Freescale Semiconductor Technical Data Document Number: MRFE6VP6600N Rev. 0, 5/2015 RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs These high ruggedness devices are designed for use in high VSWR industrial, medical, broadcast, aerospace, and mobile radio applications. Their unmatched input and output design allows for wide frequency range use from 1.8 to 600 MHz. Typical Performance: VDD = 50 Vdc Frequency (MHz) Signal Type Pout (W) Gps (dB) D (%) 87.5–108 (1,3) CW 600 CW 24.0 81.8 Pulse (100 sec, 20% Duty Cycle) 600 Peak 24.7 73.5 230 (2) 230 (2) Signal Type VSWR Pulse (100 sec, 20% Duty Cycle) > 65:1 at all Phase Angles Pin (W) Test Voltage 4.0 Peak (3 dB Overdrive) 50 1.8–600 MHz, 600 W CW, 50 V WIDEBAND RF POWER LDMOS TRANSISTORS OM--780--4L PLASTIC MRFE6VP6600N Load Mismatch/Ruggedness Frequency (MHz) MRFE6VP6600N MRFE6VP6600GN Result No Device Degradation 1. Measured in 87.5–108 MHz broadband reference circuit. 2. Measured in 230 MHz narrowband production test circuit. 3. The values shown are the center band performance numbers across the indicated frequency range. Features Unmatched Input and Output Allowing Wide Frequency Range Utilization OM--780G--4L PLASTIC MRFE6VP6600GN Gate A 3 1 Drain A Gate B 4 2 Drain B Device can be used Single--Ended or in a Push--Pull Configuration Qualified up to a Maximum of 50 VDD Operation Characterized from 30 to 50 V for Extended Power Range Suitable for Linear Application with Appropriate Biasing Integrated ESD Protection with Greater Negative Gate--Source Voltage Range for Improved Class C Operation Characterized with Series Equivalent Large--Signal Impedance Parameters Recommended drivers: AFT05MS004N (4 W) or MRFE6VS25N (25 W) Typical Applications Broadcast – FM broadcast – HF and VHF broadcast Industrial, Scientific, Medical (ISM) (Top View) Note: Exposed backside of the package is the source terminal for the transistors. Figure 1. Pin Connections Aerospace – VHF omnidirectional range (VOR) – Weather radar Mobile Radio – CO2 laser generation – Plasma etching – HF and VHF communications – PMR base stations – Particle accelerators (synchrotrons) – MRI – Industrial heating/welding Freescale Semiconductor, Inc., 2015. All rights reserved. RF Device Data Freescale Semiconductor, Inc. MRFE6VP6600N MRFE6VP6600GN 1 Table 1. Maximum Ratings Rating Symbol Value Unit Drain--Source Voltage VDSS –0.5, +133 Vdc Gate--Source Voltage VGS –6.0, +10 Vdc Storage Temperature Range Tstg – 65 to +150 C Case Operating Temperature Range TC –40 to +150 C TJ –40 to +225 C Symbol Value (2,3) Unit ZJC 0.033 C/W Operating Junction Temperature Range (1,2) Table 2. Thermal Characteristics Characteristic Thermal Impedance, Junction to Case Pulse: Case Temperature 78C, 600 W Pulse, 100 sec Pulse Width, 20% Duty Cycle, IDQ(A+B) = 100 mA, 230 MHz Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A114) Class 2, passes 2500 V Machine Model (per EIA/JESD22--A115) Class B, passes 200 V Charge Device Model (per JESD22--C101) Class IV, passes 2000 V Table 4. Moisture Sensitivity Level Test Methodology Per JESD22--A113, IPC/JEDEC J--STD--020 Rating Package Peak Temperature Unit 3 260 C Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) Symbol Min Typ Max Unit IGSS — — 1 Adc V(BR)DSS 133 — — Vdc Zero Gate Voltage Drain Leakage Current (VDS = 50 Vdc, VGS = 0 Vdc) IDSS — — 10 Adc Zero Gate Voltage Drain Leakage Current (VDS = 100 Vdc, VGS = 0 Vdc) IDSS — — 20 Adc Gate Threshold Voltage (4) (VDS = 10 Vdc, ID = 888 Adc) VGS(th) 1.7 2.2 2.7 Vdc Gate Quiescent Voltage (VDD = 50 Vdc, ID = 100 mAdc, Measured in Functional Test) VGS(Q) 2.0 2.6 3.0 Vdc Drain--Source On--Voltage (4) (VGS = 10 Vdc, ID = 1 Adc) VDS(on) — 0.2 — Vdc Forward Transconductance (4) (VDS = 10 Vdc, ID = 30 Adc) gfs — 28.0 — S Characteristic Off Characteristics (4) Gate--Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) Drain--Source Breakdown Voltage (VGS = 0 Vdc, ID = 50 mAdc) On Characteristics 1. 2. 3. 4. Continuous use at maximum temperature will affect MTTF. MTTF calculator available at http://www.freescale.com/rf/calculators. AN1955 – Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf and search AN1955. Each side of device measured separately. (continued) MRFE6VP6600N MRFE6VP6600GN 2 RF Device Data Freescale Semiconductor, Inc. Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Reverse Transfer Capacitance (VDS = 50 Vdc 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Crss — 2.4 — pF Output Capacitance (VDS = 50 Vdc 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Coss — 98 — pF Input Capacitance (VDS = 50 Vdc, VGS = 0 Vdc 30 mV(rms)ac @ 1 MHz) Ciss — 290 — pF Dynamic Characteristics (1) Functional Tests (2) (In Freescale Production Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ(A+B) = 100 mA, Pout = 600 W Peak (120 W Avg.), f = 230 MHz, 100 sec Pulse Width, 20% Duty Cycle Power Gain Gps 23.3 24.7 26.6 dB Drain Efficiency D 70 73.5 — % Input Return Loss IRL — –15 –9 dB Table 6. Load Mismatch/Ruggedness (In Freescale Production Test Fixture, 50 ohm system) IDQ(A+B) = 100 mA Frequency (MHz) 230 Signal Type VSWR Pin (W) Pulse (100 sec, 20% Duty Cycle) > 65:1 at all Phase Angles 4.0 Peak (3 dB Overdrive) Test Voltage, VDD Result 50 No Device Degradation Table 7. Ordering Information Device MRFE6VP6600NR3 MRFE6VP6600GNR3 Tape and Reel Information R3 Suffix = 250 Units, 32 mm Tape Width, 13--inch Reel Package OM--780--4L OM--780G--4L 1. Each side of device measured separately. 2. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing (GN) parts. MRFE6VP6600N MRFE6VP6600GN RF Device Data Freescale Semiconductor, Inc. 3 TYPICAL CHARACTERISTICS Measured with 30 mV(rms)ac @ 1 MHz VGS = 0 Vdc 1000 NORMALIZED VGS(Q) C, CAPACITANCE (pF) 10000 Ciss 100 Coss 10 Crss 1 0 10 20 30 40 50 VDS, DRAIN--SOURCE VOLTAGE (VOLTS) Note: Each side of device measured separately. Figure 2. Capacitance versus Drain--Source Voltage 1.06 1.05 500 mA 1.04 1500 mA 1.03 2000 mA 1.02 IDQ(A+B) = 100 mA VDD = 50 Vdc 1.01 1 0.99 0.98 0.97 0.96 0.95 0.94 –50 –25 0 25 50 75 100 TC, CASE TEMPERATURE (C) IDQ (mA) Slope (mV/C) 100 –2.554 500 –2.254 1500 –1.973 2000 –1.573 Figure 3. Normalized VGS versus Quiescent Current and Case Temperature MRFE6VP6600N MRFE6VP6600GN 4 RF Device Data Freescale Semiconductor, Inc. 87.5–108 MHz BROADBAND REFERENCE CIRCUIT — 4.73 2.88 (12.0 cm 7.32 cm) Table 8. 87.5–108 MHz Broadband Performance (In Freescale Reference Circuit, 50 ohm system) VDD = 50 Vdc, IDQ(A+B) = 150 mA, Pin = 3 W, CW Frequency (MHz) Gps (dB) D (%) Pout (W) 87.5 23.8 82.4 722 98 24.0 81.8 746 108 23.5 80.9 679 MRFE6VP6600N MRFE6VP6600GN RF Device Data Freescale Semiconductor, Inc. 5 87.5–108 MHz BROADBAND REFERENCE CIRCUIT — 4.73 2.88 (12.0 cm 7.32 cm) COAX1 C1 C11 C13 D69813 L5 C3 L2 R1 L1 T1 C6 C7 Q1 L3 L4 C8 C9 C4 C2 COAX3 B1 C5 C10 C14 MRFE6VP6600N Rev. 0 C12 *C6, C7, C8, & C9 are mounted vertically. COAX2 Figure 4. MRFE6VP6600N 87.5–108 MHz Broadband Reference Circuit Component Layout Table 9. MRFE6VP6600N 87.5–108 MHz Broadband Reference Circuit Component Designations and Values Part Description Part Number Manufacturer B1 95 , 100 MHz, Long RF Bead 2743021447 Fair-Rite C1 6.8 F Chip Capacitor C4532X7R1H685M250KB TDK C2 33 pF Chip Capacitor ATC100B330JT500XT ATC C3, C6, C7, C8, C9, C11, C12 1000 pF Chip Capacitors ATC100B102JT50XT ATC C4, C5 470 pF Chip Capacitors ATC100B471JT200XT ATC C10 8.2 pF Chip Capacitor ATC100B8R2CT500XT ATC C13, C14 2.2 F Chip Capacitors HMK432B7225KM-T Taiyo Yuden Coax1, Coax2 Coax Cable, 12 , 4.72 (12 cm) Shield Length TC-12 Communication Concepts, RF Power Systems Coax3 Coax Cable, 50 , 6.69 (17 cm) Shield Length, 2 Loops, 0.750 (19 mm) (FEP) Sucoform 141 Huber & Suhner L1 100 nH Inductor 1812SMS-R10JLC Coilcraft L2, L3 8.0 nH, 3 Turn Inductors A03TKLC Coilcraft L4 2 Turns, #14 AWG Copper Loop, ID = 0.26 (7 mm) Inductor, Hand Wound Copper Wire L5 7 Turns, #14 AWG Copper Loop, ID = 0.39 (10 mm) Inductor, Hand Wound Copper Wire Q1 RF Power LDMOS Transistor MRFE6VP6600NR3 Freescale R1 11 , 1/4 W Chip Resistor CRCW120611R0FKEA Vishay T1 TUI-LF-9 Transformer TUI-LF-9 Communication Concepts, RF Power Systems PCB Arlon TC-350, r = 3.50, 0.03 D69813 Shenzhen Multilayer PCB Technology Co. MRFE6VP6600N MRFE6VP6600GN 6 RF Device Data Freescale Semiconductor, Inc. TYPICAL CHARACTERISTICS — 87.5–108 MHz BROADBAND REFERENCE CIRCUIT 28 27 83 82 25 81 Gps 24 80 900 23 800 Pout 22 700 21 20 19 87 VDD = 50 Vdc, Pin = 3.0 W, IDQ(A+B) = 150 mA 89 91 93 95 97 99 101 103 105 107 600 500 109 Pout, OUTPUT POWER (WATTS) Gps, POWER GAIN (dB) 26 D, DRAIN EFFICIENCY (%) 84 D f, FREQUENCY (MHz) Figure 5. Power Gain, Pout and Drain Efficiency versus Frequency 28 108 MHz 98 MHz 27 Gps, POWER GAIN (dB) D 45 98 MHz 24 23 30 15 108 MHz 22 87.5 MHz Pout 21 20 108 MHz 98 MHz 21 1 Gps VDD = 50 Vdc lDQ(A+B) = 150 mA 20 0 75 60 87.5 MHz 26 90 D, DRAIN EFFICIENCY (%) f = 87.5 MHz 2 3 4 5 800 600 400 200 Pout, OUTPUT POWER (WATTS) 29 0 6 Pin, INPUT POWER (WATTS) Figure 6. Power Gain, Drain Efficiency and CW Output Power versus Input Power and Frequency MRFE6VP6600N MRFE6VP6600GN RF Device Data Freescale Semiconductor, Inc. 7 87.5–108 MHz BROADBAND REFERENCE CIRCUIT f = 108 MHz Zo = 25 Zsource f = 87.5 MHz f = 87.5 MHz Zload f = 108 MHz f MHz Zsource Zload 87.5 3.4 + j15.0 7.5 + j6.12 98 3.9 + j14.9 7.9 + j5.57 108 2.8 + j15.3 8.0 + j5.19 Zsource = Test circuit impedance as measured from gate to gate, balanced configuration. Zload 50 = Test circuit impedance as measured from drain to drain, balanced configuration. Input Matching Network + Device Under Test -- -Z source Output Matching Network 50 + Z load Figure 7. Broadband Series Equivalent Source and Load Impedance — 87.5–108 MHz MRFE6VP6600N MRFE6VP6600GN 8 RF Device Data Freescale Semiconductor, Inc. 230 MHz NARROWBAND PRODUCTION TEST FIXTURE — 4 6 (10.16 cm 15.24 cm) Table 10. 230 MHz Narrowband Performance (1) VDD = 50 Vdc, IDQ(A+B) = 100 mA, Pout = 600 W Peak (120 W Avg.), f = 230 MHz, 100 sec Pulse Width, 20% Duty Cycle Characteristic Symbol Min Typ Max Unit Gps 23.3 24.7 26.6 dB Drain Efficiency D 70 73.5 — % Input Return Loss IRL — –15 –9 dB Power Gain 1. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing (GN) parts. MRFE6VP6600N MRFE6VP6600GN RF Device Data Freescale Semiconductor, Inc. 9 230 MHz NARROWBAND PRODUCTION TEST FIXTURE — 4 6 (10.16 cm 15.24 cm) C10 C13 C11 C12 C24 C23 C25 C22 COAX1 COAX3 R1 L3 C2 C4 R2 C16* C15 C17* C30 C18* C19* CUT OUT AREA COAX2 C14 C5 L2 C3 C1 L1 C7 C8 C21 L4 COAX4 C26 D61086 C6 C20 C9 C27 MRFE6VP6600N Rev. 0 C28 C29 * C16, C17, C18, and C19 are vertically mounted Figure 8. MRFE6VP6600N Narrowband Test Circuit Component Layout — 230 MHz Table 11. MRFE6VP6600N Narrowband Test Circuit Component Designations and Values — 230 MHz Part Description Part Number Manufacturer C1 12 pF Chip Capacitor ATC100B120JT500XT ATC C2, C3 27 pF Chip Capacitors ATC100B270JT500XT ATC C4 0.8–8.0 pF Variable Capacitor, Gigatrim 27291SL Johanson C5 33 pF Chip Capacitor ATC100B330JT500XT ATC C6, C10 22 F, 35 V Tantalum Capacitors T491X226K035AT Kemet C7, C11 0.1 F Chip Capacitors CDR33BX104AKWS AVX C8, C12 220 nF Chip Capacitors C1812C224K5RAC-TU Kemet C9, C13, C22, C26 1000 pF Chip Capacitors ATC100B102JT50XT ATC C14,C20 39 pF Chip Capacitors ATC100B390JT500XT ATC C15 30 pF Chip Capacitor ATC100B300JT500XT ATC C16, C17, C18, C19 240 pF Chip Capacitors ATC100B241JT200XT ATC C21 13 pF Chip Capacitor ATC100B130JT500XT ATC C23, C24, C25, C27, C28, C29 470 F, 63 V Electrolytic Capacitors MCGPR63V477M13X26-RH Multicomp C30 16 pF Chip Capacitor ATC100B160JT500XT ATC Coax1, 2, 3, 4 25 Semi-Rigid Coax, 2.2 (5.6 mm) Shield Length UT-141C-25 Micro--Coax L1, L2 5 nH Inductors A02TKLC Coilcraft L3, L4 6.6 nH Inductors GA3093-ALC Coilcraft R1, R2 10 , 1/4 W Chip Resistors CRCW120610R0JNEA Vishay PCB Arlon AD255A 0.030, r = 2.55 D61086 MTL MRFE6VP6600N MRFE6VP6600GN 10 RF Device Data Freescale Semiconductor, Inc. MRFE6VP6600N MRFE6VP6600GN RF Device Data Freescale Semiconductor, Inc. 11 RF INPUT Z1 C1 Z2 COAX2 COAX1 VGG Z4 Z3 VGG C3 C2 Z8 C7 C8 C5 Z10 Z9 C12 C9 Z12 L2 L1 Z11 C13 R2 Z14 Z13 R1 DUT Z16 Z15 L4 Z20 Z18 Z22 C14 Z21 Z17 Z19 Z24 Z23 Z25 C26 Z26 C30 C22 C27 + Z28 C15 Z27 C23 C28 + C24 C29 + C19 C18 C17 C16 C25 + Figure 9. MRFE6VP6600N Narrowband Test Circuit Schematic — 230 MHz C6 + C4 Z7 C11 L3 + 0.170 0.100 Microstrip 0.116 0.285 Microstrip 0.116 0.285 Microstrip 0.108 0.285 Microstrip 0.872 0.058 Microstrip 0.412 0.726 Microstrip 0.371 0.507 Microstrip 0.422 0.363 Microstrip Z3, Z4 Z5, Z6 Z7, Z8 Z9, Z10 Z11*, Z12* Z13, Z14 Z15, Z16 Z17*, Z18* * Line lengths include microstrip bends 0.175 0.082 Microstrip Z2 Description 0.192 0.082 Microstrip Z1 Microstrip Description 1.187 0.154 Microstrip 0.104 0.507 Microstrip 0.590 0.300 Microstrip 0.731 0.300 Microstrip 0.056 0.300 Microstrip 0.055 0.300 Microstrip 0.061 0.300 Microstrip 0.186 0.082 Microstrip 0.179 0.082 Microstrip Microstrip Z19*, Z20* Z21, Z22 Z23, Z24 Z25, Z26 Z27, Z28 Z29, Z30 Z31, Z32 Z33 Z34 Table 12. MRFE6VP6600N Narrowband Test Circuit Microstrips — 230 MHz Z6 Z5 C10 + + VDD Z30 Z29 VDD Z32 C20 Z31 COAX4 COAX3 Z33 C21 RF Z34 OUTPUT TYPICAL CHARACTERISTICS — 230 MHz Pout, OUTPUT POWER (WATTS) PEAK 1000 VDD = 50 Vdc, f = 230 MHz Pulse Width = 100 sec, 20% Duty Cycle 900 800 700 600 500 Pin = 1.9 W 400 300 Pin = 0.95 W 200 100 0 0 0.5 1 1.5 2 2.5 3 VGS, GATE--SOURCE VOLTAGE (VOLTS) Figure 10. Output Power versus Gate--Source Voltage at a Constant Input Power 28 60 90 IDQ(A+B) = 900 mA 27 600 mA 26 58 56 54 52 50 25 27 29 31 33 35 39 37 100 mA 23 900 mA 50 Gps 600 mA 22 60 D 300 mA 24 100 mA 40 30 20 21 VDD = 50 Vdc, IDQ(A+B) = 100 mA, f = 230 MHz Pulse Width = 100 sec, 20% Duty Cycle 19 41 70 300 mA 20 48 25 80 D, DRAIN EFFICIENCY (%) VDD = 50 Vdc, IDQ(A+B) = 100 mA, f = 230 MHz Pulse Width = 100 sec, 20% Duty Cycle Gps, POWER GAIN (dB) Pout, OUTPUT POWER (dBm) PEAK 62 70 10 0 1000 100 Pin, INPUT POWER (dBm) Pout, OUTPUT POWER (WATTS) PEAK f (MHz) P1dB (W) P3dB (W) 230 682 771 Figure 12. Power Gain and Drain Efficiency versus Output Power and Quiescent Current Figure 11. Output Power versus Input Power +25_C 26 22 +85_C 60 Gps D 50 40 20 18 16 80 +85_C 70 –40_C 24 TC = +25_C VDD = 50 Vdc, IDQ(A+B) = 100 mA, f = 230 MHz Pulse Width = 100 sec, 20% Duty Cycle 60 100 28 90 30 20 1000 25 Gps, POWER GAIN (dB) Gps, POWER GAIN (dB) 28 –40_C D, DRAIN EFFICIENCY (%) 30 22 19 40 V 50 V 35 V 16 VDD = 30 V 13 45 V 0 200 IDQ(A+B) = 100 mA, f = 230 MHz Pulse Width = 100 sec, 20% Duty Cycle 400 600 800 Pout, OUTPUT POWER (WATTS) PEAK Pout, OUTPUT POWER (WATTS) PEAK Figure 13. Power Gain and Drain Efficiency versus Pulse Output Power Figure 14. Power Gain versus Output Power and Drain--Source Voltage 1000 MRFE6VP6600N MRFE6VP6600GN 12 RF Device Data Freescale Semiconductor, Inc. 230 MHz NARROWBAND PRODUCTION TEST FIXTURE f MHz Zsource Zload 230 1.9 + j4.8 4.0 + j4.0 Zsource = Test circuit impedance as measured from gate to gate, balanced configuration. Zload 50 Input Matching Network = Test circuit impedance as measured from drain to drain, balanced configuration. + -Zsource Device Under Test -- Output Matching Network 50 + Zload Figure 15. Narrowband Series Equivalent Source and Load Impedance — 230 MHz MRFE6VP6600N MRFE6VP6600GN RF Device Data Freescale Semiconductor, Inc. 13 PCB PAD LAYOUTS 4X 0.185 (4.70) 0.800 (20.32) 4X Solder Pads 0.389(1) (9.88) 0.409(1) (10.39) 0.350 (8.89) Inches (mm) 0.815(1) (20.70) 1. Slot dimensions are minimum dimensions and exclude milling tolerances. Figure 16. PCB Pad Layout for OM--780--4L 0.740 (18.80) 0.350 (8.89) 0.325 (8.26) Solder pad with thermal via structure. 0.410 0.510 (10.41) (12.95) 4X 0.185 (4.70) Inches (mm) Figure 17. PCB Pad Layout for OM--780G--4L MRFE6VP6600N MRFE6VP6600GN 14 RF Device Data Freescale Semiconductor, Inc. PACKAGE DIMENSIONS MRFE6VP6600N MRFE6VP6600GN RF Device Data Freescale Semiconductor, Inc. 15 MRFE6VP6600N MRFE6VP6600GN 16 RF Device Data Freescale Semiconductor, Inc. MRFE6VP6600N MRFE6VP6600GN RF Device Data Freescale Semiconductor, Inc. 17 PACKAGE DIMENSIONS MRFE6VP6600N MRFE6VP6600GN 18 RF Device Data Freescale Semiconductor, Inc. MRFE6VP6600N MRFE6VP6600GN RF Device Data Freescale Semiconductor, Inc. 19 MRFE6VP6600N MRFE6VP6600GN 20 RF Device Data Freescale Semiconductor, Inc. PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS Refer to the following resources to aid your design process. Application Notes AN1907: Solder Reflow Attach Method for High Power RF Devices in Over--Molded Plastic Packages AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins EB212: Using Data Sheet Impedances for RF LDMOS Devices White Paper RFPLASTICWP: Designing with Plastic RF Power Transistors Software Electromigration MTTF Calculator RF High Power Model s2p File Development Tools Printed Circuit Boards To Download Resources Specific to a Given Part Number: 1. Go to http://www.freescale.com/rf 2. Search by part number 3. Click part number link 4. Choose the desired resource from the drop down menu REVISION HISTORY The following table summarizes revisions to this document. Revision Date 0 May 2015 Description Initial Release of Data Sheet MRFE6VP6600N MRFE6VP6600GN RF Device Data Freescale Semiconductor, Inc. 21 How to Reach Us: Home Page: freescale.com Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions. Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. E 2015 Freescale Semiconductor, Inc. MRFE6VP6600N MRFE6VP6600GN Document Number: MRFE6VP6600N Rev. 0, 5/2015 22 RF Device Data Freescale Semiconductor, Inc.