Data Sheet

Data Sheet
100 MHz to 4000 MHz
RF/IF Digitally Controlled VGA
ADL5240
FEATURES
GENERAL DESCRIPTION
Operating frequency from 100 MHz to 4000 MHz
Digitally controlled VGA with serial and parallel interfaces
6-bit, 0.5 dB digital step attenuator
31.5 dB gain control range with ±0.25 dB step accuracy
Gain block amplifier specifications
Gain: 19.7 dB at 2.14 GHz
OIP3: 41.0 dBm at 2.14 GHz
P1dB: 19.5 dBm at 2.14 GHz
Noise figure: 2.9 dB at 2.14 GHz
Gain block or digital step attenuator can be first
Single supply operation from 4.75 V to 5.25 V
Low quiescent current of 93 mA
Thermally efficient, 5 mm × 5 mm, 32-lead LFCSP
The companion ADL5243 integrates a ¼ W driver amplifier to
the output of the gain block and DSA
The ADL5240 is a high performance, digitally controlled variable
gain amplifier (VGA) operating from 100 MHz to 4000 MHz.
The VGA integrates a high performance, 20 dB gain, internally
matched amplifier (AMP) with a 6-bit digital step attenuator
(DSA) that has a gain control range of 31.5 dB in 0.5 dB steps
with ±0.25 dB step accuracy. The attenuation of the DSA can be
controlled using a serial or parallel interface.
Both the gain block and DSA are internally matched to 50 Ω at
their inputs and outputs and are separately biased. The separate
bias allows all or part of the ADL5240 to be used, which facilitates
easy reuse throughout a design. The pinout of the ADL5240 also
enables either the gain block or DSA to be first, giving the VGA
maximum flexibility in a signal chain.
The ADL5240 consumes just 93 mA and operates from a single
supply ranging from 4.75 V to 5.25 V. The VGA is packaged in a
thermally efficient, 5 mm × 5 mm, 32-lead LFCSP and is fully
specified for operation from −40°C to +85°C. A fully populated
evaluation board is available.
APPLICATIONS
Wireless infrastructure
Automated test equipment
RF/IF gain control
SEL
D0/CLK
D1/DATA
D2/LE
D3
D4
D5
D6
FUNCTIONAL BLOCK DIAGRAM
32
31
30
29
28
27
26
25
24
VDD
NC 2
23
NC
NC 3
22
NC
21
DSAOUT
20
NC
19
NC
18
NC
17
NC
VDD 1
SERIAL/PARALLEL INTERFACE
DSAIN 4
0.5dB
1dB
2dB
4dB
8dB
16dB
NC 5
NC 6
ADL5240
AMP
NC 7
NC
NC
14
15
16
09430-001
AMPOUT/VCC
13
NC
12
AMPIN
11
NC
10
NC
9
NC
NC 8
Figure 1.
Rev. A
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility isassumed by Analog Devicesfor its use,norfor any infringements of patents or other
rights of third parties thatmay resultfrom its use.Specificationssubject to changewithoutnotice.No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices .
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2011–2013 Analog Devices, Inc. All rights reserved.
Technical Support
www.analog.com
ADL5240
Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1 Applications Information .............................................................. 16 Applications ....................................................................................... 1 Basic Layout Connections ......................................................... 16 General Description ......................................................................... 1 SPI Timing................................................................................... 18 Functional Block Diagram .............................................................. 1 Loop Performance ...................................................................... 20 Revision History ............................................................................... 2 Amplifier Drive Level for Optimum ACLR ............................ 22 Specifications..................................................................................... 3 Thermal Considerations............................................................ 22 Absolute Maximum Ratings............................................................ 8 Evaluation Board ............................................................................ 23 ESD Caution .................................................................................. 8 Outline Dimensions ....................................................................... 28 Pin Configuration and Function Descriptions ............................. 9 Ordering Guide .......................................................................... 28 Typical Performance Characteristics ........................................... 10 REVISION HISTORY
6/13—Rev. 0 to Rev. A
Changes to Table 1 ............................................................................. 4
Changes to Table 3 ............................................................................. 9
Changes to Figure 3 .........................................................................11
Changes to Figure 16 .......................................................................12
Added Figure 29, Renumbered Sequentially ...............................14
Changes to Table 5, Figure 35, and Figure 36 ..............................18
Added Amplifier Drive Level for Optimum ACLR Section
and Figure 39 ....................................................................................22
Changes to Evaluation Board Section ...........................................23
Changes to Figure 41 and Table 8 ..................................................24
Added Figure 42...............................................................................25
Changes to Figure 43 and Figure 44 ..............................................26
Added Figure 45...............................................................................27
7/11—Revision 0: Initial Version
Rev. A | Page 2 of 28
Data Sheet
ADL5240
SPECIFICATIONS
VDD = 5 V, VCC = 5 V, TA = 25o C
Table 1.
Parameter
OVERALL FUNCTION
Frequency Range
AMPLIFIER FREQUENCY = 150 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
AMPLIFIER FREQUENCY = 450 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
AMPLIFIER FREQUENCY = 748 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
AMPLIFIER FREQUENCY = 943 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
Test Conditions/Comments
Min
Typ
100
Max
Unit
4000
MHz
Using the AMPIN and AMPOUT pins
±50 MHz
−40°C ≤ TA ≤ +85°C
4.75 V to 5.25 V
S11
S22
∆f = 1 MHz, POUT = 4 dBm/tone
17.6
±1.0
±0.04
±0.04
−10.4
−7.7
18.3
30.0
2.8
dB
dB
dB
dB
dB
dB
dBm
dBm
dB
20.3
±0.11
±0.36
±0.01
−18.3
−15.7
20.2
39.0
2.9
dB
dB
dB
dB
dB
dB
dBm
dBm
dB
20.6
±0.01
±0.31
±0.01
−25.7
−23.7
20.2
40.0
2.7
dB
dB
dB
dB
dB
dB
dBm
dBm
dB
Using the AMPIN and AMPOUT pins
±50 MHz
−40°C ≤ TA ≤ +85°C
4.75 V to 5.25 V
S11
S22
∆f = 1 MHz, POUT = 4 dBm/tone
Using the AMPIN and AMPOUT pins
±50 MHz
−40°C ≤ TA ≤ +85°C
4.75 V to 5.25 V
S11
S22
∆f = 1 MHz, POUT = 4 dBm/tone
Using the AMPIN and AMPOUT pins
19.0
±18 MHz
−40°C ≤ TA ≤ +85°C
4.75 V to 5.25 V
S11
S22
18.5
∆f = 1 MHz, POUT = 4 dBm/tone
Rev. A | Page 3 of 28
20.5
±0.01
±0.27
±0.01
−30.3
−24.8
20.1
40.0
2.7
22.0
dB
dB
dB
dB
dB
dB
dBm
dBm
dB
ADL5240
Parameter
AMPLIFIER FREQUENCY = 1960 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
AMPLIFIER FREQUENCY = 2140 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
AMPLIFIER FREQUENCY = 2630 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
AMPLIFIER FREQUENCY = 3600 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
DSA FREQUENCY = 150 MHz
Insertion Loss
vs. Frequency
vs. Temperature
Attenuation Range
Attenuation Step Error
Attenuation Absolute Error
Input Return Loss
Output Return Loss
Input Third-Order Intercept
Data Sheet
Test Conditions/Comments
Using the AMPIN and AMPOUT pins
Min
Typ
Max
19.8
±0.03
±0.26
±0.03
−11.9
−12.6
19.8
40.0
2.9
±30 MHz
−40°C ≤ TA ≤ +85°C
4.75 V to 5.25 V
S11
S22
∆f = 1 MHz, POUT = 4 dBm/tone
Unit
dB
dB
dB
dB
dB
dB
dBm
dBm
dB
Using the AMPIN and AMPOUT pins
18.0
±30 MHz
−40°C ≤ TA ≤ +85°C
4.75 V to 5.25 V
S11
S22
17.5
∆f = 1 MHz, POUT = 4 dBm/tone
19.7
±0.02
±0.25
±0.04
−11.0
−12.0
19.5
41.0
2.9
22.0
dB
dB
dB
dB
dB
dB
dBm
dBm
dB
19.6
±0.01
±0.22
±0.04
−11.0
−13.3
19.9
41.0
2.9
22.0
dB
dB
dB
dB
dB
dB
dBm
dBm
dB
Using the AMPIN and AMPOUT pins
18.0
±60 MHz
−40°C ≤ TA ≤ +85°C
4.75 V to 5.25 V
S11
S22
18.0
∆f = 1 MHz, POUT = 4 dBm/tone
Using the AMPIN and AMPOUT pins
±100 MHz
−40°C ≤ TA ≤ +85°C
4.75 V to 5.25 V
S11
S22
∆f = 1 MHz, POUT = 4 dBm/tone
Using the DSAIN and DSAOUT pins
Minimum attenuation
±50 MHz
−40°C ≤ TA ≤ +85°C
All attenuation states
All attenuation states
Minimum attenuation
Minimum attenuation
∆f = 1 MHz, POUT = 4 dBm/tone, minimum attenuation
Rev. A | Page 4 of 28
19.6
±0.03
±0.05
±0.10
−15.1
−12.2
18.8
37.0
3.1
dB
dB
dB
dB
dB
dB
dBm
dBm
dB
−1.5
±0.12
±0.09
28.8
±0.18
±1.35
−13.3
−13.4
47.9
dB
dB
dB
dB
dB
dB
dB
dB
dBm
Data Sheet
Parameter
DSA FREQUENCY = 450 MHz
Insertion Loss
vs. Frequency
vs. Temperature
Attenuation Range
Attenuation Step Error
Attenuation Absolute Error
Input Return Loss
Output Return Loss
Input Third-Order Intercept
DSA FREQUENCY = 748 MHz
Insertion Loss
vs. Frequency
vs. Temperature
Attenuation Range
Attenuation Step Error
Attenuation Absolute Error
Input Return Loss
Output Return Loss
Input Third-Order Intercept
DSA FREQUENCY = 943 MHz
Insertion Loss
vs. Frequency
vs. Temperature
Attenuation Range
Attenuation Step Error
Attenuation Absolute Error
Input Return Loss
Output Return Loss
Input 1 dB Compression Point
Input Third-Order Intercept
DSA FREQUENCY = 1960 MHz
Insertion Loss
vs. Frequency
vs. Temperature
Attenuation Range
Attenuation Step Error
Attenuation Absolute Error
Input Return Loss
Output Return Loss
Input 1 dB Compression Point
Input Third-Order Intercept
DSA FREQUENCY = 2140 MHz
Insertion Loss
vs. Frequency
vs. Temperature
Attenuation Range
Attenuation Step Error
Attenuation Absolute Error
Input Return Loss
Output Return Loss
Input 1 dB Compression Point
Input Third-Order Intercept
ADL5240
Test Conditions/Comments
Using the DSAIN and DSAOUT pins
Minimum attenuation
±50 MHz
−40°C ≤ TA ≤ +85°C
All attenuation states
All attenuation states
Minimum attenuation
Minimum attenuation
∆f = 1 MHz, POUT = 4 dBm/tone, minimum attenuation
Using the DSAIN and DSAOUT pins
Minimum attenuation
±50 MHz
−40°C ≤ TA ≤ +85°C
All attenuation states
All attenuation states
Minimum attenuation
Minimum attenuation
∆f = 1 MHz, POUT = 4 dBm/tone, minimum attenuation
Using the DSAIN and DSAOUT pins
Minimum attenuation
±18 MHz
−40°C ≤ TA ≤ +85°C
All attenuation states
All attenuation states
Minimum attenuation
Minimum attenuation
Minimum attenuation
∆f = 1 MHz, POUT = 4 dBm/tone, minimum attenuation
Using the DSAIN and DSAOUT pins
Minimum attenuation
±30 MHz
−40°C ≤ TA ≤ +85°C
All attenuation states
All attenuation states
Minimum attenuation
Minimum attenuation
Minimum attenuation
∆f = 1 MHz, POUT = 4 dBm/tone, minimum attenuation
Using the DSAIN and DSAOUT pins
Minimum attenuation
±30 MHz
−40°C ≤ TA ≤ +85°C
All attenuation states
All attenuation states
Minimum attenuation
Minimum attenuation
Minimum attenuation
∆f = 1 MHz, POUT = 4 dBm/tone, minimum attenuation
Rev. A | Page 5 of 28
Min
Typ
Max
Unit
−1.5
±0.02
±0.10
30.7
±0.14
±0.42
−17.6
−17.6
45.0
dB
dB
dB
dB
dB
dB
dB
dB
dBm
−1.6
±0.02
±0.11
30.9
±0.15
±0.32
−17.4
−17.4
43.5
dB
dB
dB
dB
dB
dB
dB
dB
dBm
−1.6
±0.01
±0.12
30.9
±0.13
±0.30
−16.6
−16.5
30.5
50.9
dB
dB
dB
dB
dB
dB
dB
dB
dBm
dBm
−2.4
±0.02
±0.16
31.0
±0.15
±0.29
−12.0
−11.5
31.5
49.5
dB
dB
dB
dB
dB
dB
dB
dB
dBm
dBm
−2.5
±0.02
±0.17
31.0
±0.12
±0.26
−11.9
−11.2
31.5
49.2
dB
dB
dB
dB
dB
dB
dB
dB
dBm
dBm
ADL5240
Parameter
DSA FREQUENCY = 2630 MHz
Insertion Loss
vs. Frequency
vs. Temperature
Attenuation Range
Attenuation Step Error
Attenuation Absolute Error
Input Return Loss
Output Return Loss
Input 1 dB Compression Point
Input Third-Order Intercept
DSA FREQUENCY = 3600 MHz
Insertion Loss
vs. Frequency
vs. Temperature
Attenuation Range
Attenuation Step Error
Attenuation Absolute Error
Input Return Loss
Output Return Loss
Input 1 dB Compression Point
Input Third-Order Intercept
DIGITAL STEP ATTENUATOR GAIN SETTLING
Minimum Attenuation to Maximum Attenuation
Maximum Attenuation to Minimum Attenuation
AMP-DSA LOOP FREQUENCY = 943 MHz
Gain
vs. Frequency
Gain Range
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
AMP-DSA LOOP FREQUENCY = 2140 MHz
Gain
vs. Frequency
Gain Range
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
Data Sheet
Test Conditions/Comments
Using the DSAIN and DSAOUT pins
Minimum attenuation
±60 MHz
−40°C ≤ TA ≤ +85°C
All attenuation states
All attenuation states
Minimum attenuation
Minimum attenuation
Minimum attenuation
∆f = 1 MHz, POUT = 4 dBm/tone, minimum attenuation
Using the DSAIN and DSAOUT pins
Minimum attenuation
±100 MHz
−40°C ≤ TA ≤ +85°C
All attenuation states
All attenuation states
Minimum attenuation
Minimum attenuation
Minimum attenuation
∆f = 1 MHz, POUT = 4 dBm/tone, minimum attenuation
Min
Typ
Max
Unit
−2.6
±0.04
±0.19
31.2
±0.16
±0.19
−13.1
−12.0
31.5
47.6
dB
dB
dB
dB
dB
dB
dB
dB
dBm
dBm
−2.8
±0.03
±0.21
32.1
±0.37
±0.31
−20.2
−18.2
31.0
48.5
dB
dB
dB
dB
dB
dB
dB
dB
dBm
dBm
36
36
ns
ns
18.9
±0.01
30.8
−20.5
−19.7
18.6
36.0
2.7
dB
dB
dB
dB
dB
dBm
dBm
dB
18.2
±0.01
31.3
−14.9
−16.4
17.9
37.5
3.0
dB
dB
dB
dB
dB
dBm
dBm
dB
Using the AMPIN and DSAOUT pins, DSA at
minimum attenuation
±18 MHz
Between maximum and minimum attenuation states
S11
S22
∆f = 1 MHz, POUT = 1 dBm/tone
Using the AMPIN and DSAOUT pins, DSA at
minimum attenuation
±30 MHz
Between maximum and minimum attenuation states
S11
S22
∆f = 1 MHz, POUT = 1 dBm/tone
Rev. A | Page 6 of 28
Data Sheet
Parameter
AMP-DSA LOOP FREQUENCY = 2630 MHz
Gain
vs. Frequency
Gain Range
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
DSA-AMP LOOP FREQUENCY = 943 MHz
Gain
vs. Frequency
Gain Range
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
DSA-AMP LOOP Frequency = 2140 MHz
Gain
vs. Frequency
Gain Range
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
DSA-AMP LOOP Frequency = 2630 MHz
Gain
vs. Frequency
Gain Range
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
LOGIC INPUTS
Input High Voltage, VINH
Input Low Voltage, VINL
Input Current, IINH/IINL
Input Capacitance, CIN
POWER SUPPLIES
Voltage
Supply Current
Amplifier
Digital Step Attenuator
ADL5240
Test Conditions/Comments
Using the AMPIN and DSAOUT pins, DSA at
minimum attenuation
Min
±60 MHz
S11
S22
∆f = 1 MHz, POUT = 1 dBm/tone
Typ
Max
Unit
17.7
±0.11
31.5
−15.2
−9.6
16.9
33.7
3.0
dB
dB
dB
dB
dB
dBm
dBm
dB
18.9
±0.01
30.8
−17.2
−23.7
20.2
40.0
4.4
dB
dB
dB
dB
dB
dBm
dBm
dB
18.0
±0.01
31.1
−13.7
−10.0
19.7
37.5
4.9
dB
dB
dB
dB
dB
dBm
dBm
dB
18.2
±0.01
31.7
−15.7
−16.9
19.8
40.8
5.2
dB
dB
dB
dB
dB
dBm
dBm
dB
Using the DSAIN and AMPOUT pins, DSA at
minimum attenuation
±18 MHz
Between maximum and minimum attenuation states
S11
S22
∆f = 1 MHz, POUT = 4 dBm/tone
Using the DSAIN and AMPOUT pins, DSA at
minimum attenuation
±30 MHz
Between maximum and minimum attenuation states
S11
S22
∆f = 1 MHz, POUT = 4 dBm/tone
Using the DSAIN and AMPOUT pins, DSA at
minimum attenuation
±60 MHz
Between maximum and minimum attenuation states
S11
S22
∆f = 1 MHz, POUT = 4 dBm/tone
CLK, DATA, LE, SEL, D0~D6
2.5
0.8
0.1
1.5
V
V
µA
pF
Using the VDD and VCC pins
4.75
Rev. A | Page 7 of 28
5.0
5.25
V
93
0.5
120
mA
mA
ADL5240
Data Sheet
ABSOLUTE MAXIMUM RATINGS
Table 2.
Parameter
Supply Voltage (VDD, VCC)
Input Power
AMPIN
DSAIN
Internal Power Dissipation
θJA (Exposed Pad Soldered Down)
θJC (Exposed Pad is the Contact)
Maximum Junction Temperature
Lead Temperature (Soldering, 60 sec)
Operating Temperature Range
Storage Temperature Range
ESD CAUTION
Rating
6.5 V
16 dBm
30 dBm
0.5 W
36.8°C/W
6.9°C/W
150°C
240°C
−40°C to +85°C
−65°C to +150°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
Rev. A | Page 8 of 28
Data Sheet
ADL5240
32
31
30
29
28
27
26
25
SEL
D0/CLK
D1/DATA
D2/LE
D3
D4
D5
D6
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
1
2
3
4
5
6
7
8
PIN 1
INDICATOR
ADL5240
TOP VIEW
(Not to Scale)
24
23
22
21
20
19
18
17
VDD
NC
NC
DSAOUT
NC
NC
NC
NC
NOTES
1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN.
2. THE EXPOSED PAD MUST BE CONNECTED TO GROUND.
09430-002
NC
AMPOUT/VCC
NC
NC
NC
NC
AMPIN
NC
9
10
11
12
13
14
15
16
VDD
NC
NC
DSAIN
NC
NC
NC
NC
Figure 2. Pin Configuration
Table 3. Pin Function Descriptions
Pin No.
1, 24
2, 3, 5, 6, 7, 8, 9, 11, 12,
13, 14, 16, 17, 18, 19, 20,
22, 23
4
10
Mnemonic
VDD
NC
Description
Supply Voltage for DSA. Connect this pin to a 5 V supply.
No Connect. Do not connect to this pin.
DSAIN
AMPOUT/VCC
15
21
25
26
27
28
29
30
31
32
AMPIN
DSAOUT
D6
D5
D4
D3
D2/LE
D1/DATA
D0/CLK
SEL
RF Input to DSA.
RF Output from Amplifier/Supply Voltage for Amplifier. A bias to the amplifier is provided
through a choke inductor connected to this pin.
RF Input to Amplifier.
RF Output from DSA.
Data Bit in Parallel Mode (LSB). Connect this pin to the supply in serial mode.
Data Bit in Parallel Mode. Connect this pin to ground or leave open in serial mode.
Data Bit in Parallel Mode. Connect this pin to ground or leave open in serial mode.
Data Bit in Parallel Mode. Connect this pin to ground or leave open in serial mode.
Data Bit in Parallel Mode/Latch Enable in Serial Mode.
Data Bit in Parallel Mode (MSB)/Data in Serial Mode.
Connect this pin to ground in parallel mode. This pin functions as a clock in serial mode.
Select Pin. Connect this pin to the supply to select parallel mode operation; connect this
pin to ground to select serial mode operation.
Exposed Pad. The exposed pad must be connected to ground.
EPAD
Rev. A | Page 9 of 28
ADL5240
Data Sheet
TYPICAL PERFORMANCE CHARACTERISTICS
OIP3
40
30
45
28
40
26
35
24
30
22
25
20
20
35
GAIN
25
20
OIP3 (dBm)
P1dB (dBm)
30
15
5
0
18
NOISE FIGURE
0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0
FREQUENCY (GHz)
16
Figure 3. AMP: Gain, P1dB, OIP3 at POUT = 4 dBm/Tone and Noise Figure vs.
Frequency
15
+85°C
+25°C
–40°C
0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
10
3.6
09430-006
P1dB
10
09430-003
NOISE FIGURE, GAIN, P1dB, OIP3 (dB, dBm)
45
FREQUENCY (GHz)
Figure 6. AMP: OIP3 at POUT = 4 dBm/Tone and P1dB vs. Frequency and
Temperature
46
21.0
20.5
943MHz
42
–40°C
2140MHz
1960MHz
44
748MHz
40
20.0
OIP3 (dBm)
GAIN (dB)
38
19.5
+25°C
+85°C
19.0
36
450MHz
34
32
2630MHz
30
18.5
28
150MHz
26
18.0
3600MHz
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
FREQUENCY (GHz)
22
–5
09430-004
0
–3
–1
1
3
5
Figure 4. AMP: Gain vs. Frequency and Temperature
9
11
13
15
17
3.6
4.0
Figure 7. AMP: OIP3 vs. POUT and Frequency
0
4.5
–5
4.0
–10
+85°C
S22
NOISE FIGURE (dB)
S-PARAMETERS (dB)
7
POUT PER TONE (dBm)
09430-007
24
17.5
–15
–20
S12
–25
3.5
+25°C
3.0
–40°C
2.5
–30
2.0
–35
0.9
1.3
1.7
2.1
2.5
FREQUENCY (GHz)
2.9
3.3
3.7
4.1
Figure 5. AMP: Input Return Loss (S11), Output Return Loss (S22), and Reverse
Isolation (S12) vs. Frequency
Rev. A | Page 10 of 28
1.5
0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
FREQUENCY (GHz)
Figure 8. AMP: Noise Figure vs. Frequency and Temperature
09430-008
0.5
09430-005
S11
–40
0.1
Data Sheet
ADL5240
0
1.0
0dB
0.8
–5
31.5dB
0.6
30.5dB
16dB
STEP ERROR (dB)
–15
–20
–25
0.4
0.2
0
–0.2
–0.4
–30
31dB
–0.6
–35
–0.8
31.5dB
0.5
0.9
1.3
1.7
2.1
2.5
2.9
3.3
3.7
4.1
FREQUENCY (GHz)
–1.0
0.1
09430-009
–40
0.1
0.9
1.3
1.7
2.1
2.5
2.9
3.3
3.7
4.1
FREQUENCY (GHz)
Figure 9. DSA: Attenuation vs. Frequency
–1
0.5
09430-016
ATTENUATION (dB)
–10
Figure 12. DSA: Step Error vs. Frequency, All Attenuation States
1.0
0dB
748MHz
0.8
450MHz
4dB
8dB
–11
1960MHz
0.6
ABSOLUTE ERROR (dB)
ATTENUATION (dB)
–6
–16
16dB
–21
+85°C
+25°C
–40°C
–26
0.4
0.2
2140MHz
0
943MHz
2630MHz
–0.2
–0.4
–0.6
–31
3600MHz
–0.8
0.5
0.9
1.3
1.7
2.1
2.5
2.9
3.3
3.7
4.1
FREQUENCY (GHz)
–1.0
09430-010
–36
0.1
0
16
20
24
28
32
0
INPUT RETURN LOSS (dB)
–5
0.2
0.1
0
–0.1
–0.2
–10
0dB
–15
–20
31.5dB
–25
–30
–0.3
–0.5
0
4
8
12
16
20
24
ATTENUATION (dB)
28
32
Figure 11. DSA: Step Error vs. Attenuation
–40
0.1
0.5
0.9
1.3
1.7
2.1
2.5
2.9
3.3
3.7
FREQUENCY (GHz)
Figure 14. DSA: Input Return Loss vs. Frequency, All States
Rev. A | Page 11 of 28
4.1
09430-013
–35
–0.4
09430-011
STEP ERROR (dB)
0.3
12
Figure 13. DSA: Absolute Error vs. Attenuation
1960MHz
2140MHz
2630MHz
3600MHz
450MHz
748MHz
943MHz
0.4
8
ATTENUATION (dB)
Figure 10. DSA: Attenuation vs. Frequency and Temperature
0.5
4
09430-012
31.5dB
ADL5240
Data Sheet
0
OUTPUT RETURN LOSS (dB)
–5
–10
0dB
–15
3
–20
31.5dB
–25
4
–30
0.5
0.9
1.3
1.7
2.1
2.5
2.9
3.3
3.7
4.1
FREQUENCY (GHz)
CH3 2.00V
55
35
50
M10ns 10GS/s A CH3
IT 1.0ps/pt
1.24V
Figure 18. DSA: Gain Settling Time, 0 dB to 31.5 dB
Figure 15. DSA: Output Return Loss vs. Frequency, All States
36
CH4 200mV
09430-018
–40
0.1
09430-014
–35
45
33
40
32
35
IIP3 (dBm)
IP1dB (dBm)
IIP3
34
3
4
IP1dB
30
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3.0
3.3
25
3.6
FREQUENCY (GHz)
CH3 2.00V
Figure 16. DSA: Input P1dB and Input IP3 vs. Frequency,
Minimum Attenuation State
M10ns 10GS/s A CH3
IT 1.0ps/pt
1.24V
Figure 19. DSA: Gain Settling Time, 31.5 dB to 0 dB
200
22
100
2140MHz
50
2630MHz
20
0
–50
–100
943MHz
4
8
12
16
GAIN
16
14
12
10
8
6
NOISE FIGURE
4
2
–150
0
18
20
24
ATTENUATION (dB)
28
32
Figure 17. DSA: Phase vs. Attenuation
0
0.1
0.5
0.9
1.3
1.7
2.1
2.5
2.9
3.3
3.7
4.1
FREQUENCY (GHz)
Figure 20. AMP-DSA Loop: Gain and Noise Figure vs. Frequency,
Minimum Attenuation State
Rev. A | Page 12 of 28
09430-020
1960MHz
GAIN AND NOISE FIGURE (dB)
150
09430-017
PHASE (Degrees)
CH4 200mV
09430-019
30
09430-015
31
Data Sheet
ADL5240
0
22
20
–5
S11
–10
–15
–20
–25
S12
–30
–35
GAIN
16
14
12
10
8
6
4
NOISE FIGURE
2
0.5
0.9
1.3
1.7
2.1
2.5
2.9
3.3
3.7
4.1
FREQUENCY (GHz)
0
0.1
09430-021
–40
0.1
18
0.5
0.9
1.3
1.7
2.1
2.5
2.9
3.3
3.7
4.1
FREQUENCY (GHz)
Figure 21. AMP-DSA Loop: Input Return Loss (S11), Output Return Loss (S22),
and Reverse Isolation (S12) vs. Frequency, Minimum Attenuation State
09430-024
S-PARAMETERS (dB)
GAIN AND NOISE FIGURE (dB)
S22
Figure 24. DSA-AMP Loop: Gain and Noise Figure vs. Frequency,
Minimum Attenuation State
40
0
38
–5
36
S22
S-PARAMETERS (dB)
943MHz
OIP3 (dBm)
34
32
2140MHz
30
2630MHz
28
26
–10
S11
–15
–20
–25
S12
24
–30
–4
–2
0
2
4
6
8
10
12
14
16
POUT (dBm)
–35
0.1
09430-022
20
–6
Figure 22. AMP-DSA Loop: OIP3 vs. P OUT and Frequency,
Minimum Attenuation State
2.1
1.7
1.3
2.5
2.9
3.3
3.7
4.1
Figure 25. DSA-AMP Loop: Input Return Loss (S11), Output Return Loss (S22),
and Reverse Isolation (S12) vs. Frequency, Minimum Attenuation State
44
19.5
42
40
943MHz
38
OIP3 (dBm)
18.5
2140MHz
18.0
2630MHz
17.5
943MHz
36
34
32
2140MHz
30
17.0
28
16.5
–2
0
2
4
6
8
10
12
14
16
18
POUT (dBm)
20
Figure 23. AMP-DSA Loop: Gain vs. P OUT and Frequency,
Minimum Attenuation State
24
–6
–4
–2
0
2
4
6
8
10
12
14
POUT (dBm)
Figure 26. DSA-AMP Loop: OIP3 vs. P OUT and Frequency,
Minimum Attenuation State
Rev. A | Page 13 of 28
16
09430-026
16.0
–4
2630MHz
26
09430-023
GAIN (dB)
0.9
FREQUENCY (GHz)
20.0
19.0
0.5
09430-025
22
ADL5240
Data Sheet
20.0
35
19.5
30
943MHz
19.0
09430-029
09430-030
0
20.4
20
20.5
18
20.5
16
20.4
14
20.2
12
20.3
10
20.1
8
20.0
6
POUT (dBm)
19.8
4
19.9
2
19.7
0
19.6
–2
19.4
16.0
–4
19.5
5
19.3
16.5
19.2
10
09430-027
17.0
19.1
15
18.9
2630MHz
17.5
20
19.0
GAIN (dB)
2140MHz
18.0
18.8
PERCENTAGE (%)
25
18.5
GAIN (dB)
Figure 27. DSA-AMP Loop: Gain vs. P OUT and Frequency,
Minimum Attenuation State
Figure 30. AMP: Gain Distribution at 2140 MHz
30
110
25
PERCENTAGE (%)
SUPPLY CURRENT (mA)
105
5.25V
100
5.00V
95
4.75V
20
15
10
90
5
TEMPERATURE (°C)
20.3
20.2
20.1
20.0
19.9
P1dB (dBm)
Figure 31. AMP: P1dB Distribution at 2140 MHz
Figure 28. AMP: Supply Current vs. Voltage and Temperature
30
110
25
100
–40°C
95
+25°C
PERCENTAGE (%)
105
20
15
10
90
5
+85°C
0
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
80
–6
–4
–2
0
2
4
6
8
10
12
14
16
18
20
POUT PER TONE (dBm)
22
Figure 29. AMP: Supply Current vs. P OUT and Temperature
Rev. A | Page 14 of 28
OIP3 (dBm)
Figure 32. AMP: OIP3 Distribution at 2140 MHz
09430-031
85
09430-100
SUPPLY CURRENT (mA)
19.8
90
19.6
80
19.7
70
19.5
60
19.4
50
19.3
40
19.2
30
19.1
20
19.0
10
18.9
0
09430-028
0
80
–40 –30 –20 –10
18.8
85
Data Sheet
ADL5240
70
60
40
30
20
10
0
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
NOISE FIGURE (dB)
4.0
09430-032
PERCENTAGE (%)
50
Figure 33. AMP: Noise Figure Distribution at 2140 MHz
Rev. A | Page 15 of 28
ADL5240
Data Sheet
APPLICATIONS INFORMATION
BASIC LAYOUT CONNECTIONS
The basic connections for operating the ADL5240 are shown in Figure 34.
SERIAL PARALLEL INTERFACE
VDD
VDD
0.1µF
C8
3
100pF
DSAIN
4
C6
VDD
NC
NC
NC
DSAIN
5
NC
6
NC
7
8
VDD
NC
ADL5240
DSAOUT
NC
NC
NC
AMPOUT/VCC
NC
NC
NC
NC
AMPIN
NC
1
2
SEL
D0/CLK
D1/DATA
D2/LE
D3
D4
D5
D6
32 31 30 29 28 27 26 25
NC
NC
NC
NC
24
23
22
100pF
DSAOUT
21
20
C7
19
18
17
9 10 11 12 13 14 15 16
0.1µF
0.1µF
C2
AMPIN
C1
L1
470nH
C3
68pF
C4
VCC
1.2nF
C5
1µF
Figure 34. Basic Connections
Rev. A | Page 16 of 28
09430-033
AMPOUT
Data Sheet
ADL5240
Amplifier Bias
The dc bias for the amplifier in ADL5240 is supplied through
Inductor L1 and is connected to the AMPOUT pin. Three
decoupling capacitors (C3, C4, and C5) are used to prevent
RF signals from propagating onto the dc lines. The dc supply
ranges from 4.75 V to 5.25 V and should be connected to the
VCC test point on the evaluation board.
Digital Step Attenuator Bias
The bias for the DSA is provided through the VDD pin. At least
one decoupling capacitor (C8) is recommended on the VDD
trace. The voltage ranges from 4.75 V to 5.25 V and should be
connected to the VDD test point on the evaluation board. The
DSA is shown to work for dc voltages as low as 2.5 V.
Amplifier RF Input Interface
Pin 15 is the RF input for the amplifier of ADL5240. The
amplifier is internally matched to 50 Ω at the input; therefore,
no external components are required. Only a dc blocking
capacitor (C1) is required.
Amplifier RF Output Interface
Pin 10 is the RF output for the amplifier of ADL5240. The
amplifier is internally matched to 50 Ω at the output; therefore,
no external components are required. Only a dc blocking
capacitor (C2) is required. The bias is provided through this pin
via a choke inductor.
DSA RF Input Interface
Pin 4 is the RF input for the DSA of ADL5240. The input
impedance of the DSA is close to 50 Ω over the entire frequency
range; therefore, no external components are required. Only a
dc blocking capacitor (C6) is required.
DSA RF Output Interface
Pin 21 is the RF output for the DSA of ADL5240. The output
impedance of the DSA is close to 50 Ω over the entire frequency
range; therefore, no external components are required. Only a
dc blocking capacitor (C7) is required.
DSA SPI Interface
The DSA of the ADL5240 can operate in either serial or parallel
mode. Pin 32 (SEL) controls the mode of operation. To select serial
mode, connect SEL to ground; to select parallel mode, connect
SEL to VDD. In parallel mode, Pin 25 to Pin 30 (D6 to D1) are
the data bits, with D6 being the LSB. Connect Pin 31 (D0) to
ground during the parallel mode of operation. In serial mode,
Pin 29 is the latch enable (LE), Pin 30 is the data (DATA), and
Pin 31 is the clock (CLK). Pin 26, Pin 27, and Pin 28 are not used
in serial mode and should be connected to ground. Pin 25 (D6)
should be connected to VDD during the serial mode of operation.
To prevent noise from coupling onto the digital signals, an RC filter
can be used on each data line.
Rev. A | Page 17 of 28
ADL5240
Data Sheet
SPI TIMING
Table 4. Mode Selection Table
Table 5 provides details about the timing characteristics for the
SPI signals—namely, the clock (CLK), latch enable (LE), and
data (DATA) signals—and Figure 35 shows the corresponding
SPI timing diagram.
Pin 32 (SEL)
Connect to Ground
Connect to Supply
Functionality
Serial mode
Parallel mode
SPI Timing Sequence
Figure 36 is the timing sequence for the SPI function using a 6-bit
operation. The clock can be as fast as 20 MHz. In serial mode,
Register B5 (MSB) is first and Register B0 (LSB) is last.
Table 5. SPI Timing Setup
Limit
10
25
25
10
10
10
30
Unit
MHz
ns min
ns min
ns min
ns min
ns min
ns min
Test Conditions/Comments
Data clock frequency
Clock high time
Clock low time
Data to clock setup time
Clock to data hold time
Clock low to LE setup time
LE pulse width
t1
t3
t4
CLK
DON'T CARE
DATA
DON'T CARE
t5
t2
DON'T CARE
MSB
B5
B4
B3
B2
LSB
B0
B1
DON'T CARE
09430-034
t6
LE
Figure 35. SPI Timing Diagram (Data Is Loaded MSB First), Serial Mode
D0/CLK
DON'T CARE
D1/DATA
DON'T CARE
DON'T CARE
MSB
B5
B4
B3
B2
B1
LSB
B0
DON'T CARE
D2/LE
09430-035
Parameter
f CLK
t1
t2
t3
t4
t5
t6
D6
Figure 36. SPI Timing Sequence, Serial Mode
Rev. A | Page 18 of 28
Data Sheet
ADL5240
Table 6. DSA Attenuation Truth Table—Serial Mode
Attenuation State (dB)
0 (Reference)
0.5
1.0
2.0
4.0
8.0
16.0
31.5
B5 (MSB)
1
1
1
1
1
1
0
0
B4
1
1
1
1
1
0
1
0
B3
1
1
1
1
0
1
1
0
B2
1
1
1
0
1
1
1
0
B1
1
1
0
1
1
1
1
0
B0 (LSB)
1
0
1
1
1
1
1
0
D3
1
1
1
1
0
1
1
0
D4
1
1
1
0
1
1
1
0
D5
1
1
0
1
1
1
1
0
D6 (LSB)
1
0
1
1
1
1
1
0
Table 7. DSA Attenuation Truth Table—Parallel Mode
Attenuation State (dB)
0 (Reference)
0.5
1.0
2.0
4.0
8.0
16.0
31.5
D1 (MSB)
1
1
1
1
1
1
0
0
D2
1
1
1
1
1
0
1
0
Rev. A | Page 19 of 28
ADL5240
Data Sheet
LOOP PERFORMANCE
The ADL5240 can be configured so that either the DSA precedes
the amplifier (see Figure 37) or the amplifier precedes the DSA
(see Figure 38). The performance of the loop configurations is
presented in Figure 20 to Figure 27. To improve the overall return
loss, a shunt capacitor can be placed between the amplifier and
DSA. This helps to align the phases of the two blocks.
SERIAL PARALLEL INTERFACE
VDD
VDD
0.1µF
C7
2
3
100pF
RFIN
4
5
C6
6
7
8
VDD
VDD
NC
NC
NC
NC
DSAIN
ADL5240
NC
DSAOUT
NC
NC
NC
NC
AMPOUT/VCC
NC
NC
NC
NC
AMPIN
NC
1
SEL
D0/CLK
D1/DATA
D2/LE
D3
D4
D5
D6
32 31 30 29 28 27 26 25
NC
NC
NC
NC
24
23
22
21
20
19
18
17
9 10 11 12 13 14 15 16
100pF
0.1µF
C2
C1
L1
470nH
C3
68pF
C4
VCC
1.2nF
C5
1µF
Figure 37. DSA-AMP Loop Configuration
Rev. A | Page 20 of 28
09430-036
RFOUT
Data Sheet
ADL5240
SERIAL PARALLEL INTERFACE
VDD
VDD
C7
1
2
3
4
VDD
NC
NC
NC
DSAIN
NC
6
NC
7
VDD
NC
5
8
C2
100pF
SEL
D0/CLK
D1/DATA
D2/LE
D3
D4
D5
D6
32 31 30 29 28 27 26 25
ADL5240
DSAOUT
NC
NC
NC
AMPOUT/VCC
NC
NC
NC
NC
AMPIN
NC
NC
NC
NC
NC
24
23
22
100pF
RFOUT
21
20
C6
19
18
17
9 10 11 12 13 14 15 16
0.1µF
RFIN
C1
L1
470nH
C3
68pF
C4
VCC
1.2nF
C5
1µF
Figure 38. AMP-DSA Loop Configuration
Rev. A | Page 21 of 28
09430-037
0.1µF
ADL5240
Data Sheet
AMPLIFIER DRIVE LEVEL FOR OPTIMUM ACLR
THERMAL CONSIDERATIONS
It is usually required to drive the amplifier as high as possible in
order to maximize output power. However, properly driving
Amplifier at the ADL5240 is required to achieve optimum
ACLR performance. Once output power approaches P1dB and
OIP3, there is ACLR degradation. The driving level of amplifier
with a modulated signal should be backed off properly from
P1dB by at least the amount of a signal crest factor for optimum
ACLR. So assuming a gain and output P1dB of Amplifier at
2140 MHz are 19 dB and 19 dBm respectively, the output
power, which is backed off by 11 dB crest factor at the
modulated signal case, is 8 dBm. Therefore, the proper input
driving level should be under −11 dBm.
The ADL5240 is packaged in a thermally efficient, 5 mm × 5 mm,
32-lead LFCSP. The thermal resistance from junction to air (θJA)
is 36.8o C/W. The thermal resistance for the product was extracted
assuming a standard 4-layer JEDEC board with 25 conductive,
epoxy filled thermal vias. The thermal resistance from junction
to case (θJC) is 6.9o C/W, where case is the exposed pad of the
lead frame package.
–30
–40
AMP_ADJ
The ADL5240 consumes approximately 93 mA with a 5 V supply
voltage. Even though the part dissipates less than 0.5 W, for the
best thermal performance, it is recommended to add as many
thermal vias as possible under the exposed pad of the LFCSP.
The thermal resistance values given in this section assume a
minimum of 25 thermal vias arranged in a 5 × 5 array with a
diameter of 13 mils and a pitch of 25 mils. Figure 40 shows a
close-up of the thermal via distribution under the exposed pad.
ACPR (dBc)
–50
–60
–70
–80
–30
–25
–20
PIN (dBm)
–15
–10
–5
Figure 39. Single Carrier WCDMA Adjacent Chanel Power Ratio vs. Input
Power at Amplifier, 2140 MHz
09430-038
–35
09430-101
AMP_ALT
–90
–40
Figure 40. Exposed Pad with Thermal Via Distribution
Rev. A | Page 22 of 28
Data Sheet
ADL5240
EVALUATION BOARD
The schematic of the ADL5240 evaluation board is shown in
Figure 41, the evaluation board configuration options are detailed
in Table 8, and the layout of the ADL5240 evaluation board is
shown in Figure 43 and Figure 44. Each RF trace on the evaluation
board has a characteristic impedance of 50 Ω and is fabricated
on Rogers3003 material. In addition, each trace is a coplanar
waveguide (CPWG) with a width of 25 mils, a spacing of 20 mils,
and a dielectric thickness of 10 mils. The input to and output
from the DSA and amplifier should be ac-coupled with capacitors
of appropriate values to ensure the broadband performance.
The bias to the amplifier is provided by connecting a choke to
the AMPOUT pin. Bypassing capacitors are recommended on
all supply lines to minimize the RF coupling. The DSA and the
amplifier can be individually biased or connected to the VDD
plane using Resistors R2 and R1.
The ADL5240 can be operated in two ways: the amplifier can
precede the DSA (AMP-DSA loop configuration) or the DSA
can precede the amplifier (DSA-AMP loop configuration). The
evaluation board can be configured to handle either option. In
normal operation, R12 and R13 are open, and R10 and R11 are
0 Ω and are used to terminate any RF coupling onto the bypass
trace. To configure the ADL5240 in AMP-DSA loop configuration,
R12 should be replaced with a capacitor, R13 should be replaced
with a 0 Ω resistor, and R10 and R11 should be left open. Similarly,
to configure the ADL5240 in the DSA-AMP loop configuration,
R16 should be replaced with a capacitor, R17 should be replaced
with a 0 Ω resistor, and R14 and R15 should be left open.
The digital signal traces incorporate a footprint for an RC filter
to prevent potential noise from coupling onto the signal. In normal
operation, series resistors are 0 Ω and shunt resistors and
capacitors are open.
The evaluation board is designed to control DSA in either
parallel or serial mode by connecting the SEL pin to the supply
or ground by a switch.
For adjusting attenuation at DSA, the ADL5240 can be
programmed in two ways: through the on-board USB interface
from a PC USB port, or through an SDP board, which will
become the Analog Devices common control board in the
future. The on-board USB interface circuitry of the evaluation
board is powered directly by the PC. USB based programming
software is available to download from the ADL5240 product
page at www.analog.com. Figure 45 shows the window of the
programming software where the user selects serial or parallel
mode for the attenuation adjustment at DSA. The selection of
the mode in the window should match the mode of the
evaluation board switch.
It is highly recommended to refer the evaluation board layout
for the optimal and stable performance of each block as well as
for the improvement of thermal efficiency.
Rev. A | Page 23 of 28
ADL5240
Data Sheet
CLK_D0
S1
DATA_D1
3
1
2
LE_D2
D3
AGND
VDD
D4
RED
D5
D6
R2
0
DNI
26
27
28
29
25
D6
D5
D4
D3
NC
24
23
22
C5
19
1
100pF
R16
18
0
0
R11
0
AGND
AMPOUT
3
2
NC
R17
0
4
3
2
AGND
0
R15
0
DNI
C8
AMPIN
1
R10
AGND
4
R14
DNI
16
AMPIN
NC
15
NC
5
DNI
17
AGND
AGND
DSAOUT
21
20
DNI
14
9
R12
5
30
NC
NC
10
4
D2/LE
NC
NC
C1
100pF
3
ADL5240ACPZ
NC
NC
1
2
DSAOUT
NC
NC
DSAIN
NC
DSAIN
NC
8
NC
NC
7
NC
13
6
VDD
NC
12
4
5
U1
VDD
11
1
2
3
D1/DATA
32
EPAD
AGND
D0/CLK
PAD
C17
0.1µF
31
DNI
SEL
0
AMPOUT/VCC
VDD
DNI
0.1µF
AGND
5
DNI
R13
0
C4
DNI
AGND
1
0.1µF
2
3
4
5
AGND
VCC
RED
L1
R1
0
2
DNI
C13
C14
470nH
C15
1µF
1200pF
68pF
1
09430-039
VDD
AGND
Figure 41. ADL5240 Evaluation Board
Table 8. Evaluation Board Configuration Options
Component
C1, C2
C3, C4
C5, C6, C7
C8
L1
R1, R2
R10, R11, R14, R15
R12, R13, R16, R17
S1
Function/Notes
Input/output dc blocking capacitors for DSA.
Input/output dc blocking capacitors for AMP.
Power supply decoupling for amplifier. The bias associated with the AMPOUT pin is
the most sensitive to noise because the bias is connected directly to the output. The
smallest capacitor (C7) should be the closest to the AMPOUT pin.
Power supply decoupling for the DSA.
The bias for the amplifier comes through L1 when VCC is connected to a 5 V supply.
L1 should be high impedance for the frequency of operation while providing low
resistance for the dc current.
Resistors to connect the supply for the amplifier and the DSA to the same VDD plane.
These resistors are used to terminate RF coupling onto the traces and to close the loop.
R12 and R16 are replaced with capacitors, and R13 and R17 are replaced with 0 Ω to
close the loop.
Switch to change between the serial mode and parallel mode of operation. Connect
to supply for parallel mode and to ground for serial mode operation.
Rev. A | Page 24 of 28
Default Value
C1, C2 = 100 pF
C3, C4 = 0.1 µF
C5 = 1 µF
C6 = 1.2 nF
C7 = 68 pF
C8 = 0.1 µF
L1 = 470 nH
R1, R2 = open
R10, R11, R14, R15 =
0Ω
R12, R13, R16, R17 =
open
S1 connected to
ground
D1
C37
1µF
A
C
SML-210MTT86
R4
2kΩ
U3
DGND
7
1
IN1
OUT1
8
2
OUT2
IN2
6
3
FB
SD_N
PAD GND
PAD
5
ADP3334ACPZ
DGND
C35
0.1µF
DGND
3V3_USB
R3
78.7kΩ
FB
C44
1000pF
C36
0.1µF
R9
140kΩ
IN
IN
IN
IN
R45
2kΩ
C38
0.1µF
WAKEUP
RESETN
SCL
SDA
C47
1µF
Rev. A | Page 25 of 28
Figure 42. USB/SDP Interface Circuitry on the Customer Evaluation Board
R18
100kΩ
LE_D2
R44
100kΩ
R43
TBD0603
DNI
CLK_D0
DATA_D1
DGND1
BLK
DGND
1
AGND
DGND
0Ω
R46
0Ω
R17
0Ω
R42
0Ω
R6
DNI
DNI
DNI
C45
0.1µF
DECOUPLING FOR U1
C39
0.1µF
C33
0.1µF
1
2
3
6
7
8
DGND
U5
0Ω
R22
0Ω
R21
C46
0.1µF
DGND
DNI
C49
0.1µF
R47
100kΩ
R5
2kΩ
C48
0.1µF
DGND
DGND
A0 VCC
A1
5
A2
SDA
SCL
WP
24LC32A-I/MS
VSS
E014160
4
JEDEC_TYPE=MSOP8
U2
8
VCC
A0
A1
A2
5
SCL
SDA
WC_N
GND
4
24LC64-I-SN
DGND
1
2
3
6
7
C9
10pF
D6
D5
D4
D3
C34
0.1µF
R7
100kΩ
DNI
AGND
RDY0_SLRD
RDY1_SLWR
WAKEUP
RESERVED
XTALIN
RESET_N
SCL
SDA
P2
DGND
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
FX8-120S-SV(21)
DGND
1
2
44
14
5
42
15
16
AVCC
C50
0.1µF
C31
10pF
GND
1
18
19
20
21
22
23
24
25
45
46
47
48
49
50
51
52
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
PB1
PB2
PB3
PB4
PB5
PB6
PB7
PD0
PD1
PD2
PD3
PD4
PD5
PD6
PD7
DGND
P2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
FX8-120S-SV(21)
5V_SDP
RED
(FROM MAIN BOARD; 200mA MINIMUM)
5V_SDP
PA7
1
2kΩ
R8
OUT
IFCLK
CLKOUT
CTL0_FLAGA
CTL1_FLAGB
CTL2_FLAGC
C51
22pF
XTALOUT
XTALIN
CR2
3
A
C
SML-210MTT86
DM
DP
CASE
2 4
Y1
24.000000MHZ
CY7C68013A-56LTXC
E013815
JEDEC_TYPE=QFN56_8X8_PAD5_2X4_5
PB0_FD0
PB1_FD1
PB2_FD2
PB3_FD3
PB4_FD4
PB5_FD5
PB6_FD6
PB7_FD7
PD0_FD8
PD1_FD9
PD2_FD10
PD3_FD11
PD4_FD12
PD5_FD13
PD6_FD14
PD7_FD15
PAD
33
34
35
36
37
38
39
40
4
8
9
13
54
29
30
31
U4
XTALOUT
DPLUS
DMINUS
IFCLK
CLKOUT
CTL0_FLAGA
CTL1_FLAGB
CTL2_FLAGC
VCC
DGND
PA0_INT0_N
PA1_INT1_N
PA2_SLOE
PA3_WU2
PA4_FIFOADR0
PA5_FIFOADR1
PA6_PKTEND
PA7_FLAGD_SLCS_N
17
28
3
6
27
41
11
26
32
53
7
10
43
56
IO
12
55
PAD
5V_USB
DGND
OUT
PB0
DGND
DGND
C52
22pF
CLK_D0
D3
D4
D5
D6
LE_D2
DATA_D1
DGND
OUT
OUT
OUT
OUT
OUT
OUT
OUT
0Ω
R25
0Ω
R23
0Ω
R20
0Ω
R19
0Ω
R24
0Ω
0Ω
R54
GND
PINS
P1
DGND
R29
1.00kΩ
DNI
DGND
R28
1.00kΩ
DNI
DGND
R27
1.00kΩ
DNI
DGND
R26
1.00kΩ
DNI
R55
1.00kΩ
DNI
C19
330pF
DNI
C18
330pF
DNI
C16
330pF
DNI
C12
330pF
DNI
C53
330pF
DNI
897-43-005-00-100001
G1
G2
G3
G4
1
2
3
4
5
TSW-105-08-G-D
DNI
PLACEHOLDER
DGND
P3
R53
PA0
PA1
PA2
PA3
PA4
PA5
PA6
5V_USB
1
2
3
4
5
6
7
8
9
10
R13
1.00kΩ
DNI
C55
330pF
DNI
DGND
R14
1.00kΩ
DNI
D6
D5
D4
D3
C56
330pF
DNI
CLK_D0
DATA_D1
LE_D2
09430-102
3V3_USB
Data Sheet
ADL5240
09430-040
Data Sheet
09430-040
ADL5240
Figure 43. Evaluation Board Layout—Top
Figure 44. Evaluation Board Layout—Bottom
Rev. A | Page 26 of 28
ADL5240
09430-103
Data Sheet
Figure 45. Evaluation Board Control Software
Rev. A | Page 27 of 28
ADL5240
Data Sheet
OUTLINE DIMENSIONS
5.00
BSC SQ
0.60 MAX
0.60 MAX
25
32
1
24
0.50
BSC
3.45
3.30 SQ
3.15
EXPOSED
PAD
17
TOP VIEW
1.00
0.85
0.80
SEATING
PLANE
0.80 MAX
0.65 TYP
12° MAX
0.50
0.40
0.30
0.05 MAX
0.02 NOM
COPLANARITY
0.08
0.20 REF
0.30
0.25
0.18
8
16
9
BOTTOM VIEW
0.25 MIN
3.50 REF
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
COMPLIANT TO JEDEC STANDARDS MO-220-VHHD-2
05-23-2012-A
4.75
BSC SQ
PIN 1
INDICATOR
PIN 1
INDICATOR
Figure 46. 32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
5 mm × 5 mm Body, Very Thin Quad
(CP-32-3)
Dimensions shown in millimeters
ORDERING GUIDE
Model 1
ADL5240ACPZ-R7
ADL5240-EVALZ
1
Temperature Range
−40°C to +85°C
Package Description
32 Lead LFCSP_VQ, 7" Tape and Reel
Evaluation Board
Z = RoHS Compliant Part.
©2011–2013 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D09430-0-6/13(A)
Rev. A | Page 28 of 28
Package Option
CP-32-3