Download Datasheet

TS881
Rail-to-rail 0.9 V nanopower comparator
Datasheet - production data
Description
The TS881 device is a single comparator
featuring ultra low supply current (210 nA typical
with output high, VCC = 1.2 V, no load) with rail-torail input and output capability. The performance
of this comparator allows it to be used in a wide
range of portable applications. The TS881 device
minimizes battery supply leakage and therefore
enhances battery lifetime.
SC70-5 (top view)
Operating from 0.85 V to 5.5 V supply voltage,
this comparator can be used over a wide
temperature range (-40 to +125 °C) keeping the
current consumption at an ultra low level.
The TS881 device is available in the SC70-5 and
the SOT23-5 package, allowing great space
saving on the PCB.
SOT23-5 (top view)
Figure 1. Pin connections (top view)
Features
287
 Ultra low current consumption: 210 nA typ.
9&&
 Propagation delay: 2 µs typ.
9&&
 Rail-to-rail inputs
 Push-pull output
 Supply operation from 0.85 V to 5.5 V
,1
 Wide temperature range: -40 to +125 °C
 ESD tolerance: 8 kV HBM / 300 V MM
,1
SC70-5
 SMD package
Applications
287
9&& ,1
9&&
,1
 Portable systems
 Signal conditioning
 Medical
SOT23-5
December 2013
This is information on a product in full production.
DocID023340 Rev 2
1/21
www.st.com
Contents
TS881
Contents
1
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 5
2
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2/21
DocID023340 Rev 2
TS881
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Pin connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Current consumption vs. supply voltage - output low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Current consumption vs. supply voltage - output high . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Current consumption vs. input common mode voltage at VCC = 1.2 V. . . . . . . . . . . . . . . . 10
Current consumption vs. input common mode voltage at VCC = 5 V . . . . . . . . . . . . . . . . . 10
Current consumption vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Current consumption vs. toggle frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Input offset voltage vs. input common mode voltage at VCC = 1.2 V . . . . . . . . . . . . . . . . . 11
Input hysteresis voltage vs. input common mode voltage at VCC = 1.2 V . . . . . . . . . . . . . 11
Input offset voltage vs. input common mode voltage at VCC = 5 V. . . . . . . . . . . . . . . . . . . 11
Input hysteresis voltage vs. input common mode voltage at VCC = 5 V . . . . . . . . . . . . . . . 11
Input offset voltage vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Input hysteresis voltage vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Output voltage drop vs. sink current at VCC = 1.2 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Output voltage drop vs. source current at VCC = 1.2 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Output voltage drop vs. sink current at VCC = 2.7 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Output voltage drop vs. source current at VCC = 2.7 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Output voltage drop vs. sink current at VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Output voltage drop vs. source current at VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Propagation delay TPLH vs. input common mode voltage at VCC = 1.2 V . . . . . . . . . . . . . 13
Propagation delay TPHL vs. input common mode voltage at VCC = 1.2 V . . . . . . . . . . . . . 13
Propagation delay TPLH vs. input common mode voltage at VCC = 5 V . . . . . . . . . . . . . . . 13
Propagation delay TPHL vs. input common mode voltage at VCC = 5 V . . . . . . . . . . . . . . . 13
Propagation delay TPLH vs. input signal overdrive at VCC = 1.2 V . . . . . . . . . . . . . . . . . . . 13
Propagation delay TPHL vs. input signal overdrive at VCC = 1.2 V . . . . . . . . . . . . . . . . . . . 13
Propagation delay TPLH vs. input signal overdrive at VCC = 5 V . . . . . . . . . . . . . . . . . . . . 14
Propagation delay TPHL vs. input signal overdrive at VCC = 5 V . . . . . . . . . . . . . . . . . . . . 14
Propagation delay TPLH vs. supply voltage for signal overdrive 10 mV . . . . . . . . . . . . . . . 14
Propagation delay TPHL vs. supply voltage for signal overdrive 10 mV . . . . . . . . . . . . . . . 14
Propagation delay TPLH vs. supply voltage for signal overdrive 100 mV . . . . . . . . . . . . . . 14
Propagation delay TPHL vs. supply voltage for signal overdrive 100 mV . . . . . . . . . . . . . . 14
Propagation delay vs. temperature for signal overdrive 10 mV . . . . . . . . . . . . . . . . . . . . . 15
Propagation delay vs. temperature for signal overdrive 100 mV . . . . . . . . . . . . . . . . . . . . 15
Input offset voltage vs. input common mode voltage at VCC = 0.9 V . . . . . . . . . . . . . . . . . 15
Input voltage hysteresis vs. input common mode voltage at VCC = 0.9 V . . . . . . . . . . . . . 15
Output voltage drop vs. sink current at VCC = 0.9 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Output voltage drop vs. source current at VCC = 0.9 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Propagation delay TPLH vs. input common mode voltage at VCC = 0.9 V
and 10 mV signal overdrive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Propagation delay TPHL vs. input common mode voltage at VCC = 0.9 V
and 10 mV signal overdrive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Propagation delay TPLH vs. input common mode voltage at VCC = 0.9 V
and 100 mV signal overdrive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Propagation delay TPHL vs. input common mode voltage at VCC = 0.9 V
and 100 mV signal overdrive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Propagation delay TPLH vs. input signal overdrive at VCC = 0.9 V . . . . . . . . . . . . . . . . . . . 16
Propagation delay TPHL vs. input signal overdrive at VCC = 0.9 V . . . . . . . . . . . . . . . . . . . 16
DocID023340 Rev 2
3/21
21
List of figures
Figure 44.
Figure 45.
4/21
TS881
SC70-5 (SOT323-5) package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
SOT23-5 - lead small outline transistor package outline . . . . . . . . . . . . . . . . . . . . . . . . . . 19
DocID023340 Rev 2
TS881
1
Absolute maximum ratings and operating conditions
Absolute maximum ratings and operating conditions
Table 1. Absolute maximum ratings
Symbol
VCC
Parameter
Value
Unit
6
V
±6
V
(VCC-) - 0.3 to (VCC+) + 0.3
V
205
250
°C/W
Supply voltage(1)
VID
Differential input voltage
VIN
Input voltage range
(2)
RTHJA
Thermal resistance junction-to-ambient(3)
SC70-5
SOT23-5
TSTG
Storage temperature
-65 to +150
°C
TJ
Junction temperature
150
°C
260
°C
8000
kV
TLEAD
Lead temperature (soldering 10 seconds)
Human body model (HBM)
ESD
Machine model
(4)
(MM)(5)
300
Charged device model (CDM)(6)
1300
Latch-up immunity
200
V
mA
1. All voltage values, except differential voltages, are referenced to VCC-. VCC is defined as the difference
between VCC+ and VCC-.
2. The magnitude of input and output voltages must never exceed the supply rail ±0.3 V.
3. Short-circuits can cause excessive heating. These values are typical.
4. According to JEDEC standard JESD22-A114F.
5. According to JEDEC standard JESD22-A115A.
6. According to ANSI/ESD STM5.3.1.
Table 2. Operating conditions
Symbol
Parameter
Value
Unit
Toper
Operating temperature range
0.85 V < VCC < 5.5 V
1.1 V < VCC < 5.5 V
-40 to +85
-40 to +125
°C
VCC
Supply voltage
-40 °C < Tamb < +85 °C
-40 °C < Tamb < +125 °C
0.85 to 5.5
1.1 to 5.5
V
VICM
Common mode input voltage range
0.85 V < VCC < 5.5 V
-40 °C < Tamb < +85 °C
- 0.2 to + 0.2 and
VCC+ - 0.2 to VCC+ + 0.2
1.1 V < VCC < 5.5 V
-40 °C < Tamb < +85 °C
-40 °C < Tamb < +125 °C
VCC- - 0.2 to VCC+ + 0.2
VCC- to VCC+ + 0.2
DocID023340 Rev 2
V
5/21
21
Electrical characteristics
2
TS881
Electrical characteristics
Table 3. VCC = +0.9 V, Tamb = +25 °C, VICM = 0 V (unless otherwise specified)(1)
Symbol
Parameter
VIO
Input offset voltage (2)
VIO
Input offset voltage drift
VHYST
Input hysteresis voltage(3)
IIO
Input offset current(4)
IIB
Input bias current(4)
Test conditions
-40 °C < Tamb < +85 °C
-10
-12
1
10
12
mV
V/°C
4.6
2.4
mV
4.2
-40 °C < Tamb < +85 °C
-10
-100
10
100
pA
-40 °C < Tamb < +85 °C
-10
-100
10
100
pA
No load, output low, VID = -0.1 V
-40 °C < Tamb < +85 °C
300
400
450
No load, output high, VID = +0.1 V
-40 °C < Tamb < +85 °C
260
350
400
0.2
0.4
Short-circuit current
Source
Sink
VOH
Output voltage high
Isource = 50 A
-40 °C < Tamb < +85 °C
VOL
Output voltage low
Isink = 50 A
-40 °C < Tamb < +85 °C
f = 1 kHz, CL = 30 pF, RL = 1 M
Overdrive = 10 mV
-40 °C < Tamb < +85 °C
Overdrive = 100 mV
-40 °C < Tamb < +85 °C
TPHL
Unit
1.0
ISC
Propagation delay
(high to low)
Max.
-40 °C < Tamb < +85 °C
Supply current per operator
TPLH
Typ.
-40 °C < Tamb < +85 °C
ICC
Propagation delay
(low to high)
Min.
f = 1 kHz, CL = 30 pF, RL = 1 M
Overdrive = 10 mV
-40 °C < Tamb < +85 °C
nA
0.85
0.83
mA
0.87
V
20
50
70
7.2
14
16
3.3
5.0
5.5
6.0
11
12
Overdrive = 100 mV
-40 °C < Tamb < +85 °C
2.5
mV
s
s
4.5
5.0
TR
Rise time (10% to 90%)
CL = 30 pF, RL = 1 M
160
ns
TF
Fall time (90% to 10%)
CL = 30 pF, RL = 1 M
140
ns
TON
Power-up time
1.1
1.7
ms
1. All values over the temperature range are guaranteed through correlation and simulation. No production test is performed
at the temperature range limits.
2. The offset is defined as the average value of positive and negative trip points (input voltage differences requested to
change the output state in each direction).
3. The hysteresis is a built-in feature of the TS881 device. It is defined as the voltage difference between the trip points.
4. Maximum values are guaranteed by design.
6/21
DocID023340 Rev 2
TS881
Electrical characteristics
Table 4. VCC = +1.2 V, Tamb = +25 °C, VICM = VCC/2 (unless otherwise specified)(1)
Symbol
Parameter
VIO
Input offset voltage(2)
VIO
Input offset voltage drift
VHYST
Input hysteresis voltage
IIO
Input offset current(4)
IIB
Input bias current(4)
Test conditions
-40 °C < Tamb < +125 °C
Max.
Unit
-6
1
6
mV
1.6
-40 °C < Tamb < +125 °C
-10
-100
-40 °C < Tamb < +125 °C
-10
-100
mV
10
100
pA
1
10
100
pA
No load, output low, VID = -0.1 V
-40 °C < Tamb < +85 °C
-40 °C < Tamb < +125 °C
300
450
500
1050
No load, output high, VID = +0.1 V
-40 °C < Tamb < +85 °C
-40 °C < Tamb < +125 °C
210
350
400
950
1.4
1.0
Short-circuit current
Source
Sink
VOH
Output voltage high
Isource = 0.2 mA
-40 °C < Tamb < +85 °C
-40 °C < Tamb < +125 °C
VOL
Output voltage low
Isink = 0.2 mA
-40 °C < Tamb < +85 °C
-40 °C < Tamb < +125 °C
Propagation delay
(low to high)
0 < VICM < VCC
-40 °C < Tamb < +125 °C
f = 1 kHz, CL = 30 pF, RL = 1 M
Overdrive = 10 mV
-40 °C < Tamb < +125 °C
Overdrive = 100 mV
-40 °C < Tamb < +125 °C
Propagation delay
(high to low)
f = 1 kHz, CL = 30 pF, RL = 1 M
Overdrive = 10 mV
-40 °C < Tamb < +125 °C
2.4
µV/°C
4.2
ISC
CMRR Common mode rejection ratio
3
-40 °C < Tamb < +125 °C
Supply current per operator
TPHL
Typ.
-40 °C < Tamb < +125 °C
(3)
ICC
TPLH
Min.
nA
1.13
1.10
1.00
mA
1.15
V
40
50
60
70
68
dB
50
6
11
13
2.2
3.1
3.4
5.1
8
10
Overdrive = 100 mV
-40 °C < Tamb < +125 °C
2.0
mV
µs
µs
2.6
3.1
TR
Rise time (10% to 90%)
CL = 30 pF, RL = 1 M
100
ns
TF
Fall time (90% to 10%)
CL = 30 pF, RL = 1 M
110
ns
TON
Power-up time
1.0
1.5
ms
1. All values over the temperature range are guaranteed through correlation and simulation. No production test is performed
at the temperature range limits.
2. The offset is defined as the average value of positive and negative trip points (input voltage differences requested to
change the output state in each direction).
3. The hysteresis is a built-in feature of the TS881 device. It is defined as the voltage difference between the trip points.
4. Maximum values are guaranteed by design.
DocID023340 Rev 2
7/21
21
Electrical characteristics
TS881
Table 5. VCC = +2.7 V, Tamb = +25 °C, VICM = VCC/2 (unless otherwise specified)(1)
Symbol
Parameter
VIO
Input offset voltage(2)
VIO
Input offset voltage drift
VHYST
Input hysteresis voltage(3)
IIO
Input offset current(4)
IIB
Input bias current(4)
Test conditions
Typ.
Max.
1
-40 °C < Tamb < +125 °C
-6
-40 °C < Tamb < +125 °C
6
3
Unit
mV
µV/°C
2.7
mV
-40 °C < Tamb < +125 °C
1.6
4.2
-40 °C < Tamb < +125 °C
-10
-100
10
100
pA
-10
-100
1
-40 °C < Tamb < +125 °C
10
100
pA
310
450
500
1150
350
400
1050
nA
12
10
ICC
Supply current per operator
No load, output low, VID = -0.1 V
-40 °C < Tamb < +85 °C
-40 °C < Tamb < +125 °C
No load, output high, VID = +0.1 V
-40 °C < Tamb < +85 °C
-40 °C < Tamb < +125 °C
ISC
Short-circuit current
Source
Sink
VOH
Output voltage high
Isource = 2 mA
-40 °C < Tamb < +85 °C
-40 °C < Tamb < +125 °C
VOL
Output voltage low
Isink = 2 mA
-40 °C < Tamb < +85 °C
-40 °C < Tamb < +125 °C
CMRR Common mode rejection ratio
Min.
0 < VICM < VCC
-40 °C < Tamb < +125 °C
220
2.48
2.40
2.10
mA
2.51
V
140
210
230
310
74
mV
dB
55
Propagation delay
(low to high)
f = 1 kHz, CL = 30 pF, RL = 1 M
Overdrive = 10 mV
-40 °C < Tamb < +125 °C
Overdrive = 100 mV
-40 °C < Tamb < +125 °C
Propagation delay
(high to low)
f = 1 kHz, CL = 30 pF, RL = 1 M
Overdrive = 10 mV
-40 °C < Tamb < +125 °C
Overdrive = 100 mV
-40 °C < Tamb < +125 °C
TR
Rise time (10% to 90%)
CL = 30 pF, RL = 1 M
120
ns
TF
Fall time (90% to 10%)
CL = 30 pF, RL = 1 M
130
ns
TPLH
TPHL
TON
Power-up time
6.3
2.4
6.4
2.3
0.9
12
13
3.0
3.7
12
14
3.0
3.7
1.5
µs
µs
ms
1. All values over the temperature range are guaranteed through correlation and simulation. No production test is performed
at the temperature range limits.
2. The offset is defined as the average value of positive and negative trip points (input voltage differences requested to
change the output state in each direction).
3. The hysteresis is a built-in feature of the TS881. It is defined as the voltage difference between the trip points.
4. Maximum values are guaranteed by design.
8/21
DocID023340 Rev 2
TS881
Electrical characteristics
Table 6. VCC = +5 V, Tamb = +25 °C, VICM = VCC/2 (unless otherwise specified)(1)
Symbol
Parameter
VIO
Input offset voltage
VIO
Input offset voltage drift
VHYST
Test conditions
(2)
Input hysteresis voltage
IIO
Input offset current(4)
IIB
Input bias current(4)
-40 °C < Tamb < +125 °C
Min.
Typ.
Max.
Unit
-6
1
6
mV
-40 °C < Tamb < +125 °C
(3)
3
-40 °C < Tamb < +125 °C
1.6
-40 °C < Tamb < +125 °C
-10
-100
-40 °C < Tamb < +125 °C
-10
-100
ICC
Supply current per operator
No load, output low, VID = -0.1 V
-40 °C < Tamb < +85 °C
-40 °C < Tamb < +125 °C
No load, output high, VID = +0.1 V
-40 °C < Tamb < +85 °C
-40 °C < Tamb < +125 °C
ISC
Short-circuit current
Source
Sink
VOH
Output voltage high
Isource = 2 mA
-40 °C < Tamb < +85 °C
-40 °C < Tamb < +125 °C
VOL
Output voltage low
Isink = 2 mA
-40 °C < Tamb < +85 °C
-40 °C < Tamb < +125 °C
3.1
4.2
mV
10
100
pA
1
10
100
pA
350
500
750
1350
400
650
1250
nA
32
36
250
4.86
4.75
4.60
µV/°C
mA
4.90
V
95
130
170
280
78
mV
0 < VICM < VCC
-40 °C < Tamb < +125 °C
55
Supply voltage rejection
VCC = 1.2 V to 5 V
-40 °C < Tamb < +125 °C
65
Propagation delay
(low to high)
f = 1 kHz, CL = 30 pF, RL = 1 M
Overdrive = 10 mV
-40 °C < Tamb < +125 °C
Overdrive = 100 mV
-40 °C < Tamb < +125 °C
Propagation delay
(high to low)
f = 1 kHz, CL = 30 pF, RL = 1 M
Overdrive = 10 mV
-40 °C < Tamb < +125 °C
Overdrive = 100 mV
-40 °C < Tamb < +125 °C
TR
Rise time (10% to 90%)
CL = 30 pF, RL = 1 M
160
ns
TF
Fall time (90% to 10%)
CL = 30 pF, RL = 1 M
150
ns
CMRR Common mode rejection ratio
SVR
TPLH
TPHL
TON
Power-up time
dB
80
7.8
2.6
8.9
2.7
1.1
dB
13
22
3.4
4.1
16
19
3.5
4.2
1.5
µs
µs
ms
1. All values over the temperature range are guaranteed through correlation and simulation. No production test is performed
at the temperature range limits.
2. The offset is defined as the average value of positive and negative trip points (input voltage differences requested to
change the output state in each direction).
3. The hysteresis is a built-in feature of the TS881 device. It is defined as the voltage difference between the trip points.
4. Maximum values are guaranteed by design.
DocID023340 Rev 2
9/21
21
Electrical characteristics
TS881
Figure 2. Current consumption vs. supply
voltage - output low
Figure 3. Current consumption vs. supply
voltage - output high
9,&0 9&&
RXWSXW+,*+
,&&Q$
,&&Q$
9,&0 9&&
RXWSXW/2:
9&&9
9&&9
$0
Figure 4. Current consumption vs. input
common mode voltage
at VCC = 1.2 V
$0
Figure 5. Current consumption vs. input
common mode voltage at VCC = 5 V
9&& 9
RXWSXW/2:
RXWSXW/2:
,&&Q$
,&&Q$
9&& 9
9,&09
9,&09
$0
Figure 6. Current consumption vs. temperature
$0
Figure 7. Current consumption vs. toggle
frequency
9&& 9
9,&0 9&&
7 ƒ&
,&&Q$
9,&0 9&&
9&& 9
9&& 9
9&& 9
$0
10/21
DocID023340 Rev 2
$0
TS881
Electrical characteristics
Figure 8. Input offset voltage vs. input common
mode voltage at VCC = 1.2 V
Figure 9. Input hysteresis voltage vs. input
common mode voltage at VCC = 1.2 V
9&& 9
9,2P9
9+<67P9
9&& 9
9,&09
9,&09
$0
Figure 10. Input offset voltage vs. input
common mode voltage at VCC = 5 V
Figure 11. Input hysteresis voltage vs. input
common mode voltage at VCC = 5 V
9&& 9
9,2P9
9+<67P9
9&& 9
9,&09
9,&09
$0
Figure 12. Input offset voltage vs. temperature
$0
Figure 13. Input hysteresis voltage vs.
temperature
9,&0 9&&
9,&0 9&&
9&& 9
9+<67P9
9&& 9
9,2P9
$0
9&& 9
$0
DocID023340 Rev 2
9&& 9
$0
11/21
21
Electrical characteristics
TS881
Figure 14. Output voltage drop vs. sink current
at VCC = 1.2 V
Figure 15. Output voltage drop vs. source
current at VCC = 1.2 V
9&& 9
9'5239
9'5239
9&& 9
,6285&($
,6,1.$
$0
Figure 16. Output voltage drop vs. sink current
at VCC = 2.7 V
$0
Figure 17. Output voltage drop vs. source
current at VCC = 2.7 V
9&& 9
9'5239
9'5239
9&& 9
,6,1.$
,6285&($
$0
Figure 18. Output voltage drop vs. sink current
at VCC = 5 V
$0
Figure 19. Output voltage drop vs. source
current at VCC = 5 V
9&& 9
9'5239
9'5239
9&& 9
,6285&($
,6,1.$
$0
12/21
DocID023340 Rev 2
$0
TS881
Electrical characteristics
Figure 20. Propagation delay TPLH vs. input
common mode voltage at VCC = 1.2 V
Figure 21. Propagation delay TPHL vs. input
common mode voltage at VCC = 1.2 V
9&& 9
929 P9
9&& 9
929 P9
9,&09
9,&09
$0
Figure 22. Propagation delay TPLH vs. input
common mode voltage at VCC = 5 V
$0
Figure 23. Propagation delay TPHL vs. input
common mode voltage at VCC = 5 V
9&& 9
929 P9
9&& 9
929 P9
9,&09
9,&09
$0
Figure 24. Propagation delay TPLH vs. input
signal overdrive at VCC = 1.2 V
$0
Figure 25. Propagation delay TPHL vs. input
signal overdrive at VCC = 1.2 V
9&& 9
9,&0 9
9&& 9
9,&0 9
929P9
929P9
$0
DocID023340 Rev 2
$0
13/21
21
Electrical characteristics
TS881
Figure 26. Propagation delay TPLH vs. input
signal overdrive at VCC = 5 V
Figure 27. Propagation delay TPHL vs. input
signal overdrive at VCC = 5 V
9&& 9
9,&0 9
9&& 9
9,&0 9
929P9
929P9
$0
Figure 28. Propagation delay TPLH vs. supply
voltage for signal overdrive 10 mV
9,&0 9&&
929 P9
Figure 29. Propagation delay TPHL vs. supply
voltage for signal overdrive 10 mV
9,&0 9&&
929 P9
9&&9
9&&9
$0
Figure 30. Propagation delay TPLH vs. supply
voltage for signal overdrive 100 mV
$0
Figure 31. Propagation delay TPHL vs. supply
voltage for signal overdrive 100 mV
9,&0 9&&
929 P9
9,&0 9&&
929 P9
9&&9
$0
14/21
$0
DocID023340 Rev 2
9&&9
$0
TS881
Electrical characteristics
Figure 32. Propagation delay vs. temperature
for signal overdrive 10 mV
929 P9
9,&0 9&&
73/+
9&& 9
Figure 33. Propagation delay vs. temperature
for signal overdrive 100 mV
929 P9
9,&0 9&&
73+/
9&& 9
73
73
73/+
9&& 9
73+/
9&& 9
73/+
9&& 9
73+/
9&& 9
73/+
9&& 9
$0
73+/
9&& 9
$0
Figure 34. Input offset voltage vs. input
common mode voltage at VCC = 0.9 V
Figure 35. Input voltage hysteresis vs. input
common mode voltage at VCC = 0.9 V
Figure 36. Output voltage drop vs. sink current
at VCC = 0.9 V
Figure 37. Output voltage drop vs. source
current at VCC = 0.9 V
DocID023340 Rev 2
15/21
21
Electrical characteristics
TS881
Figure 38. Propagation delay TPLH vs. input
Figure 39. Propagation delay TPHL vs. input
common mode voltage at VCC = 0.9 V and 10 mV common mode voltage at VCC = 0.9 V and 10 mV
signal overdrive
signal overdrive
Figure 40. Propagation delay TPLH vs. input
common mode voltage at VCC = 0.9 V and 100
mV signal overdrive
Figure 41. Propagation delay TPHL vs. input
common mode voltage at VCC = 0.9 V and 100
mV signal overdrive
Figure 42. Propagation delay TPLH vs. input
signal overdrive at VCC = 0.9 V
Figure 43. Propagation delay TPHL vs. input
signal overdrive at VCC = 0.9 V
16/21
DocID023340 Rev 2
TS881
3
Package information
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK is an ST trademark.
DocID023340 Rev 2
17/21
21
Package information
TS881
Figure 44. SC70-5 (SOT323-5) package outline
Table 7. SC70-5 (SOT323-5) package mechanical data
Dimensions
Symbol
Millimeters
Min.
Max.
Min.
Typ.
Max.
A
0.80
1.10
31.5
43.3
A1
0.00
0.10
0.0
3.9
A2
0.80
1.00
31.5
b
0.15
0.30
5.9
11.8
C
0.10
0.22
3.9
8.7
D
1.80
2.20
70.9
86.6
E
1.80
2.40
70.9
94.5
E1
1.15
1.35
45.3
0.9
1.25
35.4
49.2
e
0.65
25.6
e1
1.3
51.2
L
18/21
Typ.
Mils
0.26
0.36
0.46
DocID023340 Rev 2
10.2
14.2
39.4
53.1
18.1
TS881
Package information
Figure 45. SOT23-5 - lead small outline transistor package outline
(
$
H
H
'
[E
[
&
$
$
&
V
/
(
627
Table 8. SOT23-5 - lead small outline transistor package mechanical data
Dimensions
Symbol
Millimeters
Typ.
Min.
A
Inches
Max.
Min.
1.45
A1
0.00
0.15
0.90
1.30
b
0.30
c
0.08
A2
Typ.
1.15
Max.
0.057
0.000
0.006
0.035
0.051
0.50
0.012
0.020
0.22
0.003
0.009
0.045
D
2.90
0.114
E
2.80
0.110
E1
1.60
0.063
e
0.95
0.037
e1
1.90
0.075
L
0.45
0.30
0.60
0.018
0.012
0.024
q
4
0
8
4
0
8
N
5
DocID023340 Rev 2
5
19/21
21
Ordering information
4
TS881
Ordering information
Table 9. Order codes
5
Order code
Temperature
range
Package
Packaging
Marking
TS881ICT
-40 to +125 °C
SC70-5
Tape and reel
K56
TS881ILT
-40 to +125 °C
SOT23-5
Tape and reel
K524
Revision history
Table 10. Document revision history
Date
Revision
18-Jul-2012
1
Initial release.
2
Updated title on page 1 (replaced 1.1 V by 0.9 V).
Added package SOT23-5 and package information: on page 1, in
Section : Description on page 1, Figure 1: Pin connections (top view)
on page 1, Table 1, Section 3: Package information, Section 4:
Ordering information.
Updated Section : Features on page 1 (replaced “Supply operation”
from “1.1 V to 5.5 V” to “0.85 V to 5.5 V”, HBM changed from 4 kV to
8 kV).
Updated Section : Description on page 1 (replaced 1.1 by 0.85 V).
Updated Table 1 (changed ESD HBM to 8000 V).
Updated Table 2 (updated and added parameters and values).
Updated Section 2: Electrical characteristics:
– Added Table 3.
– Updated Table 4, Table 5, Table 6 (added min. values for IIO and
IIB symbols).
– Note 4. below Table 4., note 4. below Table 5., and note 4. below
Table 6 (replaced “Maximum values include unavoidable
inaccuracies of the industrial tests.” by “Maximum values are
guaranteed by design.”).
– Added Figure 34 to Figure 43.
Minor modifications throughout document.
16-Dec-2013
20/21
Changes
DocID023340 Rev 2
TS881
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2013 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
DocID023340 Rev 2
21/21
21