PDF Data Sheet Rev. B

Data Sheet
100 MHz to 4000 MHz
RF/IF Digitally Controlled VGA
ADL5243
FEATURES
GENERAL DESCRIPTION
Operating frequency from 100 MHz to 4000 MHz
Digitally controlled VGA with serial and parallel interfaces
6-bit, 0.5 dB digital step attenuator
31.5 dB gain control range with ±0.25 dB step accuracy
Gain Block Amplifier 1
Gain: 19.2 dB at 2140 MHz
OIP3: 40.2 dBm at 2140 MHz
P1dB: 19.8 dBm at 2140 MHz
Noise figure: 2.9 dB at 2140 MHz
¼ W Driver Amplifier 2
Gain: 14.2 dB at 2140 MHz
OIP3: 41.1 dBm at 2140 MHz
P1dB: 26.0 dBm at 2140 MHz
Noise figure: 3.7 dB at 2140 MHz
Gain block, DSA, or ¼ W driver amplifier can be first
Low quiescent current of 175 mA
The companion ADL5240 integrates a gain block with DSA
The ADL5243 is a high performance, digitally controlled
variable gain amplifier operating from 100 MHz to 4000 MHz.
The VGA integrates two high performance amplifiers and a
digital step attenuator (DSA). Amplifier 1 (AMP1) is an
internally matched gain block amplifier with 20 dB gain, and
Amplifier 2 (AMP2) is a broadband ¼ W driver amplifier that
requires very few external tuning components. The DSA is 6-bit
with a 31.5 dB gain control range, 0.5 dB steps, and ±0.25 dB
step accuracy. The attenuation of the DSA can be controlled
using a serial or parallel interface.
The gain block and DSA are internally matched to 50 Ω at their
inputs and outputs, and all three internal devices are separately
biased. The separate bias allows all or part of the ADL5243 to be
used, which allows for easy reuse throughout a design. The
pinout of the ADL5243 also enables the gain block, DSA, or
¼ W driver amplifier to be first, giving the VGA maximum
flexibility in a signal chain.
APPLICATIONS
The ADL5243 consumes 175 mA and operates off a single
supply ranging from 4.75 V to 5.25 V. The VGA is packaged in a
thermally efficient, 5 mm × 5 mm, 32-lead LFCSP and is fully
specified for operation from −40°C to +85°C. A fully populated
evaluation board is available.
Wireless infrastructure
Automated test equipment
RF/IF gain control
SEL
D0/CLK
D1/DATA
D2/LE
D3
D4
D5
D6
FUNCTIONAL BLOCK DIAGRAM
32
31
30
29
28
27
26
25
VDD 1
24
VDD
NC 2
23
NC
NC 3
22
NC
21
DSAOUT
20
NC
19
AMP2IN
18
NC
17
NC
SERIAL/PARALLEL INTERFACE
DSAIN 4
0.5dB
1dB
2dB
4dB
8dB
16dB
NC 5
AMP1OUT/VCC 6
NC 7
AMP2
AMP1
14
15
16
VBIAS
NC
13
AMP2OUT/VCC2
AMP1IN
12
NC
11
NC
10
NC
9
NC
NC 8
09431-001
ADL5243
Figure 1.
Rev. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113 ©2011–2012 Analog Devices, Inc. All rights reserved.
ADL5243
Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1 Basic Layout Connections ......................................................... 22 Applications ....................................................................................... 1 SPI Timing................................................................................... 23 General Description ......................................................................... 1 ADL5243 Amplifier 2 Matching .............................................. 25 Functional Block Diagram .............................................................. 1 ADL5243 Loop Performance .................................................... 31 Revision History ............................................................................... 2 Proper Driving Level for the Optimum ACLR ...................... 32 Specifications..................................................................................... 3 Thermal Considerations............................................................ 32 Absolute Maximum Ratings.......................................................... 10 ESD Caution ................................................................................ 10 Soldering Information and Recommended PCB Land Pattern
....................................................................................................... 32 Pin Configuration and Function Descriptions ........................... 11 Evaluation Board ............................................................................ 33 Typical Performance Characteristics ........................................... 12 Outline Dimensions ....................................................................... 38 Applications Information .............................................................. 22 Ordering Guide .......................................................................... 38 REVISION HISTORY
8/12—Rev. A to Rev. B
Changes to General Description Section ....................................... 1
Changes to Table 1 ............................................................................. 3
Changes to Table 3 ...........................................................................11
Changes to Figure 3 .........................................................................12
Changes to Figure 33 .......................................................................17
Added Figure 47 and Figure 49, Renumbered Sequentially ......19
Change to Figure 58 ........................................................................22
Changes to ADL5243 Amplifier 2 Matching Section, Table 8,
and Table 9 ........................................................................................25
Added Figure 61 and Figure 62......................................................26
Changes to Figure 63 and Figure 64 ..............................................27
Added Figure 65; Changes to Figure 66........................................28
Added Figure 67; Changes to Figure 68........................................29
Added Figure 69...............................................................................30
Changes to ADL5243 Loop Performance Section; Added
Figure 71, Figure 72, and Table 10, Renumbered Sequentially....... 31
Added Proper Driving Level for the Optimum ACLR Section
and Figure 73.................................................................................... 32
Changes to Evaluation Board Section and Table 11 ................... 33
Changes to Figure 75....................................................................... 34
Added Figure 76 .............................................................................. 35
Changes to Figure 77 and Figure 78.............................................. 36
Added Figure 79 .............................................................................. 37
8/11—Rev. 0 to Rev. A
Changes to Features Section ............................................................1
7/11—Revision 0: Initial Version
Rev. B | Page 2 of 40
Data Sheet
ADL5243
SPECIFICATIONS
VDD = 5 V, VCC = 5 V, VCC2 = 5 V, TA = 25°C.
Table 1.
Parameter
OVERALL FUNCTION
Frequency Range
AMPLIFIER 1 FREQUENCY = 150 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
AMPLIFIER 1 FREQUENCY = 450 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
AMPLIFIER 1 FREQUENCY = 748 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
AMPLIFIER 1 FREQUENCY = 943 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
Conditions
Min
Typ
100
Max
Unit
4000
MHz
Using the AMP1IN and AMP1OUT pins
±50 MHz
−40°C ≤ TA ≤ +85°C
4.75 V to 5.25 V
S11
S22
∆f = 1 MHz, POUT = 3 dBm/tone
18.2
±0.97
±0.07
±0.03
−10.4
−8.2
18.4
29.5
2.8
dB
dB
dB
dB
dB
dB
dBm
dBm
dB
20.6
±0.10
±0.36
±0.01
−17.8
−16.5
19.5
38.4
2.8
dB
dB
dB
dB
dB
dB
dBm
dBm
dB
20.8
±0.02
±0.32
±0.01
−22.0
−21.6
19.6
39.6
2.7
dB
dB
dB
dB
dB
dB
dBm
dBm
dB
Using the AMP1IN and AMP1OUT pins
±50 MHz
−40°C ≤ TA ≤ +85°C
4.75 V to 5.25 V
S11
S22
∆f = 1 MHz, POUT = 3 dBm/tone
Using the AMP1IN and AMP1OUT pins
±50 MHz
−40°C ≤ TA ≤ +85°C
4.75 V to 5.25 V
S11
S22
∆f = 1 MHz, POUT = 3 dBm/tone
Using the AMP1IN and AMP1OUT pins
19.0
±18 MHz
−40°C ≤ TA ≤ +85°C
4.75 V to 5.25 V
S11
S22
18.5
∆f = 1 MHz, POUT = 3 dBm/tone
Rev. B | Page 3 of 40
20.3
±0.01
±0.28
±0.02
−24.0
−21.5
19.9
40.4
2.7
22.0
dB
dB
dB
dB
dB
dB
dBm
dBm
dB
ADL5243
Parameter
AMPLIFIER 1 FREQUENCY = 1960 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
AMPLIFIER 1 FREQUENCY = 2140 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
AMPLIFIER 1 FREQUENCY = 2630 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
AMPLIFIER 1 FREQUENCY = 3600 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
AMPLIFIER 2 FREQUENCY = 150 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
Data Sheet
Conditions
Using the AMP1IN and AMP1OUT pins
Min
Typ
Max
19.5
±0.02
±0.26
±0.04
−13.5
−12.4
19.6
40.4
2.9
±30 MHz
−40°C ≤ TA ≤ +85°C
4.75 V to 5.25 V
S11
S22
∆f = 1 MHz, POUT = 3 dBm/tone
Unit
dB
dB
dB
dB
dB
dB
dBm
dBm
dB
Using the AMP1IN and AMP1OUT pins
17.5
±30 MHz
−40°C ≤ TA ≤ +85°C
4.75 V to 5.25 V
S11
S22
17.5
∆f = 1 MHz, POUT = 3 dBm/tone
19.2
±0.02
±0.26
±0.05
−13.3
−12.2
19.8
40.2
2.9
21.5
dB
dB
dB
dB
dB
dB
dBm
dBm
dB
19.0
±0.03
±0.22
±0.05
−17.3
−12.3
19.5
39.5
2.9
21.5
dB
dB
dB
dB
dB
dB
dBm
dBm
dB
Using the AMP1IN and AMP1OUT pins
17.5
±60 MHz
−40°C ≤ TA ≤ +85°C
4.75 V to 5.25 V
S11
S22
17.5
∆f = 1 MHz, POUT = 3 dBm/tone
Using the AMP1IN and AMP1OUT pins
±100 MHz
−40°C ≤ TA ≤ +85°C
4.75 V to 5.25 V
S11
S22
∆f = 1 MHz, POUT = 3 dBm/tone
18.0
±0.10
±0.05
±0.12
−30.7
−9.0
18.0
34.6
3.3
dB
dB
dB
dB
dB
dB
dBm
dBm
dB
20.8
±1.1
±0.3
±0.03
−11.0
−6.5
22.8
40.6
6.3
dB
dB
dB
dB
dB
dB
dBm
dBm
dB
Using the AMP2IN and AMP2OUT pins
±50 MHz
−40°C ≤ TA ≤ +85°C
4.75 V to 5.25 V
S11
S22
∆f = 1 MHz, POUT = 5 dBm/tone
Rev. B | Page 4 of 40
Data Sheet
Parameter
AMPLIFIER 2 FREQUENCY = 450 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
AMPLIFIER 2 FREQUENCY = 748 MHz
Gain
vs. Frequency
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
AMPLIFIER 2 FREQUENCY = 943 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
AMPLIFIER 2 FREQUENCY = 1960 MHz
Gain
vs. Frequency
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
AMPLIFIER 2 FREQUENCY = 2140 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
ADL5243
Conditions
Using the AMP2IN and AMP2OUT pins
Min
±50 MHz
−40°C ≤ TA ≤ +85°C
4.75 V to 5.25 V
S11
S22
∆f = 1 MHz, POUT = 5 dBm/tone
Typ
Max
Unit
16.4
±0.5
±0.35
±0.07
−9.0
−8.0
23.2
38.1
6.2
dB
dB
dB
dB
dB
dB
dBm
dBm
dB
17.5
±0.14
−14
−8.6
24.7
41.5
5.6
dB
dB
dB
dB
dBm
dBm
dB
16.5
±0.05
±0.39
±0.10
−11.2
−8.1
25.0
43.3
5.3
dB
dB
dB
dB
dB
dB
dBm
dBm
dB
14.9
±0.15
−14
−7.0
26.0
39.9
3.73
dB
dB
dB
dB
dBm
dBm
dB
Using the AMP2IN and AMP2OUT pins
±50 MHz
S11
S22
∆f = 1 MHz, POUT = 5 dBm/tone
Using the AMP2IN and AMP2OUT pins
±18 MHz
−40°C ≤ TA ≤ +85°C
4.75 V to 5.25 V
S11
S22
∆f = 1 MHz, POUT = 5 dBm/tone
Using the AMP2IN and AMP2OUT pins
±30 MHz
S11
S22
∆f = 1 MHz, POUT = 5 dBm/tone
Using the AMP2IN and AMP2OUT pins
13.0
±30 MHz
−40°C ≤ TA ≤ +85°C
4.75 V to 5.25 V
S11
S22
∆f = 1 MHz, POUT = 5 dBm/tone
Rev. B | Page 5 of 40
14.2
±0.03
±0.50
±0.09
−10.7
−8.1
26.0
41.1
3.7
15.5
dB
dB
dB
dB
dB
dB
dBm
dBm
dB
ADL5243
Parameter
AMPLIFIER 2 FREQUENCY = 2630 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
AMPLIFIER 2 FREQUENCY = 3600 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
DSA FREQUENCY = 150 MHz
Insertion Loss
vs. Frequency
vs. Temperature
Attenuation Range
Attenuation Step Error
Attenuation Absolute Error
Input Return Loss
Output Return Loss
Input Third-Order Intercept
DSA FREQUENCY = 450 MHz
Insertion Loss
vs. Frequency
vs. Temperature
Attenuation Range
Attenuation Step Error
Attenuation Absolute Error
Input Return Loss
Output Return Loss
Input Third-Order Intercept
DSA FREQUENCY = 748 MHz
Insertion Loss
vs. Frequency
vs. Temperature
Attenuation Range
Attenuation Step Error
Attenuation Absolute Error
Input Return Loss
Output Return Loss
Input Third-Order Intercept
Data Sheet
Conditions
Using the AMP2IN and AMP2OUT pins
±60 MHz
−40°C ≤ TA ≤ +85°C
4.75 V to 5.25 V
S11
S22
∆f = 1 MHz, POUT = 5 dBm/tone
Min
Typ
Max
Unit
13.0
±0.13
±0.56
±0.09
−9.4
−8.3
24.5
40.4
4.1
dB
dB
dB
dB
dB
dB
dBm
dBm
dB
12.3
±1.23
±1.05
±0.07
−15.0
−11.0
26.2
36.2
5.5
dB
dB
dB
dB
dB
dB
dBm
dBm
dB
−1.5
±0.12
±0.10
28.8
±0.18
±1.35
−13.5
−13.3
48.2
dB
dB
dB
dB
dB
dB
dB
dB
dBm
−1.4
±0.02
±0.12
30.7
±0.14
±0.39
−17.7
−17.4
44.0
dB
dB
dB
dB
dB
dB
dB
dB
dBm
−1.5
±0.02
±0.12
30.9
±0.15
±0.30
−17.1
−17.1
44.0
dB
dB
dB
dB
dB
dB
dB
dB
dBm
Using the AMP2IN and AMP2OUT pins
±200 MHz
−40°C ≤ TA ≤ +85°C
4.75 V to 5.25 V
S11
S22
∆f = 1 MHz, POUT = 5 dBm/tone
Using the DSAIN and DSAOUT pins, minimum attenuation
±50 MHz
−40°C ≤ TA ≤ +85°C
Between maximum and minimum attenuation states
All attenuation states
All attenuation states
∆f = 1 MHz, POUT = 5 dBm/tone
Using the DSAIN and DSAOUT pins, minimum attenuation
±50 MHz
−40°C ≤ TA ≤ +85°C
Between maximum and minimum attenuation states
All attenuation states
All attenuation states
∆f = 1 MHz, POUT = 5 dBm/tone
Using the DSAIN and DSAOUT pins, minimum attenuation
±50 MHz
−40°C ≤ TA ≤ +85°C
Between maximum and minimum attenuation states
All attenuation states
All attenuation states
∆f = 1 MHz, POUT = 5 dBm/tone
Rev. B | Page 6 of 40
Data Sheet
Parameter
DSA FREQUENCY = 943 MHz
Insertion Loss
vs. Frequency
vs. Temperature
Attenuation Range
Attenuation Step Error
Attenuation Absolute Error
Input Return Loss
Output Return Loss
Input 1 dB Compression Point
Input Third-Order Intercept
DSA FREQUENCY = 1960 MHz
Insertion Loss
vs. Frequency
vs. Temperature
Attenuation Range
Attenuation Step Error
Attenuation Absolute Error
Input Return Loss
Output Return Loss
Input 1 dB Compression Point
Input Third-Order Intercept
DSA FREQUENCY = 2140 MHz
Insertion Loss
vs. Frequency
vs. Temperature
Attenuation Range
Attenuation Step Error
Attenuation Absolute Error
Input Return Loss
Output Return Loss
Input 1 dB Compression Point
Input Third-Order Intercept
DSA FREQUENCY = 2630 MHz
Insertion Loss
vs. Frequency
vs. Temperature
Attenuation Range
Attenuation Step Error
Attenuation Absolute Error
Input Return Loss
Output Return Loss
Input 1 dB Compression Point
Input Third-Order Intercept
ADL5243
Conditions
Using the DSAIN and DSAOUT pins, minimum attenuation
±18 MHz
−40°C ≤ TA ≤ +85°C
Between maximum and minimum attenuation states
All attenuation states
All attenuation states
∆f = 1 MHz, POUT = 5 dBm/tone
Using the DSAIN and DSAOUT pins, minimum attenuation
±30 MHz
−40°C ≤ TA ≤ +85°C
Between maximum and minimum attenuation states
All attenuation states
All attenuation states
∆f = 1 MHz, POUT = 5 dBm/tone
Using the DSAIN and DSAOUT pins, minimum attenuation
±30 MHz
−40°C ≤ TA ≤ +85°C
Between maximum and minimum attenuation states
All attenuation states
All attenuation states
∆f = 1 MHz, POUT = 5 dBm/tone
Using the DSAIN and DSAOUT pins, minimum attenuation
±60 MHz
−40°C ≤ TA ≤ +85°C
Between maximum and minimum attenuation states
All attenuation states
All attenuation states
∆f = 1 MHz, POUT = 5 dBm/tone
Rev. B | Page 7 of 40
Min
Typ
Max
Unit
−1.6
±0.01
±0.13
30.9
±0.15
±0.28
−16.0
−15.9
30.5
50.7
dB
dB
dB
dB
dB
dB
dB
dB
dBm
dBm
−2.5
±0.04
±0.18
30.8
±0.15
±0.35
−10.3
−9.6
31.5
49.6
dB
dB
dB
dB
dB
dB
dB
dB
dBm
dBm
−2.6
±0.02
±0.19
30.9
±0.13
±0.32
−9.8
−9.3
31.5
49.6
dB
dB
dB
dB
dB
dB
dB
dB
dBm
dBm
−2.8
±0.02
±0.21
31.2
±0.18
±0.24
−10.0
−9.6
31.5
48.3
dB
dB
dB
dB
dB
dB
dB
dB
dBm
dBm
ADL5243
Parameter
DSA FREQUENCY = 3600 MHz
Insertion Loss
vs. Frequency
vs. Temperature
Attenuation Range
Attenuation Step Error
Attenuation Absolute Error
Input Return Loss
Output Return Loss
Input 1 dB Compression Point
Input Third-Order Intercept
DSA Gain Settling
Minimum Attenuation to Maximum
Attenuation
Maximum Attenuation to Minimum
Attenuation
LOOP FREQUENCY = 150 MHz
Gain
vs. Frequency
Gain Range
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
LOOP FREQUENCY = 450 MHz
Gain
vs. Frequency
Gain Range
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
LOOP FREQUENCY = 943 MHz
Gain
vs. Frequency
Gain Range
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
LOOP FREQUENCY = 2140 MHz
Gain
vs. Frequency
Gain Range
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
Data Sheet
Conditions
Using the DSAIN and DSAOUT pins, minimum attenuation
±100 MHz
−40°C ≤ TA ≤ +85°C
Between maximum and minimum attenuation states
All attenuation states
All attenuation states
∆f = 1 MHz, POUT = 5 dBm/tone
Using the DSAIN and DSAOUT pins
Min
Typ
Max
Unit
−3.0
±0.02
±0.23
31.7
±0.38
±0.35
−12.3
−11.7
31.0
46.2
dB
dB
dB
dB
dB
dB
dB
dB
dBm
dBm
36
ns
36
ns
37.4
±0.1
28.0
−10.0
−7.0
22.5
38.5
3.0
dB
dB
dB
dB
dB
dBm
dBm
dB
35.8
±0.43
31.0
−12.5
−6.4
23.1
37.6
3.1
dB
dB
dB
dB
dB
dBm
dBm
dB
34.0
±0.10
29.3
−14.2
−10.1
25.1
42.8
2.9
dB
dB
dB
dB
dB
dBm
dBm
dB
31.3
±0.03
32.5
−9.3
−5.4
25.3
40.0
3.1
dB
dB
dB
dB
dB
dBm
dBm
dB
AMP1 – DSA – AMP2, DSA at minimum attenuation
±50 MHz
Between maximum and minimum attenuation states
S11
S22
∆f = 1 MHz, POUT = 5 dBm/tone
AMP1 – DSA – AMP2, DSA at minimum attenuation
±50 MHz
Between maximum and minimum attenuation states
S11
S22
∆f = 1 MHz, POUT = 5 dBm/tone
AMP1–DSA–AMP2, DSA at minimum attenuation
±18 MHz
Between maximum and minimum attenuation states
S11
S22
∆f = 1 MHz, POUT = 5 dBm/tone
AMP1 – DSA – AMP2, DSA at minimum attenuation
±30 MHz
Between maximum and minimum attenuation states
S11
S22
∆f = 1 MHz, POUT = 5 dBm/tone
Rev. B | Page 8 of 40
Data Sheet
Parameter
LOOP FREQUENCY = 2630 MHz
Gain
vs. Frequency
Gain Range
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
LOOP FREQUENCY = 3600 MHz
Gain
vs. Frequency
Gain Range
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
LOGIC INPUTS
Input High Voltage, VINH
Input Low Voltage, VINL
Input Current, IINH/IINL
Input Capacitance, CIN
POWER SUPPLIES
Voltage
Supply Current
ADL5243
Conditions
AMP1 – DSA – AMP2, DSA at minimum attenuation
Min
±60 MHz
Between maximum and minimum attenuation states
S11
S22
∆f = 1 MHz, POUT = 5 dBm/tone
Typ
Max
Unit
29.5
±0.56
30.0
−12.6
−5.8
24.6
39.3
3.1
dB
dB
dB
dB
dB
dBm
dBm
dB
26.5
±1.3
33.0
−8.0
−8.0
24.7
36.0
3.7
dB
dB
dB
dB
dB
dBm
dBm
dB
AMP1 – DSA – AMP2, DSA at minimum attenuation
±200 MHz
Between maximum and minimum attenuation states
S11
S22
∆f = 1 MHz, POUT = 5 dBm/tone
CLK, DATA, LE, SEL, D0~D6
2.5
0.8
0.1
1.5
4.75
AMP1
AMP2
DSA
Rev. B | Page 9 of 40
5.0
89
86
0.5
5.25
120
120
V
V
µA
pF
V
mA
mA
mA
ADL5243
Data Sheet
ABSOLUTE MAXIMUM RATINGS
ESD CAUTION
Table 2.
Parameter
Supply Voltage (VDD, VCC, VCC2)
Input Power
AMP1IN
AMP2IN (50 Ω Impedance)
DSAIN
Internal Power Dissipation
θJA (Exposed Paddle Soldered Down)
θJC (Exposed Paddle)
Maximum Junction Temperature
Lead Temperature (Soldering, 60 sec)
Operating Temperature Range
Storage Temperature Range
Rating
6.5 V
16 dBm
20 dBm
30 dBm
1.0 W
34.8°C/W
6.2°C/W
150°C
240°C
−40°C to +85°C
−65°C to +150°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
Rev. B | Page 10 of 40
Data Sheet
ADL5243
32
31
30
29
28
27
26
25
SEL
D0/CLK
D1/DATA
D2/LE
D3
D4
D5
D6
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
1
2
3
4
5
6
7
8
PIN 1
INDICATOR
ADL5243
TOP VIEW
(Not to Scale)
24
23
22
21
20
19
18
17
VDD
NC
NC
DSAOUT
NC
AMP2IN
NC
NC
NOTES
1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN.
2. THE EXPOSED PAD MUST BE CONNECTED TO GROUND.
09431-002
NC
AMP1IN
NC
NC
NC
NC
AMP2OUT/VCC2
VBIAS
9
10
11
12
13
14
15
16
VDD
NC
NC
DSAIN
NC
AMP1OUT/VCC
NC
NC
Figure 2. Pin Configuration
Table 3. Pin Function Descriptions
Pin No.
1, 24
2, 3, 5, 7, 8, 9, 11, 12, 13, 14,
17, 18, 20, 22, 23
4
6
Mnemonic
VDD
NC
Description
Supply Voltage for DSA. Connect this pin to a 5 V supply.
No Connect. Do not connect to this pin.
DSAIN
AMP1OUT/VCC
10
15
AMP1IN
AMP2OUT/VCC2
16
19
21
25
26
27
28
29
30
31
32
VBIAS
AMP2IN
DSAOUT
D6
D5
D4
D3
D2/LE
D1/DATA
D0/CLK
SEL
RF Input to DSA.
RF Output from Amplifier 1/Supply Voltage for Amplifier 1. Bias to Gain Block Amplifier 1 is
provided through a choke to this pin when connected to VCC.
RF Input to Gain Block Amplifier 1.
RF Output from Amplifier 2/Supply Voltage for Amplifier 2. Bias to Driver Amplifier 2 is
provided through a choke to this pin when connected to VCC2.
Bias for Driver Amplifier 2.
RF Input to Amplifier 2.
RF Output from DSA.
Data Bit in Parallel Mode (LSB). Connect to supply in serial mode.
Data Bit in Parallel Mode. Connect to ground in serial mode.
Data Bit in Parallel Mode. Connect to ground in serial mode.
Data Bit in Parallel Mode. Connect to ground in serial mode.
Data Bit in Parallel Mode/Latch Enable in Serial Mode.
Data Bit in Parallel Mode (MSB)/Data in Serial Mode.
Connect this pin to ground in parallel mode. This pin functions as a clock in serial mode.
Select Pin. For parallel mode operation , connect this pin to the supply. For serial mode
operation, connect this pin to ground.
Exposed Paddle. The exposed paddle must be connected to ground.
EPAD
Rev. B | Page 11 of 40
ADL5243
Data Sheet
TYPICAL PERFORMANCE CHARACTERISTICS
28
45
26
40
24
35
22
30
20
25
18
20
OIP3
40
35
P1dB (dBm)
GAIN
25
20
15
P1dB
10
0
0.4
0.8
1.2
1.6
+85°C
+25°C
–40°C
16
NOISE FIGURE
2.0
2.4
2.8
3.2
3.6
4.0
FREQUENCY (GHz)
0
0.4
0.8
1.2
1.6
2.0
2.8
3.2
FREQUENCY (GHz)
42
21.5
40
21.0
38
943MHz
450MHz
748MHz
36 1960MHz
20.5
2140MHz
34
OIP3 (dBm)
–40°C
19.5
+25°C
2630MHz
32
30
3600MHz
28
+85°C
18.5
2.4
Figure 6. AMP1: OIP3 at POUT = 3 dBm/Tone and P1dB vs. Frequency and
Temperature
22.0
19.0
10
3.6
14
Figure 3. AMP1: Gain, P1dB, OIP3 at POUT = 3 dBm/Tone and Noise Figure vs.
Frequency
20.0
15
09431-006
5
0
150MHz
26
18.0
24
17.5
22
0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
FREQUENCY (GHz)
20
–4
09431-004
17.0
–2
0
2
4
6
8
10
12
14
16
3.6
4.0
POUT PER TONE (dBm)
09431-007
GAIN (dB)
OIP3 (dBm)
30
09431-003
NOISE FIGURE, GAIN, P1dB, OIP3 (dB, dBm)
45
Figure 7. AMP1: OIP3 vs. POUT and Frequency
Figure 4. AMP1: Gain vs. Frequency and Temperature
5.0
0
–5
4.5
S22
–15
NOISE FIGURE (dB)
S-PARAMETERS (dB)
–10
S11
–20
S12
–25
–30
–35
4.0
+85°C
3.5
3.0
+25°C
2.5
–40°C
–40
2.0
0.5
0.9
1.3
1.7
2.1
2.5
FREQUENCY (GHz)
2.9
3.3
3.7
4.1
Figure 5. AMP1: Input Return Loss (S11), Output Return Loss (S22), and
Reverse Isolation (S12) vs. Frequency
Rev. B | Page 12 of 40
1.5
0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
FREQUENCY (GHz)
Figure 8. AMP1: Noise Figure vs. Frequency and Temperature
09431-008
–50
0.1
09431-005
–45
Data Sheet
ADL5243
27.0
45
26.5
43
26.0
41
25.5
39
25.0
37
40
35
P1dB (dBm)
30
P1dB
25
20
GAIN
15
10
24.5
NF
5
0
0.925
0.930
0.935
0.940
0.945
0.950
0.955
0.960
0.965
FREQUENCY (GHz)
24.0
0.925
0.930
0.935
0.940
0.945
0.950
0.955
0.960
33
0.965
FREQUENCY (GHz)
Figure 9. AMP2–943 MHz: Gain, P1dB, OIP3 at POUT = 5 dBm/Tone and Noise
Figure vs. Frequency
Figure 12. AMP2–943 MHz: OIP3 at POUT = 5 dBm/Tone and P1dB vs.
Frequency and Temperature
18.0
45
44
17.5
961MHz
43
925MHz
OIP3 (dBm)
–40°C
17.0
GAIN (dB)
35
+85°C
+25°C
–40°C
09431-012
45
OIP3 (dBm)
OIP3
09431-009
NOISE FIGURE, GAIN, P1dB, OIP3 (dB, dBm)
50
+25°C
16.5
+85°C
16.0
42
943MHz
41
40
39
15.5
0.930
0.935
0.940
0.945
0.950
0.955
0.960
0.965
FREQUENCY (GHz)
37
–4
09431-010
7.5
–5
7.0
S22
4
6
8
10
12
14
16
18
6.5
–10
NOISE FIGURE (dB)
S-PARAMETERS (dB)
2
Figure 13. AMP2–943 MHz: OIP3 vs. POUT and Frequency
0
S11
–20
–25
+85°C
6.0
5.5
+25°C
5.0
–40°C
–40°C
4.5
S12
–30
4.0
0.85
0.90
0.95
1.00
FREQUENCY (GHz)
1.05
1.10
3.5
0.80
09431-011
–35
0.80
0
POUT PER TONE (dBm)
Figure 10. AMP2–943 MHz: Gain vs. Frequency and Temperature
–15
–2
Figure 11. AMP2–943 MHz: Input Return Loss (S11), Output Return Loss (S22),
and Reverse Isolation (S12) vs. Frequency
0.83
0.86
0.89
0.92
0.95
0.98
FREQUENCY (GHz)
1.01
1.04
1.07
1.10
09431-014
15.0
0.925
09431-013
38
Figure 14. AMP2–943 MHz: Noise Figure vs. Frequency and Temperature
Rev. B | Page 13 of 40
ADL5243
Data Sheet
28.0
43
27.5
41
27.0
39
26.5
37
26.0
35
OIP3
40
30
P1dB (dBm)
P1dB
25
20
GAIN
15
OIP3 (dBm)
35
10
+85°C
+25°C
–40°C
0
2.11
2.12
2.13
2.14
2.15
2.16
2.17
FREQUENCY (GHz)
Figure 15. AMP2–2140 MHz: Gain, P1dB, OIP3 at POUT = 5 dBm/Tone and
Noise Figure vs. Frequency
25.0
2.11
2.12
2.13
33
2.14
2.15
31
2.17
2.16
09431-018
25.5
NF
5
09431-015
NOISE FIGURE, GAIN, P1dB, OIP3 (dB, dBm)
45
FREQUENCY (GHz)
Figure 18. AMP2–2140 MHz: OIP3 at POUT = 5 dBm/Tone and P1dB vs.
Frequency and Temperature
16.0
42
15.5
41
14.5
+25°C
14.0
+85°C
40
38
13.5
37
13.0
36
12.5
35
12.0
2.11
2.12
2.13
2.14
2.15
2.16
2.17
FREQUENCY (GHz)
2.14GHz
39
34
–6
–4
–2
0
2
4
6
8
10
12
14
16
18
20
22
POUT PER TONE (dBm)
09431-019
–40°C
OIP3 (dBm)
15.0
09431-016
GAIN (dB)
2.17GHz
2.11GHz
Figure 19. AMP2–2140 MHz: OIP3 vs. POUT and Frequency
Figure 16. AMP2–2140 MHz: Gain vs. Frequency and Temperature
5.5
0
5.0
–5
S22
–15
–20
4.0
+25°C
3.5
–40°C
3.0
S12
–25
2.5
2.05
2.10
2.15
2.20
FREQUENCY (GHz)
2.25
2.30
2.0
2.00
09431-017
–30
2.00
+85°C
4.5
Figure 17. AMP2–2140 MHz: Input Return Loss (S11), Output Return Loss
(S22), and Reverse Isolation (S12) vs. Frequency
2.03
2.06
2.09
2.12
2.15
2.18
FREQUENCY (GHz)
2.21
2.24
2.27
2.30
09431-020
–10
NOISE FIGURE (dB)
S-PARAMETERS (dB)
S11
Figure 20. AMP2–2140 MHz: Noise Figure vs. Frequency and Temperature
Rev. B | Page 14 of 40
ADL5243
OIP3
40
35
P1dB (dBm)
30
P1dB
25
20
42.0
27.5
41.5
27.0
41.0
26.5
40.5
26.0
40.0
25.5
39.5
25.0
39.0
24.5
38.5
38.0
24.0
NF
5
2.59
+85°C
+25°C
–40°C
23.5
2.61
2.63
2.65
2.67
2.69
FREQUENCY (GHz)
Figure 21. AMP2–2630 MHz: Gain, P1dB, OIP3 at POUT = 5 dBm/Tone and
Noise Figure vs. Frequency
23.0
2.57
2.59
2.61
2.65
37.0
2.69
2.67
FREQUENCY (GHz)
42
2.69GHz
41
14.5
2.63GHz
40
39
–40°C
2.57GHz
38
OIP3 (dBm)
13.5
GAIN (dB)
2.63
Figure 24. AMP2–2630 MHz: OIP3 at POUT = 5 dBm/Tone and P1dB vs.
Frequency and Temperature
15.0
14.0
37.5
09431-024
10
0
2.57
28.0
GAIN
15
09431-021
NOISE FIGURE, GAIN, P1dB, OIP3 (dB, dBm)
45
OIP3 (dBm)
Data Sheet
+25°C
13.0
+85°C
12.5
37
36
35
34
33
12.0
32
11.5
2.61
2.63
2.65
2.67
2.69
FREQUENCY (GHz)
30
–6
–2
0
2
4
6
8
10
12
14
16
18
20
22
POUT PER TONE (dBm)
Figure 22. AMP2–2630 MHz: Gain vs. Frequency and Temperature
Figure 25. AMP2–2630 MHz: OIP3 vs. POUT and Frequency
0
6.0
5.5
–5
S11
5.0
NOISE FIGURE (dB)
S-PARAMETERS (dB)
–4
09431-025
2.59
09431-022
11.0
2.57
31
–10
S22
–15
–20
S12
+85°C
4.5
+25°C
4.0
3.5
–40°C
3.0
–25
2.55
2.60
2.65
2.70
FREQUENCY (GHz)
2.75
2.80
2.0
2.50
09431-023
–30
2.50
Figure 23. AMP2–2630 MHz: Input Return Loss (S11), Output Return Loss
(S22), and Reverse Isolation (S12) vs. Frequency
2.53
2.56
2.59
2.62
2.65
2.68
FREQUENCY (GHz)
2.71
2.74
2.77
2.80
09431-026
2.5
Figure 26. AMP2–2630 MHz: Noise Figure vs. Frequency and Temperature
Rev. B | Page 15 of 40
ADL5243
Data Sheet
0
1.0
0dB
450MHz
748MHz
943MHz
0.8
–5
1960MHz
2140MHz
2630MHz
3600MHz
0.6
ABSOLUTE ERROR (dB)
ATTENUATION (dB)
–10
–15
–20
–25
–30
0.4
0.2
0
–0.2
–0.4
–0.6
–35
0.5
0.9
1.3
1.7
2.1
2.5
2.9
3.3
3.7
4.1
FREQUENCY (GHz)
–1.0
09431-027
–40
0.1
0
24
28
32
–5
INPUT RETURN LOSS (dB)
ATTENUATION (dB)
20
0
4dB
8dB
–11
16
Figure 30. DSA: Absolute Error vs. Attenuation
0dB
–6
12
ATTENUATION (dB)
Figure 27. DSA: Attenuation vs. Frequency
–1
8
4
09431-030
–0.8
31.5dB
–16
16dB
–21
+85°C
+25°C
–40°C
–26
0dB
–10
–15
31.5dB
–20
–25
–31
0.9
1.3
1.7
2.1
2.5
2.9
3.3
3.7
4.1
FREQUENCY (GHz)
0.5
0.9
1.3
1.7
2.1
2.5
2.9
3.3
3.7
Figure 31. DSA: Input Return Loss vs. Frequency, All States
0.5
0
1960MHz
2140MHz
2630MHz
3600MHz
0.3
–5
OUTPUT RETURN LOSS (dB)
450MHz
748MHz
943MHz
4.1
FREQUENCY (GHz)
Figure 28. DSA: Attenuation vs. Frequency and Temperature
0.4
0.2
0.1
0
–0.1
–0.2
–0.3
0dB
–10
–15
31.5dB
–20
–25
–0.5
0
4
8
12
16
20
24
ATTENUATION (dB)
28
32
–30
0.1
0.5
0.9
1.3
1.7
2.1
2.5
2.9
3.3
3.7
4.1
FREQUENCY (GHz)
Figure 32. DSA: Output Return Loss vs. Frequency, All States
Figure 29. DSA: Step Error vs. Attenuation
Rev. B | Page 16 of 40
09431-032
–0.4
09431-029
STEP ERROR (dB)
–30
0.1
09431-028
0.5
09431-031
31.5dB
–36
0.1
Data Sheet
ADL5243
55
36
150
1960MHz
IIP3
35
50
100
33
40
PHASE (Degrees)
45
IIP3 (dBm)
34
35
32
50
2630MHz
0
–50
IP1dB
30
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3.0
3.3
25
3.6
–150
FREQUENCY (GHz)
943MHz
0
4
8
12
16
20
24
28
32
960
965
ATTENUATION (dB)
09431-036
–100
09431-033
30
31
Figure 36. DSA: Phase vs. Attenuation
Figure 33. DSA: Input P1dB and Input IP3 vs. Frequency, Minimum
Attenuation State
3
CH3 2.00V
CH4 200mV
M10ns 10GS/s A CH3
IT 1.0ps/pt
1.24V
40
GAIN
35
30
P1dB
25
20
15
10
NF
5
0
925
09431-034
4
OIP3
45
930
935
940
945
950
955
FREQUENCY (MHz)
09431-037
NOISE FIGURE, GAIN, P1dB, OIP3 (dB, dBm)
50
Figure 37. Loop–943 MHz: Gain, P1dB, OIP3 at POUT = 5 dBm/Tone and Noise
Figure vs. Frequency, Minimum Attenuation State
Figure 34. DSA: Gain Settling Time, 0 dB to 31.5 dB
0
S22
–10
S-PARAMETERS (dB)
–20
3
4
S11
–30
–40
–50
S12
–60
–70
CH3 2.00V
CH4 200mV
M10ns 10GS/s A CH3
IT 1.0ps/pt
1.24V
Figure 35. DSA: Gain Settling Time, 31.5 dB to 0 dB
–90
0.70
0.75
0.80
0.85
0.90
0.95
FREQUENCY (GHz)
1.00
1.05
1.10
09431-038
–80
09431-035
IP1dB (dBm)
2140MHz
Figure 38. Loop–943 MHz: Input Return Loss (S11), Output Return Loss (S22),
and Reverse Isolation (S12) vs. Frequency, Minimum Attenuation State
Rev. B | Page 17 of 40
ADL5243
Data Sheet
42
46
925MHz
2.14GHz
943MHz
961MHz
40
OIP3 (dBm)
42
OIP3 (dBm)
2.11GHz
41
44
40
38
2.17GHz
39
38
37
36
36
34
6
8
10
12
14
16
18
20
22
POUT PER TONE (dBm)
34
1
11
13
15
17
19
21
35
GAIN
30
P1dB
25
20
15
10
NF
5
2.12
2.13
2.14
2.15
2.16
2.17
Figure 40. Loop–2140 MHz: Gain, P1dB, OIP3 at POUT = 5 dBm/Tone and Noise
Figure vs. Frequency, Minimum Attenuation State
OIP3
40
35
GAIN
30
P1dB
25
20
15
10
5
0
2.57
NF
2.59
2.61
2.63
2.65
2.67
2.69
FREQUENCY (GHz)
09431-043
NOISE FIGURE, GAIN, P1dB, OIP3 (dB, dBm)
40
09431-040
NOISE FIGURE, GAIN, P1dB, OIP3 (dB, dBm)
9
45
OIP3
FREQUENCY (GHz)
Figure 43. Loop–2630 MHz: Gain, P1dB, OIP3 at POUT = 5 dBm/Tone and Noise
Figure vs. Frequency, Minimum Attenuation State
5
5
0
0
S22
–10
S22
–5
S-PARAMETERS (dB)
–5
S-PARAMETERS (dB)
7
Figure 42. Loop–2140 MHz: OIP3 vs. POUT and Frequency, Minimum
Attenuation State
45
S11
–15
–20
–25
–30
–10
S11
–15
–20
–25
–30
–35
–35
S12
–40
S12
–40
–45
2.05
2.10
2.15
2.20
FREQUENCY (GHz)
2.25
2.30
–50
2.50
09431-041
–45
2.00
5
POUT PER TONE (dBm)
Figure 39. Loop–943 MHz: OIP3 vs. POUT and Frequency, Minimum
Attenuation State
0
2.11
3
Figure 41. Loop–2140 MHz: Input Return Loss (S11), Output Return Loss
(S22), and Reverse Isolation (S12) vs. Frequency, Minimum Attenuation State
2.55
2.60
2.65
2.70
2.75
FREQUENCY (GHz)
2.80
2.85
2.90
09431-044
4
09431-039
32
09431-042
35
Figure 44. Loop–2630 MHz: Input Return Loss (S11), Output Return Loss
(S22), and Reverse Isolation (S12) vs. Frequency, Minimum Attenuation State
Rev. B | Page 18 of 40
Data Sheet
ADL5243
110
42
105
2.69GHz
100
SUPPLY CURRENT (mA)
2.63GHz
40
38
2.57GHz
37
36
80
70
6
8
10
12
POUT PER TONE (dBm)
14
16
18
60
–40 –30 –20 –10
09431-045
4
0
10
20
30
40
50
60
70
80
90
TEMPERATURE (°C)
Figure 45. Loop–2630 MHz: OIP3 vs. POUT and Frequency, Minimum
Attenuation State
Figure 48. AMP2: Supply Current vs. Voltage and Temperature
150
145
140
110
SUPPLY CURRENT (mA)
105
100
95
5.25V
90
5.00V
85
4.75V
80
0
10
20
30
40
50
60
70
80
90
TEMPERATURE (°C)
09431-046
70
–40 –30 –20 –10
Figure 46. AMP1: Supply Current vs. Voltage and Temperature
105
100
–40°C
95
+25°C
90
85
+85°C
80
–2
0
2
4
6
8
10
12
14
16
18
20
POUT PER TONE (dBm)
22
09431-147
75
–4
135
130
125
120
115
110
105
100
95
90
85
80
75
70
–6 –4 –2
75
70
–6
4.75V
75
65
2
5.00V
5.00V
85
34
0
SUPPLY CURRENT (mA)
90
35
33
SUPPLY CURRENT (mA)
5.25V
95
Figure 47. AMP1: Supply Current vs. POUT and Temperature
Rev. B | Page 19 of 40
+25°C
+85°C
–40°C
0
2
4
6
8
10 12 14 16 18 20 22 24 26
POUT PER TONE (dBm)
Figure 49. AMP2: Supply Current vs. POUT and Temperature
09431-149
OIP3 (dBm)
39
09431-047
41
Data Sheet
45
100
40
90
35
80
PERCENTAGE (%)
30
25
20
15
70
60
50
40
30
10
3.8
NOISE FIGURE (dB)
09431-051
3.7
3.6
3.5
3.4
3.3
3.2
3.1
3.0
2.9
2.8
2.7
2.6
2.3
20.0
GAIN (dB)
09431-048
19.9
19.8
19.7
19.6
19.5
19.4
19.3
19.2
19.1
19.0
18.9
18.8
18.7
18.6
18.5
18.4
0
18.3
10
0
2.4
20
5
2.5
PERCENTAGE (%)
ADL5243
Figure 53. AMP1: Noise Figure Distribution at 2140 MHz
Figure 50. AMP1: Gain Distribution at 2140 MHz
40
25
35
20
PERCENTAGE (%)
PERCENTAGE (%)
30
15
10
25
20
15
10
5
15.0
GAIN (dB)
09431-052
14.9
26.9
14.8
14.7
14.6
14.5
14.4
14.3
14.2
14.1
14.0
13.9
13.8
13.7
13.6
13.5
13.4
13.3
26.8
P1dB (dBm)
0
09431-049
20.5
20.4
20.3
20.2
20.1
20.0
19.9
19.8
19.7
19.6
19.5
19.4
19.3
19.2
19.1
19.0
18.9
0
18.8
5
Figure 54. AMP2: Gain Distribution at 2140 MHz
Figure 51. AMP1: P1dB Distribution at 2140 MHz
50
35
45
30
40
PERCENTAGE (%)
20
15
35
30
25
20
15
10
10
5
5
P1dB (dBm)
Figure 52. AMP1: OIP3 Distribution at 2140 MHz
Figure 55. AMP2: P1dB Distribution at 2140 MHz
Rev. B | Page 20 of 40
09431-053
26.7
26.6
26.5
26.4
26.3
26.2
26.1
26.0
25.9
25.8
25.7
25.6
25.5
25.4
OIP3 (dBm)
0
25.3
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
25.2
0
09431-050
PERCENTAGE (%)
25
Data Sheet
ADL5243
70
60
60
50
PERCENTAGE (%)
40
30
40
30
20
20
4.5
4.4
4.3
4.2
4.1
4.0
3.9
3.8
3.7
3.6
3.5
3.4
3.3
3.2
0
3.1
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
OIP3 (dBm)
3.0
0
NOISE FIGURE (dB)
Figure 57. AMP2: Noise Figure Distribution at 2140 MHz
Figure 56. AMP2: OIP3 Distribution at 2140 MHz
Rev. B | Page 21 of 40
09431-055
10
10
09431-054
PERCENTAGE (%)
50
ADL5243
Data Sheet
APPLICATIONS INFORMATION
BASIC LAYOUT CONNECTIONS
The basic connections for operating the ADL5243 are shown in Figure 58. The schematic of AMP2 is configured for 2140 MHz operation.
SERIAL PARALLEL INTERFACE
VDD
VDD
0.01µF
C17
1
2
3
4
DSAIN
AMP1OUT
L1
470nH
C15
68pF
NC
NC
NC
DSAIN
AMP1OUT/VCC
NC
NC
NC
AMP2IN
NC
NC
24
23
22
C5
100pF
C21
0.1µF
DSAOUT
21
20
19
18
17
AMP2IN
C27
2.2pF
C28
1.8pF
C8
10pF
VCC2
9 10 11 12 13 14 15 16
C14
1.2nF
C13
1µF
DSAOUT
ADL5243
NC
6
8
VDD
NC
5
7
C4
0.1µF
VDD
NC
AMP1IN
NC
NC
NC
NC
AMP2OUT/VCC2
VBIAS
C1
100pF
SEL
D0/CLK
D1/DATA
D2/LE
D3
D4
D5
D6
32 31 30 29 28 27 26 25
L2
9.5nH
C3
10pF
AMP1IN
C22
1pF
C25
10nF
C20
10µF
VCC
AMP2OUT
Figure 58. Basic Connections
Rev. B | Page 22 of 40
09431-056
C23
10pF
Data Sheet
ADL5243
Amplifier 1 Power Supply
AMP1 in the ADL5243 is a broadband gain block. The dc bias is
supplied through Inductor L1 and is connected to the
AMP1OUT pin. Three decoupling capacitors (C13, C14, and
C25) are used to prevent RF signals from propagating on the dc
lines. The dc supply ranges from 4.75 V to 5.25 V and should be
connected to the VCC test pin.
Amplifier 1 RF Input Interface
Additionally, bias is provided through this pin. Figure 58 shows
the output matching components and is configured for 2140 MHz.
DSA RF Input Interface
Pin 4 is the RF input for the DSA of the ADL5243. The input
impedance of the DSA is close to 50 Ω over the entire frequency
range; therefore, no external components are required. Only a
dc blocking capacitor (C1) is required.
DSA RF Output Interface
Pin 10 is the RF input for AMP1 of the ADL5243. The amplifier
is internally matched to 50 Ω at the input; therefore, no external
components are required. Only a dc blocking capacitor (C21) is
required.
Amplifier 1 RF Output Interface
Pin 21 is the RF output for the DSA of the ADL5243. The
output impedance of the DSA is close to 50 Ω over the entire
frequency range; therefore, no external components are
required. Only a dc blocking capacitor (C5) is required.
DSA SPI Interface
Pin 6 is the RF output for AMP1 of the ADL5243. The amplifier
is internally matched to 50 Ω at the output as well; therefore, no
external components are required. Only a dc blocking capacitor
(C4) is required. The bias is provided through this pin via a
choke inductor, L1.
Amplifier 2 Power Supply
The collector bias for AMP2 is supplied through Inductor L2
and is connected to the AMP2OUT pin, whereas the base bias is
provided through Pin 16. The base bias is connected to the
same supply pin as the collector bias. Three decoupling
capacitors (C3, C20, and C25) are used to prevent RF signals
from propagating on the dc lines. The dc supply ranges from
4.75 V to 5.25 V and should be connected to the VCC2 test pin.
The DSA of the ADL5243 can operate in either serial or parallel
mode. Pin 32 (SEL) controls the mode of operation. For serial
mode operation, connect SEL to ground, and for parallel mode
operation, connect SEL to VDD. In parallel mode, Pin 25 to Pin
30 (D6 to D1) are the data bits, with D6 being the LSB. Connect
Pin 31 (D0) to ground during parallel mode of operation. In
serial mode, Pin 29 is the latch enable (LE), Pin 30 is the data
(DATA), and Pin 31 is the clock (CLK). Pin 26, Pin 27, and Pin 28
are not used in the serial mode and should be connected to
ground. Pin 25 (D6) should be connected to VDD during the
serial mode of operation. To prevent noise from coupling onto
the digital signals, an RC filter can be used on each data line.
SPI TIMING
Amplifier 2 RF Input Interface
SPI Timing Sequence
Pin 19 is the RF input for AMP2 of the ADL5243. The input of
the amplifier is easily matched to 50 Ω with a combination of
series and shunt capacitors and a microstrip line serving as an
inductor. Figure 58 shows the input matching components and
is configured for 2140 MHz.
Figure 60 shows the timing sequence for the SPI function using
a 6-bit operation. The clock can be as fast as 20 MHz. In serial
mode operation, Register B5 (MSB) is first, and Register B0
(LSB) is last.
Amplifier 2 RF Output Interface
Pin 15 is the RF input for AMP2 of the ADL5243. The output of
the amplifier is easily matched to 50 Ω with a combination of series
and shunt capacitors and a microstrip line serving as an inductor.
Table 4. Mode Selection Table
Pin 32 (SEL)
Connect to Ground
Connect to Supply
Table 5. SPI Timing Specifications
Parameter
FCLK
t1
t2
t3
t4
t5
t6
Limit
10
30
30
10
10
10
30
Unit
MHz
ns min
ns min
ns min
ns min
ns min
ns min
Test Conditions/Comments
Data clock frequency
Clock high time
Clock low time
Data to clock setup time
Clock to data hold time
Clock low to LE setup time
LE pulse width
Rev. B | Page 23 of 40
Functionality
Serial mode
Parallel mode
ADL5243
Data Sheet
t1
t5
CLK
t2
t3
t4
MSB
B5
DATA
B4
B3
B2
B1
LSB
B0
09431-057
t6
LE
Figure 59. SPI Timing Diagram (Data Loaded MSB First)
D0/CLK
MSB
B5
D1/DATA
B4
B3
B2
B1
LSB
B0
09431-058
D2/LE
D6
Figure 60. SPI Timing Sequence
Table 6. DSA Attenuation Truth Table—Serial Mode
Attenuation State
0 dB (Reference)
0.5 dB
1.0 dB
2.0 dB
4.0 dB
8.0 dB
16.0 dB
31.5 dB
B5 (MSB)
1
1
1
1
1
1
0
0
B4
1
1
1
1
1
0
1
0
B3
1
1
1
1
0
1
1
0
B2
1
1
1
0
1
1
1
0
B1
1
1
0
1
1
1
1
0
B0 (LSB)
1
0
1
1
1
1
1
0
D4
1
1
1
0
1
1
1
0
D5
1
1
0
1
1
1
1
0
D6 (LSB)
1
0
1
1
1
1
1
0
Table 7. DSA Attenuation Truth Table—Parallel Mode
Attenuation State
0 dB (Reference)
0.5 dB
1.0 dB
2.0 dB
4.0 dB
8.0 dB
16.0 dB
31.5 dB
D1 (MSB)
1
1
1
1
1
1
0
0
D2
1
1
1
1
1
0
1
0
D3
1
1
1
1
0
1
1
0
Rev. B | Page 24 of 40
Data Sheet
ADL5243
the spacing is 153 mils and 25 mils respectively. The component
spacing is referenced from the center of the component to the
edge of the package. Figure 61 to Figure 69 show the graphical
representation of the matching network. It is recommended to
configure a RC feedback network and bias the AMP2 input
through external R for optimal performance at frequency bands
less than 500 MHz as shown at Figure 61 and Figure 62. In this
case, VBIAS pin must be left open.
ADL5243 AMPLIFIER 2 MATCHING
The AMP2 input and output of the ADL5243 can be matched to
50 Ω with two or three external components and the microstrip
line used as an inductor. Table 8 lists the required matching
components values. All capacitors are Murata GRM155 series
(0402 size), and Inductor L2 is a Coilcraft® 0603CS series (0603
size). For all frequency bands, the placement of Capacitors C22,
C26, and C28 is critical.
Table 9 lists the recommended component spacing of C22, C26,
and C28 for the various frequencies. The placement of R12 and
C27 is fixed for the matching network on evaluation board and
Table 8. Component Values on Evaluation Board
Frequency
150 MHz
450 MHz
748 MHz
943 MHz
1960 MHz
2140 MHz
2350 MHz
2630 MHz
3600 MHz
1
C27
2.7n H
0Ω
0Ω
0Ω
2.7 pF
2.2 pF
3.3 pF
2.7 pF
1.0 pF
C26
1.5 pF
N/A
N/A
3.9 pF
N/A
N/A
1.6 pF
1.1 pF
1.5 KΩ
C28
N/A
5.1pF
5.1 pF
N/A
1.0 pF
1.8 pF
1.5 KΩ
1.5 KΩ
1.2 pF
C8
1500 pF
1000 pF
12 pF
6 pF
10 pF
10 pF
10 pF
10 pF
10 pF
C22
0.5 pF
0.5 pF
1.3 pF
1.3 pF
1.0 pF
1.0 pF
1.0 pF
1.3 pF
1.2 pF
C23
4700 pF
1000 pF
18 pF
100 pF
20 pF
10 pF
20 pF
20 pF
20 pF
L2
390 nH
110 nH
56 nH
56 nH
9.5 nH
9.5 nH
9.5 nH
9.5 nH
9.5 nH
R10
21 Ω
21 Ω
18 Ω
18 Ω
0Ω
0Ω
0Ω
0Ω
0Ω
R20 1
N/A
5.6 Ω
5.6 Ω
N/A
N/A
N/A
N/A
N/A
N/A
R12
22 nH
3.9 nH
3.9 nH
3.3 nH
0Ω
0Ω
0Ω
0Ω
1.0 nH
R16
3.16 kΩ
3.16 kΩ
N/A
N/A
N/A
N/A
N/A
N/A
N/A
R15
750 Ω
750 Ω
N/A
N/A
N/A
N/A
N/A
N/A
N/A
C10
1 nF
1 nF
N/A
N/A
N/A
N/A
N/A
N/A
N/A
R20 is not reserved on the evaluation board.
Table 9. Component Spacing on Evaluation Board
Frequency
150 MHz
450 MHz
748 MHz
943 MHz
1960 MHz
2140 MHz
2350 MHz
2630 MHz
3600 MHz
C26 : λ1(mils)
213
N/A
N/A
236
N/A
N/A
153
126
342
C28 : λ2(mils)
N/A
230
315
N/A
366
366
195
161
366
Rev. B | Page 25 of 40
C22 : λ3(mils)
408
485
201
394
244
244
244
240
106
R31
0Ω
0Ω
N/A
N/A
N/A
N/A
N/A
N/A
N/A
R30
N/A
N/A
0Ω
0Ω
0Ω
0Ω
0Ω
0Ω
0Ω
ADL5243
Data Sheet
NC 20
ADL5243
λ1
R10
21Ω
AMP2IN 19
NC
NC
AMP2OUT//VCC2
VBIAS
C27
2.7nH
13
14
15
16
NC 18
NC 17
AMP2IN
C8
1500pF
C26
1.5pF
R31
0Ω
R15
750Ω
R16
3.16kΩ
C10
1nF
L2
390nH
λ3
R12
22nH
VCC
C22
0.5pF
C23
4700pF
09431-161
AMP2OUT
Figure 61. AMP2: Matching Circuit at 150 MHz
NC 20
λ2
ADL5243
R10
21Ω
AMP2IN 19
NC
NC
AMP2OUT//VCC2
VBIAS
C27
0Ω
13
14
15
16
NC 18
C28
5.1pF
R31
0Ω
AMP2IN
C8
1000pF
R20
5.6Ω
NC 17
R15
750Ω
R16
3.16kΩ
C10
1nF
λ3
L2
110nH
R12
3.9nH
VCC
C22
0.5pF
AMP2OUT
09431-162
C23
1000pF
Figure 62. AMP2: Matching Circuit at 450 MHz
Rev. B | Page 26 of 40
Data Sheet
ADL5243
NC 20
λ2
R10
18Ω
ADL5243
AMP2IN 19
C28
5.1pF
NC
NC
AMP2OUT/VCC2
VBIAS
C27
0Ω
13
14
15
16
AMP2IN
C8
12pF
R20
5.6Ω
NC 18
NC 17
L2
56nH
λ3
R12
3.9nH
C22
1.3pF
C23
18pF
09431-061
AMP2OUT
Figure 63. AMP2: Matching Circuit at 748 MHz
NC 20
λ1
ADL5243
R10
18Ω
AMP2IN 19
NC
NC
AMP2OUT//VCC2
VBIAS
C27
0Ω
13
14
15
16
λ3
C26
3.9pF
AMP2IN
C8
6pF
NC 18
NC 17
L2
56nH
R12
3.3nH
C22
1.3pF
AMP2OUT
09431-062
C23
100pF
Figure 64. AMP2: Matching Circuit at 943 MHz
Rev. B | Page 27 of 40
ADL5243
Data Sheet
NC 20
λ2
ADL5243
R10
0Ω
AMP2IN
AMP2IN 19
C28
1.0pF
NC
NC
AMP2OUT//VCC2
VBIAS
C27
2.7pF
13
14
15
16
C8
10pF
NC 18
NC 17
L2
9.5nH
λ3
R12
0Ω
C22
1.0pF
C23
20pF
09431-165
AMP2OUT
Figure 65. AMP2: Matching Circuit at 1960 MHz
NC 20
λ2
ADL5243
R10
0Ω
AMP2IN 19
NC
NC
AMP2OUT/VCC2
VBIAS
C27
2.2pF
13
14
15
16
λ3
C28
1.8pF
AMP2IN
C8
10pF
NC 18
NC 17
L2
9.5nH
R12
0Ω
C22
1pF
AMP2OUT
09431-064
C23
10pF
Figure 66. AMP2: Matching Circuit at 2140 MHz
Rev. B | Page 28 of 40
Data Sheet
ADL5243
NC 20
ADL5243
λ2
λ1
R10
0Ω
AMP2IN
AMP2IN 19
NC
NC
AMP2OUT//VCC2
VBIAS
C27
3.3pF
13
14
15
16
C26
1.6pF
C28
1.5kΩ
C8
10pF
NC 18
NC 17
L2
9.5nH
λ3
R12
0Ω
C22
1.0pF
C23
20pF
09431-167
AMP2OUT
Figure 67. AMP2: Matching Circuit at 2350 MHz
NC 20
ADL5243
λ2
λ1
R10
0Ω
AMP2IN 19
NC
NC
AMP2OUT//VCC2
VBIAS
C27
2.7pF
13
14
15
16
λ3
C26
1.1pF
C28
1.5kΩ
AMP2IN
C8
10pF
NC 18
NC 17
L2
9.5nH
R12
0Ω
C22
1.3pF
AMP2OUT
09431-065
C23
20pF
Figure 68. AMP2: Matching Circuit at 2630 MHz
Rev. B | Page 29 of 40
ADL5243
Data Sheet
NC 20
ADL5243
λ2
λ1
R10
0Ω
AMP2IN 19
NC
NC
AMP2OUT//VCC2
VBIAS
C27
1.0pF
13
14
15
16
λ3
C26
1.5kΩ
C28
1.2pF
AMP2IN
C8
10pF
NC 18
NC 17
L2
9.5nH
R12
0Ω
C23
20pF
C22
1.2pF
AMP2OUT
09431-169
R12
1nH
Figure 69. AMP2: Matching Circuit at 3600 MHz
Rev. B | Page 30 of 40
Data Sheet
ADL5243
λ4
ADL5243 LOOP PERFORMANCE
The typical configuration of the ADL5243 is to connect in
AMP1-DSA-AMP2 mode, as shown in Figure 70. Because AMP1
and DSA are broadband in nature and internally matched, only an
ac coupling capacitor is required between them. The AMP2 is
externally matched for each frequency band of operation, and these
matching elements should be placed between the DSA and AMP2
and at the output of AMP2. Matching circuits for AMP2 are shown
in Figure 61 through Figure 69. This works well in a loop in each
case but matching circuits between the DSA and AMP2 requires
slight retuning, such as adding a shunt capacitor at the DSA
output or changing the location of a shunt capacitor for optimum
performance in a loop at certain frequency bands. Figure 71
and Figure 72 show the retuned matching circuits from Figure
66 and Figure 69 at 2140 MHz and 3600 MHz, respectively.
Figure 37 to Figure 45 show the performance of the ADL5243
when connected in a loop for the three primary frequency bands of
operation, namely 943 MHz, 2140 MHz, and 2630 MHz.
DSAOUT 21
C11
1.3pF
NC 20
NC
NC
AMP2OUT/VCC2
VBIAS
C27
2.2pF
13
14
15
16
VCC
C28: λ2
(mils)
366
342
C22: λ3
(mils)
244
106
C28
1.8pF
C6
10pF
NC 18
NC 17
L2
9.5nH
λ3
R12
0Ω
C22
1pF
C11: λ4
(mils)
122
C23
10pF
AMP2OUT
N/A
09431-171
2140 MHz
3600 MHz
C26: λ1
(mils)
N/A
126
R33
0Ω
AMP2IN 19
Table 10. Component Spacing in a Loop on Evaluation Board
Frequency
λ2
ADL5243
VCC2
VDD/SPI
Figure 71. ADL5243 Matching Circuit at 2140 MHz in a Loop
DSAOUT 21
AMP1
DSA
IMN
AMP2
OMN
RFOUT
NC 20
ADL5243
λ2
λ1
ADL5243
09431-067
R33
0Ω
AMP2IN 19
C27
1.0pF
NC
AMP2OUT/VCC2
VBIAS
Figure 70. ADL5243 Loop Block Diagram
NC
13
14
15
16
λ3
C26
1.2pF
C28
1.5kΩ
C6
10pF
NC 18
NC 17
L2
9.5nH
C22
1pF
R12
1.2nH
C23
10pF
AMP2OUT
09431-172
RFIN
Figure 72. ADL5243 Matching Circuit at 3600 MHz in a Loop
Rev. B | Page 31 of 40
ADL5243
Data Sheet
PROPER DRIVING LEVEL FOR THE OPTIMUM ACLR
It is usually required to drive the amplifier as high as possible in
order to maximize output power. However, properly driving AMP1
and AMP2 at the ADL5243 is required to achieve optimum ACLR
performance. Once output power approaches P1dB and OIP3,
there is ACLR degradation. The driving level of amplifier with a
modulated signal should be backed off properly from P1dB by
at least the amount of a signal crest factor for optimum ACLR.
So assuming a gain and P1dB of AMP1 at 2140 MHz are 19 dB
and 19 dBm respectively, the output power, which is backed off by
11 dB crest factor at the modulated signal case, is 8 dBm. Therefore,
the proper input driving level should be under −11 dBm.
–30
SOLDERING INFORMATION AND RECOMMENDED
PCB LAND PATTERN
–35
–40
AMP1, ADJ
AMP2, ADJ
–45
AMP1, ALT
AMP2, ALT
Figure 74 shows the recommended land pattern for the ADL5243.
To minimize thermal impedance, the exposed paddle on the
5 mm × 5 mm LFCSP package is soldered down to a ground
plane. To improve thermal dissipation, 25 thermal vias are
arranged in a 5 × 5 array under the exposed paddle. If multiple
ground layers exist, they should be tied together using vias. For
more information on land pattern design and layout, see the
AN-772 Application Note, A Design and Manufacturing Guide for
the Lead Frame Chip Scale Package (LFCSP).
ACLR (dBc)
–50
–55
–60
–65
–70
–75
–80
–85
PIN (dBm)
–8
–4
0
4
8
09431-173
–90
–95
–40 –36 –32 –28 –24 –20 –16 –12
For the best thermal performance, it is recommended to add as
many thermal vias as possible under the exposed pad of the
LFCSP. The above thermal resistance numbers assume a
minimum of 25 thermal vias arranged in a 5 × 5 array with a via
diameter of 13 mils, via pad of 25 mils, and pitch of 25 mils. The
vias are plated with copper, and the drill hole is filled with a
conductive copper paste. For optimal performance, it is
recommended to fill the thermal vias with a conductive paste of
equivalent thermal conductivity, as mentioned above, or use an
external heat sink to dissipate the heat quickly without affecting
the die junction temperature. It is also recommended to extend
the ground pattern as shown in Figure 74 to improve thermal
efficiency.
1
Figure 73. Single Carrier WCDMA Adjacent Chanel Power Ratio vs. Input
Power at AMP1 and AMP2, 2140 MHz
The ADL5243 is packaged in a thermally efficient, 5 mm × 5 mm,
32-lead LFCSP. The thermal resistance from junction to air (θJA)
is 34.8°C/W. The thermal resistance for the product was extracted
assuming a standard 4-layer JEDEC board with 25 copper platter
thermal vias. The thermal vias are filled with conductive copper
paste, AE3030, with a thermal conductivity of 7.8 W/mk and
thermal expansion as follows: α1 of 4 × 10−5/°C and α2 of 8.6 ×
10−5/°C. The thermal resistance from junction to case (θJC) is
6.2°C/W, where case is the exposed pad of the lead frame package.
Rev. B | Page 32 of 40
25 MIL VIA PAD
WITH 13 MIL VIA
8
DSAOUT
17
09431-068
THERMAL CONSIDERATIONS
DSAIN
24
Figure 74. Recommended Land Pattern
Data Sheet
ADL5243
EVALUATION BOARD
The schematic of the ADL5243 evaluation board is shown in
Figure 75. All RF traces on the evaluation board have a characteristic impedance of 50 Ω and are fabricated from Rogers3003
material. The traces are CPWG with a width of 25 mils, spacing
of 20 mils, and dielectric thickness of 10 mils. The input and output
to the DSA and amplifier should be ac-coupled with capacitors
of an appropriate value to ensure broadband performance. The
bias to AMP1 is provided through a choke connected to the
AMP1OUT pin and, similarly, bias to AMP2 is provided through
a choke connected to the AMP2OUT pin. Bypassing capacitors
are recommended on all supply lines to minimize RF coupling.
The DSA and the amplifiers can be individually biased or
connected to the VDD plane through Resistors R1, R2, and R11.
The schematic of AMP2 on evaluation board is configured for
2140 MHz operation.
When configuring the ADL5243 evaluation board in the
AMP1-DSA-AMP2 loop, remove Capacitors C1, C4, C5, and
C8 and remove Resistor R10. Place 10 pF in place of C24 and
C6, and 0 Ω in place of R32 and R33. If needed, placing a shunt
capacitor (1.3 pF) at the output of the DSA improves the output
return loss of this loop as described at the ADL5243 Loop
Performance section.
On the digital signal traces, provisions for an RC filter are made
to clean any potential coupled noise. In normal operation, series
resistors are 0 Ω and shunt resistors and capacitors are open.
The evaluation board is designed to control DSA in either parallel
or serial mode by connecting the SEL pin to the supply or ground
by a switch.
For adjusting attenuation at DSA, the ADL5243 can be programmed
in two ways: through the on-board USB interface from a PC USB
port, or through an SDP board, which will become the Analog
Devices common control board in the future. The on-board USB
interface circuitry of the evaluation board is powered directly by
the PC. USB based programming software is available to download
from the ADL5243 product page at www.analog.com. Figure 71
shows the window of the programming software where the user
selects serial or parallel mode for the attenuation adjustment at
DSA. The selection of the mode in the window should match
the mode of the evaluation board switch.
It is highly recommended to refer the evaluation board layout
for the optimal and stable performance of each block as well as
for the improvement of thermal efficiency.
Table 11. Evaluation Board Configurations Options
Component
C1, C5
C4, C21
C13, C14, C15
Function
AC coupling caps for DSA.
AC coupling capacitors for AMP1.
Power supply bypassing capacitors for AMP1. Capacitor C15 should be closest to the device.
L1
C8
C23
C22
The bias for AMP1 comes through L1 when connected to a 5 V supply. L1 should be high
impedance for the frequency of operation, while providing low resistance for the dc current.
AMP2 input ac coupling capacitor.
AMP2 output ac coupling capacitor.
AMP2 shunt output tuning capacitor.
C26
C27
C28
ANP2 shunt input tuning capacitor.
AMP2 series input tuning capacitor.
AMP2 shunt input tuning capacitor.
C3, C25, C20
Power supply bypassing capacitors for AMP2. Capacitor C3 should be closest to the device.
L2
The bias for AMP2 comes through L2 when connected to a 5 V supply. L2 should be high
impedance for the frequency of operation, while providing low resistance for the dc current.
Power supply bypassing capacitor for DSA.
Placeholder for the series component for the other frequency band.
Replace with capacitors and resistors to connect the device in a loop.
Resistors to connect the supply for the amplifier and the DSA to the same VDD plane.
Switch to change between serial and parallel mode operation; connect to a supply for
parallel mode and to ground for serial mode operation.
C17
R10, R12
C6, C24, R32, R33
R1, R2, R11
S1
Rev. B | Page 33 of 40
Default Value
C1, C5 = 10 pF
C4, C21 = 10 pF
C13 = 10 μF
C14 = 10 nF
C15 = 10 pF
L1 = 33 nH
C8 = 10 pF
C23 = 10 pF
C22 = 1.0 pF at 244 mils
from edge of package
DNP
C27 = 2.2 pF
C28 = 1.8 pF at 366 mils
from edge of package
C3 = 10 pF
C25 = 10 nF
C20 = 10 μF
L2 = 9.5 nH
C17 = 0.1 μF
R10, R12 = 0 Ω
C6, C24, R32, R33 = open
R1, R2 = open
3-pin rocker
AGND
Figure 75. ADL5243 Evaluation Board
Rev. B | Page 34 of 40
0Ω
DNI
R1
2 3 4 5
AGND
1
AMP1OUT
AMP1IN
1
AGND
VDD
1
2 3 4 5
AGND
2 3 4 5
1
DSAIN
10pF
C21
C13
10µF
VCC
RED
10pF
C4
10pF
C1
C17
0.1µF
0
DNI
R2
L1
33nH
AGND
C14
0.01µF
C24
10pF
DNI
R32
0Ω
DNI
VDD
AGND
C15
10pF
AGND
1
2
3
4
5
6
7
8
AGND
C22
1pF
AGND
C23
10pF
R12
0
C10
AGND
9.5nH
L2
0Ω
R30
0.001µF
DNI
24
23
22
21
20
19
18
17
U1
CLK_D0
DATA_D1
LE_D2
D3
D4
D5
D6
VDD
VDD
NC
NC
NC
NC
ADL5243ACPZ
DSAOUT
DSAIN
NC
NC
AMP2IN
AMP1OUT/VCC
NC
NC
NC
NC
AGND
VDD
1 RED
1
PAD
32
31
30
29
28
27
26
25
EPAD
SEL
D0/CLK
D1/DATA
D2/LE
D3
D4
D5
D6
NC
AMP1IN
NC
NC
NC
NC
AMP2OUT/VCC2
VBIAS
9
10
11
12
13
14
15
16
S1
3
2
R15
750Ω
DNI
R16
3.16kΩ
DNI
R31
0Ω
DNI
5 4 3 2
AGND
AMP2OUT
1
C3
10pF
AGND
2.2pF
C27
AGND
C11
1.3pF
DNI
R33
0Ω
DNI
R10
AGND
C20
10µF
0Ω
DNI
R11
10pF
C8
10pF
VCC2
1 RED
AGND
R20
0Ω
0Ω
C28
1.8pF
C25
10000pF
C26
1.1pF
DNI
C6
10pF
DNI
C5
VDD
AGND
AMP2IN
5 4 3 2
1
AGND
DSAOUT
5 4 3 2
1
ADL5243
Data Sheet
09431-069
D1
C37
1µF
A
C
SML-210MTT86
R4
2kΩ
U3
DGND
7
1
IN1
OUT1
8
2
IN2
OUT2
6
3
SD_N
FB
PAD GND
PAD
5
ADP3334ACPZ
DGND
C35
0.1µF
DGND
3V3_USB
R3
78.7kΩ
FB
C44
1000pF
C36
0.1µF
R9
140kΩ
IN
IN
IN
IN
R45
2kΩ
C38
0.1µF
WAKEUP
RESETN
SCL
SDA
C47
1µF
Rev. B | Page 35 of 40
Figure 76. USB/SDP Interface Circuitry on the Customer Evaluation Board
R18
100kΩ
LE_D2
R44
100kΩ
R43
TBD0603
DNI
CLK_D0
DATA_D1
DGND1
BLK
DGND
1
AGND
DGND
0Ω
R46
0Ω
R17
0Ω
R42
0Ω
R6
DNI
DNI
DNI
C45
0.1µF
DECOUPLING FOR U1
C39
0.1µF
C33
0.1µF
1
2
3
6
7
8
DGND
U5
0Ω
R22
0Ω
R21
C46
0.1µF
DGND
DNI
C49
0.1µF
R47
100kΩ
R5
2kΩ
C48
0.1µF
DGND
DGND
A0 VCC
A1
SDA 5
A2
SCL
WP
24LC32A-I/MS
VSS
E014160
4
JEDEC_TYPE=MSOP8
U2
8
VCC
A0
A1
A2
5
SCL
SDA
WC_N
GND
4
24LC64-I-SN
DGND
1
2
3
6
7
C9
10pF
D6
D5
D4
D3
C34
0.1µF
R7
100kΩ
DNI
AGND
RDY0_SLRD
RDY1_SLWR
WAKEUP
RESERVED
XTALIN
RESET_N
SCL
SDA
P2
DGND
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
FX8-120S-SV(21)
DGND
1
2
44
14
5
42
15
16
AVCC
0.1µF
C31
10pF
C50
GND
1
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
PB1
PB2
PB3
PB4
PB5
PB6
PB7
PD0
PD1
PD2
PD3
PD4
PD5
PD6
PD7
DGND
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
FX8-120S-SV(21)
P2
5V_SDP
RED
(FROM MAIN BOARD; 200mA MINIMUM)
5V_SDP
PA7
1
2kΩ
R8
OUT
IFCLK
CLKOUT
CTL0_FLAGA
CTL1_FLAGB
CTL2_FLAGC
C51
22pF
XTALOUT
XTALIN
CR2
3
A
C
SML-210MTT86
DM
DP
CASE
2 4
Y1
24.000000MHZ
CY7C68013A-56LTXC
E013815
JEDEC_TYPE=QFN56_8X8_PAD5_2X4_5
PB0_FD0
PB1_FD1
PB2_FD2
PB3_FD3
PB4_FD4
PB5_FD5
PB6_FD6
PB7_FD7
PD0_FD8
PD1_FD9
PD2_FD10
PD3_FD11
PD4_FD12
PD5_FD13
PD6_FD14
PD7_FD15
PAD
18
19
20
21
22
23
24
25
45
46
47
48
49
50
51
52
33
34
35
36
37
38
39
40
4
8
9
13
54
29
30
31
U4
DGND
XTALOUT
DPLUS
DMINUS
IFCLK
CLKOUT
CTL0_FLAGA
CTL1_FLAGB
CTL2_FLAGC
VCC
PA0_INT0_N
PA1_INT1_N
PA2_SLOE
PA3_WU2
PA4_FIFOADR0
PA5_FIFOADR1
PA6_PKTEND
PA7_FLAGD_SLCS_N
17
28
3
6
27
41
11
26
32
53
7
10
43
56
IO
12
55
PAD
5V_USB
DGND
OUT
PB0
DGND
DGND
C52
22pF
CLK_D0
D3
D4
D5
D6
LE_D2
DATA_D1
DGND
OUT
OUT
OUT
OUT
OUT
OUT
OUT
0Ω
R25
0Ω
R23
0Ω
R20
0Ω
R19
0Ω
R24
0Ω
0Ω
R54
GND
PINS
P1
DGND
R29
1.00kΩ
DNI
DGND
R28
1.00kΩ
DNI
DGND
R27
1.00kΩ
DNI
DGND
R26
1.00kΩ
DNI
R55
1.00kΩ
DNI
C19
330pF
DNI
C18
330pF
DNI
C16
330pF
DNI
C12
330pF
DNI
C53
330pF
DNI
897-43-005-00-100001
G1
G2
G3
G4
1
2
3
4
5
TSW-105-08-G-D
DNI
PLACEHOLDER
DGND
P3
R53
PA0
PA1
PA2
PA3
PA4
PA5
PA6
5V_USB
1
2
3
4
5
6
7
8
9
10
R13
1.00kΩ
DNI
C55
330pF
DNI
DGND
R14
1.00kΩ
DNI
D6
D5
D4
D3
C56
330pF
DNI
CLK_D0
DATA_D1
LE_D2
09431-176
3V3_USB
Data Sheet
ADL5243
Data Sheet
09431-071
ADL5243
09431-070
Figure 78. Evaluation Board Layout—Bottom
Figure 77. Evaluation Board Layout—Top
Rev. B | Page 36 of 40
ADL5243
09431-179
Data Sheet
Figure 79. Evaluation Board Control Software
Rev. B | Page 37 of 40
ADL5243
Data Sheet
OUTLINE DIMENSIONS
5.00
BSC SQ
0.60 MAX
0.60 MAX
25
32
1
24
0.50
BSC
3.45
3.30 SQ
3.15
EXPOSED
PAD
17
TOP VIEW
1.00
0.85
0.80
SEATING
PLANE
0.80 MAX
0.65 TYP
12° MAX
0.30
0.25
0.18
0.50
0.40
0.30
0.05 MAX
0.02 NOM
COPLANARITY
0.08
0.20 REF
8
16
9
BOTTOM VIEW
0.25 MIN
3.50 REF
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
COMPLIANT TO JEDEC STANDARDS MO-220-VHHD-2
05-23-2012-A
4.75
BSC SQ
PIN 1
INDICATOR
PIN 1
INDICATOR
Figure 80. 32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
5 mm × 5 mm Body, Very Thin Quad
(CP-32-3)
Dimensions shown in millimeters
ORDERING GUIDE
Model 1
ADL5243ACPZ-R7
ADL5243-EVALZ
1
Temperature Range
−40°C to +85°C
Package Description
32-Lead Lead Frame Chip Scale Package LFCSP_VQ
Evaluation Board
Z = RoHS Compliant Part.
Rev. B | Page 38 of 40
Package Option
CP-32-3
Data Sheet
ADL5243
NOTES
Rev. B | Page 39 of 40
ADL5243
Data Sheet
NOTES
©2011–2012 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D09431-0-8/12(B)
Rev. B | Page 40 of 40