Data Sheet

Freescale Semiconductor
Technical Data
Document Number: AFT09MS007N
Rev. 1, 4/2014
RF Power LDMOS Transistor
High Ruggedness N--Channel
Enhancement--Mode Lateral MOSFET
AFT09MS007NT1
Designed for handheld two--way radio applications with frequencies from
136 to 941 MHz. The high gain, ruggedness and wideband performance of this
device makes it ideal for large--signal, common--source amplifier applications
in handheld radio equipment.
Narrowband Performance (7.5 Vdc, IDQ = 100 mA, TA = 25C, CW)
Frequency
(MHz)
Gps
(dB)
D
(%)
Pout
(W)
870 (1)
15.2
71.0
7.3
136–941 MHz, 7 W, 7.5 V
WIDEBAND
RF POWER LDMOS TRANSISTOR
Wideband Performance (7.5 Vdc, TA = 25C, CW)
Frequency
(MHz)
Pin
(W)
Gps
(dB)
D
(%)
Pout
(W)
136–174
0.25
14.6
69.0
7.2
350–470 (2,5)
0.20
15.6
60.9
7.3
450–520 (3,5)
0.22
15.4
56.0
7.5
760–860 (4,5)
0.23
15.1
48.1
7.5
Result
PLD--1.5W
Load Mismatch/Ruggedness
Frequency
(MHz)
Signal
Type
870 (1)
CW
1.
2.
3.
4.
5.
VSWR
Pin
(W)
Test
Voltage
> 65:1 at all
Phase Angles
0.4
(3 dB Overdrive)
10.8
Gate
Drain
No Device
Degradation
Measured in 870 MHz narrowband test circuit.
Measured in 350–470 MHz UHF broadband reference circuit.
Measured in 450–520 MHz UHF broadband reference circuit.
Measured in 760–860 MHz UHF broadband reference circuit.
The values shown are the minimum measured performance numbers across the
indicated frequency range.
Note: The center pad on the backside of
the package is the source terminal
for the transistor.
Figure 1. Pin Connections
Features
 Characterized for Operation from 136 to 941 MHz
 Unmatched Input and Output Allowing Wide Frequency Range Utilization
 Integrated ESD Protection
 Integrated Stability Enhancements
 Wideband — Full Power Across the Band
 Exceptional Thermal Performance
 Extreme Ruggedness
 High Linearity for: TETRA, SSB
 In Tape and Reel. T1 Suffix = 1,000 Units, 16 mm Tape Width, 7--inch Reel.
Typical Applications
 Output Stage VHF Band Handheld Radio
 Output Stage UHF Band Handheld Radio
 Output Stage for 700–800 MHz Handheld Radio
 Freescale Semiconductor, Inc., 2013–2014. All rights reserved.
RF Device Data
Freescale Semiconductor, Inc.
AFT09MS007NT1
1
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain--Source Voltage
VDSS
–0.5, +30
Vdc
Gate--Source Voltage
VGS
–6.0, +12
Vdc
Operating Voltage
VDD
12.5, +0
Vdc
Storage Temperature Range
Tstg
–65 to +150
C
Case Operating Temperature Range
TC
–40 to +150
C
Operating Junction Temperature (1,2)
TJ
–40 to +150
C
Total Device Dissipation @ TC = 25C
Derate above 25C
PD
114
0.91
W
W/C
Symbol
Value (2,3)
Unit
RJC
1.1
C/W
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
Case Temperature 74C, 7 W CW, 7.5 Vdc, IDQ = 100 mA, 870 MHz
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22--A114)
2, passes 2500 V
Machine Model (per EIA/JESD22--A115)
B, passes 200 V
Charge Device Model (per JESD22--C101)
IV, passes 2000 V
Table 4. Moisture Sensitivity Level
Test Methodology
Per JESD22--A113, IPC/JEDEC J--STD--020
Rating
Package Peak Temperature
Unit
3
260
C
Table 5. Electrical Characteristics (TA = 25C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 30 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
Adc
Zero Gate Voltage Drain Leakage Current
(VDS = 7.5 Vdc, VGS = 0 Vdc)
IDSS
—
—
2
Adc
Gate--Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
nAdc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 110 Adc)
VGS(th)
1.6
2.1
2.6
Vdc
Drain--Source On--Voltage
(VGS = 10 Vdc, ID = 1.1 Adc)
VDS(on)
—
0.12
—
Vdc
gfs
—
9.8
—
S
Reverse Transfer Capacitance
(VDS = 7.5 Vdc  30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Crss
—
2.7
—
pF
Output Capacitance
(VDS = 7.5 Vdc  30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Coss
—
56
—
pF
Input Capacitance
(VDS = 7.5 Vdc, VGS = 0 Vdc  30 mV(rms)ac @ 1 MHz)
Ciss
—
107
—
pF
Characteristic
Off Characteristics
On Characteristics
Forward Transconductance
(VDS = 7.5 Vdc, ID = 3 Adc)
Dynamic Characteristics
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes -- AN1955.
(continued)
AFT09MS007NT1
2
RF Device Data
Freescale Semiconductor, Inc.
Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 7.5 Vdc, IDQ = 100 mA, Pin = 0.22 W, f = 870 MHz
Common--Source Amplifier Output Power
Drain Efficiency
Pout
—
7.3
—
W
D
—
71.0
—
%
Load Mismatch/Ruggedness (In Freescale Test Fixture, 50 ohm system) IDQ = 100 mA
Frequency
(MHz)
Signal
Type
VSWR
870
CW
> 65:1 at all Phase Angles
Pin
(W)
0.4
(3 dB Overdrive)
Test Voltage, VDD
Result
10.8
No Device Degradation
AFT09MS007NT1
RF Device Data
Freescale Semiconductor, Inc.
3
TYPICAL CHARACTERISTICS
4
200
Ciss
TA = 25C
3.5
IDS, DRAIN CURRENT (AMPS)
C, CAPACITANCE (pF)
100
Coss
10
Crss
VGS = 3.75 Vdc
3
3.5 Vdc
2.5
2
1.5
3.25 Vdc
1
3 Vdc
0.5
Measured with 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc
1
0
2
4
10
8
6
2.5 Vdc
0
0
12
1
2
3
4
5
6
7
8
9
10
VDS, DRAIN--SOURCE VOLTAGE (VOLTS)
VDS, DRAIN--SOURCE VOLTAGE (VOLTS)
Figure 2. Capacitance versus Drain--Source Voltage
Figure 3. Drain Current versus Drain--Source Voltage
109
MTTF (HOURS)
VDD = 7.5 Vdc
ID = 1.06 Amps
108
1.33 Amps
1.59 Amps
107
106
105
90
100
110
120
130
140
150
160
TJ, JUNCTION TEMPERATURE (C)
Note: MTTF value represents the total cumulative operating time
under indicated test conditions.
MTTF calculator available at http://www.freescale.com/rf. Select
Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
Figure 4. MTTF versus Junction Temperature — CW
AFT09MS007NT1
4
RF Device Data
Freescale Semiconductor, Inc.
870 MHz NARROWBAND PRODUCTION TEST FIXTURE
C2 C3
B1
C11 C12
C10
C1
C13
C4*
L1
C6
C8
C15*
L2
C5
C16
L3
C7
C9
C14*
AFT09MS007N
Rev. 2
D49708
*C4, C14 and C15 are mounted vertically.
Figure 5. AFT09MS007NT1 Narrowband Test Circuit Component Layout — 870 MHz
Table 6. AFT09MS007NT1 Narrowband Test Circuit Component Designations and Values — 870 MHz
Part
Description
Part Number
Manufacturer
B1
RF Bead, Short
2743019447
Fair-Rite
C1
22 F, 35 V Tantalum Capacitor
T491X226K035AT
Kemet
C2, C12
0.1 F Chip Capacitors
CDR33BX104AKWS
Kemet
C3, C11
0.01 F Chip Capacitors
C0805C103K5RAC
Kemet
C4, C10, C16
56 pF Chip Capacitors
ATC100B560CT500XT
ATC
C5
3.9 pF Chip Capacitor
ATC100B3R9CT500XT
ATC
C6, C7
7.5 pF Chip Capacitors
ATC100B7R5CT500XT
ATC
C8, C9
6.8 pF Chip Capacitors
ATC100B6R8CT500XT
ATC
C13
330 F, 35 V Electrolytic Capacitor
MCGPR35V337M10X16-RH Multicomp
C14, C15
3.6 pF Chip Capacitors
ATC100B3R6CT500XT
ATC
L1
8.0 nH Inductor
A03TKLC
Coilcraft
L2
18.5 nH Inductor
A05TKLC
Coilcraft
L3
5.0 nH Inductor
A02TKLC
Coilcraft
PCB
Rogers RO4350B, 0.030, r = 3.66
D49708
MTL
AFT09MS007NT1
RF Device Data
Freescale Semiconductor, Inc.
5
VBIAS
C1
VSUPPLY
+
+
C2
C3
C10
B1
C11
C12
C13
L2
C4
RF
INPUT Z1
C8
L1
Z2
Z3
Z4
Z5
C6
Z6
Z8
Z9
C15
Z10 Z11
Z13
L3
RF
Z15 OUTPUT
Z14
Z7
C9
C5
Z12
C16
C14
C7
Figure 6. AFT09MS007NT1 Narrowband Test Circuit Schematic — 870 MHz
Table 7. AFT09MS007NT1 Narrowband Test Circuit Microstrips — 870 MHz
Microstrip
Description
Microstrip
Description
Z1
0.328  0.080 Microstrip
Z9
0.295  0.620 Microstrip
Z2
0.490  0.120 Microstrip
Z10
0.046  0.620 Microstrip
Z3
0.610  0.320 Microstrip
Z11
0.159  0.620  0.320 Taper
Z4
0.160  0.320  0.620 Taper
Z12
0.379  0.320 Microstrip
Z5
0.058  0.620 Microstrip
Z13
0.055  0.320 Microstrip
Z6
0.288  0.620 Microstrip
Z14
0.665  0.120 Microstrip
Z7
0.394  0.620 Microstrip
Z15
0.238  0.080 Microstrip
Z8
0.398  0.620 Microstrip
AFT09MS007NT1
6
RF Device Data
Freescale Semiconductor, Inc.
TYPICAL CHARACTERISTICS — 870 MHz
12
Pout, OUTPUT POWER (WATTS)
VDD = 7.5 Vdc, f = 870 MHz
10
8
Pin = 0.22 W
6
Pin = 0.11 W
4
2
0
0.5
0
1
1.5
2
2.5
3.5
3
4
4.5
VGS, GATE--SOURCE VOLTAGE (VOLTS)
18
90
16
80
14
70
Gps
12
60
10
50
8
40
6
30
D
4
2
0
0.01
20
VDD = 7.5 Vdc, IDQ = 100 mA 10
f = 870 MHz
0
0.7
0.1
Pout
D, DRAIN EFFICIENCY (%)
Gps, POWER GAIN (dB)
Pout, OUTPUT POWER (WATTS)
Figure 7. Output Power versus Gate--Source Voltage
at a Constant Input Power
Pin, INPUT POWER (WATTS)
Figure 8. Power Gain, Output Power and Drain
Efficiency versus Input Power
VDD = 7.5 Vdc, IDQ = 100 mA, Pout = 7 W
f
MHz
Zsource

Zload

870
0.54 + j1.35
1.31 + j1.93
Zsource = Test circuit impedance as measured from
gate to ground.
Zload
50 
Input
Matching
Network
= Test circuit impedance as measured from
drain to ground.
Output
Matching
Network
Device
Under
Test
Zsource
50 
Zload
Figure 9. Narrowband Series Equivalent Source and Load Impedance — 870 MHz
AFT09MS007NT1
RF Device Data
Freescale Semiconductor, Inc.
7
350–470 MHz UHF BROADBAND REFERENCE CIRCUIT
Table 8. 350–470 MHz UHF Broadband Performance (In Freescale Reference Circuit, 50 ohm system)
VDD = 7.5 Vdc, IDQ = 200 mA, TA = 25C, CW
Frequency
(MHz)
Pin
(W)
Gps
(dB)
D
(%)
Pout
(W)
350
0.15
16.6
60.9
7.3
410
0.15
16.6
66.5
7.3
470
0.20
15.6
70.1
7.3
Table 9. Load Mismatch/Ruggedness (In Freescale Reference Circuit)
Frequency
(MHz)
Signal
Type
470
CW
VSWR
Pin
(W)
> 65:1 at all
Phase Angles
0.4
(3 dB Overdrive)
Test Voltage, VDD
Result
10.8
No Device
Degradation
AFT09MS007NT1
8
RF Device Data
Freescale Semiconductor, Inc.
350–470 MHz UHF BROADBAND REFERENCE CIRCUIT
J1
C1
C14
C19
C9
C2
L3
C13
C18
C12
L1
L7
C10
C4
C11
L4
C5
R1
L2
C17
L5
C16
L6
Q1
C8
C6 C7
Rev. 1
C3
C15
D58008
Figure 10. AFT09MS007NT1 UHF Broadband Reference Circuit Component Layout — 350–470 MHz
Table 10. AFT09MS007NT1 UHF Broadband Reference Circuit Component Designations and Values — 350–470 MHz
Part
Description
Part Number
Manufacturer
C1, C10, C19
100 pF Chip Capacitors
ATC600F101JT250XT
ATC
C2
10 pF Chip Capacitor
ATC600F100JT250XT
ATC
C3
3.0 pF Chip Capacitor
ATC600F3R0BT250XT
ATC
C4, C8
27 pF Chip Capacitors
ATC600F270JT250XT
ATC
C5
5.1 pF Chip Capacitor
ATC600F5R1BT250XT
ATC
C6, C7
30 pF Chip Capacitors
ATC600F300JT250XT
ATC
C9
10 nF Chip Capacitor
C1210C103J5GAC-TU
Kemet
C11
82 pF Chip Capacitor
ATC600F820JT250XT
ATC
C12
240 pF Chip Capacitor
ATC600F241JT250XT
ATC
C13
2.2 F Chip Capacitor
C3225X7R1H225K250AB
TDK
C14
0.1 F Chip Capacitor
GRM21BR71H104KA01B
Murata
C15
0.01 F Chip Capacitor
GRM21BR72A103KA01B
Murata
C16
47 pF Chip Capacitor
ATC600F470JT250XT
ATC
C17
18 pF Chip Capacitor
ATC600F180BT250XT
ATC
C18
7.5 pF Chip Capacitor
ATC100A7R5JT150XT
ATC
J1
3--pin Header
22-28-8360
Molex
L1
8.1 nH Inductor
0908SQ8N1
Coilcraft
L2
2.55 nH, 3 Turn Inductor
0906-3JLC
Coilcraft
L3, L4, L5
21.5 nH Inductors
0908SQ22N
Coilcraft
L6
3.85 nH, 4 Turn Inductor
0906-4JLC
Coilcraft
L7
8.9 nH Inductor
0806SQ8N9
Coilcraft
Q1
RF Power LDMOS Transistor
AFT09MS007NT1
Freescale
R1
62 , 1/10 W Chip Resistor
RG2012N-620-B-T1
Susumu
PCB
Shengyi S1000-2, 0.020, r = 4.8
D58008
MTL
AFT09MS007NT1
RF Device Data
Freescale Semiconductor, Inc.
9
AFT09MS007NT1
10
RF Device Data
Freescale Semiconductor, Inc.
RF
INPUT
Z1
C1
Z2
C2
Z3
Z4
C4
Z6
C5
Z7
L2
Z8
Z9
C6
Z10
C7
Z11
C11
C8
Z12 Z13
C10
Z14 Z15
R1
Z16 Z17
Z18 Z19
L5
0.026  0.046 Microstrip
0.026  0.046 Microstrip
0.060  0.046 Microstrip
0.054  0.046 Microstrip
0.054  0.046 Microstrip
0.060  0.046 Microstrip
0.084  0.046 Microstrip
0.044  0.046 Microstrip
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Z9
Description
0.060  0.034 Microstrip
Z1
Microstrip
C16
Z20
C13
L6
Microstrip
Description
Microstrip
Z20
0.121  0.300 Microstrip
0.031  0.300 Microstrip
0.070  0.146 Microstrip
0.070  0.146 Microstrip
0.160  0.170 Microstrip
Z13
Z14
Z15
Z16
Z17
Z25
Z24
Z23
Z22
Z21
Z19
0.055  0.046 Microstrip
Z18
0.235  0.046 Microstrip
0.037  0.046 Microstrip
Z12
Z11
Z10
C17
Z22
C15
0.060  0.034 Microstrip
0.046  0.046 Microstrip
0.089  0.046 Microstrip
0.195  0.046 Microstrip
0.032  0.046 Microstrip
0.148  0.046 Microstrip
0.205  0.046 Microstrip
0.088  0.170 Microstrip
Description
Z21
C14
Figure 11. AFT09MS007NT1 UHF Broadband Reference Circuit Schematic — 350–470 MHz
C3
Z5
C9
C12
Table 11. AFT09MS007NT1 UHF Broadband Reference Circuit Microstrips — 350–470 MHz
L1
VBIAS
L3
L4
L7
VSUPPLY
Z23
C18
Z24
C19
Z25
RF
OUTPUT
TYPICAL CHARACTERISTICS — 350–470 MHz UHF BROADBAND
REFERENCE CIRCUIT
19
18
80
D
70
17
60
16
Gps
15
14
12
320
340
360
400
380
420
460
440
8
7
Pout
13
50
Pout, OUTPUT
POWER (WATTS)
Gps, POWER GAIN (dB)
90
VDD = 7.5 Vdc
Pin = 0.20 W
IDQ = 200 mA
D, DRAIN
EFFICIENCY (%)
20
6
5
500
480
f, FREQUENCY (MHz)
Figure 12. Power Gain, Drain Efficiency and Output Power versus
Frequency at a Constant Input Power
f = 410 MHz
0.8
VDD = 7.5 Vdc, Pin = 0.1 W
12
10
Pout, OUTPUT POWER (WATTS)
Pout, OUTPUT POWER (WATTS)
14
VDD = 7.5 Vdc, Pin = 0.25 W
8
6
4
2
0
0
1
3
2
0.6
4
VDD = 7.5 Vdc
Pin = 0.25 W
0.4
VDD = 7.5 Vdc
Pin = 0.1 W
0.2
0
Detail A
f = 410 MHz
0.4
0
0.8
1.2
1.6
2
VGS, GATE--SOURCE VOLTAGE (VOLTS)
5
Detail A
VGS, GATE--SOURCE VOLTAGE (VOLTS)
Figure 13. Output Power versus Gate--Source Voltage
80
f = 470 MHz
D
Gps, POWER GAIN (dB)
19
410 MHz
18
17
16 VDD = 7.5 Vdc
IDQ = 200 mA
470 MHz
20
350 MHz
10
Pout
7.5
410 MHz
470 MHz
13
12
0.01
40
410 MHz
15
14
60
350 MHz
D, DRAIN
EFFICIENCY (%)
350 MHz
5
2.5
Gps
0
0.1
Pout, OUTPUT
POWER (WATTS)
20
1
Pin, INPUT POWER (WATTS)
Figure 14. Power Gain, Drain Efficiency and Output
Power versus Input Power and Frequency
AFT09MS007NT1
RF Device Data
Freescale Semiconductor, Inc.
11
350–470 MHz UHF BROADBAND REFERENCE CIRCUIT
f = 470 MHz
Zo = 10 
Zsource
f = 350 MHz
f = 470 MHz
f = 350 MHz
Zload
VDD = 7.5 Vdc, IDQ = 200 mA, Pout = 7.5 W
f
MHz
Zsource

Zload

350
2.7 + j6.6
3.5 + j4.2
370
3.3 + j6.2
3.7 + j4.2
390
3.1 + j5.4
3.5 + j4.0
410
2.6 + j6.1
3.5 + j5.0
430
2.1 + j7.1
3.6 + j5.9
450
2.2 + j7.3
3.6 + j5.6
470
2.0 + j7.7
3.0 + j5.8
Zsource = Test circuit impedance as measured from
gate to ground.
Zload
50 
Input
Matching
Network
= Test circuit impedance as measured from
drain to ground.
Output
Matching
Network
Device
Under
Test
Zsource
50 
Zload
Figure 15. UHF Broadband Series Equivalent Source and Load Impedance — 350–470 MHz
AFT09MS007NT1
12
RF Device Data
Freescale Semiconductor, Inc.
450–520 MHz UHF BROADBAND REFERENCE CIRCUIT
Table 12. 450–520 MHz UHF Broadband Performance (In Freescale Reference Circuit, 50 ohm system)
VDD = 7.5 Volts, IDQ = 150 mA, TA = 25C, CW
Frequency
(MHz)
Pin
(W)
Gps
(dB)
D
(%)
Pout
(W)
450
0.21
15.4
57.7
7.5
485
0.21
15.5
56.0
7.5
520
0.18
16.2
66.3
7.5
Table 13. Load Mismatch/Ruggedness (In Freescale Reference Circuit)
Frequency
(MHz)
Signal
Type
520
CW
VSWR
Pin
(W)
> 65:1 at all
Phase Angles
0.2
(3 dB Overdrive)
Test Voltage, VDD
Result
10.8
No Device
Degradation
AFT09MS007NT1
RF Device Data
Freescale Semiconductor, Inc.
13
450–520 MHz UHF BROADBAND REFERENCE CIRCUIT
C1
J1
C6
L3
L1
VGG
C7
C8
C16
C15
C9
C10
VDD
C5
L7
C2
L4
R1
C4
C14
Q1
C3
L5
C11 C12
C13
AFT09MS007N
Rev. 2
L2
C17
L6
D49947
Figure 16. AFT09MS007NT1 UHF Broadband Reference Circuit Component Layout — 450–520 MHz
Table 14. AFT09MS007NT1 UHF Broadband Reference Circuit Component Designations and Values — 450–520 MHz
Part
Description
Part Number
Manufacturer
C1, C16
100 pF Chip Capacitors
ATC600F101JT250XT
ATC
C2
7.5 pF Chip Capacitor
GQM2195C2E7R5BB12D
Murata
C3
5.6 pF Chip Capacitor
ATC600F5R6BT250XT
ATC
C4
39 pF Chip Capacitor
ATC600F390JT250XT
ATC
C5, C9
240 pF Chip Capacitors
ATC600F241JT250XT
ATC
C6, C7
0.1 F Chip Capacitors
GRM21BR71H104KA01B
Murata
C8
0.01 F Chip Capacitor
GRM21BR72A103KA01B
Murata
C10
2.2 F Chip Capacitor
GRM31CR71H225KA88L
Murata
C11, 12
12 pF Chip Capacitors
ATC600F120JT250XT
ATC
C13
8.2 pF Chip Capacitor
ATC600F8R2BT250XT
ATC
C14
20 pF Chip Capacitor
ATC600F200JT250XT
ATC
C15
2 pF Chip Capacitor
ATC600F2R0BT250XT
ATC
C17
47 pF Chip Capacitor
ATC600F470JT250XT
ATC
J1
3--pin Header
22-28-8360
Molex
L1
2.55 nH Inductor
0906-3JLC
Coilcraft
L2
3.85 nH Inductor
0906-4JLC
Coilcraft
L3
22 nH Inductor
0908SQ22N
Coilcraft
L4, L5
17 nH Inductors
0908SQ17N
Coilcraft
L6
1.65 nH Inductor
0906-2JLC
Coilcraft
L7
8.1 nH Inductor
0908SQ8R1N
Coilcraft
R1
22 , 1/10 W Chip Resistor
RR1220Q-220-D
Susumu
Q1
RF Power LDMOS Transistor
AFT09MS007N
Freescale
PCB
Shengyi S1000-2, 0.020, r = 4.8
D49947
MTL
AFT09MS007NT1
14
RF Device Data
Freescale Semiconductor, Inc.
AFT09MS007NT1
RF Device Data
Freescale Semiconductor, Inc.
15
RF
INPUT
Z1
C1
Z2
L1
Z3
Z5
Z6
C3
Z7
C4
Z8
Z9
C5
Z10 Z11
R1
Z12 Z13
C11
Z14
C17
C12
Z15 Z16
L5
C13
Z17
C9
L6
C8
Z18
C7
C14
Z19
Description
0.052  0.046 Microstrip
0.110  0.046 Microstrip
0.118  0.046 Microstrip
0.084  0.046 Microstrip
0.124  0.046 Microstrip
0.084  0.046 Microstrip
0.207  0.046 Microstrip
Z2
Z3
Z4
Z5
Z6
Z7
Z8
0.060  0.034 Microstrip
Microstrip
Z1
Microstrip
Description
Microstrip
0.055  0.170 Microstrip
0.055  0.170 Microstrip
Z14
Z15
Z22
Z21
Z20
0.138  0.170 Microstrip
Z13
Z18
Z17
Z16
Z19
0.070  0.146 Microstrip
0.031  0.300 Microstrip
0.121  0.300 Microstrip
0.070  0.146 Microstrip
Z12
Z11
Z10
Z9
L7
Z20
0.060  0.034 Microstrip
0.046  0.046 Microstrip
0.089  0.046 Microstrip
0.195  0.046 Microstrip
0.032  0.046 Microstrip
0.279  0.049 Microstrip
0.075  0.049 Microstrip
Description
Figure 17. AFT09MS007NT1 UHF Broadband Reference Circuit Schematic — 450–520 MHz
L2
C6
L3
C10
Table 15. AFT09MS007NT1 UHF Broadband Reference Circuit Microstrips — 450–520 MHz
C2
Z4
VBIAS
L4
VSUPPLY
C15
Z21
C16
RF
Z22 OUTPUT
TYPICAL CHARACTERISTICS — 450–520 MHz UHF BROADBAND
REFERENCE CIRCUIT
18
80
D, DRAIN
EFFICIENCY (%)
Gps, POWER GAIN (dB)
19
90
VDD = 7.5 Vdc
Pin = 0.25 W
IDQ = 150 mA
70
D
17
60
16
50
Gps
15
10
14
Pout, OUTPUT
POWER (WATTS)
20
9
Pout
13
12
440
450
460
470
480
490
510
500
520
8
7
530
f, FREQUENCY (MHz)
Figure 18. Power Gain, Output Power and Drain Efficiency versus
Frequency at a Constant Input Power — 7.5 V
16
f = 485 MHz
8
VDD = 7.5 Vdc, Pin = 0.25 W
12
Pout, OUTPUT POWER (WATTS)
Pout, OUTPUT POWER (WATTS)
14
VDD = 7.5 Vdc, Pin = 0.1 W
10
8
6
Detail A
4
2
0
6
2
1
3
VDD = 7.5 Vdc
Pin = 0.25 W
5
4
VDD = 7.5 Vdc
Pin = 0.1 W
3
2
1
0
0
f = 485 MHz
7
0
1
2
3
4
VGS, GATE--SOURCE VOLTAGE (VOLTS)
4
Detail A
VGS, GATE--SOURCE VOLTAGE (VOLTS)
Figure 19. Output Power versus Gate--Source Voltage
19
D
17
520 MHz
485 MHz
16
485 MHz
450 MHz
60
40
VDD = 7.5 Vdc
IDQ = 150 mA
20
12
15
14
Pout
520 MHz
450 MHz
8
485 MHz
13
12
0.03
450 MHz
0.1
4
Gps
0
Pout, OUTPUT
POWER (WATTS)
Gps, POWER GAIN (dB)
18
D, DRAIN
EFFICIENCY (%)
80
f = 520 MHz
1
Pin, INPUT POWER (WATTS)
Figure 20. Power Gain, Output Power and Drain
Efficiency versus Input Power and Frequency
AFT09MS007NT1
16
RF Device Data
Freescale Semiconductor, Inc.
450–520 MHz UHF BROADBAND REFERENCE CIRCUIT
f = 530 MHz
Zo = 10 
Zsource
f = 450 MHz
f = 530 MHz
Zload
f = 450 MHz
VDD = 7.5 Vdc, IDQ = 150 mA, Pout = 7.5 W
f
MHz
Zsource

Zload

450
0.45 + j2.46
1.56 + j1.05
460
0.40 + j2.37
1.52 + j1.24
470
0.40 + j2.97
1.46 + j1.51
480
0.38 + j3.56
1.39 + j1.71
490
0.41 + j4.16
1.35 + j2.06
500
0.51 + j4.79
1.34 + j2.06
510
0.70 + j5.54
1.37 + j2.30
520
0.93 + j6.44
1.40 + j 2.50
530
1.14 + j7.56
1.42 + j2.62
Zsource = Test circuit impedance as measured from
gate to ground.
Zload
50 
Input
Matching
Network
= Test circuit impedance as measured from
drain to ground.
Output
Matching
Network
Device
Under
Test
Zsource
50 
Zload
Figure 21. UHF Broadband Series Equivalent Source and Load Impedance — 450–520 MHz
AFT09MS007NT1
RF Device Data
Freescale Semiconductor, Inc.
17
760–860 MHz BROADBAND REFERENCE CIRCUIT
Table 16. 760–860 MHz Broadband Performance (In Freescale Reference Circuit, 50 ohm system)
VDD = 7.5 Volts, IDQ = 150 mA, TA = 25C, CW
Frequency
(MHz)
Pin
(W)
Gps
(dB)
D
(%)
Pout
(W)
760
0.20
15.3
48.1
7.0
810
0.16
16.3
54.1
7.0
860
0.21
15.1
59.5
7.0
Table 17. Load Mismatch/Ruggedness (In Freescale Reference Circuit)
Frequency
(MHz)
Signal
Type
810
CW
VSWR
Pin
(W)
> 65:1 at all
Phase Angles
0.5
(3 dB Overdrive)
Test Voltage, VDD
Result
9.0
No Device
Degradation
AFT09MS007NT1
18
RF Device Data
Freescale Semiconductor, Inc.
760–860 MHz BROADBAND REFERENCE CIRCUIT
VGG
C1
C8
GND
VDD
C16
J1
C9
B1
B2
AFT09MS007N Rev. 1
C2
C4
R1
C13
L1
C6
C11
Q1
C3
C5
C7
C15
C10
C12
C14
D55295
Figure 22. AFT09MS007NR1 Broadband Reference Circuit Component Layout — 760–860 MHz
Table 18. AFT09MS007NR1 Broadband Reference Circuit Component Designations and Values — 760–860 MHz
Part
Description
Part Number
Manufacturer
B1, B2
RF Beads
2743019447
Fair-Rite
C1
10 pF Chip Capacitor
GQM2195C2E100FB15
Murata
C2
3.9 pF Chip Capacitor
GQM2195C2E3R9BB15
Murata
C3
7.5 pF Chip Capacitor
GQM2195C2E7R5BB15
Murata
C4, C13, C16
100 pF Chip Capacitors
GQM2195C2E101GB15
Murata
C5
8.2 pF Chip Capacitor
GQM2195C2E8R2BB15
Murata
C6, C7
20 pF Chip Capacitors
GQM2195C2E200GB15
Murata
C8
1 F Chip Capacitor
GRM31MR71H105KA88L
Murata
C9
10 F Chip Capacitor
GRM31CR61H106KA12L
Murata
C10, C11
12 pF Chip Capacitors
GQM2195C2E120FB15
Murata
C12
5.1 pF Chip Capacitor
GQM2195C2E5R1BB15
Murata
C14
4.7 pF Chip Capacitor
GQM2195C2E4R7BB15
Murata
C15
3.9 pF Chip Capacitor
GQM2195C2E3R9BB15
Murata
J1
3--pin Header
22-28-8360
Molex
L1
22 nH Inductor
0908SQ-22NJL
Coilcraft
Q1
RF Power LDMOS Transistor
AFT09MS007N
Freescale
R1
200  Chip Resistor
CRCW0805200RJNEA
Vishay
PCB
Shengyi S1000--2, 0.020, r = 4.8
D55295
MTL
AFT09MS007NT1
RF Device Data
Freescale Semiconductor, Inc.
19
AFT09MS007NT1
20
RF Device Data
Freescale Semiconductor, Inc.
RF
INPUT
Z1
C2
Z3
Z5
C5
Z6
C7
C6
Z7
C4
Z8
Z9
R1
Z11
Z12
Z10
L1
C10
Z13
C13
B2
C11
Z14
C9
C12
Z15
VSUPPLY
0.150  0.050 Microstrip
0.120  0.034 Microstrip
0.460  0.034 Microstrip
0.073  0.034 Microstrip
0.120  0.250 Microstrip
0.128  0.250 Microstrip
0.145  0.250 Microstrip
Z1
Z3
Z4
Z5
Z6
Z7
Description
Z2
Microstrip
Z16
C14
Z17
Z14
Z13
Z12
Z11
Z10
Z9
Z8
Microstrip
0.077  0.180 Microstrip
0.068  0.180 Microstrip
0.163  0.180 Microstrip
0.027  0.180 Microstrip
0.110  0.034 Microstrip
0.066  0.034 Microstrip
0.027  0.250 Microstrip
Description
0.160  0.034 Microstrip
0.360  0.034 Microstrip
0.105  0.034 Microstrip
0.150  0.050 Microstrip
Z17
Z18
Z19
* Line length includes microstrip bends.
0.115  0.180 Microstrip
Z16
C16
Z15
Microstrip
C15
Z18
Description
Figure 23. AFT09MS007NT1 Broadband Reference Circuit Schematic — 760–860 MHz
C3
Z4
C8
B1
Table 19. AFT09MS007NT1 Broadband Reference Circuit Microstrips — 760–860 MHz
C1
Z2
VBIAS
Z19
RF
OUTPUT
19
65
D
60
17
55
16
50
15
45
Gps
14
10
Pout, OUTPUT
POWER (WATTS)
Gps, POWER GAIN (dB)
18
D, DRAIN
EFFICIENCY (%)
TYPICAL CHARACTERISTICS — 760–860 MHz BROADBAND
REFERENCE CIRCUIT
9
13
12
8
Pout
11
10
740
VDD = 7.5 Vdc, Pin = 0.25 W, IDQ = 150 mA
760
780
820
800
840
7
6
880
860
f, FREQUENCY (MHz)
Figure 24. Power Gain, Output Power and Drain Efficiency versus
Frequency at a Constant Input Power — 7.5 V
f = 810 MHz
7
12
Pout, OUTPUT POWER (WATTS)
Pout, OUTPUT POWER (WATTS)
14
VDD = 7.5 Vdc, Pin = 0.25 W
10
VDD = 7.5 Vdc, Pin = 0.1 W
Detail A
8
6
4
2
0
5
4
2
1
3
VDD = 7.5 Vdc
Pin = 0.25 W
3
2
VDD = 7.5 Vdc
Pin = 0.1 W
1
0
0
f = 810 MHz
6
0
0.5
1
1.5
2
2.5
3
3.5
VGS, GATE--SOURCE VOLTAGE (VOLTS)
4
Detail A
VGS, GATE--SOURCE VOLTAGE (VOLTS)
Figure 25. Output Power versus Gate--Source Voltage
21
f = 860 MHz
Gps, POWER GAIN (dB)
19
760 MHz
18
17
810 MHz
16
60
45
810 MHz
VDD = 7.5 Vdc
IDQ = 150 mA
30
15
860 MHz
12
Pout
15
9
760 MHz
14
860 MHz 810 MHz
13
6
Gps
3
760 MHz
12
0
0.1
0
0.2
0.3
0.4
0.5
Pout, OUTPUT
POWER (WATTS)
20
D, DRAIN
EFFICIENCY (%)
75
D
0.6
Pin, INPUT POWER (WATTS)
Figure 26. Power Gain, Output Power and Drain
Efficiency versus Input Power and Frequency
AFT09MS007NT1
RF Device Data
Freescale Semiconductor, Inc.
21
760–860 MHz BROADBAND REFERENCE CIRCUIT
Zo = 2 
f = 860 MHz
Zsource
f = 760 MHz
f = 860 MHz
Zload
f = 760 MHz
VDD = 7.5 Vdc, IDQ = 150 mA, Pout = 7 W
f
MHz
Zsource

760
0.77 + j0.62
1.65 – j0.04
770
0.81 + j0.71
1.70 + j0.10
780
0.81 + j0.79
1.72 + j0.24
790
0.82 + j0.85
1.74 + j0.36
800
0.84 + j0.92
1.77 + j0.49
810
0.85 + j0.98
1.81 + j0.61
820
0.88 + j1.02
1.84 + j0.69
830
0.89 + j1.07
1.87 + 0.79
840
0.91 + 1.13
1.91 + j0.90
850
0.91 + j1.19
1.93 + j0.99
860
0.94 + j1.23
1.99 + j1.08
Zload

Zsource = Test circuit impedance as measured from
gate to ground.
Zload
50 
Input
Matching
Network
= Test circuit impedance as measured from
drain to ground.
Output
Matching
Network
Device
Under
Test
Zsource
50 
Zload
Figure 27. Broadband Series Equivalent Source and Load Impedance — 760–860 MHz
AFT09MS007NT1
22
RF Device Data
Freescale Semiconductor, Inc.
0.28
7.11
0.165
4.91
0.089
2.26
Solder Pad with
Thermal Via
Structure
0.085
2.16
0.155
3.94
Inches
(mm)
Figure 28. PCB Pad Layout for PLD--1.5W
A9M07
N B
YYWW
Figure 29. Product Marking
AFT09MS007NT1
RF Device Data
Freescale Semiconductor, Inc.
23
PACKAGE DIMENSIONS
AFT09MS007NT1
24
RF Device Data
Freescale Semiconductor, Inc.
AFT09MS007NT1
RF Device Data
Freescale Semiconductor, Inc.
25
AFT09MS007NT1
26
RF Device Data
Freescale Semiconductor, Inc.
PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS
Refer to the following documents, software and tools to aid your design process.
Application Notes
 AN1955: Thermal Measurement Methodology of RF Power Amplifiers
Engineering Bulletins
 EB212: Using Data Sheet Impedances for RF LDMOS Devices
Software
 Electromigration MTTF Calculator
 RF High Power Model
 .s2p File
Development Tools
 Printed Circuit Boards
For Software and Tools, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the
Software & Tools tab on the part’s Product Summary page to download the respective tool.
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
Description
0
June 2013
 Initial Release of Data Sheet
1
Apr. 2014
 Wideband Performance tables 8, 12, 16: updated to include Pin for all reference circuits, pp. 1, 8, 13, 18
 Tape and Reel information: corrected tape width information from 13--inch reel to 7--inch reel to reflect
actual reel size, p. 1
 Maximum Ratings table: changed Total Device Dissipation value from 182 to 114 W to reflect performance
at 150C, p. 2
 Fig. 4, MTTF versus Junction Temperature – CW: MTTF end temperature on graph changed to match
maximum operating junction temperature, p. 4
 Table 6, Test Circuit Component Designations and Values: updated PCB description to reflect most current
board specifications from Rogers, p. 5
 Added 350–470 MHz UHF Broadband Reference Circuit as follows:
-- Wideband Performance table, p. 1
-- Table 8, UHF Broadband Performance, p. 8
-- Table 9, Load Mismatch/Ruggedness, p. 8
-- Fig. 10, UHF Broadband Reference Circuit Component Layout, p. 9
-- Table 10, UHF Broadband Reference Circuit Component Designations and Values, p. 9
-- Fig. 11, UHF Broadband Reference Circuit Schematic, p. 10
-- Table 11, UHF Broadband Reference Circuit Microstrips, p. 10
-- Fig. 12, Power Gain, Drain Efficiency and Output Power versus Frequency at a Constant Input
Power, p. 11
-- Fig. 13, Output Power versus Gate--Source Voltage, p. 11
-- Fig. 14, Power Gain, Drain Efficiency and Output Power versus Input Power and Frequency, p. 11
-- Fig. 15, VHF Broadband Series Equivalent Source and Load Impedance, p. 12
 Table 12. Load Mismatch/Ruggedness table: changed Test Voltage from 9.0 to 10.8 Vdc to reflect true
capability of the circuit, p. 13
AFT09MS007NT1
RF Device Data
Freescale Semiconductor, Inc.
27
How to Reach Us:
Home Page:
freescale.com
Web Support:
freescale.com/support
Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for
each customer application by customer’s technical experts. Freescale does not convey
any license under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found at the following
address: freescale.com/SalesTermsandConditions.
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,
Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All
other product or service names are the property of their respective owners.
E 2013–2014 Freescale Semiconductor, Inc.
AFT09MS007NT1
Document Number: AFT09MS007N
Rev. 1, 4/2014
28
RF Device Data
Freescale Semiconductor, Inc.