Data Sheet

Freescale Semiconductor
Technical Data
Document Number: MRFE6VP6600N
Rev. 0, 5/2015
RF Power LDMOS Transistors
High Ruggedness N--Channel
Enhancement--Mode Lateral MOSFETs
These high ruggedness devices are designed for use in high VSWR
industrial, medical, broadcast, aerospace, and mobile radio applications. Their
unmatched input and output design allows for wide frequency range use from
1.8 to 600 MHz.
Typical Performance: VDD = 50 Vdc
Frequency
(MHz)
Signal Type
Pout
(W)
Gps
(dB)
D
(%)
87.5–108 (1,3)
CW
600 CW
24.0
81.8
Pulse
(100 sec, 20% Duty Cycle)
600 Peak
24.7
73.5
230
(2)
230
(2)
Signal Type
VSWR
Pulse
(100 sec, 20%
Duty Cycle)
> 65:1 at all
Phase Angles
Pin
(W)
Test
Voltage
4.0 Peak
(3 dB
Overdrive)
50
1.8–600 MHz, 600 W CW, 50 V
WIDEBAND
RF POWER LDMOS TRANSISTORS
OM--780--4L
PLASTIC
MRFE6VP6600N
Load Mismatch/Ruggedness
Frequency
(MHz)
MRFE6VP6600N
MRFE6VP6600GN
Result
No Device
Degradation
1. Measured in 87.5–108 MHz broadband reference circuit.
2. Measured in 230 MHz narrowband production test circuit.
3. The values shown are the center band performance numbers across the indicated
frequency range.
Features
 Unmatched Input and Output Allowing Wide Frequency Range Utilization
OM--780G--4L
PLASTIC
MRFE6VP6600GN
Gate A 3
1 Drain A
Gate B 4
2 Drain B
 Device can be used Single--Ended or in a Push--Pull Configuration
Qualified up to a Maximum of 50 VDD Operation
Characterized from 30 to 50 V for Extended Power Range
Suitable for Linear Application with Appropriate Biasing
Integrated ESD Protection with Greater Negative Gate--Source Voltage Range
for Improved Class C Operation
 Characterized with Series Equivalent Large--Signal Impedance Parameters




 Recommended drivers: AFT05MS004N (4 W) or MRFE6VS25N (25 W)
Typical Applications
 Broadcast
– FM broadcast
– HF and VHF broadcast
 Industrial, Scientific, Medical (ISM)
(Top View)
Note: Exposed backside of the package is
the source terminal for the transistors.
Figure 1. Pin Connections
 Aerospace
– VHF omnidirectional range (VOR)
– Weather radar
 Mobile Radio
– CO2 laser generation
– Plasma etching
– HF and VHF communications
– PMR base stations
– Particle accelerators (synchrotrons)
– MRI
– Industrial heating/welding
 Freescale Semiconductor, Inc., 2015. All rights reserved.
RF Device Data
Freescale Semiconductor, Inc.
MRFE6VP6600N MRFE6VP6600GN
1
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain--Source Voltage
VDSS
–0.5, +133
Vdc
Gate--Source Voltage
VGS
–6.0, +10
Vdc
Storage Temperature Range
Tstg
– 65 to +150
C
Case Operating Temperature Range
TC
–40 to +150
C
TJ
–40 to +225
C
Symbol
Value (2,3)
Unit
ZJC
0.033
C/W
Operating Junction Temperature Range
(1,2)
Table 2. Thermal Characteristics
Characteristic
Thermal Impedance, Junction to Case
Pulse: Case Temperature 78C, 600 W Pulse, 100 sec Pulse Width, 20% Duty Cycle,
IDQ(A+B) = 100 mA, 230 MHz
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22--A114)
Class 2, passes 2500 V
Machine Model (per EIA/JESD22--A115)
Class B, passes 200 V
Charge Device Model (per JESD22--C101)
Class IV, passes 2000 V
Table 4. Moisture Sensitivity Level
Test Methodology
Per JESD22--A113, IPC/JEDEC J--STD--020
Rating
Package Peak Temperature
Unit
3
260
C
Table 5. Electrical Characteristics (TA = 25C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
IGSS
—
—
1
Adc
V(BR)DSS
133
—
—
Vdc
Zero Gate Voltage Drain Leakage Current
(VDS = 50 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
Adc
Zero Gate Voltage Drain Leakage Current
(VDS = 100 Vdc, VGS = 0 Vdc)
IDSS
—
—
20
Adc
Gate Threshold Voltage (4)
(VDS = 10 Vdc, ID = 888 Adc)
VGS(th)
1.7
2.2
2.7
Vdc
Gate Quiescent Voltage
(VDD = 50 Vdc, ID = 100 mAdc, Measured in Functional Test)
VGS(Q)
2.0
2.6
3.0
Vdc
Drain--Source On--Voltage (4)
(VGS = 10 Vdc, ID = 1 Adc)
VDS(on)
—
0.2
—
Vdc
Forward Transconductance (4)
(VDS = 10 Vdc, ID = 30 Adc)
gfs
—
28.0
—
S
Characteristic
Off Characteristics
(4)
Gate--Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
Drain--Source Breakdown Voltage
(VGS = 0 Vdc, ID = 50 mAdc)
On Characteristics
1.
2.
3.
4.
Continuous use at maximum temperature will affect MTTF.
MTTF calculator available at http://www.freescale.com/rf/calculators.
AN1955 – Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf and search AN1955.
Each side of device measured separately.
(continued)
MRFE6VP6600N MRFE6VP6600GN
2
RF Device Data
Freescale Semiconductor, Inc.
Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Reverse Transfer Capacitance
(VDS = 50 Vdc  30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Crss
—
2.4
—
pF
Output Capacitance
(VDS = 50 Vdc  30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Coss
—
98
—
pF
Input Capacitance
(VDS = 50 Vdc, VGS = 0 Vdc  30 mV(rms)ac @ 1 MHz)
Ciss
—
290
—
pF
Dynamic Characteristics (1)
Functional Tests (2) (In Freescale Production Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ(A+B) = 100 mA, Pout = 600 W Peak
(120 W Avg.), f = 230 MHz, 100 sec Pulse Width, 20% Duty Cycle
Power Gain
Gps
23.3
24.7
26.6
dB
Drain Efficiency
D
70
73.5
—
%
Input Return Loss
IRL
—
–15
–9
dB
Table 6. Load Mismatch/Ruggedness (In Freescale Production Test Fixture, 50 ohm system) IDQ(A+B) = 100 mA
Frequency
(MHz)
230
Signal Type
VSWR
Pin
(W)
Pulse
(100 sec, 20% Duty Cycle)
> 65:1 at all
Phase Angles
4.0 Peak
(3 dB Overdrive)
Test Voltage, VDD
Result
50
No Device Degradation
Table 7. Ordering Information
Device
MRFE6VP6600NR3
MRFE6VP6600GNR3
Tape and Reel Information
R3 Suffix = 250 Units, 32 mm Tape Width, 13--inch Reel
Package
OM--780--4L
OM--780G--4L
1. Each side of device measured separately.
2. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing
(GN) parts.
MRFE6VP6600N MRFE6VP6600GN
RF Device Data
Freescale Semiconductor, Inc.
3
TYPICAL CHARACTERISTICS
Measured with 30 mV(rms)ac @ 1 MHz
VGS = 0 Vdc
1000
NORMALIZED VGS(Q)
C, CAPACITANCE (pF)
10000
Ciss
100
Coss
10
Crss
1
0
10
20
30
40
50
VDS, DRAIN--SOURCE VOLTAGE (VOLTS)
Note: Each side of device measured separately.
Figure 2. Capacitance versus Drain--Source Voltage
1.06
1.05 500 mA
1.04
1500 mA
1.03
2000 mA
1.02
IDQ(A+B) = 100 mA
VDD = 50 Vdc
1.01
1
0.99
0.98
0.97
0.96
0.95
0.94
–50
–25
0
25
50
75
100
TC, CASE TEMPERATURE (C)
IDQ (mA)
Slope (mV/C)
100
–2.554
500
–2.254
1500
–1.973
2000
–1.573
Figure 3. Normalized VGS versus Quiescent
Current and Case Temperature
MRFE6VP6600N MRFE6VP6600GN
4
RF Device Data
Freescale Semiconductor, Inc.
87.5–108 MHz BROADBAND REFERENCE CIRCUIT — 4.73  2.88 (12.0 cm  7.32 cm)
Table 8. 87.5–108 MHz Broadband Performance (In Freescale Reference Circuit, 50 ohm system)
VDD = 50 Vdc, IDQ(A+B) = 150 mA, Pin = 3 W, CW
Frequency
(MHz)
Gps
(dB)
D
(%)
Pout
(W)
87.5
23.8
82.4
722
98
24.0
81.8
746
108
23.5
80.9
679
MRFE6VP6600N MRFE6VP6600GN
RF Device Data
Freescale Semiconductor, Inc.
5
87.5–108 MHz BROADBAND REFERENCE CIRCUIT — 4.73  2.88 (12.0 cm  7.32 cm)
COAX1
C1
C11 C13
D69813
L5
C3
L2
R1
L1
T1
C6
C7
Q1
L3
L4
C8
C9
C4
C2
COAX3
B1
C5
C10
C14
MRFE6VP6600N
Rev. 0
C12
*C6, C7, C8, & C9 are mounted vertically.
COAX2
Figure 4. MRFE6VP6600N 87.5–108 MHz Broadband Reference Circuit Component Layout
Table 9. MRFE6VP6600N 87.5–108 MHz Broadband Reference Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
B1
95 , 100 MHz, Long RF Bead
2743021447
Fair-Rite
C1
6.8 F Chip Capacitor
C4532X7R1H685M250KB
TDK
C2
33 pF Chip Capacitor
ATC100B330JT500XT
ATC
C3, C6, C7, C8, C9, C11,
C12
1000 pF Chip Capacitors
ATC100B102JT50XT
ATC
C4, C5
470 pF Chip Capacitors
ATC100B471JT200XT
ATC
C10
8.2 pF Chip Capacitor
ATC100B8R2CT500XT
ATC
C13, C14
2.2 F Chip Capacitors
HMK432B7225KM-T
Taiyo Yuden
Coax1, Coax2
Coax Cable, 12 , 4.72 (12 cm)
Shield Length
TC-12
Communication Concepts,
RF Power Systems
Coax3
Coax Cable, 50 , 6.69 (17 cm) Shield Length,
2 Loops,  0.750 (19 mm)  (FEP)
Sucoform 141
Huber & Suhner
L1
100 nH Inductor
1812SMS-R10JLC
Coilcraft
L2, L3
8.0 nH, 3 Turn Inductors
A03TKLC
Coilcraft
L4
2 Turns, #14 AWG Copper Loop,
ID = 0.26 (7 mm) Inductor, Hand Wound
Copper Wire
L5
7 Turns, #14 AWG Copper Loop,
ID = 0.39 (10 mm) Inductor, Hand Wound
Copper Wire
Q1
RF Power LDMOS Transistor
MRFE6VP6600NR3
Freescale
R1
11 , 1/4 W Chip Resistor
CRCW120611R0FKEA
Vishay
T1
TUI-LF-9 Transformer
TUI-LF-9
Communication Concepts,
RF Power Systems
PCB
Arlon TC-350, r = 3.50, 0.03
D69813
Shenzhen Multilayer PCB
Technology Co.
MRFE6VP6600N MRFE6VP6600GN
6
RF Device Data
Freescale Semiconductor, Inc.
TYPICAL CHARACTERISTICS — 87.5–108 MHz
BROADBAND REFERENCE CIRCUIT
28
27
83
82
25
81
Gps
24
80
900
23
800
Pout
22
700
21
20
19
87
VDD = 50 Vdc, Pin = 3.0 W, IDQ(A+B) = 150 mA
89
91
93
95
97
99
101 103
105 107
600
500
109
Pout, OUTPUT
POWER (WATTS)
Gps, POWER GAIN (dB)
26
D, DRAIN
EFFICIENCY (%)
84
D
f, FREQUENCY (MHz)
Figure 5. Power Gain, Pout and Drain Efficiency versus
Frequency
28
108 MHz
98 MHz
27
Gps, POWER GAIN (dB)
D
45
98 MHz
24
23
30
15
108 MHz
22
87.5 MHz
Pout
21
20
108 MHz
98 MHz
21
1
Gps
VDD = 50 Vdc
lDQ(A+B) = 150 mA
20
0
75
60
87.5 MHz
26
90
D, DRAIN
EFFICIENCY (%)
f = 87.5 MHz
2
3
4
5
800
600
400
200
Pout, OUTPUT
POWER (WATTS)
29
0
6
Pin, INPUT POWER (WATTS)
Figure 6. Power Gain, Drain Efficiency and CW Output
Power versus Input Power and Frequency
MRFE6VP6600N MRFE6VP6600GN
RF Device Data
Freescale Semiconductor, Inc.
7
87.5–108 MHz BROADBAND REFERENCE CIRCUIT
f = 108 MHz
Zo = 25 
Zsource
f = 87.5 MHz
f = 87.5 MHz
Zload
f = 108 MHz
f
MHz
Zsource

Zload

87.5
3.4 + j15.0
7.5 + j6.12
98
3.9 + j14.9
7.9 + j5.57
108
2.8 + j15.3
8.0 + j5.19
Zsource = Test circuit impedance as measured from
gate to gate, balanced configuration.
Zload
50 
= Test circuit impedance as measured
from drain to drain, balanced configuration.
Input
Matching
Network
+
Device
Under
Test
--
-Z
source
Output
Matching
Network
50 
+
Z
load
Figure 7. Broadband Series Equivalent Source and Load Impedance — 87.5–108 MHz
MRFE6VP6600N MRFE6VP6600GN
8
RF Device Data
Freescale Semiconductor, Inc.
230 MHz NARROWBAND PRODUCTION TEST FIXTURE — 4  6 (10.16 cm  15.24 cm)
Table 10. 230 MHz Narrowband Performance (1) VDD = 50 Vdc, IDQ(A+B) = 100 mA, Pout = 600 W Peak (120 W Avg.), f = 230 MHz,
100 sec Pulse Width, 20% Duty Cycle
Characteristic
Symbol
Min
Typ
Max
Unit
Gps
23.3
24.7
26.6
dB
Drain Efficiency
D
70
73.5
—
%
Input Return Loss
IRL
—
–15
–9
dB
Power Gain
1. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing
(GN) parts.
MRFE6VP6600N MRFE6VP6600GN
RF Device Data
Freescale Semiconductor, Inc.
9
230 MHz NARROWBAND PRODUCTION TEST FIXTURE — 4  6 (10.16 cm  15.24 cm)
C10
C13
C11 C12
C24
C23
C25
C22
COAX1
COAX3
R1
L3
C2 C4
R2
C16*
C15 C17*
C30
C18*
C19*
CUT OUT AREA
COAX2
C14
C5
L2
C3
C1
L1
C7 C8
C21
L4
COAX4
C26
D61086
C6
C20
C9
C27
MRFE6VP6600N
Rev. 0
C28
C29
* C16, C17, C18, and C19 are vertically mounted
Figure 8. MRFE6VP6600N Narrowband Test Circuit Component Layout — 230 MHz
Table 11. MRFE6VP6600N Narrowband Test Circuit Component Designations and Values — 230 MHz
Part
Description
Part Number
Manufacturer
C1
12 pF Chip Capacitor
ATC100B120JT500XT
ATC
C2, C3
27 pF Chip Capacitors
ATC100B270JT500XT
ATC
C4
0.8–8.0 pF Variable Capacitor, Gigatrim
27291SL
Johanson
C5
33 pF Chip Capacitor
ATC100B330JT500XT
ATC
C6, C10
22 F, 35 V Tantalum Capacitors
T491X226K035AT
Kemet
C7, C11
0.1 F Chip Capacitors
CDR33BX104AKWS
AVX
C8, C12
220 nF Chip Capacitors
C1812C224K5RAC-TU
Kemet
C9, C13, C22, C26
1000 pF Chip Capacitors
ATC100B102JT50XT
ATC
C14,C20
39 pF Chip Capacitors
ATC100B390JT500XT
ATC
C15
30 pF Chip Capacitor
ATC100B300JT500XT
ATC
C16, C17, C18, C19
240 pF Chip Capacitors
ATC100B241JT200XT
ATC
C21
13 pF Chip Capacitor
ATC100B130JT500XT
ATC
C23, C24, C25, C27, C28, C29
470 F, 63 V Electrolytic Capacitors
MCGPR63V477M13X26-RH
Multicomp
C30
16 pF Chip Capacitor
ATC100B160JT500XT
ATC
Coax1, 2, 3, 4
25  Semi-Rigid Coax, 2.2 (5.6 mm)
Shield Length
UT-141C-25
Micro--Coax
L1, L2
5 nH Inductors
A02TKLC
Coilcraft
L3, L4
6.6 nH Inductors
GA3093-ALC
Coilcraft
R1, R2
10 , 1/4 W Chip Resistors
CRCW120610R0JNEA
Vishay
PCB
Arlon AD255A 0.030, r = 2.55
D61086
MTL
MRFE6VP6600N MRFE6VP6600GN
10
RF Device Data
Freescale Semiconductor, Inc.
MRFE6VP6600N MRFE6VP6600GN
RF Device Data
Freescale Semiconductor, Inc.
11
RF
INPUT
Z1
C1
Z2
COAX2
COAX1
VGG
Z4
Z3
VGG
C3
C2
Z8
C7
C8
C5
Z10
Z9
C12
C9
Z12
L2
L1
Z11
C13
R2
Z14
Z13
R1
DUT
Z16
Z15
L4
Z20
Z18
Z22
C14
Z21
Z17
Z19
Z24
Z23
Z25
C26
Z26
C30
C22
C27
+
Z28
C15
Z27
C23
C28
+
C24
C29
+
C19
C18
C17
C16
C25
+
Figure 9. MRFE6VP6600N Narrowband Test Circuit Schematic — 230 MHz
C6
+
C4
Z7
C11
L3
+
0.170  0.100 Microstrip
0.116  0.285 Microstrip
0.116  0.285 Microstrip
0.108  0.285 Microstrip
0.872  0.058 Microstrip
0.412  0.726 Microstrip
0.371  0.507 Microstrip
0.422  0.363 Microstrip
Z3, Z4
Z5, Z6
Z7, Z8
Z9, Z10
Z11*, Z12*
Z13, Z14
Z15, Z16
Z17*, Z18*
* Line lengths include microstrip bends
0.175  0.082 Microstrip
Z2
Description
0.192  0.082 Microstrip
Z1
Microstrip
Description
1.187  0.154 Microstrip
0.104  0.507 Microstrip
0.590  0.300 Microstrip
0.731  0.300 Microstrip
0.056  0.300 Microstrip
0.055  0.300 Microstrip
0.061  0.300 Microstrip
0.186  0.082 Microstrip
0.179  0.082 Microstrip
Microstrip
Z19*, Z20*
Z21, Z22
Z23, Z24
Z25, Z26
Z27, Z28
Z29, Z30
Z31, Z32
Z33
Z34
Table 12. MRFE6VP6600N Narrowband Test Circuit Microstrips — 230 MHz
Z6
Z5
C10
+
+
VDD
Z30
Z29
VDD
Z32
C20
Z31
COAX4
COAX3
Z33
C21
RF
Z34 OUTPUT
TYPICAL CHARACTERISTICS — 230 MHz
Pout, OUTPUT POWER (WATTS) PEAK
1000
VDD = 50 Vdc, f = 230 MHz
Pulse Width = 100 sec, 20% Duty Cycle
900
800
700
600
500
Pin = 1.9 W
400
300
Pin = 0.95 W
200
100
0
0
0.5
1
1.5
2
2.5
3
VGS, GATE--SOURCE VOLTAGE (VOLTS)
Figure 10. Output Power versus Gate--Source
Voltage at a Constant Input Power
28
60
90
IDQ(A+B) = 900 mA
27
600 mA
26
58
56
54
52
50
25
27
29
31
33
35
39
37
100 mA
23
900 mA
50
Gps
600 mA
22
60
D
300 mA
24 100 mA
40
30
20
21
VDD = 50 Vdc, IDQ(A+B) = 100 mA, f = 230 MHz
Pulse Width = 100 sec, 20% Duty Cycle
19
41
70
300 mA
20
48
25
80
D, DRAIN EFFICIENCY (%)
VDD = 50 Vdc, IDQ(A+B) = 100 mA, f = 230 MHz
Pulse Width = 100 sec, 20% Duty Cycle
Gps, POWER GAIN (dB)
Pout, OUTPUT POWER (dBm) PEAK
62
70
10
0
1000
100
Pin, INPUT POWER (dBm)
Pout, OUTPUT POWER (WATTS) PEAK
f
(MHz)
P1dB
(W)
P3dB
(W)
230
682
771
Figure 12. Power Gain and Drain Efficiency
versus Output Power and Quiescent Current
Figure 11. Output Power versus Input Power
+25_C
26
22
+85_C
60
Gps
D
50
40
20
18
16
80
+85_C 70
–40_C
24 TC = +25_C
VDD = 50 Vdc, IDQ(A+B) = 100 mA, f = 230 MHz
Pulse Width = 100 sec, 20% Duty Cycle
60
100
28
90
30
20
1000
25
Gps, POWER GAIN (dB)
Gps, POWER GAIN (dB)
28
–40_C
D, DRAIN EFFICIENCY (%)
30
22
19
40 V
50 V
35 V
16
VDD = 30 V
13
45 V
0
200
IDQ(A+B) = 100 mA, f = 230 MHz
Pulse Width = 100 sec, 20% Duty Cycle
400
600
800
Pout, OUTPUT POWER (WATTS) PEAK
Pout, OUTPUT POWER (WATTS) PEAK
Figure 13. Power Gain and Drain Efficiency
versus Pulse Output Power
Figure 14. Power Gain versus Output Power
and Drain--Source Voltage
1000
MRFE6VP6600N MRFE6VP6600GN
12
RF Device Data
Freescale Semiconductor, Inc.
230 MHz NARROWBAND PRODUCTION TEST FIXTURE
f
MHz
Zsource

Zload

230
1.9 + j4.8
4.0 + j4.0
Zsource = Test circuit impedance as measured from
gate to gate, balanced configuration.
Zload
50 
Input
Matching
Network
= Test circuit impedance as measured from
drain to drain, balanced configuration.
+
-Zsource
Device
Under
Test
--
Output
Matching
Network
50 
+
Zload
Figure 15. Narrowband Series Equivalent Source and Load Impedance — 230 MHz
MRFE6VP6600N MRFE6VP6600GN
RF Device Data
Freescale Semiconductor, Inc.
13
PCB PAD LAYOUTS
4X
0.185
(4.70)
0.800
(20.32)
4X Solder Pads
0.389(1)
(9.88)
0.409(1)
(10.39)
0.350
(8.89)
Inches
(mm)
0.815(1)
(20.70)
1. Slot dimensions are minimum dimensions and exclude milling tolerances.
Figure 16. PCB Pad Layout for OM--780--4L
0.740
(18.80)
0.350
(8.89)
0.325
(8.26)
Solder pad with
thermal via structure.
0.410 0.510
(10.41) (12.95)
4X
0.185
(4.70)
Inches
(mm)
Figure 17. PCB Pad Layout for OM--780G--4L
MRFE6VP6600N MRFE6VP6600GN
14
RF Device Data
Freescale Semiconductor, Inc.
PACKAGE DIMENSIONS
MRFE6VP6600N MRFE6VP6600GN
RF Device Data
Freescale Semiconductor, Inc.
15
MRFE6VP6600N MRFE6VP6600GN
16
RF Device Data
Freescale Semiconductor, Inc.
MRFE6VP6600N MRFE6VP6600GN
RF Device Data
Freescale Semiconductor, Inc.
17
PACKAGE DIMENSIONS
MRFE6VP6600N MRFE6VP6600GN
18
RF Device Data
Freescale Semiconductor, Inc.
MRFE6VP6600N MRFE6VP6600GN
RF Device Data
Freescale Semiconductor, Inc.
19
MRFE6VP6600N MRFE6VP6600GN
20
RF Device Data
Freescale Semiconductor, Inc.
PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS
Refer to the following resources to aid your design process.
Application Notes
 AN1907: Solder Reflow Attach Method for High Power RF Devices in Over--Molded Plastic Packages
 AN1955: Thermal Measurement Methodology of RF Power Amplifiers
Engineering Bulletins
 EB212: Using Data Sheet Impedances for RF LDMOS Devices
White Paper
 RFPLASTICWP: Designing with Plastic RF Power Transistors
Software
 Electromigration MTTF Calculator
 RF High Power Model
 s2p File
Development Tools
 Printed Circuit Boards
To Download Resources Specific to a Given Part Number:
1. Go to http://www.freescale.com/rf
2. Search by part number
3. Click part number link
4. Choose the desired resource from the drop down menu
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
0
May 2015
Description
 Initial Release of Data Sheet
MRFE6VP6600N MRFE6VP6600GN
RF Device Data
Freescale Semiconductor, Inc.
21
How to Reach Us:
Home Page:
freescale.com
Web Support:
freescale.com/support
Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for
each customer application by customer’s technical experts. Freescale does not convey
any license under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found at the following
address: freescale.com/SalesTermsandConditions.
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,
Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their
respective owners.
E 2015 Freescale Semiconductor, Inc.
MRFE6VP6600N MRFE6VP6600GN
Document Number: MRFE6VP6600N
Rev. 0, 5/2015
22
RF Device Data
Freescale Semiconductor, Inc.