ACTIVE MULTIPLIERS & DIVIDERS TO SIMPLIFY SYNTHESIZERS 17 FEATURED ARTICLES COVER FEATURE ACTIVE MULTIPLIERS AND DIVIDERS TO SIMPLIFY SYNTHESIZERS M odern frequency synthesis uses a combination of frequency multiplication and frequency division to generate the required data and carrier signals for microwave radio and radar applications. Frequency multiplication increases the carrier frequency while increasing the phase noise of the carrier by 20log(N), where N is the multiplication factor. Conversely, frequency division decreases the carrier frequency and changes the phase noise of the carrier by 20log(1/M), where M is the division ratio. For the most part, frequency dividers are used in a phase-locked loop (PLL) to divide the voltage-controlled oscillator (VCO) output frequency down to the reference frequency in order to achieve phase/frequency locking. These devices are traditionally digital circuits and for high divide ratios (greater than 16) operate at input frequencies less than ∼2 GHz. At higher frequencies, digital frequency dividers are available in binary division ratios (/2, /4, /8…) up to approximately 14 GHz. A new class of GaAs/InGaP heterojunction bipolar transistor (HBT) active frequency dividers offering odd division ratios (/3 and /5), high in- put frequency (up to 8 GHz) and wide input power range (–15 to +10 dBm) are now available in low cost plastic packages providing the designer with more flexibility in synthesizer architecture. Frequency multipliers, on the other hand, are most commonly used after the VCO to increase the carrier frequency to the radio or radar transmit/receive frequency. Various devices are utilized to achieve frequency multiplication, including Schottky diodes, step recovery diodes, balanced rectifiers (frequency doublers) and saturated amplifiers. The advantages and drawbacks of each approach are well known. A new class of GaAs/InGaP HBT active multipliers offering conversion gain, wide input power range (–15 to +10 dBm), high output frequency (up to 16 GHz) and high multiplication factors (× 4, × 8 and × 16) are now available in low cost plastic packages that will dramatically simplify the design and implementation of X- and Ku-band synthesizers. HITTITE MICROWAVE CORP. Chelmsford, MA Reprinted with permission of MICROWAVE JOURNAL from the November 2002 issue. © 2002 Horizon House Publications, Inc. ® 17 - 32 For price, delivery, and to place orders, please contact Hittite Microwave Corporation: 20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com ACTIVE MULTIPLIERS & DIVIDERS TO SIMPLIFY SYNTHESIZERS 17 STANDARD FREQUENCY MULTIPLIER PRODUCTS Four new active frequency multipliHMC331 ers have been added to the company’s HMC205 family of surface-mount frequency dou10 blers. Figure 1 depicts the frequency coverage of the passive and active frequency multiplier line. The models HMC204 HMC370LP4 3 HMC370LP4 and HMC443LP4 are active ×4 frequency multipliers with outHMC443LP4 HMC189 put frequencies at X- and Ku-band, respectively. The models HMC444LP4 HMC187 and HMC445LP4 have output frequenHMC444LP4 cies in the 10 to 11 GHz frequency 1 range. Inspection of data reveals that the HMC445LP4 new active multipliers are suitable for X2 X4 X8 X16 the OC-192 fiber optic market, military radar and the microwave radio markets. 1 3 10 40 The key performance parameters of OUTPUT FREQUENCY (GHz) the active multipliers are summarized in Table 1. The HMC445LP4 multiplier ▲ Fig. 1 Frequency multiplier operating range. will convert an OC-12 clock frequency directly to OC-192 with up to +7 dBm output power operating from +5 V and consuming only 78 mA of current. Similarly, the HMC444LP4 and N/C N/C N/C N/C N/C VCC HMC443LP4 devices will convert OC-24 and OC-48 24 23 22 21 20 19 clock frequencies to OC-192 while using only 68 mA and 52 mA of current, respectively. All four active multipliers are supplied in 4.0 × 4.0 × 1.0 mm leadless surface18 N/C N/C 1 mount QFN plastic packages compatible with automated assembly and reflow soldering processes. 17 N/C N/C 2 INPUT FREQUENCY (GHz) 20 × 16 16 RFOUT 4 15 GND N/C 5 14 N/C N/C 6 13 N/C RFIN 3 GND 7 8 9 10 11 12 N/C N/C N/C N/C N/C N/C PACKAGE BASE GND TOP VIEW ▲ Fig. 2 The HMC445LP4 functional block diagram. FEATURED ARTICLES COVER FEATURE HBT ACTIVE MULTIPLIER ADVANTAGES Active multipliers designed in GaAs/InGaP HBT technology operate on single positive (+5 V) bias, with low current (< 80 mA) and low residual phase noise (–130 to –140 dBc/Hz at 100 kHz) at frequencies > 16 GHz. The input and output of the HMC445LP4 multiplier is singleended, as shown in Figure 2. The only required external component is a bypass capacitor on the Vcc pin. The ×16 architecture is implemented as a series of ×2 active multiplication stages. Each stage has integrated filtering for optimum subharmonic performance. This filtering circuit results in the narrow-bandwidth nature of the active multiplier line and is responsible for the excellent harmonic and subharmonic rejection of > 20 dB, as shown in the output spectrum of Figure 3. Since these filtering TABLE I ACTIVE MULTIPLIER PERFORMANCE PARAMETERS Part Number Function Input Frequency (MHz) Output Frequency (GHz) Input Power (dBm) Output Power (dBm) SSB Phase Noise at 100 kHz (dBc/Hz) HMC445LP4 X16 active 618.75 to 687.50 9.9 to 11.2 –15 to +5 +4 to +7 –130 HMC444LP4 X8 active 1237.5 to 1400.0 9.9 to 11.2 –15 to +5 +3 to +6 –136 HMC443LP4 X4 active 2450 to 2800 9.8 to 11.2 –15 to +5 +1 to +4 –142 HMC370LP4 X4 active 3600 to 4100 14.4 to 16.4 –15 to +5 –4 to 0 –140 For price, delivery, and to place orders, please contact Hittite Microwave Corporation: 20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com 17 - 33 ACTIVE MULTIPLIERS & DIVIDERS TO SIMPLIFY SYNTHESIZERS 17 OUTPUT POWER (dBm) ▲ Fig. 3 circuits are designed specifically based on the input frequency band, they can be easily scaled to create active multipliers operating at other frequencies. Output power of the HMC445LP4 device is flat over a wide range of input power, as shown in Figure 4. The insensitivity of output power to input power variation results in natural AM suppression and coupled with excellent power flatness vs. temperature further simplifies synthesizer architecture by minimizing the need for limiting amplifiers or gain control. 10 0 −10 −20 −30 −40 −50 −60 10 14 18 22 6 FREQUENCY (GHz) 2 26 The HMC445LP4 multiplier’s output spectrum. OUTPUT POWER (dBm) FEATURED ARTICLES COVER FEATURE +5 dBm −5 dBm −20 dBm 10 8 6 4 2 0 9.6 10.0 10.4 10.8 11.2 11.6 OUTPUT FREQUENCY (GHz) ▲ Fig. 4 The HMC445LP4 multiplier’s output power vs. input drive level. HMC338 SUB HARMONIC MIXER R I L IF OUT R I L HMC187MS8 ×2 PLL 28 to 14 to 16 GHz 32 GHz ×4 1.75 to 2 GHz REF HMC370LP4 L I R IF IN L I R HMC338 SUB HARMONIC MIXER ▲ Fig. 5 Typical 16 GHz multiplier application. B A AN EXAMPLE 16 GHz APPLICATION A typical application of the HMC370LP4 active ×4 multiplier as an LO generator for a microwave radio is shown in Figure 5. LO chains for microwave radios in the 28 to 32 GHz band typically begin with an L-band source that is frequency multiplied to the transmit band through successive stages of amplification and frequency doubling. With the availability of low cost subharmonically pumped mixers for the 28 to 32 GHz band, the designer is only required to generate a 14 to 16 GHz LO signal at –5 dBm. A passive doubler solution to this problem would require three stages of amplification/doubling with each successive stage increasing in cost due to the drive level and filtering requirements. With the wide input drive range of the HMC370LP4 multiplier, the entire chain can be replaced with one passive doubler and one active ×4 multiplier with no additional amplification or filtering. STANDARD ACTIVE DIVIDER PRODUCTS The company has expanded its line of digital frequency dividers with the addition of the models HMC437MS8G (/3) and HMC438MS8G (/5) that operate over a DC to 7 GHz frequency range. The key performance parameters of the company’s family of GaAs/InGaP HBT frequency dividers are summarized in Table 2. The HMC437MS8G and HMC438MS8G operate from a single +5 V supply, have differential inputs/outputs and consume 69 and 80 mA of DC current, respectively. Both new dividers are supplied in 3.0 × 4.9 × 1.0 mm surface-mount plastic packages compatible with automated assembly and reflow soldering processes. HBT DIGITAL DIVIDER ADVANTAGES Digital dividers designed in GaAs/InGaP HBT technology operate on single positive (+5 V) bias, with low current TABLE II FREQUENCY DIVIDER PERFORMANCE PARAMETERS Function Input Frequency (MHz) Output Frequency (GHz) HMC364S8G ÷2 DC to 12.5 HMC437MS8G ÷3 DC to 7.0 HMC365S8G ÷4 HMC438MS8G HMC363S8G Part Number 17 - 34 Input Power (dBm) Output Power (dBm) SSB Phase Noise at 100 kHz (dBc/Hz) DC to 6.25 –10 to +5 –8 to +5 –145 DC to 2.60 –10 to +10 –4 to –1 –153 DC to 13.0 DC to 3.25 –15 to +10 +2 to +5 –151 ÷5 DC to 7.0 DC to 1.60 –12 to +12 –4 to –1 –153 ÷8 DC to 12.0 DC to 1.50 –15 to +10 –9 to –6 –153 For price, delivery, and to place orders, please contact Hittite Microwave Corporation: 20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com ACTIVE MULTIPLIERS & DIVIDERS TO SIMPLIFY SYNTHESIZERS 17 (< 80 mA) and low residual phase noise (–145 to –153 dBc/Hz at 100 kHz) at frequencies up to 13 GHz. The input and output of the HMC437MS8G and HMC438MS8G dividers feature differential inputs, as VCC 1 IN 2 HMC438MS8G divider is shown in Figure 9. The 40 percent duty cycle results in an output frequency spectrum that has low (< –10 dBc) harmonics (Figure 10). In sharp contrast, a digital counter set to divide by five typically maintains the input carrier pulse width and hence has approximately a 10 percent duty cycle resulting in the rich harmonics shown in Figure 11. Since the fifth harmonic of the output is also equal to the input frequency, the HMC438MS8G device has excellent feedthru suppression, as shown in Figure 12. shown in Figure 6, but can be operated single-ended as well. The low residual output phase noise and wide input power operating range are shown in Figures 7 and 8. The output waveform of the 8 NC 7 OUT ÷5 3 6 OUT GND 4 5 GND AN EXAMPLE 5 GHz APPLICATION A typical application of the HMC437MS8G /3 divider as an LO generator for a mobile phone base The HMC438MS8G divider’s functional block diagram. 5 0 −20 −40 −60 −80 −100 −120 −140 −160 102 0 −5 −10 103 104 105 106 OFFSET FREQUENCY (Hz) 107 POWER (dBc) SSB PHASE NOISE (dBc/Hz) ▲ Fig. 6 IN FEATURED ARTICLES COVER FEATURE −15 −20 −25 ▲ Fig. 7 The HMC438MS8G divider’s SSB residual phase noise at Pin = 0 dBm, Fin = 6 GHz and T = 25°C. −30 3 5 3/ 5 3 4/ 5 5 2/ 1/ 3 2 3 5 5 3 4/ 5 2 3/ 5 2/ 1/ 2 1 1 2 2 5 4/ 5 3/ 5 5 2/ 1/ 1 RECOMMENDED OPERATING WINDOW 4 FREQUENCY (NORMALIZED TO INPUT) ▲ Fig. 10 Harmonic content of an ideal /5 divider with 40 percent duty cycle. 0 2 3 4 5 6 7 8 INPUT FREQUENCY (GHz) 9 −5 −10 POWER (dBc) The HMC438MS8G divider’s input sensitivity. 400 300 200 100 −100 −25 −35 Output voltage waveform of the HMC438MS8G /5 divider at Pin = 0 dBm, fout = 882 MHz and T = 25°C. 3 5 3/ 5 3 4/ 5 5 2/ 1/ 3 3 3 5 4/ 3/ 5 2 2 5 5 1/ 2/ 2 2 2 5 4/ 1 5 3/ 1 5 2/ 1/ 1 5 −40 1 25.5 5 2/ 5 3/ 5 4/ 5 23.5 24.5 TIME (ns) 1/ −200 ▲ Fig. 9 −20 −30 0 −300 22.5 −15 1 1 ▲ Fig. 8 OUTPUT AMPLITUDE (mV) 1 1 5 2/ 5 3/ 5 4/ 5 −40 1/ INPUT POWER (dBm) −35 20 15 10 5 0 −5 −10 −15 −20 0 4 FREQUENCY (NORMALIZED TO INPUT) ▲ Fig. 11 Harmonic content of an ideal /5 counter with 10 percent duty cycle. For price, delivery, and to place orders, please contact Hittite Microwave Corporation: 20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com 17 - 35 ACTIVE MULTIPLIERS & DIVIDERS TO SIMPLIFY SYNTHESIZERS 17 Pfeedthrough 2nd HARMONIC 3rd HARMONIC R I L 0 600 MHz −10 −20 PLL −40 −50 0 ÷3 5.4 GHz −30 ÷3 HMC437MS8G REF ÷2 1 2 3 4 5 6 7 8 INPUT FREQUENCY (GHz) 9 ▲ Fig. 12 Output harmonics and feedthrough suppression of the HMC438MS8G /5 divider at Pin = 0 dBm and T = 25°C. station is shown in Figure 13. LO chains for base station applications typically begin with a UHF VCO locked to a crystal frequency source that is frequency multiplied and amplified to the transmit/receive frequency. With the availability of low cost, low noise C-band VCOs and high frequency dividers, the same LO signal can be generated by a C-Band VCO and frequency division. In the example shown, a 5.4 GHz VCO output directly drives two successive /3 dividers to create the required 600 MHz LO frequency. The entire frequency generation chain consists of three low cost plastic-packaged components with no intermediate amplification or filtering stages. HMC2575 ▲ Fig. 13 Base station application block diagram. 1 MHz, the divider residual phase noise (bottom curve) limits the output phase noise to approximately –154 dBc/Hz. VCO PHASE AT 5.4 GHz PHASE NOISE AT 600 MHz DIVIDER PHASE NOISE SSB PHASE NOISE (dBc/Hz) OUTPUT LEVEL (dBm) FEATURED ARTICLES COVER FEATURE 0 −20 −40 −60 −80 −100 −120 −140 −160 102 ▲ Fig. 14 104 105 103 FREQUENCY (Hz) 106 Base station LO phase noise. The 600 MHz LO phase noise is shown in Figure 14. The VCO phase noise (top curve) is reduced through frequency division by 20log(1/9) = –19 dB. At carrier offsets greater than CONCLUSION A family of active frequency multipliers and frequency dividers has been introduced that allows the synthesizer designer to take new approaches to solving traditional microwave radio and radar application problems. These GaAs/InGaP HBT devices are available in low cost plastic packages operating from single +5 V supplies. Conversion gain and excellent harmonic/subharmonic suppression minimize external support circuitry. Product samples and connectorized evaluation boards are available on request directly from the factory or online at www.hittite.com. *Reprinted with the permission of Microwave Journal. 17 - 36 For price, delivery, and to place orders, please contact Hittite Microwave Corporation: 20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com ACTIVE MULTIPLIERS & DIVIDERS TO SIMPLIFY SYNTHESIZERS 17 FEATURED ARTICLES Notes: For price, delivery, and to place orders, please contact Hittite Microwave Corporation: 20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com 17 - 37