TS881 Rail-to-rail 0.9 V nanopower comparator Datasheet - production data Description The TS881 device is a single comparator featuring ultra low supply current (210 nA typical with output high, VCC = 1.2 V, no load) with rail-torail input and output capability. The performance of this comparator allows it to be used in a wide range of portable applications. The TS881 device minimizes battery supply leakage and therefore enhances battery lifetime. SC70-5 (top view) Operating from 0.85 V to 5.5 V supply voltage, this comparator can be used over a wide temperature range (-40 to +125 °C) keeping the current consumption at an ultra low level. The TS881 device is available in the SC70-5 and the SOT23-5 package, allowing great space saving on the PCB. SOT23-5 (top view) Figure 1. Pin connections (top view) Features 287 Ultra low current consumption: 210 nA typ. 9&& Propagation delay: 2 µs typ. 9&& Rail-to-rail inputs Push-pull output Supply operation from 0.85 V to 5.5 V ,1 Wide temperature range: -40 to +125 °C ESD tolerance: 8 kV HBM / 300 V MM ,1 SC70-5 SMD package Applications 287 9&& ,1 9&& ,1 Portable systems Signal conditioning Medical SOT23-5 December 2013 This is information on a product in full production. DocID023340 Rev 2 1/21 www.st.com Contents TS881 Contents 1 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 5 2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2/21 DocID023340 Rev 2 TS881 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Pin connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Current consumption vs. supply voltage - output low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Current consumption vs. supply voltage - output high . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Current consumption vs. input common mode voltage at VCC = 1.2 V. . . . . . . . . . . . . . . . 10 Current consumption vs. input common mode voltage at VCC = 5 V . . . . . . . . . . . . . . . . . 10 Current consumption vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Current consumption vs. toggle frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Input offset voltage vs. input common mode voltage at VCC = 1.2 V . . . . . . . . . . . . . . . . . 11 Input hysteresis voltage vs. input common mode voltage at VCC = 1.2 V . . . . . . . . . . . . . 11 Input offset voltage vs. input common mode voltage at VCC = 5 V. . . . . . . . . . . . . . . . . . . 11 Input hysteresis voltage vs. input common mode voltage at VCC = 5 V . . . . . . . . . . . . . . . 11 Input offset voltage vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Input hysteresis voltage vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Output voltage drop vs. sink current at VCC = 1.2 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Output voltage drop vs. source current at VCC = 1.2 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Output voltage drop vs. sink current at VCC = 2.7 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Output voltage drop vs. source current at VCC = 2.7 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Output voltage drop vs. sink current at VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Output voltage drop vs. source current at VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Propagation delay TPLH vs. input common mode voltage at VCC = 1.2 V . . . . . . . . . . . . . 13 Propagation delay TPHL vs. input common mode voltage at VCC = 1.2 V . . . . . . . . . . . . . 13 Propagation delay TPLH vs. input common mode voltage at VCC = 5 V . . . . . . . . . . . . . . . 13 Propagation delay TPHL vs. input common mode voltage at VCC = 5 V . . . . . . . . . . . . . . . 13 Propagation delay TPLH vs. input signal overdrive at VCC = 1.2 V . . . . . . . . . . . . . . . . . . . 13 Propagation delay TPHL vs. input signal overdrive at VCC = 1.2 V . . . . . . . . . . . . . . . . . . . 13 Propagation delay TPLH vs. input signal overdrive at VCC = 5 V . . . . . . . . . . . . . . . . . . . . 14 Propagation delay TPHL vs. input signal overdrive at VCC = 5 V . . . . . . . . . . . . . . . . . . . . 14 Propagation delay TPLH vs. supply voltage for signal overdrive 10 mV . . . . . . . . . . . . . . . 14 Propagation delay TPHL vs. supply voltage for signal overdrive 10 mV . . . . . . . . . . . . . . . 14 Propagation delay TPLH vs. supply voltage for signal overdrive 100 mV . . . . . . . . . . . . . . 14 Propagation delay TPHL vs. supply voltage for signal overdrive 100 mV . . . . . . . . . . . . . . 14 Propagation delay vs. temperature for signal overdrive 10 mV . . . . . . . . . . . . . . . . . . . . . 15 Propagation delay vs. temperature for signal overdrive 100 mV . . . . . . . . . . . . . . . . . . . . 15 Input offset voltage vs. input common mode voltage at VCC = 0.9 V . . . . . . . . . . . . . . . . . 15 Input voltage hysteresis vs. input common mode voltage at VCC = 0.9 V . . . . . . . . . . . . . 15 Output voltage drop vs. sink current at VCC = 0.9 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Output voltage drop vs. source current at VCC = 0.9 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Propagation delay TPLH vs. input common mode voltage at VCC = 0.9 V and 10 mV signal overdrive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Propagation delay TPHL vs. input common mode voltage at VCC = 0.9 V and 10 mV signal overdrive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Propagation delay TPLH vs. input common mode voltage at VCC = 0.9 V and 100 mV signal overdrive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Propagation delay TPHL vs. input common mode voltage at VCC = 0.9 V and 100 mV signal overdrive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Propagation delay TPLH vs. input signal overdrive at VCC = 0.9 V . . . . . . . . . . . . . . . . . . . 16 Propagation delay TPHL vs. input signal overdrive at VCC = 0.9 V . . . . . . . . . . . . . . . . . . . 16 DocID023340 Rev 2 3/21 21 List of figures Figure 44. Figure 45. 4/21 TS881 SC70-5 (SOT323-5) package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 SOT23-5 - lead small outline transistor package outline . . . . . . . . . . . . . . . . . . . . . . . . . . 19 DocID023340 Rev 2 TS881 1 Absolute maximum ratings and operating conditions Absolute maximum ratings and operating conditions Table 1. Absolute maximum ratings Symbol VCC Parameter Value Unit 6 V ±6 V (VCC-) - 0.3 to (VCC+) + 0.3 V 205 250 °C/W Supply voltage(1) VID Differential input voltage VIN Input voltage range (2) RTHJA Thermal resistance junction-to-ambient(3) SC70-5 SOT23-5 TSTG Storage temperature -65 to +150 °C TJ Junction temperature 150 °C 260 °C 8000 kV TLEAD Lead temperature (soldering 10 seconds) Human body model (HBM) ESD Machine model (4) (MM)(5) 300 Charged device model (CDM)(6) 1300 Latch-up immunity 200 V mA 1. All voltage values, except differential voltages, are referenced to VCC-. VCC is defined as the difference between VCC+ and VCC-. 2. The magnitude of input and output voltages must never exceed the supply rail ±0.3 V. 3. Short-circuits can cause excessive heating. These values are typical. 4. According to JEDEC standard JESD22-A114F. 5. According to JEDEC standard JESD22-A115A. 6. According to ANSI/ESD STM5.3.1. Table 2. Operating conditions Symbol Parameter Value Unit Toper Operating temperature range 0.85 V < VCC < 5.5 V 1.1 V < VCC < 5.5 V -40 to +85 -40 to +125 °C VCC Supply voltage -40 °C < Tamb < +85 °C -40 °C < Tamb < +125 °C 0.85 to 5.5 1.1 to 5.5 V VICM Common mode input voltage range 0.85 V < VCC < 5.5 V -40 °C < Tamb < +85 °C - 0.2 to + 0.2 and VCC+ - 0.2 to VCC+ + 0.2 1.1 V < VCC < 5.5 V -40 °C < Tamb < +85 °C -40 °C < Tamb < +125 °C VCC- - 0.2 to VCC+ + 0.2 VCC- to VCC+ + 0.2 DocID023340 Rev 2 V 5/21 21 Electrical characteristics 2 TS881 Electrical characteristics Table 3. VCC = +0.9 V, Tamb = +25 °C, VICM = 0 V (unless otherwise specified)(1) Symbol Parameter VIO Input offset voltage (2) VIO Input offset voltage drift VHYST Input hysteresis voltage(3) IIO Input offset current(4) IIB Input bias current(4) Test conditions -40 °C < Tamb < +85 °C -10 -12 1 10 12 mV V/°C 4.6 2.4 mV 4.2 -40 °C < Tamb < +85 °C -10 -100 10 100 pA -40 °C < Tamb < +85 °C -10 -100 10 100 pA No load, output low, VID = -0.1 V -40 °C < Tamb < +85 °C 300 400 450 No load, output high, VID = +0.1 V -40 °C < Tamb < +85 °C 260 350 400 0.2 0.4 Short-circuit current Source Sink VOH Output voltage high Isource = 50 A -40 °C < Tamb < +85 °C VOL Output voltage low Isink = 50 A -40 °C < Tamb < +85 °C f = 1 kHz, CL = 30 pF, RL = 1 M Overdrive = 10 mV -40 °C < Tamb < +85 °C Overdrive = 100 mV -40 °C < Tamb < +85 °C TPHL Unit 1.0 ISC Propagation delay (high to low) Max. -40 °C < Tamb < +85 °C Supply current per operator TPLH Typ. -40 °C < Tamb < +85 °C ICC Propagation delay (low to high) Min. f = 1 kHz, CL = 30 pF, RL = 1 M Overdrive = 10 mV -40 °C < Tamb < +85 °C nA 0.85 0.83 mA 0.87 V 20 50 70 7.2 14 16 3.3 5.0 5.5 6.0 11 12 Overdrive = 100 mV -40 °C < Tamb < +85 °C 2.5 mV s s 4.5 5.0 TR Rise time (10% to 90%) CL = 30 pF, RL = 1 M 160 ns TF Fall time (90% to 10%) CL = 30 pF, RL = 1 M 140 ns TON Power-up time 1.1 1.7 ms 1. All values over the temperature range are guaranteed through correlation and simulation. No production test is performed at the temperature range limits. 2. The offset is defined as the average value of positive and negative trip points (input voltage differences requested to change the output state in each direction). 3. The hysteresis is a built-in feature of the TS881 device. It is defined as the voltage difference between the trip points. 4. Maximum values are guaranteed by design. 6/21 DocID023340 Rev 2 TS881 Electrical characteristics Table 4. VCC = +1.2 V, Tamb = +25 °C, VICM = VCC/2 (unless otherwise specified)(1) Symbol Parameter VIO Input offset voltage(2) VIO Input offset voltage drift VHYST Input hysteresis voltage IIO Input offset current(4) IIB Input bias current(4) Test conditions -40 °C < Tamb < +125 °C Max. Unit -6 1 6 mV 1.6 -40 °C < Tamb < +125 °C -10 -100 -40 °C < Tamb < +125 °C -10 -100 mV 10 100 pA 1 10 100 pA No load, output low, VID = -0.1 V -40 °C < Tamb < +85 °C -40 °C < Tamb < +125 °C 300 450 500 1050 No load, output high, VID = +0.1 V -40 °C < Tamb < +85 °C -40 °C < Tamb < +125 °C 210 350 400 950 1.4 1.0 Short-circuit current Source Sink VOH Output voltage high Isource = 0.2 mA -40 °C < Tamb < +85 °C -40 °C < Tamb < +125 °C VOL Output voltage low Isink = 0.2 mA -40 °C < Tamb < +85 °C -40 °C < Tamb < +125 °C Propagation delay (low to high) 0 < VICM < VCC -40 °C < Tamb < +125 °C f = 1 kHz, CL = 30 pF, RL = 1 M Overdrive = 10 mV -40 °C < Tamb < +125 °C Overdrive = 100 mV -40 °C < Tamb < +125 °C Propagation delay (high to low) f = 1 kHz, CL = 30 pF, RL = 1 M Overdrive = 10 mV -40 °C < Tamb < +125 °C 2.4 µV/°C 4.2 ISC CMRR Common mode rejection ratio 3 -40 °C < Tamb < +125 °C Supply current per operator TPHL Typ. -40 °C < Tamb < +125 °C (3) ICC TPLH Min. nA 1.13 1.10 1.00 mA 1.15 V 40 50 60 70 68 dB 50 6 11 13 2.2 3.1 3.4 5.1 8 10 Overdrive = 100 mV -40 °C < Tamb < +125 °C 2.0 mV µs µs 2.6 3.1 TR Rise time (10% to 90%) CL = 30 pF, RL = 1 M 100 ns TF Fall time (90% to 10%) CL = 30 pF, RL = 1 M 110 ns TON Power-up time 1.0 1.5 ms 1. All values over the temperature range are guaranteed through correlation and simulation. No production test is performed at the temperature range limits. 2. The offset is defined as the average value of positive and negative trip points (input voltage differences requested to change the output state in each direction). 3. The hysteresis is a built-in feature of the TS881 device. It is defined as the voltage difference between the trip points. 4. Maximum values are guaranteed by design. DocID023340 Rev 2 7/21 21 Electrical characteristics TS881 Table 5. VCC = +2.7 V, Tamb = +25 °C, VICM = VCC/2 (unless otherwise specified)(1) Symbol Parameter VIO Input offset voltage(2) VIO Input offset voltage drift VHYST Input hysteresis voltage(3) IIO Input offset current(4) IIB Input bias current(4) Test conditions Typ. Max. 1 -40 °C < Tamb < +125 °C -6 -40 °C < Tamb < +125 °C 6 3 Unit mV µV/°C 2.7 mV -40 °C < Tamb < +125 °C 1.6 4.2 -40 °C < Tamb < +125 °C -10 -100 10 100 pA -10 -100 1 -40 °C < Tamb < +125 °C 10 100 pA 310 450 500 1150 350 400 1050 nA 12 10 ICC Supply current per operator No load, output low, VID = -0.1 V -40 °C < Tamb < +85 °C -40 °C < Tamb < +125 °C No load, output high, VID = +0.1 V -40 °C < Tamb < +85 °C -40 °C < Tamb < +125 °C ISC Short-circuit current Source Sink VOH Output voltage high Isource = 2 mA -40 °C < Tamb < +85 °C -40 °C < Tamb < +125 °C VOL Output voltage low Isink = 2 mA -40 °C < Tamb < +85 °C -40 °C < Tamb < +125 °C CMRR Common mode rejection ratio Min. 0 < VICM < VCC -40 °C < Tamb < +125 °C 220 2.48 2.40 2.10 mA 2.51 V 140 210 230 310 74 mV dB 55 Propagation delay (low to high) f = 1 kHz, CL = 30 pF, RL = 1 M Overdrive = 10 mV -40 °C < Tamb < +125 °C Overdrive = 100 mV -40 °C < Tamb < +125 °C Propagation delay (high to low) f = 1 kHz, CL = 30 pF, RL = 1 M Overdrive = 10 mV -40 °C < Tamb < +125 °C Overdrive = 100 mV -40 °C < Tamb < +125 °C TR Rise time (10% to 90%) CL = 30 pF, RL = 1 M 120 ns TF Fall time (90% to 10%) CL = 30 pF, RL = 1 M 130 ns TPLH TPHL TON Power-up time 6.3 2.4 6.4 2.3 0.9 12 13 3.0 3.7 12 14 3.0 3.7 1.5 µs µs ms 1. All values over the temperature range are guaranteed through correlation and simulation. No production test is performed at the temperature range limits. 2. The offset is defined as the average value of positive and negative trip points (input voltage differences requested to change the output state in each direction). 3. The hysteresis is a built-in feature of the TS881. It is defined as the voltage difference between the trip points. 4. Maximum values are guaranteed by design. 8/21 DocID023340 Rev 2 TS881 Electrical characteristics Table 6. VCC = +5 V, Tamb = +25 °C, VICM = VCC/2 (unless otherwise specified)(1) Symbol Parameter VIO Input offset voltage VIO Input offset voltage drift VHYST Test conditions (2) Input hysteresis voltage IIO Input offset current(4) IIB Input bias current(4) -40 °C < Tamb < +125 °C Min. Typ. Max. Unit -6 1 6 mV -40 °C < Tamb < +125 °C (3) 3 -40 °C < Tamb < +125 °C 1.6 -40 °C < Tamb < +125 °C -10 -100 -40 °C < Tamb < +125 °C -10 -100 ICC Supply current per operator No load, output low, VID = -0.1 V -40 °C < Tamb < +85 °C -40 °C < Tamb < +125 °C No load, output high, VID = +0.1 V -40 °C < Tamb < +85 °C -40 °C < Tamb < +125 °C ISC Short-circuit current Source Sink VOH Output voltage high Isource = 2 mA -40 °C < Tamb < +85 °C -40 °C < Tamb < +125 °C VOL Output voltage low Isink = 2 mA -40 °C < Tamb < +85 °C -40 °C < Tamb < +125 °C 3.1 4.2 mV 10 100 pA 1 10 100 pA 350 500 750 1350 400 650 1250 nA 32 36 250 4.86 4.75 4.60 µV/°C mA 4.90 V 95 130 170 280 78 mV 0 < VICM < VCC -40 °C < Tamb < +125 °C 55 Supply voltage rejection VCC = 1.2 V to 5 V -40 °C < Tamb < +125 °C 65 Propagation delay (low to high) f = 1 kHz, CL = 30 pF, RL = 1 M Overdrive = 10 mV -40 °C < Tamb < +125 °C Overdrive = 100 mV -40 °C < Tamb < +125 °C Propagation delay (high to low) f = 1 kHz, CL = 30 pF, RL = 1 M Overdrive = 10 mV -40 °C < Tamb < +125 °C Overdrive = 100 mV -40 °C < Tamb < +125 °C TR Rise time (10% to 90%) CL = 30 pF, RL = 1 M 160 ns TF Fall time (90% to 10%) CL = 30 pF, RL = 1 M 150 ns CMRR Common mode rejection ratio SVR TPLH TPHL TON Power-up time dB 80 7.8 2.6 8.9 2.7 1.1 dB 13 22 3.4 4.1 16 19 3.5 4.2 1.5 µs µs ms 1. All values over the temperature range are guaranteed through correlation and simulation. No production test is performed at the temperature range limits. 2. The offset is defined as the average value of positive and negative trip points (input voltage differences requested to change the output state in each direction). 3. The hysteresis is a built-in feature of the TS881 device. It is defined as the voltage difference between the trip points. 4. Maximum values are guaranteed by design. DocID023340 Rev 2 9/21 21 Electrical characteristics TS881 Figure 2. Current consumption vs. supply voltage - output low Figure 3. Current consumption vs. supply voltage - output high 9,&0 9&& RXWSXW+,*+ ,&&Q$ ,&&Q$ 9,&0 9&& RXWSXW/2: 9&&9 9&&9 $0 Figure 4. Current consumption vs. input common mode voltage at VCC = 1.2 V $0 Figure 5. Current consumption vs. input common mode voltage at VCC = 5 V 9&& 9 RXWSXW/2: RXWSXW/2: ,&&Q$ ,&&Q$ 9&& 9 9,&09 9,&09 $0 Figure 6. Current consumption vs. temperature $0 Figure 7. Current consumption vs. toggle frequency 9&& 9 9,&0 9&& 7 & ,&&Q$ 9,&0 9&& 9&& 9 9&& 9 9&& 9 $0 10/21 DocID023340 Rev 2 $0 TS881 Electrical characteristics Figure 8. Input offset voltage vs. input common mode voltage at VCC = 1.2 V Figure 9. Input hysteresis voltage vs. input common mode voltage at VCC = 1.2 V 9&& 9 9,2P9 9+<67P9 9&& 9 9,&09 9,&09 $0 Figure 10. Input offset voltage vs. input common mode voltage at VCC = 5 V Figure 11. Input hysteresis voltage vs. input common mode voltage at VCC = 5 V 9&& 9 9,2P9 9+<67P9 9&& 9 9,&09 9,&09 $0 Figure 12. Input offset voltage vs. temperature $0 Figure 13. Input hysteresis voltage vs. temperature 9,&0 9&& 9,&0 9&& 9&& 9 9+<67P9 9&& 9 9,2P9 $0 9&& 9 $0 DocID023340 Rev 2 9&& 9 $0 11/21 21 Electrical characteristics TS881 Figure 14. Output voltage drop vs. sink current at VCC = 1.2 V Figure 15. Output voltage drop vs. source current at VCC = 1.2 V 9&& 9 9'5239 9'5239 9&& 9 ,6285&($ ,6,1.$ $0 Figure 16. Output voltage drop vs. sink current at VCC = 2.7 V $0 Figure 17. Output voltage drop vs. source current at VCC = 2.7 V 9&& 9 9'5239 9'5239 9&& 9 ,6,1.$ ,6285&($ $0 Figure 18. Output voltage drop vs. sink current at VCC = 5 V $0 Figure 19. Output voltage drop vs. source current at VCC = 5 V 9&& 9 9'5239 9'5239 9&& 9 ,6285&($ ,6,1.$ $0 12/21 DocID023340 Rev 2 $0 TS881 Electrical characteristics Figure 20. Propagation delay TPLH vs. input common mode voltage at VCC = 1.2 V Figure 21. Propagation delay TPHL vs. input common mode voltage at VCC = 1.2 V 9&& 9 929 P9 9&& 9 929 P9 9,&09 9,&09 $0 Figure 22. Propagation delay TPLH vs. input common mode voltage at VCC = 5 V $0 Figure 23. Propagation delay TPHL vs. input common mode voltage at VCC = 5 V 9&& 9 929 P9 9&& 9 929 P9 9,&09 9,&09 $0 Figure 24. Propagation delay TPLH vs. input signal overdrive at VCC = 1.2 V $0 Figure 25. Propagation delay TPHL vs. input signal overdrive at VCC = 1.2 V 9&& 9 9,&0 9 9&& 9 9,&0 9 929P9 929P9 $0 DocID023340 Rev 2 $0 13/21 21 Electrical characteristics TS881 Figure 26. Propagation delay TPLH vs. input signal overdrive at VCC = 5 V Figure 27. Propagation delay TPHL vs. input signal overdrive at VCC = 5 V 9&& 9 9,&0 9 9&& 9 9,&0 9 929P9 929P9 $0 Figure 28. Propagation delay TPLH vs. supply voltage for signal overdrive 10 mV 9,&0 9&& 929 P9 Figure 29. Propagation delay TPHL vs. supply voltage for signal overdrive 10 mV 9,&0 9&& 929 P9 9&&9 9&&9 $0 Figure 30. Propagation delay TPLH vs. supply voltage for signal overdrive 100 mV $0 Figure 31. Propagation delay TPHL vs. supply voltage for signal overdrive 100 mV 9,&0 9&& 929 P9 9,&0 9&& 929 P9 9&&9 $0 14/21 $0 DocID023340 Rev 2 9&&9 $0 TS881 Electrical characteristics Figure 32. Propagation delay vs. temperature for signal overdrive 10 mV 929 P9 9,&0 9&& 73/+ 9&& 9 Figure 33. Propagation delay vs. temperature for signal overdrive 100 mV 929 P9 9,&0 9&& 73+/ 9&& 9 73 73 73/+ 9&& 9 73+/ 9&& 9 73/+ 9&& 9 73+/ 9&& 9 73/+ 9&& 9 $0 73+/ 9&& 9 $0 Figure 34. Input offset voltage vs. input common mode voltage at VCC = 0.9 V Figure 35. Input voltage hysteresis vs. input common mode voltage at VCC = 0.9 V Figure 36. Output voltage drop vs. sink current at VCC = 0.9 V Figure 37. Output voltage drop vs. source current at VCC = 0.9 V DocID023340 Rev 2 15/21 21 Electrical characteristics TS881 Figure 38. Propagation delay TPLH vs. input Figure 39. Propagation delay TPHL vs. input common mode voltage at VCC = 0.9 V and 10 mV common mode voltage at VCC = 0.9 V and 10 mV signal overdrive signal overdrive Figure 40. Propagation delay TPLH vs. input common mode voltage at VCC = 0.9 V and 100 mV signal overdrive Figure 41. Propagation delay TPHL vs. input common mode voltage at VCC = 0.9 V and 100 mV signal overdrive Figure 42. Propagation delay TPLH vs. input signal overdrive at VCC = 0.9 V Figure 43. Propagation delay TPHL vs. input signal overdrive at VCC = 0.9 V 16/21 DocID023340 Rev 2 TS881 3 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. DocID023340 Rev 2 17/21 21 Package information TS881 Figure 44. SC70-5 (SOT323-5) package outline Table 7. SC70-5 (SOT323-5) package mechanical data Dimensions Symbol Millimeters Min. Max. Min. Typ. Max. A 0.80 1.10 31.5 43.3 A1 0.00 0.10 0.0 3.9 A2 0.80 1.00 31.5 b 0.15 0.30 5.9 11.8 C 0.10 0.22 3.9 8.7 D 1.80 2.20 70.9 86.6 E 1.80 2.40 70.9 94.5 E1 1.15 1.35 45.3 0.9 1.25 35.4 49.2 e 0.65 25.6 e1 1.3 51.2 L 18/21 Typ. Mils 0.26 0.36 0.46 DocID023340 Rev 2 10.2 14.2 39.4 53.1 18.1 TS881 Package information Figure 45. SOT23-5 - lead small outline transistor package outline ( $ H H ' [E [ & $ $ & V / ( 627 Table 8. SOT23-5 - lead small outline transistor package mechanical data Dimensions Symbol Millimeters Typ. Min. A Inches Max. Min. 1.45 A1 0.00 0.15 0.90 1.30 b 0.30 c 0.08 A2 Typ. 1.15 Max. 0.057 0.000 0.006 0.035 0.051 0.50 0.012 0.020 0.22 0.003 0.009 0.045 D 2.90 0.114 E 2.80 0.110 E1 1.60 0.063 e 0.95 0.037 e1 1.90 0.075 L 0.45 0.30 0.60 0.018 0.012 0.024 q 4 0 8 4 0 8 N 5 DocID023340 Rev 2 5 19/21 21 Ordering information 4 TS881 Ordering information Table 9. Order codes 5 Order code Temperature range Package Packaging Marking TS881ICT -40 to +125 °C SC70-5 Tape and reel K56 TS881ILT -40 to +125 °C SOT23-5 Tape and reel K524 Revision history Table 10. Document revision history Date Revision 18-Jul-2012 1 Initial release. 2 Updated title on page 1 (replaced 1.1 V by 0.9 V). Added package SOT23-5 and package information: on page 1, in Section : Description on page 1, Figure 1: Pin connections (top view) on page 1, Table 1, Section 3: Package information, Section 4: Ordering information. Updated Section : Features on page 1 (replaced “Supply operation” from “1.1 V to 5.5 V” to “0.85 V to 5.5 V”, HBM changed from 4 kV to 8 kV). Updated Section : Description on page 1 (replaced 1.1 by 0.85 V). Updated Table 1 (changed ESD HBM to 8000 V). Updated Table 2 (updated and added parameters and values). Updated Section 2: Electrical characteristics: – Added Table 3. – Updated Table 4, Table 5, Table 6 (added min. values for IIO and IIB symbols). – Note 4. below Table 4., note 4. below Table 5., and note 4. below Table 6 (replaced “Maximum values include unavoidable inaccuracies of the industrial tests.” by “Maximum values are guaranteed by design.”). – Added Figure 34 to Figure 43. Minor modifications throughout document. 16-Dec-2013 20/21 Changes DocID023340 Rev 2 TS881 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2013 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com DocID023340 Rev 2 21/21 21