Data Sheet

Freescale Semiconductor
Technical Data
Document Number: MMRF1306H
Rev. 1, 8/2014
RF Power LDMOS Transistors
High Ruggedness N--Channel
Enhancement--Mode Lateral MOSFETs
These high ruggedness devices are designed for use in high VSWR CW or
pulse applications, such as HF, VHF, and low--band UHF radar and high power
radio communications. They are unmatched input and output designs allowing
wide frequency utilization from 1.8 to 600 MHz.
 Typical Performance: VDD = 50 Vdc, IDQ = 100 mA
Pout
(W)
f
(MHz)
Gps
(dB)
D
(%)
Pulse
(100 sec, 20% Duty Cycle)
1250 Peak
230
24.0
74.0
CW
1250 CW
230
22.9
74.6
Signal Type
MMRF1306HR5
MMRF1306HSR5
1.8–600 MHz, 1250 W CW, 50 V
WIDEBAND
RF POWER LDMOS TRANSISTORS
Application Circuits (1) — Typical Performance
Frequency
(MHz)
Signal Type
Pout
(W)
Gps
(dB)
D
(%)
27
CW
1300
27
81
40
CW
1300
26
85
81.36
CW
1250
27
84
87.5--108
CW
1100
24
80
144--148
CW
1250
26
78
170--230
DVB--T
225
25
30
352
Pulse
(200 sec,
20% Duty Cycle)
1250
21.5
66
352
CW
1150
20.5
68
500
CW
1000
18
58
NI--1230H--4S
MMRF1306HR5
NI--1230S--4S
MMRF1306HSR5
1. Contact your local Freescale sales office for additional information on specific
circuit designs.
Load Mismatch/Ruggedness
Frequency
(MHz)
230
Signal Type
VSWR
Pulse
(100 sec, 20%
Duty Cycle)
>65:1 at all
Phase Angles
Pout
(W)
Test
Voltage
1500 Peak
(3 dB
Overdrive)
50
Gate A 3
1 Drain A
Gate B 4
2 Drain B
Result
No Device
Degradation
Features
 Unmatched Input and Output Allowing Wide Frequency Range Utilization
 Device can be used Single--Ended or in a Push--Pull Configuration
Qualified Up to a Maximum of 50 VDD Operation
Characterized from 30 V to 50 V for Extended Power Range
Suitable for Linear Application with Appropriate Biasing
Integrated ESD Protection with Greater Negative Gate--Source Voltage Range
for Improved Class C Operation
 Characterized with Series Equivalent Large--Signal Impedance Parameters




(Top View)
Note: The backside of the package is the
source terminal for the transistors.
Figure 1. Pin Connections
 In Tape and Reel. R5 Suffix = 50 Units, 56 mm Tape Width, 13--inch Reel.
 Freescale Semiconductor, Inc., 2013–2014. All rights reserved.
RF Device Data
Freescale Semiconductor, Inc.
MMRF1306HR5 MMRF1306HSR5
1
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain--Source Voltage
VDSS
--0.5, +133
Vdc
Gate--Source Voltage
VGS
--6.0, +10
Vdc
Storage Temperature Range
Tstg
-- 65 to +150
C
Case Operating Temperature
TC
150
C
Total Device Dissipation @ TC = 25C
Derate above 25C
PD
1333
6.67
W
W/C
Operating Junction Temperature (1)
TJ
225
C
Symbol
Value (2)
Unit
Thermal Resistance, Junction to Case
CW: Case Temperature 63C, 1250 W CW, IDQ = 100 mA, 230 MHz
RJC
0.15
C/W
Thermal Impedance, Junction to Case
Pulse: Case Temperature 66C, 1250 W Pulse, 100 sec Pulse Width, 20% Duty Cycle,
IDQ = 100 mA, 230 MHz
ZJC
0.027
C/W
Table 2. Thermal Characteristics
Characteristic
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22--A114)
2, passes 3500 V
Machine Model (per EIA/JESD22--A115)
B, passes 250 V
Charge Device Model (per JESD22--C101)
IV, passes 4000 V
Table 4. Electrical Characteristics (TA = 25C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
IGSS
—
—
1
Adc
133
—
—
Vdc
Off Characteristics (3)
Gate--Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
Drain--Source Breakdown Voltage
(VGS = 0 Vdc, ID = 100 mA)
V(BR)DSS
Zero Gate Voltage Drain Leakage Current
(VDS = 50 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
Adc
Zero Gate Voltage Drain Leakage Current
(VDS = 100 Vdc, VGS = 0 Vdc)
IDSS
—
—
20
Adc
Gate Threshold Voltage (3)
(VDS = 10 Vdc, ID = 1776 Adc)
VGS(th)
1.7
2.2
2.7
Vdc
Gate Quiescent Voltage
(VDD = 50 Vdc, ID = 100 mAdc, Measured in Functional Test)
VGS(Q)
1.9
2.2
2.9
Vdc
Drain--Source On--Voltage (3)
(VGS = 10 Vdc, ID = 2 Adc)
VDS(on)
—
0.15
—
Vdc
Forward Transconductance
(VDS = 10 Vdc, ID = 30 Adc)
gfs
—
28.0
—
S
Reverse Transfer Capacitance
(VDS = 50 Vdc  30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Crss
—
2.8
—
pF
Output Capacitance
(VDS = 50 Vdc  30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Coss
—
185
—
pF
Input Capacitance
(VDS = 50 Vdc, VGS = 0 Vdc  30 mV(rms)ac @ 1 MHz)
Ciss
—
562
—
pF
On Characteristics
Dynamic Characteristics (3)
1. Continuous use at maximum temperature will affect MTTF.
2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes -- AN1955.
3. Each side of device measured separately.
(continued)
MMRF1306HR5 MMRF1306HSR5
2
RF Device Data
Freescale Semiconductor, Inc.
Table 4. Electrical Characteristics (TA = 25C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 100 mA, Pout = 1250 W Peak (250 W Avg.),
f = 230 MHz, 100 sec Pulse Width, 20% Duty Cycle
Gps
23.0
24.0
Drain Efficiency
D
72.5
74.0
—
%
Input Return Loss
IRL
—
--14
--10
dB
Power Gain
26.0
dB
Table 5. Load Mismatch/Ruggedness (In Freescale Test Fixture, 50 ohm system) IDQ = 100 mA
Frequency
(MHz)
230
Signal Type
VSWR
Pout
(W)
Pulse
(100 sec, 20% Duty Cycle)
>65:1 at all
Phase Angles
1500 Peak
(3 dB Overdrive)
Test Voltage, VDD
Result
50
No Device Degradation
MMRF1306HR5 MMRF1306HSR5
RF Device Data
Freescale Semiconductor, Inc.
3
--
C22
C13
C11 C12
--
C10
C23
C24
C21
COAX1
COAX3
R1
L3
C16
C3
L2
R2
COAX2
C17
C15
C14
C5
CUT OUT AREA
C1
C2 C4
L1
C18
C20
C19
L4
COAX4
C25
C6
C7 C8
C9
C26
--
C27
--
C28
Figure 2. MMRF1306HR5(HSR5) 230 MHz Production Test Circuit Component Layout — Pulse
Table 6. MMRF1306HR5(HSR5) 230 MHz Production Test Circuit Component Designations and Values — Pulse
Part
Description
Part Number
Manufacturer
C1
20 pF Chip Capacitor
ATC100B200JT500XT
ATC
C2, C3, C5
27 pF Chip Capacitors
ATC100B270JT500XT
ATC
C4
0.8--8.0 pF Variable Capacitor, Gigatrim
27291SL
Johanson
C6, C10
22 F, 35 V Tantalum Capacitors
T491X226K035AT
Kemet
C7, C11
0.1 F Chip Capacitors
CDR33BX104AKYS
AVX
C8, C12
220 nF Chip Capacitors
C1812C224K5RACTU
Kemet
C9, C13, C21, C25
1000 pF Chip Capacitors
ATC100B102JT50XT
ATC
C14
43 pF Chip Capacitor
ATC100B430JT500XT
ATC
C15
75 pF Metal Mica
MIN02--002EC750J--F
CDE
C16, C17, C18, C19
240 pF Chip Capacitors
ATC100B241JT200XT
ATC
C20
6.2 pF Chip Capacitor
ATC100B6R2BT500XT
ATC
C22, C23, C24, C26, C27, C28
470 F, 63 V Electrolytic Capacitors
MCGPR63V477M13X26--RH
Multicomp
Coax1, 2, 3, 4
25  Semi Rigid Coax, 2.2 Shield Length
UT--141C--25
Micro--Coax
L1, L2
5 nH Inductors
A02TKLC
Coilcraft
L3, L4
6.6 nH Inductors
GA3093--ALC
Coilcraft
R1, R2
10  Chip Resistors
CRCW120610R0JNEA
Vishay
PCB
0.030, r = 2.55
AD255A
Arlon
MMRF1306HR5 MMRF1306HSR5
4
RF Device Data
Freescale Semiconductor, Inc.
RF
INPUT
RF Device Data
Freescale Semiconductor, Inc.
C1
Z2
VBIAS
C3
Z6
Z10
Z8
+
C6
C8
C5
C4
C7
Z9
Z7
C12
C9
L2
L1
C13
R2
Z12
Z14
Z13
Z11
R1
DUT
Z16
Z15
L4
Z20
Z18
Z22
C14
Z21
Z17
Z19
L3
C25
Z24
Z23
C21
Z26
C15
Z25
+
C26
0.175  0.082 Microstrip
0.170  0.100 Microstrip
0.116  0.285 Microstrip
0.116  0.285 Microstrip
0.108  0.285 Microstrip
Z2
Z3, Z4
Z5, Z6
Z7, Z8
Z9, Z10
Description
0.192  0.082 Microstrip
Z1
Microstrip
C19
C18
C17
C16
C27
Z28
Z27
C24
C23
C22
+
C28
VSUPPLY
Microstrip
Z21, Z22
Z19*, Z20*
Z17*, Z18*
Z15, Z16
Z13, Z14
Z11*, Z12*
Description
0.104  0.507 Microstrip
0.187  0.154 Microstrip
0.466  0.363 Microstrip
0.371  0.507 Microstrip
0.412  0.726 Microstrip
0.872  0.058 Microstrip
Microstrip
Description
0.179  0.082 Microstrip
0.186  0.082 Microstrip
0.116  0.300 Microstrip
0.127  0.300 Microstrip
1.251  0.300 Microstrip
Z29
* Line length includes microstrip bends
Z30
Z29
Z27, Z28
Z25, Z26
Z23, Z24
COAX4
COAX3
VSUPPLY
Figure 3. MMRF1306HR5(HSR5) 230 MHz Production Test Circuit Schematic — Pulse
COAX2
Z4
C2
Z5
C11
+
Z3
C10
+
+
Table 7. MMRF1306HR5(HSR5) 230 MHz Production Test Circuit Microstrips — Pulse
Z1
COAX1
VBIAS
+
MMRF1306HR5 MMRF1306HSR5
5
C20
RF
Z30 OUTPUT
TYPICAL CHARACTERISTICS
66
2000
Ciss
Pout, OUTPUT POWER (dBm) PULSED
C, CAPACITANCE (pF)
1000
Coss
100
10
Crss
1
Measured with 30 mV(rms)ac @ 1 MHz
VGS = 0 Vdc
0
10
20
30
P2dB = 61.7 dBm (1472 W)
64
63
P1dB = 61.3 dBm
(1333 W)
62
Actual
61
VDD = 50 Vdc, IDQ = 100 mA, f = 230 MHz
Pulse Width = 100 sec, 20% Duty Cycle
60
59
35
50
40
Ideal
P3dB = 61.9 dBm (1553 W)
65
36
37
38
39
40
41
42
VDS, DRAIN--SOURCE VOLTAGE (VOLTS)
Pin, INPUT POWER (dBm) PEAK
Note: Each side of device measured separately.
Figure 5. Output Power versus Input Power
Figure 4. Capacitance versus Drain--Source Voltage
80
70
23
60
Gps
22
50
21
40
24
Gps, POWER GAIN (dB)
24
35 V
VDD = 30 V
0
200
400
600
800
1000
1200
1400
1600
Pout, OUTPUT POWER (WATTS) PEAK
Figure 6. Power Gain and Drain Efficiency
versus Output Power
Figure 7. Power Gain versus Output Power
26
35 V
VDD = 30 V
40 V
45 V
50 V
Gps, POWER GAIN (dB)
60
50
40
200
400
600
800
1000
1200
1400
24
23
25_C
1600
Pout, OUTPUT POWER (WATTS) PEAK
Figure 8. Drain Efficiency versus Output Power
80
60
50
22 Gps
85_C
21
19
100
90
85_C 70
TC = --30_C
20
IDQ = 100 mA, f = 230 MHz
Pulse Width = 100 sec, 20% Duty Cycle
30
--30_C
25_C
25
70
0
45 V
40 V
19
Pout, OUTPUT POWER (WATTS) PEAK
80
D, DRAIN EFFICIENCY (%)
20
16
90
20
50 V
21
17
30
2000
1000
23
22
18
D
20
100
IDQ = 100 mA, f = 230 MHz
Pulse Width = 100 sec, 20% Duty Cycle
25
D, DRAIN EFFICIENCY (%)
25
Gps, POWER GAIN (dB)
26
90
VDD = 50 Vdc, IDQ = 100 mA, f = 230 MHz
Pulse Width = 100 sec, 20% Duty Cycle
D
40
VDD = 50 Vdc, IDQ = 100 mA, f = 230 MHz
Pulse Width = 100 sec, 20% Duty Cycle
1000
D, DRAIN EFFICIENCY (%)
26
30
20
2000
Pout, OUTPUT POWER (WATTS) PEAK
Figure 9. Power Gain and Drain Efficiency versus
Output Power
MMRF1306HR5 MMRF1306HSR5
6
RF Device Data
Freescale Semiconductor, Inc.
TYPICAL CHARACTERISTICS
109
MTTF (HOURS)
108
107
106
105
104
90
110
130
150
170
190
210
230
250
TJ, JUNCTION TEMPERATURE (C)
This above graph displays calculated MTTF in hours when the device
is operated at VDD = 50 Vdc, Pout = 1250 W CW, and D = 74.6%.
MTTF calculator available at http://www.freescale.com/rf. Select
Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
Figure 10. MTTF versus Junction Temperature — CW
VDD = 50 Vdc, IDQ = 100 mA, Pout = 1250 W Peak
f
MHz
Zsource

Zload

230
1.29 + j3.54
2.12 + j2.68
Zsource = Test circuit impedance as measured from
gate to gate, balanced configuration.
Zload
50 
Input
Matching
Network
= Test circuit impedance as measured from
drain to drain, balanced configuration.
+
-Zsource
Device
Under
Test
--
Output
Matching
Network
50 
+
Zload
Figure 11. Series Equivalent Test Circuit Source and Load Impedance — 230 MHz Pulse
MMRF1306HR5 MMRF1306HSR5
RF Device Data
Freescale Semiconductor, Inc.
7
VDD = 50 Vdc, IDQ = 100 mA
f
(MHz)
Zsource
()
Zload
()
1.8 (1)
34.4 + j192.0 (1)
5.00 - j4.00 (1)
27
12.5 + j7.00
7.00 + j0.70
40
5.75 + j5.06
5.39 + j2.62
81.36
4.04 + j5.93
4.89 + j2.95
88
2.20 + j6.70
4.90 + j2.90
98
2.30 + j6.90
4.10 + j2.50
108
2.30 + j7.00
4.40 + j3.60
144
1.60 + j5.00
3.90 + j1.50
175
1.33 + j3.90
3.50 + j2.50
230
1.29 + j3.54
2.12 + j2.68
352
0.98 + j1.45
1.82 + j2.05
500
0.29 + j1.47
1.79 + j1.80
1. Simulated data.
Zsource = Test circuit impedance as measured from
gate to gate, balanced configuration.
Zload
50 
Input
Matching
Network
= Test circuit impedance as measured from
drain to drain, balanced configuration.
+
-Zsource
Device
Under
Test
--
Output
Matching
Network
50 
+
Zload
Figure 12. Source and Load Impedances Optimized for IRL, Power and Efficiency — Push--Pull
MMRF1306HR5 MMRF1306HSR5
8
RF Device Data
Freescale Semiconductor, Inc.
PACKAGE DIMENSIONS
MMRF1306HR5 MMRF1306HSR5
RF Device Data
Freescale Semiconductor, Inc.
9
MMRF1306HR5 MMRF1306HSR5
10
RF Device Data
Freescale Semiconductor, Inc.
MMRF1306HR5 MMRF1306HSR5
RF Device Data
Freescale Semiconductor, Inc.
11
MMRF1306HR5 MMRF1306HSR5
12
RF Device Data
Freescale Semiconductor, Inc.
PRODUCT DOCUMENTATION
Refer to the following documents to aid your design process.
Application Notes
 AN1955: Thermal Measurement Methodology of RF Power Amplifiers
Engineering Bulletins
 EB212: Using Data Sheet Impedances for RF LDMOS Devices
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
Description
0
Dec. 2013
 Initial Release of Data Sheet
1
Aug. 2014
 Application circuit table added and band of operation updated to 1.8–600 MHz to reflect performance of
device, p. 1
MMRF1306HR5 MMRF1306HSR5
RF Device Data
Freescale Semiconductor, Inc.
13
How to Reach Us:
Home Page:
freescale.com
Web Support:
freescale.com/support
Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for
each customer application by customer’s technical experts. Freescale does not convey
any license under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found at the following
address: freescale.com/SalesTermsandConditions.
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,
Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their
respective owners.
E 2013–2014 Freescale Semiconductor, Inc.
MMRF1306HR5 MMRF1306HSR5
Document Number: MMRF1306H
Rev. 1, 8/2014
14
RF Device Data
Freescale Semiconductor, Inc.