.
The following flowchart shows how to send a command to the card and read the response if needed. In this
example, the status register bits are polled but setting the appropriate bits in the interrupt enable register
(MCI_IER) allows using an interrupt method.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
751
Figure 39-9.
Command/Response Functional Flow Diagram
Set the command argument
MCI_ARGR = Argument(1)
Set the command
MCI_CMDR = Command
Read MCI_SR
Wait for command
ready status flag
0
CMDRDY
1
Check error bits in the
status register (1)
Yes
Status error flags?
RETURN ERROR
(1)
Read response if required
Does the command involve
a busy indication?
No
RETURN OK
Read MCI_SR
0
NOTBUSY
1
RETURN OK
Note:
752
1.
If the command is SEND_OP_COND, the CRC error flag is always present (refer to R3 response in the
MultiMedia Card specification).
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
39.8.2
Data Transfer Operation
The MultiMedia Card allows several read/write operations (single block, multiple blocks, stream, etc.). These kind
of transfers can be selected setting the Transfer Type (TRTYP) field in the MCI Command Register (MCI_CMDR).
These operations can be done using the features of the Peripheral DMA Controller (PDC). If the PDCMODE bit is
set in MCI_MR, then all reads and writes use the PDC facilities.
In all cases, the block length (BLKLEN field) must be defined either in the mode register MCI_MR, or in the Block
Register MCI_BLKR. This field determines the size of the data block.
Enabling PDC Force Byte Transfer (PDCFBYTE bit in the MCI_MR) allows the PDC to manage with internal byte
transfers, so that transfer of blocks with a size different from modulo 4 can be supported. When PDC Force Byte
Transfer is disabled, the PDC type of transfers are in words, otherwise the type of transfers are in bytes.
Consequent to MMC Specification 3.1, two types of multiple block read (or write) transactions are defined (the host
can use either one at any time):

Open-ended/Infinite Multiple block read (or write):
The number of blocks for the read (or write) multiple block operation is not defined. The card will
continuously transfer (or program) data blocks until a stop transmission command is received.

Multiple block read (or write) with pre-defined block count (since version 3.1 and higher):
The card will transfer (or program) the requested number of data blocks and terminate the transaction. The
stop command is not required at the end of this type of multiple block read (or write), unless terminated with
an error. In order to start a multiple block read (or write) with pre-defined block count, the host must correctly
program the MCI Block Register (MCI_BLKR). Otherwise the card will start an open-ended multiple block
read. The BCNT field of the Block Register defines the number of blocks to transfer (from 1 to 65535 blocks).
Programming the value 0 in the BCNT field corresponds to an infinite block transfer.
39.8.3
Read Operation
The following flowchart shows how to read a single block with or without use of PDC facilities. In this example (see
Figure 39-10), a polling method is used to wait for the end of read. Similarly, the user can configure the interrupt
enable register (MCI_IER) to trigger an interrupt at the end of read.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
753
Figure 39-10. Read Functional Flow Diagram
Send SELECT/DESELECT_CARD
command(1) to select the card
(1)
Send SET_BLOCKLEN command
No
Yes
Read with PDC
Set the PDCMODE bit
MCI_MR |= PDCMODE
Set the block length (in bytes)
(2)
MCI_MR |= (BlockLength << 16)
Set the block count (if necessary)
MCI_BLKR |= (BlockCount << 0)
Reset the PDCMODE bit
MCI_MR &= ~PDCMODE
Set the block length (in bytes)
MCI_MR |= (BlockLenght <<16)(2)
Set the block count (if necessary)
MCI_BLKR |= (BlockCount << 0)
Configure the PDC channel
MCI_RPR = Data Buffer Address
MCI_RCR = BlockLength/4
MCI_PTCR = RXTEN
Send READ_SINGLE_BLOCK
command(1)
Number of words to read = BlockLength/4
Send READ_SINGLE_BLOCK
(1)
command
Yes
Number of words to read = 0 ?
Read status register MCI_SR
No
Read status register MCI_SR
Poll the bit
ENDRX = 0?
Poll the bit
RXRDY = 0?
Yes
No
No
RETURN
Read data = MCI_RDR
Number of words to read =
Number of words to read -1
RETURN
Notes:
754
1.
2.
It is assumed that this command has been correctly sent (see Figure 39-9).
This field is also accessible in the MCI Block Register (MCI_BLKR).
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Yes
39.8.4
Write Operation
In write operation, the MCI Mode Register (MCI_MR) is used to define the padding value when writing non-multiple
block size. If the bit PDCPADV is 0, then 0x00 value is used when padding data, otherwise 0xFF is used.
If set, the bit PDCMODE enables PDC transfer.
The following flowchart shows how to write a single block with or without use of PDC facilities (see Figure 39-11).
Polling or interrupt method can be used to wait for the end of write according to the contents of the Interrupt Mask
Register (MCI_IMR).
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
755
Figure 39-11. Write Functional Flow Diagram
Send SELECT/DESELECT_CARD
(1)
command
to select the card
Send SET_BLOCKLEN command(1)
Yes
No
Write using PDC
Set the PDCMODE bit
MCI_MR |= PDCMODE
Set the block length (in bytes)
MCI_MR |= (BlockLength << 16)(2)
Set the block count (if necessary)
MCI_BLKR |= (BlockCount << 0)
Reset the PDCMODE bit
MCI_MR &= ~PDCMODE
Set the block length (in bytes)
MCI_MR |= (BlockLenght <<16)(2)
Set the block count (if necessary)
MCI_BLKR |= (BlockCount << 0)
Configure the PDC channel
MCI_TPR = Data Buffer Address to write
MCI_TCR = BlockLength/4
Send WRITE_SINGLE_BLOCK
command(1)
Send WRITE_SINGLE_BLOCK
command(1)
Number of words to write = BlockLength/4
MCI_PTCR = TXTEN
Yes
Number of words to write = 0 ?
Read status register MCI_SR
No
Read status register MCI_SR
Poll the bit
NOTBUSY= 0?
Poll the bit
TXRDY = 0?
Yes
No
No
RETURN
MCI_TDR = Data to write
Number of words to write =
Number of words to write -1
RETURN
Notes:
756
1.
2.
It is assumed that this command has been correctly sent (see Figure 39-9).
This field is also accessible in the MCI Block Register (MCI_BLKR).
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
Yes
The following flowchart shows how to manage a multiple write block transfer with the PDC (see Figure 39-12).
Polling or interrupt method can be used to wait for the end of write according to the contents of the Interrupt Mask
Register (MCI_IMR).
Figure 39-12. Multiple Write Functional Flow Diagram
Send SELECT/DESELECT_CARD
(1)
command
to select the card
Send SET_BLOCKLEN command(1)
Set the PDCMODE bit
MCI_MR |= PDCMODE
Set the block length (in bytes)
(2)
MCI_MR |= (BlockLength << 16)
Set the block count (if necessary)
MCI_BLKR |= (BlockCount << 0)
Configure the PDC channel
MCI_TPR = Data Buffer Address to write
MCI_TCR = BlockLength/4
Send WRITE_MULTIPLE_BLOCK
command(1)
MCI_PTCR = TXTEN
Read status register MCI_SR
Poll the bit
BLKE = 0?
Yes
No
Send STOP_TRANSMISSION
command(1)
Poll the bit
NOTBUSY = 0?
Yes
No
RETURN
Note:
1.
2.
It is assumed that this command has been correctly sent (see Figure 39-9).
This field is also accessible in the MCI Block Register (MCI_BLKR).
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
757
39.9
SD/SDIO Card Operations
The MultiMedia Card Interface allows processing of SD Memory (Secure Digital Memory Card) and SDIO (SD
Input Output) Card commands.
SD/SDIO cards are based on the MultiMedia Card (MMC) format, but are physically slightly thicker and feature
higher data transfer rates, a lock switch on the side to prevent accidental overwriting and security features. The
physical form factor, pin assignment and data transfer protocol are forward-compatible with the MultiMedia Card
with some additions. SD slots can actually be used for more than flash memory cards. Devices that support SDIO
can use small devices designed for the SD form factor, such as GPS receivers, Wi-Fi or Bluetooth adapters,
modems, barcode readers, IrDA adapters, FM radio tuners, RFID readers, digital cameras and more.
SD/SDIO is covered by numerous patents and trademarks, and licensing is only available through the Secure
Digital Card Association.
The SD/SDIO Card communication is based on a 9-pin interface (Clock, Command, 4 x Data and 3 x Power lines).
The communication protocol is defined as a part of this specification. The main difference between the SD/SDIO
Card and the MultiMedia Card is the initialization process.
The SD/SDIO Card Register (MCI_SDCR) allows selection of the Card Slot and the data bus width.
The SD/SDIO Card bus allows dynamic configuration of the number of data lines. After power up, by default, the
SD/SDIO Card uses only DAT0 for data transfer. After initialization, the host can change the bus width (number of
active data lines).
39.9.1
SDIO Data Transfer Type
SDIO cards may transfer data in either a multi-byte (1 to 512 bytes) or an optional block format (1 to 511 blocks),
while the SD memory cards are fixed in the block transfer mode. The TRTYP field in the MCI Command Register
(MCI_CMDR) allows to choose between SDIO Byte or SDIO Block transfer.
The number of bytes/blocks to transfer is set through the BCNT field in the MCI Block Register (MCI_BLKR). In
SDIO Block mode, the field BLKLEN must be set to the data block size while this field is not used in SDIO Byte
mode.
An SDIO Card can have multiple I/O or combined I/O and memory (called Combo Card). Within a multi-function
SDIO or a Combo card, there are multiple devices (I/O and memory) that share access to the SD bus. In order to
allow the sharing of access to the host among multiple devices, SDIO and combo cards can implement the
optional concept of suspend/resume (Refer to the SDIO Specification for more details). To send a suspend or a
resume command, the host must set the SDIO Special Command field (IOSPCMD) in the MCI Command
Register.
39.9.2
SDIO Interrupts
Each function within an SDIO or Combo card may implement interrupts (Refer to the SDIO Specification for more
details). In order to allow the SDIO card to interrupt the host, an interrupt function is added to a pin on the DAT[1]
line to signal the card’s interrupt to the host. An SDIO interrupt on each slot can be enabled through the MCI
Interrupt Enable Register. The SDIO interrupt is sampled regardless of the currently selected slot.
758
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
39.10 MultiMedia Card Interface (MCI) User Interface
Table 39-6.
Register Mapping
Offset
Register
Register Name
Access
Reset
0x00
Control Register
MCI_CR
Write-only
–
0x04
Mode Register
MCI_MR
Read/Write
0x0
0x08
Data Timeout Register
MCI_DTOR
Read/Write
0x0
0x0C
SD/SDIO Card Register
MCI_SDCR
Read/Write
0x0
0x10
Argument Register
MCI_ARGR
Read/Write
0x0
0x14
Command Register
MCI_CMDR
Write-only
–
0x18
Block Register
MCI_BLKR
Read/Write
0x0
0x1C
Reserved
–
–
–
0x20
Response Register(1)
MCI_RSPR
Read-only
0x0
0x24
Response Register
(1)
MCI_RSPR
Read-only
0x0
Response Register
(1)
MCI_RSPR
Read-only
0x0
0x2C
Response Register
(1)
MCI_RSPR
Read-only
0x0
0x30
Receive Data Register
MCI_RDR
Read-only
0x0
0x34
Transmit Data Register
MCI_TDR
Write-only
–
Reserved
–
–
–
0x40
Status Register
MCI_SR
Read-only
0xC0E5
0x44
Interrupt Enable Register
MCI_IER
Write-only
–
0x48
Interrupt Disable Register
MCI_IDR
Write-only
–
0x4C
Interrupt Mask Register
MCI_IMR
Read-only
0x0
Reserved
–
–
–
Reserved for the PDC
–
–
–
0x28
0x38–0x3C
0x50–0xFC
0x100–0x124
Note:
1. The response register can be read by N accesses at the same MCI_RSPR or at consecutive addresses (0x20 to 0x2C).
N depends on the size of the response.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
759
39.10.1 MCI Control Register
Name:
MCI_CR
Address:
0xFFF80000 (0), 0xFFF84000 (1)
Access:
Write-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
SWRST
–
–
–
PWSDIS
PWSEN
MCIDIS
MCIEN
• MCIEN: MultiMedia Interface Enable
0: No effect.
1: Enables the MultiMedia Interface if MCDIS is 0.
• MCIDIS: MultiMedia Interface Disable
0: No effect.
1: Disables the MultiMedia Interface.
• PWSEN: Power Save Mode Enable
0: No effect.
1: Enables the Power Saving Mode if PWSDIS is 0.
Warning:
Before enabling this mode, the user must set a value different from 0 in the PWSDIV field (Mode Register MCI_MR).
• PWSDIS: Power Save Mode Disable
0: No effect.
1: Disables the Power Saving Mode.
• SWRST: Software Reset
0: No effect.
1: Resets the MCI. A software triggered hardware reset of the MCI interface is performed.
760
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
39.10.2 MCI Mode Register
Name:
MCI_MR
Address:
0xFFF80004 (0), 0xFFF84004 (1)
Access:
Read/Write
31
30
29
28
27
26
25
24
19
18
17
16
10
9
8
BLKLEN
23
22
21
20
BLKLEN
15
14
13
12
11
PDCMODE
PDCPADV
PDCFBYTE
WRPROOF
RDPROOF
7
6
5
4
3
PWSDIV
2
1
0
CLKDIV
• CLKDIV: Clock Divider
MultiMedia Card Interface clock (MCCK or MCI_CK) is Master Clock (MCK) divided by (2 * (CLKDIV + 1)).
• PWSDIV: Power Saving Divider
MultiMedia Card Interface clock is divided by 2(PWSDIV) + 1 when entering Power Saving Mode.
Warning:
This value must be different from 0 before enabling the Power Save Mode in the MCI_CR (MCI_PWSEN bit).
• RDPROOF Read Proof Enable
Enabling Read Proof allows to stop the MCI Clock during read access if the internal FIFO is full. This will guarantee data
integrity, not bandwidth.
0: Disables Read Proof.
1: Enables Read Proof.
• WRPROOF Write Proof Enable
Enabling Write Proof allows to stop the MCI Clock during write access if the internal FIFO is full. This will guarantee data
integrity, not bandwidth.
0: Disables Write Proof.
1: Enables Write Proof.
• PDCFBYTE: PDC Force Byte Transfer
Enabling PDC Force Byte Transfer allows the PDC to manage with internal byte transfers, so that transfer of blocks with a
size different from modulo 4 can be supported.
Warning:
BLKLEN value depends on PDCFBYTE.
0: Disables PDC Force Byte Transfer. PDC type of transfer are in words.
1: Enables PDC Force Byte Transfer. PDC type of transfer are in bytes.
• PDCPADV: PDC Padding Value
0: 0x00 value is used when padding data in write transfer (not only PDC transfer).
1: 0xFF value is used when padding data in write transfer (not only PDC transfer).
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
761
• PDCMODE: PDC-oriented Mode
0: Disables PDC transfer
1: Enables PDC transfer. In this case, UNRE and OVRE flags in the MCI Mode Register (MCI_SR) are deactivated after
the PDC transfer has been completed.
• BLKLEN: Data Block Length
This field determines the size of the data block.
This field is also accessible in the MCI Block Register (MCI_BLKR).
Bits 16 and 17 must be set to 0 if PDCFBYTE is disabled.
Note: In SDIO Byte mode, BLKLEN field is not used.
762
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
39.10.3 MCI Data Timeout Register
Name:
MCI_DTOR
Address:
0xFFF80008 (0), 0xFFF84008 (1)
Access:
Read/Write
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
–
DTOMUL
DTOCYC
• DTOCYC: Data Timeout Cycle Number
Defines a number of Master Clock cycles with DTOMUL.
• DTOMUL: Data Timeout Multiplier
These fields determine the maximum number of Master Clock cycles that the MCI waits between two data block transfers.
It equals (DTOCYC x Multiplier).
Multiplier is defined by DTOMUL as shown in the following table:
Value
Multiplier
0
0
0
1
0
0
1
16
0
1
0
128
0
1
1
256
1
0
0
1024
1
0
1
4096
1
1
0
65536
1
1
1
1048576
If the data time-out set by DTOCYC and DTOMUL has been exceeded, the Data Time-out Error flag (DTOE) in the MCI
Status Register (MCI_SR) raises.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
763
39.10.4 MCI SDCard/SDIO Register
Name:
MCI_SDCR
Address:
0xFFF8000C (0), 0xFFF8400C (1)
Access:
Read/Write
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
1
7
6
5
4
3
2
SDCBUS
–
–
–
–
–
• SDCSEL: SDCard/SDIO Slot
Value
SDCard/SDIO Slot
0
0
Slot A is selected.
0
1
Slot B is selected
1
0
Reserved
1
1
Reserved
• SDCBUS: SDCard/SDIO Bus Width
0: 1-bit data bus
1: 4-bit data bus
764
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
0
SDCSEL
39.10.5 MCI Argument Register
Name:
MCI_ARGR
Address:
0xFFF80010 (0), 0xFFF84010 (1)
Access:
Read/Write
31
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
ARG
23
22
21
20
ARG
15
14
13
12
ARG
7
6
5
4
ARG
• ARG: Command Argument
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
765
39.10.6 MCI Command Register
Name:
MCI_CMDR
Address:
0xFFF80014 (0), 0xFFF84014 (1)
Access:
Write-only
31
30
29
28
27
26
–
–
–
–
–
–
23
22
21
20
19
–
–
15
14
13
12
11
–
–
–
MAXLAT
OPDCMD
6
5
4
3
7
18
TRTYP
RSPTYP
25
24
IOSPCMD
17
TRDIR
10
16
TRCMD
9
8
SPCMD
2
1
0
CMDNB
This register is write-protected while CMDRDY is 0 in MCI_SR. If an Interrupt command is sent, this register is only writeable by an interrupt response (field SPCMD). This means that the current command execution cannot be interrupted or
modified.
• CMDNB: Command Number
MultiMedia Card bus command numbers are defined in the MultiMedia Card specification.
• RSPTYP: Response Type
Value
Response Type
0
0
No response.
0
1
48-bit response.
1
0
136-bit response.
1
1
Reserved.
• SPCMD: Special Command
Value
Command
0
0
0
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
Not a special CMD.
Initialization CMD:
74 clock cycles for initialization sequence.
Synchronized CMD:
Wait for the end of the current data block transfer before sending the pending command.
Reserved.
Interrupt command:
Corresponds to the Interrupt Mode (CMD40).
Interrupt response:
Corresponds to the Interrupt Mode (CMD40).
• OPDCMD: Open Drain Command
0: Push pull command
1: Open drain command
766
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
• MAXLAT: Max Latency for Command to Response
0: 5-cycle max latency
1: 64-cycle max latency
• TRCMD: Transfer Command
Value
Transfer Type
0
0
No data transfer
0
1
Start data transfer
1
0
Stop data transfer
1
1
Reserved
• TRDIR: Transfer Direction
0: Write
1: Read
• TRTYP: Transfer Type
Value
Transfer Type
0
0
0
MMC/SDCard Single Block
0
0
1
MMC/SDCard Multiple Block
0
1
0
MMC Stream
0
1
1
Reserved
1
0
0
SDIO Byte
1
0
1
SDIO Block
1
1
0
Reserved
1
1
1
Reserved
• IOSPCMD: SDIO Special Command
Value
SDIO Special Command Type
0
0
Not a SDIO Special Command
0
1
SDIO Suspend Command
1
0
SDIO Resume Command
1
1
Reserved
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
767
39.10.7 MCI Block Register
Name:
MCI_BLKR
Address:
0xFFF80018 (0), 0xFFF84018 (1)
Access:
Read/Write
31
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
BLKLEN
23
22
21
20
BLKLEN
15
14
13
12
BCNT
7
6
5
4
BCNT
• BCNT: MMC/SDIO Block Count - SDIO Byte Count
This field determines the number of data byte(s) or block(s) to transfer.
The transfer data type and the authorized values for BCNT field are determined by the TRTYP field in the MCI Command
Register (MCI_CMDR):
Value
Type of Transfer
BCNT Authorized Values
From 1 to 65535: Value 0 corresponds to an infinite block transfer.
0
0
1
MMC/SDCard Multiple Block
1
0
0
SDIO Byte
1
0
1
SDIO Block
Other values
Warning:
–
From 1 to 512 bytes: Value 0 corresponds to a 512-byte transfer.
Values from 0x200 to 0xFFFF are forbidden.
From 1 to 511 blocks: Value 0 corresponds to an infinite block transfer.
Values from 0x200 to 0xFFFF are forbidden.
Reserved
In SDIO Byte and Block modes, writing to the 7 last bits of BCNT field, is forbidden and may lead to unpredictable
results.
• BLKLEN: Data Block Length
This field determines the size of the data block.
This field is also accessible in the MCI Mode Register (MCI_MR).
Bits 16 and 17 must be set to 0 if PDCFBYTE is disabled.
Note: In SDIO Byte mode, BLKLEN field is not used.
768
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
39.10.8 MCI Response Register
Name:
MCI_RSPR
Address:
0xFFF80020 (0), 0xFFF84020 (1)
Access:
Read-only
31
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
RSP
23
22
21
20
RSP
15
14
13
12
RSP
7
6
5
4
RSP
• RSP: Response
Note:
1. The response register can be read by N accesses at the same MCI_RSPR or at consecutive addresses (0x20 to 0x2C).
N depends on the size of the response.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
769
39.10.9 MCI Receive Data Register
Name:
MCI_RDR
Address:
0xFFF80030 (0), 0xFFF84030 (1)
Access:
Read-only
31
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
DATA
23
22
21
20
DATA
15
14
13
12
DATA
7
6
5
4
DATA
• DATA: Data to Read
770
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
39.10.10 MCI Transmit Data Register
Name:
MCI_TDR
Address:
0xFFF80034 (0), 0xFFF84034 (1)
Access:
Write-only
31
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
DATA
23
22
21
20
DATA
15
14
13
12
DATA
7
6
5
4
DATA
• DATA: Data to Write
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
771
39.10.11 MCI Status Register
Name:
MCI_SR
Address:
0xFFF80040 (0), 0xFFF84040 (1)
Access:
Read-only
31
30
29
28
27
26
25
24
UNRE
OVRE
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
DTOE
DCRCE
RTOE
RENDE
RCRCE
RDIRE
RINDE
15
14
13
12
11
10
9
8
TXBUFE
RXBUFF
–
–
–
–
SDIOIRQB
SDIOIRQA
7
6
5
4
3
2
1
0
ENDTX
ENDRX
NOTBUSY
DTIP
BLKE
TXRDY
RXRDY
CMDRDY
• CMDRDY: Command Ready
0: A command is in progress.
1: The last command has been sent. Cleared when writing in the MCI_CMDR.
• RXRDY: Receiver Ready
0: Data has not yet been received since the last read of MCI_RDR.
1: Data has been received since the last read of MCI_RDR.
• TXRDY: Transmit Ready
0: The last data written in MCI_TDR has not yet been transferred in the Shift Register.
1: The last data written in MCI_TDR has been transferred in the Shift Register.
• BLKE: Data Block Ended
This flag must be used only for Write Operations.
0: A data block transfer is not yet finished. Cleared when reading the MCI_SR.
1: A data block transfer has ended, including the CRC16 Status transmission.
In PDC mode (PDCMODE = 1), the flag is set when the CRC Status of the last block has been transmitted (TXBUFE
already set).
Otherwise (PDCMODE = 0), the flag is set for each transmitted CRC Status.
Refer to the MMC or SD Specification for more details concerning the CRC Status.
• DTIP: Data Transfer in Progress
0: No data transfer in progress.
1: The current data transfer is still in progress, including CRC16 calculation. Cleared at the end of the CRC16 calculation.
• NOTBUSY: MCI Not Busy
This flag must be used only for Write Operations.
A block write operation uses a simple busy signalling of the write operation duration on the data (DAT0) line: during a data
transfer block, if the card does not have a free data receive buffer, the card indicates this condition by pulling down the data
line (DAT0) to LOW. The card stops pulling down the data line as soon as at least one receive buffer for the defined data
transfer block length becomes free.
772
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
The NOTBUSY flag allows to deal with these different states.
0: The MCI is not ready for new data transfer. Cleared at the end of the card response.
1: The MCI is ready for new data transfer. Set when the busy state on the data line has ended. This corresponds to a free
internal data receive buffer of the card.
Refer to the MMC or SD Specification for more details concerning the busy behavior.
• ENDRX: End of RX Buffer
0: The Receive Counter Register has not reached 0 since the last write in MCI_RCR or MCI_RNCR.
1: The Receive Counter Register has reached 0 since the last write in MCI_RCR or MCI_RNCR.
• ENDTX: End of TX Buffer
0: The Transmit Counter Register has not reached 0 since the last write in MCI_TCR or MCI_TNCR.
1: The Transmit Counter Register has reached 0 since the last write in MCI_TCR or MCI_TNCR.
Note: BLKE and NOTBUSY flags can be used to check that the data has been successfully transmitted on the data lines and not only
transferred from the PDC to the MCI Controller.
• RXBUFF: RX Buffer Full
0: MCI_RCR or MCI_RNCR has a value other than 0.
1: Both MCI_RCR and MCI_RNCR have a value of 0.
• TXBUFE: TX Buffer Empty
0: MCI_TCR or MCI_TNCR has a value other than 0.
1: Both MCI_TCR and MCI_TNCR have a value of 0.
Note: BLKE and NOTBUSY flags can be used to check that the data has been successfully transmitted on the data lines and not only
transferred from the PDC to the MCI Controller.
• RINDE: Response Index Error
0: No error.
1: A mismatch is detected between the command index sent and the response index received. Cleared when writing in the
MCI_CMDR.
• RDIRE: Response Direction Error
0: No error.
1: The direction bit from card to host in the response has not been detected.
• RCRCE: Response CRC Error
0: No error.
1: A CRC7 error has been detected in the response. Cleared when writing in the MCI_CMDR.
• RENDE: Response End Bit Error
0: No error.
1: The end bit of the response has not been detected. Cleared when writing in the MCI_CMDR.
• RTOE: Response Time-out Error
0: No error.
1: The response time-out set by MAXLAT in the MCI_CMDR has been exceeded. Cleared when writing in the MCI_CMDR.
SAM9263 [DATASHEET]
Atmel-6249N-ATARM-SAM9263-Datasheet_14-Mar-16
773
• DCRCE: Data CRC Error
0: No error.
1: A CRC16 error has been detected in the last data block. Cleared by reading in the MCI_SR.
• DTOE: Data Time-out Error
0: No error.
1: The data time-out set by DTOCYC and DTOMUL in MCI_DTOR has been exceeded. Cleared by reading in the
MCI_SR.
• OVRE: Overrun
0: No error.
1: At least one 8-bit received data has been lost (not read). Cleared when sending a new data transfer command.
• UNRE: Underrun
0: No error.
1: At least one 8-bit dat