TLE7258D LIN Transceiver TLE7258D Data Sheet Rev. 1.2, 2014-12-08 Automotive Power TLE7258D Table of Contents 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 3.1 3.2 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Normal Operation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Standby Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Bus Wake-up Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Mode Transition via EN input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Over-Temperature Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Undervoltage Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 V and 5 V Logic Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Short Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5 5.1 5.2 5.3 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 6.1 6.2 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Functional Device Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 7 7.1 7.2 7.3 7.4 7.5 7.6 7.7 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ESD Susceptibility according to IEC61000-4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transient Robustness according to ISO 7637-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LIN Physical Layer Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TxD Fail-Safe Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RxD Pull-up Resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Compatibility with other Infineon LIN Transceivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 9 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Data Sheet 2 17 17 18 18 24 24 25 25 25 25 26 27 Rev. 1.2, 2014-12-08 LIN Transceiver TLE7258D TLE7258D 1 Overview PG-TSON-8 Features • • • • • • • • • • • • • • • Single-wire LIN transceiver for transmission rates up to 20 kbps Compliant to ISO 17987-4, LIN Specification 2.2A and SAE J2602 Compatible with MOST ECL and other single wire line driver interfaces with very low transmission rate down to 0 bps Very low current consumption in Sleep mode with wake-up capability Very low leakage current on the BUS pin Digital I/O levels compatible with 3.3 V and 5 V microcontrollers TxD protected with state check after mode change to Normal Operation mode BUS short to VBAT protection and BUS short to GND handling Over temperature protection and supply undervoltage detection Very high ESD robustness, ± 10 kV according to IEC61000-4-2 Optimized for high electromagnetic compatibility (EMC); Very low emission and high immunity to interference Available in leadless PG-TSON-8 package PG-TSON-8 package supports Automated Optical Inspection (AOI) Green Product (RoHS compliant) AEC Qualified Description The TLE7258D is a transceiver for the Local Interconnect Network (LIN) with integrated wake-up and protection features. It is designed for in-vehicle networks using data transmission rates up to 20 kbps. The TLE7258D operate as a bus driver between the protocol controller and the physical bus of the LIN network. Compliant to all LIN standards and with a wide operational supply range the TLE7258D can be used in all automotive applications. In Sleep mode the TLE7258D draws typically less than 10 μA of quiescent current while still being able to wakeup when detecting LIN bus traffic. The very low leakage current on the BUS pin makes the TLE7258D especially suitable for partially supplied networks. Based on the Infineon BiCMOS technology the TLE7258D provides excellent ESD robustness together with a very high electromagnetic compatibility (EMC). The TLE7258D reaches a very low level of electromagnetic emission (EME) within a broad frequency range and independent from the battery voltage. The TLE7258D is AEC qualified and tailored to withstand the harsh conditions of the automotive environment. Type Package Marking TLE7258D PG-TSON-8 7258D Data Sheet 3 Rev. 1.2, 2014-12-08 TLE7258D Block Diagram 2 Block Diagram VS 7 Internal Supply VREF 2 EN Rslave REN Wake Receiver Mode Control VREF Over-temperature and Over-current Protection 6 Transmitter BUS 4 TxD Driver 1 Receiver RxD BUS 5 GND RFFilter VS/2 TLE7258D_BLOCK_DIAGRAM Figure 1 Data Sheet Block diagram 4 Rev. 1.2, 2014-12-08 TLE7258D Pin Configuration 3 Pin Configuration 3.1 Pin Assignment RxD 1 8 N.C. EN 2 7 VS N.C. 3 6 BUS TxD 4 5 GND TLE7258D_PINNING Figure 2 Pin configuration 3.2 Pin Definitions and Functions Pin Symbol Function 1 RxD Receive data output; External pull-up necessary Monitors the LIN bus signal in Normal Operation mode Indicates a wake-up event in Standby mode 2 EN Enable input; Integrated pull-down resistor Logical “high” to select Normal Operation mode 3 N.C. Not Connected 4 TxD Transmit data input; Integrated pull-up current source Logical “low” to drive a “dominant” signal on the LIN bus 5 GND Ground 6 BUS Bus input / output; Integrated LIN slave termination 7 Vs Battery supply input; 100 nF decoupling capacitor required 8 N.C. Not Connected PAD – Connect to PCB heat sink area. Do not connect to other voltage potential than GND Data Sheet 5 Rev. 1.2, 2014-12-08 TLE7258D Functional Description 4 Functional Description The LIN interface is a single wire, bi-directional bus, used for in-vehicle networks. The TLE7258D LIN transceiver is the interface between the microcontroller and the physical LIN Bus (see Figure 15). Data from the microcontroller is driven to the LIN bus via the TxD input of the TLE7258D. The transmit data stream on the TxD input is converted to a LIN bus signal with optimized slew rates in order to minimize the electromagnetic emission level of the LIN network. The RxD output reads back the information from the LIN bus to the microcontroller. The receiver has an integrated filter network to suppress noise from the LIN bus and to increase the electromagnetic immunity level of the transceiver. The LIN specification defines two valid bus states (see Figure 3): • • “Dominant” state with the LIN bus voltage level near GND. “Recessive” state with the LIN bus voltage pulled up to the supply voltage VS through the bus termination. By setting the TxD input of the TLE7258D to a logical “low” signal, the transceiver generates a “dominant” level on the BUS interface pin. The receiver reads back the signal on the LIN bus and indicates the “dominant” LIN bus signal with a logical “low” level on the RxD output to the microcontroller. By setting the TxD input to logical “high”, the transceiver sets the LIN interface pin to the “recessive” level. At the same time the “recessive” level on the LIN bus is indicated by a logical “high” level on the RxD output. Every LIN network consists of a master node and one or more slave nodes. To configure the TLE7258D for master node applications, a termination resistor of 1 kΩ and a diode must be connected between the LIN bus and the power supply VS (see Figure 15). VCC TxD t VS Recessive Recessive Vth_REC BUS Vth_DOM Dominant t VCC RxD t TLE7258_LIN_COMMUNICATION Figure 3 Data Sheet LIN bus signals 6 Rev. 1.2, 2014-12-08 TLE7258D Functional Description 4.1 Operating Modes The TLE7258D has 3 major operation modes (see Figure 4): • • • Normal Operation mode Standby mode Sleep mode Table 1 Operating modes Mode EN TxD RxD LIN Bus Termination Comments Sleep Low Disabled1) High2) 30 kΩ (typical) No wake-up request detected Standby Low High 3) Low High2) 30 kΩ (typical) RxD “low” after a bus wake-up RxD “high“ after power-up Normal Operation High Low High Low High 30 kΩ (typical) RxD reflects the signal on the bus TxD driven by the microcontroller 1) The TxD input is disabled in Sleep mode and the internal pull-up current source is switched off (see Figure 1). 2) A pull-up resistor to the external microcontroller supply is required. 3) In case the TxD input is open the state is internally set to logical “high” through the internal pull-up current source. Standby Mode Power-up EN: Low TxD: High RxD: Wake-up source 1) 1 BU 2 EN -u ake SW p 5 EN Normal Operation Mode Sleep Mode 3 EN: High EN 4 EN: Low TxD: Disabled 2) RxD: High 3) 1) Wake-up Source: RxD: logical „high“ after Power-up RxD: logical „low“ after BUS Wake-up detection An external pull-up resistor to the external microcontroller supply is required for the Wake-up or Power-up indication 2) TxD: 3) RxD: The RxD output is „high“ because of the external pull-up resistor Figure 4 Data Sheet The TxD input is disabled and the pull-up current source is switched off TLE7258D_MODE_DIAGRAM Operation mode state diagram 7 Rev. 1.2, 2014-12-08 TLE7258D Functional Description Table 2 Operation mode transitions Number Reason for transition Comment 1 Power-on detection The VS supply voltage rise above the VS,UV,PON power-on reset level 2 Mode change with EN input Triggered by logical “high” level 3 Mode change with EN input Triggered by logical “low” level 4 Mode change with EN input Triggered by logical “high” level 5 Bus wake-up detection 4.2 RxD set “low” for signalling the bus wake-up event to the microcontroller Normal Operation Mode While operating in Normal Operation mode the LIN bus receiver and transmitter are active and support data transmission rates up to 20 kbps. Data from the microcontroller is transmitted to the LIN bus via the TxD input. Simultaneously the receiver detects the data stream on the LIN bus and forwards it to the RxD output. Normal Operation mode can be entered from either Sleep mode (see Figure 9) or from Standby mode (see Figure 5), by setting the EN input to logical “high”. From Normal Operation mode the TLE7258D can only enter Sleep mode, it is not possible to enter Standby mode directly (see Figure 4). The transition time for mode change to Normal Operation mode tMODE specifies the delay between the threshold, where the EN pin detects a “high” input signal, and the actual mode change of TLE7258D to Normal Operation mode. VEN,ON EN VEN,OFF tMODE t tMODE RxD: „high“ or „low“ RxD Hysteresis Data transmission tto,rec TxD TxD: „high“ because of internal pull-up t Data transmission TxD: „high impedance“ t Standby mode Standby mode: Sleep mode: Normal Operation mode Sleep mode The internal pull-up current source sets the TxD input to logical „high“ in case the TxD input is open. The internal pull-up current source is switched off and the TxD input is disabled. The TxD input is floating in case the TxD input is open. TLE7258D_NORMAL_MODE Figure 5 Data Sheet Entering Normal Operation mode from Standby mode 8 Rev. 1.2, 2014-12-08 TLE7258D Functional Description While the TLE7258D is in Normal Operation mode the following functions are available: • • • • • • • The transmitter is turned on; data on the TxD input are driven on the LIN bus. The receiver is turned on; data on the LIN bus are monitored and signaled on the RxD output. The BUS pin is terminated to VS via the internal termination resistor RBUS (see Figure 1). The TxD input is pulled up via a current source to the internal power supply of the TLE7258D. The bus wake-up comparator is turned off. The two-level undervoltage detection is active. In case VS drops below the undervoltage detection level the TLE7258D blocks the transmitter and receiver. In case VS drops below the power-on reset level VS,UV,PON the TLE7258D changes the operation mode to Standby mode after recovery (see “Undervoltage Detection” on Page 15). The EN input is active. A “low” signal on the EN input triggers a transition to Sleep. After a mode change to Normal Operation the TLE7258D requires a logical “high” signal for the time tto,rec on the TxD input before releasing the data communication (see Figure 5). The transmitter remains deactivated as long as the signal on the TxD input remains logical “low”, preventing possible bus communication disturbance. 4.3 Standby Mode The Standby mode is entered automatically after: • • • A power-up event on the supply VS. A bus wake-up event. A power-on reset caused by the supply VS. In Standby mode no communication to the LIN bus is possible. The transmitter and the receiver are disabled. While the TLE7258D is in Standby mode the following functions are available: • • • • • • • The transmitter is turned off, the TxD input is inactive and the bus output is permanent “recessive”. The receiver is turned off. The RxD output indicates either a wake-up event or a power-up event (see Figure 4 and Table 1). The BUS pin is terminated to VS via the internal termination resistor RBUS (see Figure 1). The TxD input is pulled up with a current source to the internal power supply of the TLE7258D. In Standby mode only the power-on reset level of the undervoltage detection is active (see “Undervoltage Detection” on Page 15). The EN input is active. A “high” signal on the EN input triggers a transition to Normal Operation mode (see Figure 5). After a power-up event the TLE7258D enters Standby mode by default. The EN pin has an internal pull-down resistor and the TLE7258D remains in Standby until the external microcontroller applies a logical “high” signal at the EN input (see Figure 6). Data Sheet 9 Rev. 1.2, 2014-12-08 TLE7258D Functional Description VS VS,UV,PON t LIN t External microcontroller supply: „Off“ External microcontroller supply: „On“ RxD RxD signals Power-up t EN The device remains in Standby Mode while the signal on the EN input is „low“ t Un-powered Standby mode Normal Operation mode TLE7258D_STANDBY_MODE Figure 6 Data Sheet Entering Standby mode after power-up 10 Rev. 1.2, 2014-12-08 TLE7258D Functional Description 4.4 Sleep Mode Sleep mode is a low power mode with quiescent current consumption reduced to a minimum while the device is still able to wake-up by a message on the LIN bus. To switch the TLE7258D from Normal Operation mode to Sleep mode, the EN input has to be set to “low”. Conversely a logical “high” signal on the EN input sets the device directly back to Normal Operation mode (see Figure 4). The TLE7258D can only enter Sleep mode from Normal Operation mode. EN t RxD RxD: “high“ because of external pull-up resistor to the microcontroller supply voltage RxD: „high“ or „low“ depending on the signals on the LIN bus t TxD Data transmission TxD: „high impedance“ tMode t Normal Operation mode Sleep mode TLE7258D_SLEEP_MODE Figure 7 Entering Sleep mode from Normal Operation mode While the TLE7258D is in Sleep mode the following functions are available: • • • • • • • • The transmitter is turned off. The receiver is turned off. The BUS output is terminated to VS via the internal termination resistor RBUS (see Figure 1). The RxD output is “high” if a pull-up resistor is connected to the external microcontroller supply. The TxD input is disabled and the internal pull-up current source is switched off. The bus wake-up comparator is active and will cause transition to Standby mode in case of a wake-up event. In Sleep mode only the power-on reset level of the undervoltage detection is active (see “Undervoltage Detection” on Page 15). The EN input remains active. A “high” signal on the EN input triggers a transition to Normal Operation mode. Data Sheet 11 Rev. 1.2, 2014-12-08 TLE7258D Functional Description 4.5 Bus Wake-up Event LIN bus signal VBUS VBUS,wk VBUS,wk tWK,bus t Sleep mode Standby mode EN t TxD1): „high“ because of internal pull-up current source TxD1): „high impedance“ TxD t RxD RxD: „high“ because of the external pull-up to the microcontroller supply voltage 1) Figure 8 RxD: „low“ indicates bus wake-up event t In case the TxD input is open TLE7258D_BUS_WAKE Bus wake-up behavior A bus wake-up event, also called remote wake-up, changes the operation mode from Sleep mode to Standby mode. A falling edge on the LIN bus, followed by a “dominant” bus signal for the time tWK,bus results in a bus wakeup event. The mode change to Standby mode becomes active with the following rising edge on the LIN bus. The TLE7258D remains in Sleep mode until it detects a state change on the LIN bus from “dominant” to “recessive” (see Figure 8). In Standby mode a logical “low” signal on the RxD output indicates a bus wake-up event. In case the TLE7258D detects a bus wake-up event while already being in Standby mode after power-up, the wake-up event will be signaled with a logical “low” level on RxD and override the power-on wake source (See Figure 6). Data Sheet 12 Rev. 1.2, 2014-12-08 TLE7258D Functional Description 4.6 Mode Transition via EN input VEN,ON EN VEN,OFF tMODE Hysteresis t tMODE Data transmission RxD tto,rec t TxD 1) Data transmission t Sleep mode 1) Normal Operation mode The TxD signal is driven from the external microcontroller Figure 9 Sleep mode TLE7258D_ENABLE Entering Normal Operation mode from Sleep mode The EN input is used for operation mode control of the TLE7258D. By setting the EN input logical “high” for the time tMODE while being Sleep or Standby mode, a transition to Normal Operation mode will be triggered (see Figure 9). The EN input has an integrated pull-down resistor to ensure the device remains in Sleep or Standby mode even if the EN pin is left open. The EN input has an integrated hysteresis. A signal transition from logical “high” to “low” on the EN input changes the operation mode from Normal Operation mode to Sleep mode (see Figure 5). The TLE7258D changes the operation modes regardless of the signal on the BUS pin. In the case of a short circuit between the LIN bus and GND, resulting in a permanent “dominant” signal, the TLE7258D can be set to Sleep mode by setting the EN input to logical “low”. After a mode change to Normal Operation mode, a logical “high” signal for the time tto,rec on the TxD input is required to release the data communication. Data Sheet 13 Rev. 1.2, 2014-12-08 TLE7258D Functional Description 4.7 Over-Temperature Protection The TLE7258D has an integrated over-temperature sensor to protect the device against thermal overstress on the transmitter. In case of an over-temperature event, the transmitter will be disabled (see Figure 10). An overtemperature event will not cause any mode change and will not be directly indicated on the RxD output or the TxD input. When the junction temperature falls below the thermal shut down level TJ < TJSD, the transmitter will be reactivated. After an over-temperature recovery the TxD input requires a logical “high” signal before restarting data transmission. A 10°C hysteresis avoids toggling during the temperature shut down. TJSD (shutdown temp.) ΔT (shutdown hysteresis) TJ Switch-on Cool down Overtemperature event t BUS t TxD t RxD t TLE7258_OVER_TEMPERATURE Figure 10 Data Sheet Over-temperature shut down 14 Rev. 1.2, 2014-12-08 TLE7258D Functional Description 4.8 Undervoltage Detection Supply voltage VS VS Undervoltage detection level VS,UV,OFF Undervoltage release level VS,UV,ON Undervoltage hysteresis VS,UV,HYS Power-on reset level VS,UV,PON Blanking time tblank,UV Communication blocked Normal Operation mode t Normal Operation mode TLE7258_UNDERVOLTAGE_EARLY Figure 11 Early undervoltage detection The TLE7258D has undervoltage detection on the VS supply pin with two different thresholds: • • In Normal Operation mode the TLE7258D blocks the communication between the LIN bus and the microcontroller when detecting undervoltage events. However, no mode change will occur. After VS rises above the undervoltage release level VS,UV,REL, the bus communication interface will be released when the signal on the TxD input goes “high”. See Figure 11. In case the power supply VS drops down below the power-on reset level VS,UV,PON the TLE7258D not only blocks the communication between the LIN bus and the microcontroller, it also changes the operation mode to Standby mode after VS supply recovery. In Standby mode the TLE7258D indicates a power-up event on the RxD output. The power-on reset level is active in all operation modes.See Figure 12. Supply voltage VS VS Undervoltage detection level VS,UV,OFF Undervoltage release level VS,UV,ON Undervoltage hysteresis VS,UV,HYS Power-on reset level VS,UV,PON Blanking time tblank,UV t Normal Operation mode Device unpowered Communication blocked Figure 12 Undervoltage detection and power-on reset 4.9 3.3 V and 5 V Logic Capability Standby mode (EN = „low“) Normal Operation mode (EN = “high“) TLE7258_UNDERVOLTAGE_RESET The TLE7258D can be used for 3.3 V and 5 V microcontrollers. The logic inputs and the outputs are capable to operate with both voltage levels. The RxD output needs an external pull-up resistor to the microcontroller supply to define the voltage level (see Chapter 7.6 “RxD Pull-up Resistor” on Page 26 and Figure 15). Data Sheet 15 Rev. 1.2, 2014-12-08 TLE7258D Functional Description 4.10 Short Circuit The BUS pin of TLE7258D can withstand short circuits to either GND or to the VS power supply. The integrated over-temperature protection may disable the transmitter in case of a permanent short circuit on the bus pin is causing the overheating. Data Sheet 16 Rev. 1.2, 2014-12-08 TLE7258D General Product Characteristics 5 General Product Characteristics 5.1 Absolute Maximum Ratings Table 3 Absolute Maximum Ratings Voltages, Currents and Temperatures1) All voltages with respect to ground; positive current flowing into pin; unless otherwise specified Parameter Symbol Values Min. Max. Unit Note / Test Condition Number Voltages Battery supply voltage VS -0.3 40 V LIN Spec 2.2A (Par. 11) 1.1.1 BUS input voltage VBUS,G -27 40 V – 1.1.2 -0.3 6.0 V – 1.1.3 IRxD 0 15 mA – 1.2.1 Junction temperature Tj -40 150 °C – 1.3.1 Storage temperature Ts -55 150 °C – 1.3.2 Electrostatic discharge voltage at VS VESD -4 4 kV Human Body Model (100 pF via 1.5 kΩ)2) 1.4.1 Electrostatic discharge voltage at BUS VESD -6 6 kV Human Body Model (100 pF via 1.5 kΩ)3) 1.4.6 Electrostatic discharge voltage all other pins VESD -4 4 kV Human Body Model (100 pF via 1.5 kΩ)2) 1.4.2 Electrostatic discharge voltage all pins VESD -1 1 kV Charged Device Model4) 1.4.3 Logic voltages at EN, TxD, RxD Vlogic Currents Output current at RxD Temperatures ESD Susceptibility 1) 2) 3) 4) Not subject to production test, specified by design ESD susceptibility HBM according to ANSI / ESDA / JEDEC JS-001 ESD susceptibility HBM according to ANSI / ESDA / JEDEC JS-001 ESD susceptibility, Charged Device Model “CDM” EIA / JESD 22-C101 or ESDA STM5.3.1 Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. Data Sheet 17 Rev. 1.2, 2014-12-08 TLE7258D General Product Characteristics 5.2 Functional Range Table 4 Operating Range Parameter Symbol Values Unit Note / Test Condition Number Min. Max. VS(ext) 18 40 V Parameter deviations possible 2.1.1 Supply voltage range for normal VS(nor) operation 5.5 18 V LIN Spec 2.2A (Par. 10) 2.1.2 -40 150 °C 1) 2.2.1 Supply Voltages Extended supply voltage range for operation Thermal Parameters Junction temperature Tj 1) Not subject to production test, specified by design Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table. 5.3 Thermal Characteristics Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to www.jedec.org. Table 5 Thermal Resistance1) Parameter Symbol Values Min. Typ. Max. – 60 – Unit Note / Test Condition Num ber K/W 2) 3.2.1 K/W 2) Thermal Resistance Junction ambient RthJA – – 190 – 3.2.2 2 2) 70 – K/W 300 mm heatsink on PCB 150 175 200 °C – 3.3.1 – 10 – K – 3.3.2 3.2.3 Thermal Shutdown Junction Temperature Thermal shutdown temperature TJSD Thermal shutdown hysteresis ∆T 1) Not subject to production test, specified by design 2) Specified RthJA value is according to Jedec JESD51-3 at natural convection on FR4 1s0p board; The product (TLE7258D) was simulated on a 76.2 x 114.3 x 1.5 mm board with 1 inner copper layer (1 x 70 mm Cu). Data Sheet 18 Rev. 1.2, 2014-12-08 TLE7258D Electrical Characteristics 6 Electrical Characteristics 6.1 Functional Device Characteristics Table 6 Electrical Characteristics 5.5 V < VS < 18 V; RL = 500 Ω; -40°C < Tj < 150°C; all voltages with respect to ground; positive current flowing into pin; unless otherwise specified. Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. Num ber Current Consumption Current consumption at VS, Recessive state IS,rec 0.1 0.6 2.0 mA Without RL; VTxD = “high” 4.1.1 Current consumption at VS, Dominate state IS,dom 0.1 1.1 3.0 mA Without RL; VTxD = 0 V 4.1.2 Current consumption at VS, Standby mode IS,standby 100 350 900 μA Standby mode, VBUS = VS 4.1.3 Current consumption at VS, Sleep mode IS,sleep,typ 1 10 15 μA Sleep mode, Tj < 40 °C; VS = 13.5 V; VBUS = VS 4.1.4 Current consumption at VS, Sleep mode IS,sleep 1 10 25 μA Sleep mode, VBUS = VS 4.1.5 Current consumption at VS, Sleep mode. Bus shorted to GND IS,SC_GND 100 – 700 μA Sleep mode, VS = 13.5 V; VBUS = 0 V 4.1.6 Power-on reset level on VS VS,UV,PON – – 4.3 V Reset level for mode change 4.2.1 Undervoltage threshold, VS on VS,UV,ON 4.7 5.15 5.5 V Rising edge 4.2.2 Undervoltage threshold, VS off VS,UV,OFF 4.4 4.85 5.2 V Falling edge 4.2.3 4.2.4 Undervoltage Detection Undervoltage detection hysteresis VS,UV,HYS – 300 – mV 1) Undervoltage blanking time tBLANK,UV – 10 – μs 1) 4.2.5 “High” level leakage current IRD,H,leak – – 5 μA VRxD = 5 V; VBUS = VS 4.3.1 “Low” level output current IRD,L 1.3 – – mA VRxD = 0.4 V; VBUS = 0 V 4.3.2 “High” level input voltage range VTD,H 2 – 6.0 V Recessive state 4.4.1 “Low” level input voltage range VTD,L -0.3 – 0.8 V Dominant state 4.4.2 4.4.3 Receiver Output: RxD Transmission Input: TxD Input hysteresis VTD,hys – 200 – mV 1) Pull-up current ITD -60 – -20 μA VTxD = 0 V; Normal Operation 4.4.4 mode or Standby mode Enable Input: EN “High” level input voltage range VEN,ON Data Sheet 2 – 6.0 19 V Normal Operation mode 4.5.1 Rev. 1.2, 2014-12-08 TLE7258D Electrical Characteristics Table 6 Electrical Characteristics (cont’d) 5.5 V < VS < 18 V; RL = 500 Ω; -40°C < Tj < 150°C; all voltages with respect to ground; positive current flowing into pin; unless otherwise specified. Parameter Symbol “Low” level input voltage range VEN,OFF Values Unit Note / Test Condition Num ber Min. Typ. Max. -0.3 – 0.8 V Sleep mode or Standby mode 4.5.2 Input hysteresis VEN,hys – 200 – mV 1) 4.5.3 Pull-down resistance REN 15 30 60 kΩ – 4.5.4 Receiver threshold voltage, recessive to dominant edge Vth_dom 0.4 × VS 0.44 × VS – V – 4.7.1 Receiver dominant state VBUSdom – – 0.4 × VS V LIN Spec 2.2A (Par. 17) 4.7.2 Receiver threshold voltage, dominant to recessive edge Vth_rec – 0.56 × VS 0.6 × VS V – 4.7.3 Receiver recessive state VBUSrec 0.6 × VS – – V LIN Spec 2.2A (Par. 18) 4.7.4 Receiver center voltage VBUS_CNT 0.475 0.5 × VS × VS 0.525 V × VS LIN Spec 2.2A (Par. 19)2) 4.7.5 Receiver hysteresis VHYS 0.07 × VS 0.12 × VS 0.175 V × VS LIN Spec 2.2A (Par. 20)3) 4.7.6 Wake-up threshold voltage VBUS,wk 0.40 × VS 0.5 × VS 0.6 × VS V – 4.7.7 VBUS,ro 0.8 × VS – VS V VTxD = “high”; 4.8.1 40 85 125 mA VBUS = 13.5 V; LIN Spec 2.2A (Par. 12); 4.8.2 -0.5 – mA VS = 0 V; VBUS = -12 V; 4.8.3 Bus Receiver: BUS Bus Transmitter: BUS Bus recessive output voltage Bus short circuit current IBUS_LIM Leakage current IBUS_NO_GND -1 Open load LIN Spec 2.2A (Par. 15) Leakage current IBUS_NO_BAT – 1 5 μA VS = 0 V; VBUS = 18 V; 4.8.4 LIN Spec 2.2A (Par. 16) Leakage current IBUS_PAS_do -1 -0.5 – mA VS = 18 V; VBUS = 0 V; LIN Spec 2.2A (Par. 13) 4.8.5 Leakage current IBUS_PAS_rec – 1 5 μA VS = 8 V; VBUS = 18 V; 4.8.6 Forward voltage serial diode VSerDiode – 1.0 V ISerDiode = 75 μA; 4.8.7 m 0.4 LIN Spec 2.2A (Par. 21) Bus pull-up resistance Rslave Bus dominant output voltage maximum load VBUS,do 20 40 60 kΩ LIN Spec 2.2A (Par. 26) 4.8.8 – – 1.4 2.0 V V VTxD = 0 V; RL = 500 Ω; VS = 7 V; VS = 18 V; 4.8.9 – – Dynamic Transceiver Characteristics Data Sheet 20 Rev. 1.2, 2014-12-08 TLE7258D Electrical Characteristics Table 6 Electrical Characteristics (cont’d) 5.5 V < VS < 18 V; RL = 500 Ω; -40°C < Tj < 150°C; all voltages with respect to ground; positive current flowing into pin; unless otherwise specified. Parameter Symbol Values Unit Note / Test Condition Num ber Min. Typ. Max. 1 1 3.5 3.5 6 6 μs μs RRxD = 2.4 kΩ; CRxD = 20 pF trx_sym -2 – 2 μs LIN Spec 2.2A (Par. 32) trx_sym = trx_pdf - trx_pdr; RRxD = 2.4 kΩ; CRxD = 20 pF 4.9.2 Dominant time for bus wake-up tWK,bus 30 – 150 μs – 4.9.3 Propagation delay: LIN bus dominant to RxD “low” trx_pdft LIN bus recessive to RxD “high” trx_pdr Receiver delay symmetry LIN Spec 2.2A (Par. 31) 4.9.1 Delay time for mode change tMODE – – 50 μs – 4.9.4 [906] TxD recessive time to release transmitter tto,rec – – 10 μs 1) 4.9.6 Duty cycle D1 (for worst case at 20 kBit/s) D1 0.396 – – 4.9.7 Duty cycle 1 4) THRec(max) = 0.744 × VS; THDom(max) =0.581 × VS; VS = 7.0 … 18 V; tbit = 50 μs; D1 = tbus_rec(min) / 2 × tbit; LIN Spec 2.2A (Par. 27) Duty cycle D1 for VS supply 5.5 V to 7.0 V (for worst case at 20 kBit/s) D1 0.396 – – Duty cycle 1 4) THRec(max) = 0.760 × VS; THDom(max) = 0.593 × VS; 5.5 V < VS < 7.0 V; tbit = 50 μs; D1 = tbus_rec(min) / 2 × tbit Duty cycle D2 (for worst case at 20 kBit/s) D2 – – 0.581 4.9.9 Duty cycle 2 4) THRec(min)= 0.422 × VS; THDom(min)= 0.284 × VS; VS = 7.6 … 18 V; tbit = 50 μs; D2 = tbus_rec(max) / 2 × tbit; LIN Spec 2.2A (Par. 28) Duty cycle D2 for VS supply 6.1 V to 7.6 V (for worst case at 20 kBit/s) D2 – – 0.581 Duty cycle 2 4) THRec(min)= 0.410 × VS; THDom(min)= 0.275 × VS; 6.1 V < VS < 7.6 V; tbit = 50 μs; D2 = tbus_rec(max) / 2 × tbit Duty cycle D3 (for worst case at 10.4 kBit/s) D3 0.417 – – 4.9.11 Duty cycle 3 4) THRec(max) = 0.778 × VS; THDom(max) =0.616 × VS; VS = 7.0 … 18 V; tbit = 96 μs; D3 = tbus_rec(min) / 2 × tbit; LIN Spec 2.2A (Par. 29) Data Sheet 21 4.9.8 4.9.10 Rev. 1.2, 2014-12-08 TLE7258D Electrical Characteristics Table 6 Electrical Characteristics (cont’d) 5.5 V < VS < 18 V; RL = 500 Ω; -40°C < Tj < 150°C; all voltages with respect to ground; positive current flowing into pin; unless otherwise specified. Parameter Symbol Values Min. Typ. Unit Note / Test Condition Max. Num ber Duty cycle D3 for VS supply 5.5 V to 7.0 V (for worst case at 10.4 kBit/s) D3 0.417 – – Duty cycle 3 4) THRec(max) = 0.797 × VS; THDom(max) = 0.630 × VS; 5.5 V < VS < 7.0 V; tbit = 96 μs; D3 = tbus_rec(min) / 2 × tbit; Duty cycle D4 (for worst case at 10.4 kBit/s) D4 – – 0.590 4.9.13 Duty cycle 4 4) THRec(min) = 0.389 × VS; THDom(min) = 0.251 × VS; VS = 7.6 … 18 V; tbit = 96 μs; D4 = tbus_rec(max) / 2 × tbit; LIN Spec 2.2A (Par. 30) Duty cycle D4 for VS supply 6.1 V to 7.6 V (for worst case at 10.4 kBit/s) D4 – – 0.590 Duty cycle 4 4) THRec(min) = 0.378 × VS; THDom(min)= 0.242 × VS; 6.1 V < VS < 7.6 V; tbit = 96 μs; D4 = tbus_rec(max) / 2 × tbit; 1) 2) 3) 4) 4.9.12 4.9.14 Not subject to production test, specified by design VBUS_CNT = (Vth_dom + Vth rec) / 2 VHYS = Vth_rec - Vth_dom Bus load concerning LIN Spec 2.2A: Load 1 = 1 nF / 1 kΩ = CBUS / RL Load 2 = 6.8 nF / 660 Ω = CBUS / RL Load 3 = 10 nF / 500 Ω = CBUS / RL Data Sheet 22 Rev. 1.2, 2014-12-08 TLE7258D Electrical Characteristics 6.2 Diagrams VS EN 100 nF VIO = 5 V RL TxD RRxD RxD BUS CRxD GND CBus TLE7258D_TEST_CIRCUIT Figure 13 Simplified test circuit tBit tBit tBit TxD (input to transmitting node) tBus_dom(max) tBus_rec(min) THRec(max) Thresholds of receiving node 1 THDom(max) VSUP (Transceiver supply of transmitting node) THRec(min) Thresholds of receiving node 2 THDom(min) tBus_dom(min) tBus_rec(max) RxD (output of receiving node 1) trx_pdf(1) trx_pdr(1) RxD (output of receiving node 2) trx_pdr(2) trx_pdf(2) Duty Cycle D1, D3 = tBUS_rec(min) / (2 x tBIT) Duty Cycle D2, D4 = tBUS_rec(max) / (2 x tBIT) Figure 14 Data Sheet TLE7258_LIN_TIMING_DIAGRAM Timing diagram for dynamic characteristics 23 Rev. 1.2, 2014-12-08 TLE7258D Application Information 7 Application Information Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device. 7.1 Application Example VBat VI 22μF 5 V or 3.3V VQ 10μF 100nF VCC 100nF TLE42xx LIN BUS GND Master Node 2.4kΩ 7 Pull-up to MCU Supply VS Micro Controller e.g XC22xx 100nF TLE7258D 1 RxD 1kΩ 4 TxD 6 2 EN BUS GND 1nF GND 5 VI 22μF ECU_1 5 V or 3.3V VQ 10μF 100nF VCC 100nF TLE42xx GND 2.4kΩ Slave Node 7 VS Pull-up to MCU Supply Micro Controller e.g XC22xx 100nF TLE7258D 1 RxD 4 TxD 6 2 EN BUS 220pF GND GND 5 ECU_X TLE7258D_APPLICATION Figure 15 Data Sheet Simplified application circuit 24 Rev. 1.2, 2014-12-08 TLE7258D Application Information 7.2 ESD Susceptibility according to IEC61000-4-2 Test for ESD robustness according to IEC61000-4-2 “Gun test” (150 pF, 330 Ω) have been performed. The results and test conditions are available in a separate test report. Table 7 ESD Susceptibility according to IEC61000-4-2 Performed Test Result Electrostatic discharge voltage at pin VS, BUS versus GND Electrostatic discharge voltage at pin VS, BUS versus GND +10 -10 Unit Remarks kV 1) kV 1) Positive pulse Negative pulse 1) ESD susceptibility “ESD GUN” according IEC 61000-4-2, tested by external test house. 7.3 Transient Robustness according to ISO 7637-2 Test for transient robustness according to ISO 7637-2 have been performed. The results and test conditions are available in a separate test report. Table 8 Automotive Transient Robustness according to ISO 7637-2 Performed Test Result Unit Remarks Pulse 1 -100 V 1) Pulse 2 +75 V 1) Pulse 3a -150 V 1) Pulse 3b +100 V 1) 1) Automotive Transient Robustness according to ISO 7637-2, tested by external test house. 7.4 LIN Physical Layer Compatibility The TLE7258D fulfills the Physical Layer Specification of LIN 1.2, 1.3, 2.0, 2.1, 2.2 and 2.2A. The differences between LIN specification 1.2 and 1.3 is mainly the physical layer specification. The reason was to improve the compatibility between the nodes. The LIN specification 2.0 is a super set of the 1.3 version. The 2.0 version offers new features. However, it is possible to use the LIN 1.3 slave node in a 2.0 node cluster, as long as the new features are not used. Vice versa it is possible to use a LIN 2.0 node in the 1.3 cluster without using the new features. In terms of the physical layer the LIN 2.1, LIN 2.2 and LIN 2.2A Specification does not include any changes and is fully compliant to the LIN Specification 2.0. LIN 2.2A is the latest version of the LIN specification, released in December 2010. The physical layer specification of LIN 2.2A will be included in the ISO 17987-4 without modifications. Additionally, the TLE7258D is compliant to the SAE J2602-2 standard for usage in the US automotive market. 7.5 TxD Fail-Safe Input The TxD input has an internal pull-up structure to avoid any bus disturbance in case the TxD input is open and floating. In case of an not connected TxD input, the pin is pulled to an internal voltage supply (see Figure 1) and the output to the LIN bus on the BUS pin is always “recessive”. Therefore the TLE7258D can not disturb the communication on the LIN bus. In order to optimize the quiescent current of the TLE7258D in Sleep mode, the pull-up structure inside the TxD input is disabled in Sleep mode. The logic inside the TxD input is not reacting at any signal change provide to the TxD input pin and the transmitter is turned off. In Sleep mode the TLE7258D can not disturb or block the LIN bus in any case. Data Sheet 25 Rev. 1.2, 2014-12-08 TLE7258D Application Information Table 9 TxD Termination Operation Mode Remarks Normal Operation mode The internal pull-up structure is active, in case the TxD input is open the TxD input signal is “high” and the output on the BUS pin is “recessive” Standby mode The internal pull-up structure is active, in case the TxD input is open the TxD input signal is “high”. In Standby mode the transmitter is turned off and therefore the output on the BUS pin always is “recessive” Sleep mode The internal pull-up structure is inactive, in case the TxD input is open the TxD input signal is “floating”. In Sleep mode the transmitter is turned off and therefore the output on the BUS pin always is “recessive” 7.6 RxD Pull-up Resistor The receive data output (RxD) provides an open drain behavior for allowing the output level to be adapted to the microcontroller supply voltage. Thus 3.3 V microcontroller derivatives without 5 V tolerant ports can be used. In case the microcontroller port pin does not provide an integrated pull-up, an external pull-up resistor connected to the microcontroller’s VCC supply voltage is required. The typical RxD pin current / voltage characteristic over temperature is given in Figure 16. With the applications microcontroller port pins’ (Rx) minimum “high”-level and maximum “low”-level input voltage the pull-up resistor can be dimensioned. For most applications a pull-up resistor RRx of 2.4 kΩ is recommended. 1.4 Tj = −40°C Tj = 27°C 1.2 Tj = 150°C VRxD [V] 1 0.8 0.6 0.4 0.2 0 Figure 16 Data Sheet 0 1 2 3 4 IRxD [mA] 5 6 7 8 Typical RxD output sink characteristics 26 Rev. 1.2, 2014-12-08 TLE7258D Application Information 7.7 Compatibility with other Infineon LIN Transceivers Infineon offers a complete LIN transceiver family consisting of devices in PG-DSO-8 package (TLE7257SJ, TLE7258SJ and TLE7259-3GE) and PG-TSON-8 package (TLE7257LE, TLE7258D, TLE7258LE and TLE72593LE). All these devices are pin-to-pin compatible, with the only differences at the pins named N.C. ( = Not Connected). The N.C. pins can be left open on the PCB in applications where these functionalities are not needed. The N.C. pins are internally not bonded, so the devices will not be affected if these pins are connected to signals on the application PCB. RxD 1 8 INH EN 2 7 VS WK 3 6 BUS TxD 4 5 GND TLE7259-3GE RxD 1 8 INH RxD 1 8 INH EN 2 7 VS EN 2 7 VS N.C. 3 6 BUS N.C. 3 6 BUS TxD 4 5 GND TxD 4 5 GND TLE7257SJ TLE7258SJ Figure 17 Pin compatibility between TLE7257SJ, TLE7258SJ and TLE7259-3GE Table 10 Functionality of LIN transceiver family, PG-DSO-8 package Device TLE7257SJ TLE7258SJ TLE7259-3GE Applications Standard LIN Master node Standard LIN Slave node High End LIN All kind of nodes Fast Programming mode – – ✔ Local Wake input – – ✔ Inhibit output usage VREG control VREG control VREG control Master Termination TxD Time-out ✔ ✔ ✔ Power-Up mode Sleep mode Standby mode Standby mode Features The functional difference between the devices in the Infineon LIN transceiver family is summarized in Table 10 and in Table 11. For mode details on the functional and parametric differences, please refer to the respective part’s datasheet. Data Sheet 27 Rev. 1.2, 2014-12-08 TLE7258D Application Information RxD 1 8 INH EN 2 7 VS WK 3 6 BUS TxD 4 5 GND TLE7259-3LE RxD 1 8 INH EN 2 7 VS N.C. 3 6 TxD 4 5 RxD 1 8 INH EN 2 7 VS BUS N.C. 3 6 BUS GND TxD 4 5 GND RxD 1 8 N.C. EN 2 7 VS BUS N.C. 3 6 GND TxD 4 5 TLE7257LE TLE7258D TLE7258LE (Top side X-Ray view) Figure 18 Pin compatibility between TLE7257LE, TLE7258LE, TLE7258D and TLE7259-3LE Table 11 Functionality of LIN transceiver family, PG-TSON-8 package Device TLE7257LE TLE7258LE TLE7258D TLE7259-3LE Applications Standard LIN Master node Standard LIN Slave node K-Line MOST ECL High End LIN All kind of nodes Fast Programming mode – – – ✔ Local Wake input – – – ✔ Inhibit output usage VREG control VREG control – VREG control Master Termination TxD Time-out ✔ ✔ – ✔ Power-Up mode Sleep mode Standby mode Standby mode Standby mode Features Data Sheet 28 Rev. 1.2, 2014-12-08 TLE7258D Package Outlines 1±0.1 0 +0.05 Package Outlines 0.2 ±0.1 2.4 ±0.1 0.81 ±0.1 0.3 ±0.1 Pin 1 Marking Z 1.58 ±0.1 1.63 ±0.1 0.25 ±0.1 3 ±0.1 0.05 0.38 ±0.1 0.4 ±0.1 0.1 ±0.1 3 ±0.1 0.56 ±0.1 8 0.65 ±0.1 Pin 1 Marking 0.3 ±0.1 PG-TSON-8-1-PO V01 Z (4:1) 0.07 MIN. Figure 19 PG-TSON-8 (Plastic Thin Small Outline Nonleaded PG-TSON-8-1) Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e. Pbfree finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). For further information on alternative packages, please visit our website: http://www.infineon.com/packages. Data Sheet 29 Dimensions in mm Rev. 1.2, 2014-12-08 TLE7258D Revision History 9 Revision History Table 12 Revision History Revision Data Changes 1.2 2014-12-08 Data Sheet updated. 1.0 2013-10-16 Data Sheet created. Data Sheet 30 Rev. 1.2, 2014-12-08 Edition 2014-12-08 Published by Infineon Technologies AG 81726 Munich, Germany © 2014 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.