Data Sheet

Document Number: MD7IC2050N
Rev. 1, 5/2010
Freescale Semiconductor
Technical Data
RF LDMOS Wideband Integrated
Power Amplifiers
The MD7IC2050N wideband integrated circuit is designed with on- chip
matching that makes it usable from 1750- 2050 MHz. This multi- stage
structure is rated for 26 to 32 Volt operation and covers all typical cellular
base station modulation formats.
• Typical Doherty Single-Carrier W-CDMA Performance: VDD = 28 Volts,
IDQ1A = IDQ1B = 30 mA, IDQ2A = 230 mA, VGS2B = 1.4 Vdc, Pout = 10 Watts
Avg., IQ Magnitude Clipping, Channel Bandwidth = 3.84 MHz, Input Signal
PAR = 9.9 dB @ 0.01% Probability on CCDF.
Frequency
Gps
(dB)
PAE
(%)
Output PAR
(dB)
ACPR
(dBc)
2025 MHz
30.5
34.7
8.7
-37.4
• Capable of Handling 5:1 VSWR, @ 32 Vdc, 2017.5 MHz, 79 Watts CW
Output Power (3 dB Input Overdrive from Rated Pout)
• Stable into a 5:1 VSWR. All Spurs Below -60 dBc @ 20 Watts to 80 Watts
CW Pout
• Typical Pout @ 3 dB Compression Point ] 74 Watts CW
MD7IC2050NR1
MD7IC2050GNR1
MD7IC2050NBR1
1880-2100 MHz, 10 W AVG., 28 V
SINGLE W-CDMA
RF LDMOS WIDEBAND
INTEGRATED POWER AMPLIFIERS
CASE 1618-02
TO-270 WB-14
PLASTIC
MD7IC2050NR1
1880 MHz
• Typical Doherty Single-Carrier W-CDMA Performance: VDD = 28 Volts,
IDQ1A = IDQ1B = 30 mA, IDQ2A = 230 mA, VGS2B = 1.4 Vdc, Pout = 10 Watts
Avg., IQ Magnitude Clipping, Channel Bandwidth = 3.84 MHz, Input Signal
PAR = 9.9 dB @ 0.01% Probability on CCDF.
Frequency
Gps
(dB)
PAE
(%)
Output PAR
(dB)
ACPR
(dBc)
1880 MHz
30.3
35.2
8.6
-34.9
1900 MHz
30.2
34.9
8.6
-36.3
1920 MHz
30.1
34.8
8.7
-36.9
Features
• 100% PAR Tested for Guaranteed Output Power Capability
• Production Tested in a Symmetrical Doherty Configuration
• Characterized with Series Equivalent Large-Signal Impedance Parameters
and Common Source S-Parameters
• On-Chip Matching (50 Ohm Input, DC Blocked)
• Integrated Quiescent Current Temperature Compensation with
Enable/Disable Function (1)
• Integrated ESD Protection
• 225°C Capable Plastic Package
• RoHS Compliant
• In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel
CASE 1621-02
TO-270 WB-14 GULL
PLASTIC
MD7IC2050GNR1
CASE 1617-02
TO-272 WB-14
PLASTIC
MD7IC2050NBR1
1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control
for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1977 or AN1987.
© Freescale Semiconductor, Inc., 2009-2010. All rights reserved.
RF Device Data
Freescale Semiconductor
MD7IC2050NR1 MD7IC2050GNR1 MD7IC2050NBR1
1
VDS1A
CARRIER (2)
RFinA
RFout1/VDS2A
VGS1A
Quiescent Current
Temperature Compensation (1)
VGS2A
VGS1B
Quiescent Current
Temperature Compensation (1)
VGS2B
PEAKING (2)
RFinB
VDS1A
VGS2A
VGS1A
RFinA
NC
NC
NC
NC
RFinB
VGS1B
VGS2B
VDS1B
1
2
3
4
5
6
7
8
9
10
11
12
14
13
RFout1/VDS2A
RFout2/VDS2B
(Top View)
RFout2/VDS2B
Note: Exposed backside of the package is
the source terminal for the transistors.
VDS1B
Figure 1. Functional Block Diagram
Figure 2. Pin Connections
1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control
for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1977 or AN1987.
2. Peaking and Carrier orientation is determined by the test fixture design.
Table 1. Maximum Ratings
Symbol
Value
Unit
Drain-Source Voltage
Rating
VDSS
-0.5, +65
Vdc
Gate-Source Voltage
VGS
-0.5, +10
Vdc
Operating Voltage
VDD
32, +0
Vdc
Storage Temperature Range
Tstg
-65 to +150
°C
TC
150
°C
Case Operating Temperature
Operating Junction Temperature
(1,2)
Input Power
TJ
225
°C
Pin
28
dBm
Symbol
Value (2,3)
Unit
Table 2. Thermal Characteristics
Characteristic
Final Doherty Application
Thermal Resistance, Junction to Case
Case Temperature 81°C, Pout = 50 W CW
Stage 1A, 28 Vdc, IDQ1A = 30 mA
Stage 1B, 28 Vdc, IDQ1B = 30 mA
Stage 2A, 28 Vdc, IDQ2A = 230 mA
Stage 2B, 28 Vdc, VGS2B = 1.4 Vdc
Case Temperature 73°C, Pout = 10 W CW
Stage 1A, 28 Vdc, IDQ1A = 30 mA
Stage 1B, 28 Vdc, IDQ1B = 30 mA
Stage 2A, 28 Vdc, IDQ2A = 230 mA
Stage 2B, 28 Vdc, VGS2B = 1.4 Vdc
°C/W
RθJC
8.2
8.2
1.8
1.8
8.3
8.3
1.9
1.9
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes - AN1955.
MD7IC2050NR1 MD7IC2050GNR1 MD7IC2050NBR1
2
RF Device Data
Freescale Semiconductor
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22-A114)
0 (Minimum)
Machine Model (per EIA/JESD22-A115)
A (Minimum)
Charge Device Model (per JESD22-C101)
II (Minimum)
Table 4. Moisture Sensitivity Level
Test Methodology
Per JESD22-A113, IPC/JEDEC J-STD-020
Rating
Package Peak Temperature
Unit
3
260
°C
Table 5. Electrical Characteristics (TA = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 65 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
μAdc
Zero Gate Voltage Drain Leakage Current
(VDS = 28 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
μAdc
Gate-Source Leakage Current
(VGS = 1.5 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
μAdc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 23 μAdc)
VGS(th)
1.2
1.9
2.7
Vdc
Gate Quiescent Voltage
(VDS = 28 Vdc, IDQ1A = IDQ1B = 30 mAdc)
VGS(Q)
—
3
—
Vdc
Fixture Gate Quiescent Voltage
(VDD = 28 Vdc, IDQ1A = IDQ1B = 30 mAdc, Measured in Functional Test)
VGG(Q)
4.1
5.5
7.1
Vdc
Zero Gate Voltage Drain Leakage Current
(VDS = 65 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
μAdc
Zero Gate Voltage Drain Leakage Current
(VDS = 28 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
μAdc
Gate-Source Leakage Current
(VGS = 1.5 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
μAdc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 150 μAdc)
VGS(th)
1.2
2
2.7
Vdc
Gate Quiescent Voltage
(VDS = 28 Vdc, IDQ2A = 230 mAdc)
VGS(Q)
—
3
—
Vdc
Fixture Gate Quiescent Voltage
(VDD = 28 Vdc, IDQ2A = 230 mAdc, Measured in Functional Test)
VGG(Q)
4.1
5.5
7.1
Vdc
Drain-Source On-Voltage
(VGS = 10 Vdc, ID = 1 Adc)
VDS(on)
0.1
0.3
1.2
Vdc
Stage 1 - Off Characteristics
(1)
Stage 1 - On Characteristics (1)
Stage 2 - Off Characteristics (1)
Stage 2 - On Characteristics (1)
Functional Tests (2,3,4) (In Freescale Doherty Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1A = IDQ1B = 30 mA, IDQ2A = 230 mA,
VGS2B = 1.4 Vdc, Pout = 10 W Avg., f = 2025 MHz, Single-Carrier W-CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01%
Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset.
Power Gain
Gps
28.5
30.5
33.0
Power Added Efficiency
PAE
32.0
34.7
—
%
Output Peak-to-Average Ratio @ 0.01% Probability on CCDF
PAR
8.0
8.7
—
dB
ACPR
—
-37.4
-34.0
dBc
Adjacent Channel Power Ratio
1.
2.
3.
4.
dB
Each side of device measured separately.
Part internally matched both on input and output.
Measurement made with device in a Symmetrical Doherty configuration.
Measurement made with device in straight lead configuration before any lead forming operation is applied.
(continued)
MD7IC2050NR1 MD7IC2050GNR1 MD7IC2050NBR1
RF Device Data
Freescale Semiconductor
3
Table 5. Electrical Characteristics (TA = 25°C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
(1)
Typical Performances
(In Freescale Doherty Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1A = IDQ1B = 30 mA, IDQ2A = 230 mA,
VGS2B = 1.4 Vdc, 2010-2025 MHz Bandwidth
Pout @ 1 dB Compression Point, CW
P1dB
—
60
—
W
Pout @ 3 dB Compression Point, CW
P3dB
—
74
—
W
—
55
—
IMD Symmetry @ 30 W PEP, Pout where IMD Third Order
Intermodulation ` 30 dBc
(Delta IMD Third Order Intermodulation between Upper and Lower
Sidebands > 2 dB)
IMDsym
VBW Resonance Point
(IMD Third Order Intermodulation Inflection Point)
VBWres
—
70
—
MHz
Quiescent Current Accuracy over Temperature
with 4.7 kΩ Gate Feed Resistors (-30 to 85°C) (2)
ΔIQT
—
2.64
—
%
Gain Flatness in 15 MHz Bandwidth @ Pout = 10 W Avg.
GF
—
0.1
—
dB
Gain Variation over Temperature
(-30 °C to +85°C)
ΔG
—
0.033
—
dB/°C
ΔP1dB
—
0.008
—
dBm/°C
Output Power Variation over Temperature
(-30 °C to +85°C)
MHz
Typical W-CDMA Broadband Performance — 1880 MHz (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1A = IDQ1B =
30 mA, IDQ2A = 230 mA, VGS2B = 1.4 Vdc, Pout = 10 W Avg., Single-Carrier W-CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @
0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset.
Frequency
Gps
(dB)
PAE
(%)
Output PAR
(dB)
ACPR
(dBc)
IRL
(dB)
1880 MHz
30.3
35.2
8.6
-34.9
-21
1900 MHz
30.2
34.9
8.6
-36.3
-21
1920 MHz
30.1
34.8
8.7
-36.9
-22
1. Measurement made with device in a Symmetrical Doherty configuration.
2. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control
for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf.Select Documentation/Application Notes - AN1977 or
AN1987.
MD7IC2050NR1 MD7IC2050GNR1 MD7IC2050NBR1
4
RF Device Data
Freescale Semiconductor
VGS1A
VGS2A
VDS1A
VDS2A
C7
C1
C9
R2
C15
R1
C3
C11
C17
C18
CUT OUT AREA
Z1
R5
C
P
C13
C14
C20
C19
C12
C4
C5
R3
C10
R4
C16
MD7IC2050N
Rev. 1
C8
C2
VGS1B
VGS2B
C21
C6
VDS2B
VDS1B
Figure 3. MD7IC2050NR1(GNR1)(NBR1) Test Circuit Component Layout
Table 6. MD7IC2050NR1(GNR1)(NBR1) Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
C1, C2, C3, C4, C5, C6
10 μF, 50 V Chip Capacitors
GRM55DR61H106KA88L
Murata
C7, C8
4.7 pF Chip Capacitors
ATC600F4R7BT250XT
ATC
C9, C10
5.6 pF Chip Capacitors
ATC600F5R6BT250XT
ATC
C11, C12, C13, C14
39 pF Chip Capacitors
ATC600F390JT250XT
ATC
C15, C16, C17, C18, C19, C20
4.7 μF, 50 V Chip Capacitors
GRM31CR71H475KA12L
Murata
C21
1.0 pF Chip Capacitor
ATC600F1R0BT250XT
ATC
R1, R2, R3, R4
4.7 kΩ, 1/4 W Chip Resistors
CRCW12064701KEA
Vishay
R5
50 Ω, 1/4 W Thick Film Chip Resistor
RK73B2BTTD510J
KOA Speer
Z1
1900 MHz Band 90°, 3 dB Hybrid Coupler
GSC351-HYB1900
Soshin
PCB
0.020″, εr = 3.5
RF-35
Taconic
MD7IC2050NR1 MD7IC2050GNR1 MD7IC2050NBR1
RF Device Data
Freescale Semiconductor
5
Single-ended
l
4
l
4
l
2
Quadrature combined
l
4
Doherty
l
2
Push-pull
Figure 4. Possible Circuit Topologies
MD7IC2050NR1 MD7IC2050GNR1 MD7IC2050NBR1
6
RF Device Data
Freescale Semiconductor
Gps, POWER GAIN (dB)
30.6
33
V
DD = 28 Vdc, Pout = 10 W
(Avg.)
IDQ1A = IDQ1B = 30 mA, IDQ2A = 230 mA
VGS2B = 1.4 Vdc, Single- Carrier W-CDMA
3.84 MHz Channel Bandwidth
IRL
Input Signal PAR = 9.9 dB @
0.01% Probability on CCDF
30.5
30.4
Gps
30.3
30.2
32
31
-29
-18
-31
-19
30.1
-33
30
-35
29.9
-37
PARC
29.8
1880
ACPR
1900
1920
1940
1960
1980
2000
2020
-20
-21
-22
-39
2040
-23
-0.4
-0.8
-1.2
-1.6
PARC (dB)
34
IRL, INPUT RETURN LOSS (dB)
35
PAE
30.7
ACPR (dBc)
30.8
PAE, POWER ADDED
EFFICIENCY (%)
TYPICAL CHARACTERISTICS
-2
-2.4
f, FREQUENCY (MHz)
Figure 5. Output Peak-to-Average Ratio Compression (PARC)
Broadband Performance @ Pout = 10 Watts Avg.
IMD, INTERMODULATION DISTORTION (dBc)
-1 0
VDD = 28 Vdc, Pout = 30 W (PEP), IDQ1A = IDQ1B = 30 mA
IDQ2A = 230 mA, VGS2B = 1.4 Vdc, Two-Tone Measurements
(f1 + f2)/2 = Center Frequency of 2017.5 MHz
-2 0
IM3-U
-3 0
IM3-L
IM5-U
IM5-L
-4 0
IM7-L
IM7-U
-50
10
1
100
TWO-T ONE SPACING (MHz)
Figure 6. Intermodulation Distortion Products
versus Two-T one Spacing
29.5
29
28.5
28
43
0
-1 dB = 10.41 W
-1
38
-2 dB = 13.56 W
-2
PAE
ACPR
-3
VDD = 28 Vdc
IDQ1A = IDQ1B = 30 mA
IDQ2A = 230 mA
VGS2B = 1.4 Vdc
f = 2017.5 MHz
33
28
-3 dB = 17.24 W
-4
Single-Carrier W-CDMA, 3.84 MHz Channel Bandwidth
Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF
-5
3
6
9
-30
48
Gps
12
15
18
21
23
PARC
24
18
-32
-34
-36
ACPR (dBc)
30
OUTPUT COMPRESSION AT 0.01%
PROBABILITY ON CCDF (dB)
Gps, POWER GAIN (dB)
30.5
1
PAE, POWER ADDED EFFICIENCY (%)
31
-38
-40
-42
27
Pout, OUTPUT POWER (WATTS)
Figure 7. Output Peak-to-Average Ratio
Compression (PARC) versus Output Power
MD7IC2050NR1 MD7IC2050GNR1 MD7IC2050NBR1
RF Device Data
Freescale Semiconductor
7
TYPICAL CHARACTERISTICS
Gps, POWER GAIN (dB)
30
ACPR
2025 MHz
2017.5 MHz
29
28.5
28
27.5
60
PAE
2017.5 MHz
10
2017.5 MHz
2025 MHz
1
30
20
2010 MHz
26
50
40
Gps
26.5
-22.5
70
2010 MHz
27
-20
90
80
VDD = 28 Vdc, IDQ1A = IDQ1B = 30 mA
IDQ2A = 230 mA, VGS2B = 1.4 Vdc, Single-Carrier
W-CDMA, 3.84 MHz Channel Bandwidth
Input Signal PAR = 9.9 dB @ 0.01%
Probability on CCDF
2025 MHz
29.5
100
0
100
10
-25
-27.5
-30
ACPR (dBc)
f = 2010 MHz
30.5
PAE, POWER ADDED EFFICIENCY (%)
31
-32.5
-35
-37.5
-40
-42.5
-45
Pout, OUTPUT POWER (WATTS) AVG.
Figure 8. Single-Carrier W-CDMA Power Gain, Power
Added Efficiency and ACPR versus Output Power
GAIN (dB)
Gain
30
-14
25
-21
20
-28
15
10
5
1450
IRL
-35
VDD = 28 Vdc
Pin = 0 dBm
IDQ1A = IDQ1B = 30 mA
IDQ2A = 230 mA
VGS2B = 1.4 Vdc
1650
1850
IRL (dB)
-7
35
-42
2050
-49
2450
2250
f, FREQUENCY (MHz)
Figure 9. Broadband Frequency Response
W-CDMA TEST SIGNAL
100
10
0
-10
3.84 MHz
Channel BW
-20
1
Input Signal
-30
0.1
(dB)
PROBABILITY (%)
10
0.01
W-CDMA. ACPR Measured in 3.84 MHz
Channel Bandwidth @ ±5 MHz Offset.
Input Signal PAR = 9.9 dB @ 0.01%
Probability on CCDF
0.001
0.0001
0
2
4
6
-40
-50
-60
+ACPR in 3.84 MHz
Integrated BW
-ACPR in 3.84 MHz
Integrated BW
-70
-80
8
10
PEAK-T O-A VERAGE (dB)
Figure 10. CCDF W-CDMA IQ Magnitude
Clipping, Single-Carrier Test Signal
12
-90
-100
-9
-7.2
-5.4
-3.6
-1.8
0
1.8
3.6
5.4
7.2
9
f, FREQUENCY (MHz)
Figure 11. Single-Carrier W-CDMA Spectrum
MD7IC2050NR1 MD7IC2050GNR1 MD7IC2050NBR1
8
RF Device Data
Freescale Semiconductor
VDD = 28 Vdc, IDQ1A = IDQB = 30 mA, IDQ2A = 230 mA, VGS2B = 1.4 Vdc, Pout = 10 W Avg.
f
MHz
Zin
W
Zload
W
1995
60.12 - j33.28
11.79 - j6.72
2000
59.30 - j32.57
11.78 - j6.78
2005
58.41 - j32.06
11.78 - j6.85
2010
57.41 - j31.31
11.78 - j6.92
2015
56.31 - j30.27
11.79 - j7.00
2020
55.94 - j29.62
11.81 - j7.08
2025
55.28 - j28.90
11.81 - j7.16
2030
54.75 - j28.12
11.84 - j7.24
2035
54.39 - j27.55
11.80 - j7.33
Note: Measured with Peaking side open.
Zin
=
Device input impedance as measured from
gate to ground.
Zload =
Test circuit impedance as measured from
drain to ground.
Output
Matching
Network
Device
Under Test
Z
Z
in
load
Figure 12. Series Equivalent Input and Load Impedance — Carrier Side
VDD = 28 Vdc, IDQ1A = IDQB = 30 mA, IDQ2A = 230 mA, VGS2B = 1.4 Vdc, Pout = 10 W Avg.
f
MHz
Zin
W
Zload
W
1995
60.12 - j33.28
1.86 - j11.38
2000
59.30 - j32.57
1.80 - j11.24
2005
58.41 - j32.06
1.71 - j11.12
2010
57.41 - j31.31
1.64 - j11.00
2015
56.31 - j30.27
1.58 - j10.91
2020
55.94 - j29.62
1.51 - j10.78
2025
55.28 - j28.90
1.45 - j10.66
2030
54.75 - j28.12
1.38 - j10.56
2035
54.39 - j27.55
1.33 - j10.40
Note: Measured with Carrier side open.
Zin
=
Device input impedance as measured from
gate to ground.
Zload =
Test circuit impedance as measured from
drain to ground.
Output
Matching
Network
Device
Under Test
Z
in
Z
load
Figure 13. Series Equivalent Input and Load Impedance — Peaking Side
MD7IC2050NR1 MD7IC2050GNR1 MD7IC2050NBR1
RF Device Data
Freescale Semiconductor
9
ALTERNATIVE PEAK TUNE LOAD PULL CHARACTERISTICS
VDD = 28 Vdc, IDQ1A = 30 mA, IDQ2A = 230 mA
52
f = 2025 MHz
50
48
Pout, OUTPUT POWER (dBm)
Ideal
f = 2025 MHz
Actual
46
44
f = 2010 MHz
42
f = 2010 MHz
f = 2025 MHz
40
38
f = 2010 MHz
36
34
32
30
0
2
4
6
8
10
12
14
16
18
20
Pin, INPUT POWER (dBm)
Load Pull Test Fixture Tuned for Peak P1dB Output Power @ 28 V
P1dB
P3dB
f
(MHz)
Watts
dBm
Watts
dBm
2010
40
46
49
46.9
2025
38.9
45.9
47.9
46.8
Test Impedances per Compression Level
f
(MHz)
Zsource
Ω
Zload
Ω
2010
P1dB
73.6 + j31.1
6.8 - j13.7
2025
P1dB
68.9 + j26.7
8.3 - j14.3
Figure 14. CW Output Power versus Input Power @ 28 V
NOTE: Measurement made on the Class AB, carrier side of the device.
MD7IC2050NR1 MD7IC2050GNR1 MD7IC2050NBR1
10
RF Device Data
Freescale Semiconductor
VGS1A
VGS2A
VDS1A
VDS2A
C7
C1
C15
R2
C9
R1
C3
C11
C17
C4
C18
C13
CUT OUT AREA
Z1
R5
C
P
C14
C20
C19
C12
C5
R3
C21
C6
C10
MD7IC2050N
Rev. 1
R4
C8
C16
C2
VGS1B
VGS2B
VDS2B
VDS1B
Figure 15. MD7IC2050NR1(GNR1)(NBR1) Test Circuit Component Layout — 1880 MHz
Table 7. MD7IC2050NR1(GNR1)(NBR1) Test Circuit Component Designations and Values — 1880 MHz
Part
Description
Part Number
Manufacturer
C1, C2, C3, C4, C5, C6
10 μF, 50 V Chip Capacitors
GRM55DR61H106KA88L
Murata
C7, C8
6.8 pF Chip Capacitors
ATC600F6R8BT250XT
ATC
C9, C10
15 pF Chip Capacitors
ATC600F150JT250XT
ATC
C11, C12, C13, C14
33 pF Chip Capacitors
ATC600F330JT250XT
ATC
C15, C16
6.8 μF, 50 V Chip Capacitors
GRM32CF51H685ZA01L
Murata
C17, C18, C19, C20
2.2 μF, Chip Capacitors
GRM31CR61H225KA88L
Murata
C21
0.9 pF Chip Capacitor
ATC600F0R9BT250XT
ATC
R1, R2, R3, R4
4.7 kΩ, 1/4 W Chip Resistors
CRCW12064701FKEA
Vishay
R5
50 Ω, 1/4 W Thick Film Chip Resistor
RK73B2BTTD510J
KOA Speer
Z1
1900 MHz Band 90°, 3 dB Hybrid Coupler
GSC351-HYB1900
Soshin
PCB
0.020″, εr = 3.5
RO4350B
Rogers
MD7IC2050NR1 MD7IC2050GNR1 MD7IC2050NBR1
RF Device Data
Freescale Semiconductor
11
34.75
3.84 MHz Channel Bandwidth, Input Signal
PAR = 9.9 dB @ 0.01% Probability on CCDF
30.3
30.25
30.2
Gps
30.15
30.1
IRL
-34
-20.5
-34.6
-20.9
-35.2
ACPR
30.05 PARC
30
1880
34.5
-35.8
-36.4
1890
1900
1910
-21.3
-21.7
-22.1
-37
1920
-22.5
-1.2
-1.23
-1.26
-1.29
PARC (dB)
PAE
30.35
ACPR (dBc)
Gps, POWER GAIN (dB)
30.4
35.5
VDD = 28 Vdc, Pout = 10 W (Avg.), IDQ1A = IDQ1B = 30 mA
35.25
IDQ2A = 230 mA, VGS2B = 1.4 Vdc, Single-Carrier W-CDMA
35
IRL, INPUT RETURN LOSS (dB)
30.5
30.45
PAE, POWER ADDED
EFFICIENCY (%)
TYPICAL CHARACTERISTICS
-1.32
-1.35
f, FREQUENCY (MHz)
Figure 16. Output Peak-to-Average Ratio Compression (PARC)
Broadband Performance @ Pout = 10 Watts Avg. — 1880 MHz
-16
35
-18
25
-20
IRL
20
VDD = 28 Vdc
Pin = 0 dBm
IDQ1A = IDQ1B = 30 mA
IDQ2A = 230 mA
VGS2B = 1.4 Vdc
15
10
5
1450
-22
1650
1850
2050
IRL (dB)
GAIN (dB)
Gain
30
-24
-26
2250
-28
2450
f, FREQUENCY (MHz)
Figure 17. Broadband Frequency Response — 1880 MHz
MD7IC2050NR1 MD7IC2050GNR1 MD7IC2050NBR1
12
RF Device Data
Freescale Semiconductor
VDD = 28 Vdc, IDQ1A = IDQB = 30 mA, IDQ2A = 230 mA,
VGS2B = 1.4 Vdc, Pout = 10 W Avg.
VDD = 28 Vdc, IDQ1A = IDQB = 30 mA, IDQ2A = 230 mA,
VGS2B = 1.4 Vdc, Pout = 10 W Avg.
f
MHz
Zin
W
Zload
W
f
MHz
Zin
W
Zload
W
1725
24.58 + j28.09
13.68 - j7.83
1725
24.58 + j28.09
4.10 - j18.22
1750
30.62 + j35.84
14.09 - j7.95
1750
30.62 + j35.84
3.61 - j17.55
1775
39.80 + j43.59
14.42 - j8.13
1775
39.80 + j43.59
3.09 - j16.79
1800
53.16 + j51.72
14.72 - j8.33
1800
53.16 + j51.72
2.61 - j16.00
1825
75.48 + j54.32
15.02 - j8.57
1825
75.48 + j54.32
2.31 - j15.22
1850
101.49 + j44.03
15.26 - j8.91
1850
101.49 + j44.03
1.99 - j14.46
1875
127.43 + j11.39
15.47 - j9.29
1875
127.43 + j11.39
1.71 - j13.71
1900
113.52 - j23.46
15.59 - j9.67
1900
113.52 - j23.46
1.47 - j12.96
1925
92.03 - j36.95
15.66 - j10.15
1925
92.03 - j36.95
1.27 - j12.19
1950
74.95 - j38.10
15.64 - j10.65
1950
74.95 - j38.10
1.15 - j11.44
1975
64.95 - j35.67
15.59 - j11.22
1975
64.95 - j35.67
1.04 - j10.70
2000
59.30 - j32.57
15.41 - j11.76
2000
59.30 - j32.57
1.00 - j9.97
2025
55.28 - j28.90
15.20 - j12.36
2025
55.28 - j28.90
0.98 - j9.28
2050
52.85 - j26.07
14.84 - j12.97
2050
52.85 - j26.07
1.05 - j8.57
2075
51.34 - j23.91
14.42 - j13.56
2075
51.34 - j23.91
1.16 - j7.91
Note: Measured with Peaking side open.
Note: Measured with Carrier side open.
Zin
Device input impedance as measured from
gate to ground.
Zin
Test circuit impedance as measured from
drain to ground.
Zload =
=
Zload =
in
Device input impedance as measured from
gate to ground.
Test circuit impedance as measured from
drain to ground.
Output
Matching
Network
Device
Under Test
Z
=
Z
load
Figure 18. Series Equivalent Input and Load
Impedance — Carrier Side — 1880 MHz
Output
Matching
Network
Device
Under Test
Z
in
Z
load
Figure 19. Series Equivalent Input and Load
Impedance — Peaking Side — 1880 MHz
MD7IC2050NR1 MD7IC2050GNR1 MD7IC2050NBR1
RF Device Data
Freescale Semiconductor
13
PACKAGE DIMENSIONS
MD7IC2050NR1 MD7IC2050GNR1 MD7IC2050NBR1
14
RF Device Data
Freescale Semiconductor
MD7IC2050NR1 MD7IC2050GNR1 MD7IC2050NBR1
RF Device Data
Freescale Semiconductor
15
MD7IC2050NR1 MD7IC2050GNR1 MD7IC2050NBR1
16
RF Device Data
Freescale Semiconductor
MD7IC2050NR1 MD7IC2050GNR1 MD7IC2050NBR1
RF Device Data
Freescale Semiconductor
17
MD7IC2050NR1 MD7IC2050GNR1 MD7IC2050NBR1
18
RF Device Data
Freescale Semiconductor
MD7IC2050NR1 MD7IC2050GNR1 MD7IC2050NBR1
RF Device Data
Freescale Semiconductor
19
MD7IC2050NR1 MD7IC2050GNR1 MD7IC2050NBR1
20
RF Device Data
Freescale Semiconductor
MD7IC2050NR1 MD7IC2050GNR1 MD7IC2050NBR1
RF Device Data
Freescale Semiconductor
21
MD7IC2050NR1 MD7IC2050GNR1 MD7IC2050NBR1
22
RF Device Data
Freescale Semiconductor
PRODUCT DOCUMENTATION AND SOFTWARE
Refer to the following documents to aid your design process.
Application Notes
• AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages
• AN1955: Thermal Measurement Methodology of RF Power Amplifiers
• AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family
• AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family
• AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over-Molded Plastic Packages
• AN3789: Clamping of High Power RF Transistors and RFICs in Over-Molded Plastic Packages
Engineering Bulletins
• EB212: Using Data Sheet Impedances for RF LDMOS Devices
Software
• Electromigration MTTF Calculator
• RF High Power Model
• .s2p File
For Software, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software &
Tools tab on the part's Product Summary page to download the respective tool.
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
Description
0
Aug. 2009
• Initial Release of Data Sheet
1
May 2010
• Corrected Thermal Characteristics table values for thermal resistance as follows: 50 W CW IDQ1B changed
from 6.1 to 8.2 °C/W and VGS2B changed from 1.4 to 1.8 °C/W; 10 W CW IDQ1B changed from 3.6 to
8.3 °C/W and VGS2B changed from *Stage 2B is turned off to 1.9 °C/W. Thermal values now reflect the
symmetrical Doherty nature of the device, p. 2
• Changed ESD Human Body Model rating from Class 1B to Class 0 to reflect recent ESD test results of the
device, p. 3
• Added RF High Power Model availability to Product Software, p. 23
MD7IC2050NR1 MD7IC2050GNR1 MD7IC2050NBR1
RF Device Data
Freescale Semiconductor
23
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
[email protected]
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer's technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2009-2010. All rights reserved.
MD7IC2050NR1 MD7IC2050GNR1 MD7IC2050NBR1
Document Number: MD7IC2050N
Rev. 1, 5/2010
24
RF Device Data
Freescale Semiconductor