ICs for Communications Mixer/Amplifier PMB 2333 Version 1.2 Preliminary Data Sheet 09.97 T2333-XV12-P3-7600 Edition 09.97 Published by Siemens AG, Bereich Halbleiter, MarketingKommunikation, Balanstraße 73, 81541 München © Siemens AG 1995. All Rights Reserved. Attention please! As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for applications, processes and circuits implemented within components or assemblies. The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. For questions on technology, delivery and prices please contact the Semiconductor Group Offices in Germany or the Siemens Companies and Representatives worldwide (see address list). Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Siemens Office, Semiconductor Group. Siemens AG is an approved CECC manufacturer. Packing Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred. Components used in life-support devices or systems must be expressly authorized for such purpose! Critical components1 of the Semiconductor Group of Siemens AG, may only be used in life-support devices or systems2 with the express written approval of the Semiconductor Group of Siemens AG. 1 A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system. 2 Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered. Ausgabe 09.97 Herausgegeben von Siemens AG, Bereich Halbleiter, MarketingKommunikation, Balanstraße 73, 81541 München © Siemens AG 1995. Alle Rechte vorbehalten. Wichtige Hinweise! Gewähr für die Freiheit von Rechten Dritter leisten wir nur für Bauelemente selbst, nicht für Anwendungen, Verfahren und für die in Bauelementen oder Baugruppen realisierten Schaltungen. Mit den Angaben werden die Bauelemente spezifiziert, nicht Eigenschaften zugesichert. Liefermöglichkeiten und technische Änderungen vorbehalten. Fragen über Technik, Preise und Liefermöglichkeiten richten Sie bitte an den Ihnen nächstgelegenen Vertrieb Halbleiter in Deutschland oder an unsere Landesgesellschaften im Ausland. Bauelemente können aufgrund technischer Erfordernisse Gefahrstoffe enthalten. Auskünfte darüber bitten wir unter Angabe des betreffenden Typs ebenfalls über den Vertrieb Halbleiter einzuholen. Die Siemens AG ist ein Hersteller von CECCqualifizierten Produkten. Verpackung Bitte benutzen Sie die Ihnen bekannten Verwerter. Wir helfen Ihnen auch weiter – wenden Sie sich an Ihren für Sie zuständigen Vertrieb Halbleiter. Nach Rücksprache nehmen wir Verpackungsmaterial sortiert zurück. Die Transportkosten müssen Sie tragen. Für Verpackungsmaterial, das unsortiert an uns zurückgeliefert wird oder für das wir keine Rücknahmepflicht haben, müssen wir Ihnen die anfallenden Kosten in Rechnung stellen. Bausteine in lebenserhaltenden Geräten oder Systemen müssen ausdrücklich dafür zugelassen sein! Kritische Bauelemente1 des Bereichs Halbleiter der Siemens AG dürfen nur mit ausdrücklicher schriftlicher Genehmigung des Bereichs Halbleiter der Siemens AG in lebenserhaltenden Geräten oder Systemen2 eingesetzt werden. 1 Ein kritisches Bauelement ist ein in einem lebenserhaltenden Gerät oder System eingesetztes Bauelement, bei dessen Ausfall berechtigter Grund zur Annahme besteht, daß das lebenserhaltende Gerät oder System ausfällt bzw. dessen Sicherheit oder Wirksamkeit beeinträchtigt wird. 2 Lebenserhaltende Geräte und Systeme sind (a) zur chirurgischen Einpflanzung in den menschlichen Körper gedacht, oder (b) unterstützen bzw. erhalten das menschliche Leben. Sollten sie ausfallen, besteht berechtigter Grund zur Annahme, daß die Gesundheit des Anwenders gefährdet werden kann. PMB 2333 Revision History: Previous Version: Current Version: 09.97 06.96 Page (in 06.96 Version) Page (in new Version) Subjects (major changes since last revision) 10 10 Supply Voltage -> 5.0V max. 10 10 Input Voltage VLO/X -> 5.0V max. 10 10 Input Voltage VAI -> VAO+0.3V max. 10 Input Voltage VAI AC Peak -> -2V min. 10 10 Input Voltage VGC -> -0.3V min. / VS+0.3 max. 10 10 Input Voltage VSTB -> 5.0V max. 10 10 Open Collector Output Voltage VMO/X ->1.7V min. / 5.0V max. 10 Amplifier Current (Base, Peak) IAI -> 6mA 10 Amplifier Power dissipation PAMPtot -> 105mW 11 Thermal Resistance RthJA -> 213K/W 11 Thermal Resistance RthSO -> 160K/W 11 ESD Integrity 25 26 Amplifier f=0.9GHz -> ΓOPT 26 27 Amplifier f=1.8GHz -> ΓOPT 32 33 Diagram 5 - Identical Values - New Printout 10 Update Of / Additional Application Information Correction Of Printing Mistakes PMB 2333 Revision History: Previous Version: Page (in 11.95 Version) Page (in 06.96 Version) Current Version: 06.96 11.95 Subjects (major changes since last revision) Update of RF/S-parameters becauce of cavitiy change, correction of printing mistakes, update of application circuits PMB 2333 Table of Contents Page 1 1.1 1.2 1.3 1.4 1.5 1.6 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Functional Description, Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Circuit Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 2 2.1 2.2 2.3 2.4 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Operational Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 AC/DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Test Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 3 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.2 3.2.1 3.2.2 3.2.3 3.3 3.3.1 3.3.2 3.3.3 3.3.4 Application Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Receiver Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Shortform Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Measurement results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Application hint - Mixer metrics versus mixer current . . . . . . . . . . . . . . . . . . .40 Circuit diagram and PCB layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 Upconversion Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48 Shortform Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48 Measurement results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49 Circuit diagram and PCB layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 Receiver/SAW Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 Shortform Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 System calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 Measurement results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 Circuit diagram and PCB layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 4 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 Semiconductor Group 4 09.97 Mixer/Amplifier PMB 2333 Version 1.2 Bipolar IC 1 Overview 1.1 Functional Description, Benefits • • • • • • New B6HF bipolar technology, 25GHz fT Small outline P-TSSOP 16 package Reduced external components Frequency range up to 3.0GHz Amplifier may be used as LNA or Driver LNA mode •1.7dB typ. noise figure at 1.8GHz •5mA typ. current consumption P-TSSOP-16 • Driver mode • +12dBm output at 1dB compression • 20mA current consumption • • • • • • Gilbert cell mixer with high gain 2.7 - 4.5V voltage supply -40°C to +85°C operational temperature range Standby function High isolation values for amplifier and mixer Good crosstalk performance 1.2 Applications • Cellular radio systems • Cordless telephone systems • WLAN-Systems Type PMB 2333 Semiconductor Group Version V1.2 5 Ordering Code Package Q67006-A6128 P-TSSOP-16 09.97 PMB 2333 1.3 Pin Configuration (top view) 1 16 GC AI 2 15 AO GND1 3 14 GND1 GND1 4 13 STB MO 5 12 MIX MOX 6 11 MI VCC 7 10 GND2 LOX 8 9 AREF LO P-TSSOP16 Semiconductor Group 6 09.97 PMB 2333 1.4 Pin No. Pin Definitions and Functions Symbol Function 1 AREF Amplifier bias supply for signal input 2 AI Amplifier signal base input 3 GND1 Amplifier ground 4 GND1 Amplifier ground 5 MO Mixer signal open collector output 6 MOX Mixer signal open collector output 7 VCC Voltage supply total circuit 8 LOX Mixer local oscillator signal base input, inverted 9 LO Mixer local oscillator signal base input, not inverted 10 GND2 Mixer ground 11 MI Mixer signal emitter input, not inverted 12 MIX Mixer signal emitter input, inverted 13 STB Standby mixer and bandgap 14 GND1 Amplifier ground 15 AO Amplifier signal open collector output 16 GC Amplifier gain control Semiconductor Group 7 09.97 PMB 2333 MO LO MOX LO Bias1 Amplifier 9 10 GND2 11 MI 12 MIX 13 STB 14 GND1 15 AO Functional Block Diagram 16 GC 1.5 LOX Bias Bias2 Mixer 8 LOX 8 VCC 7 MI MOX 6 MO 5 GND1 4 3 2 AI Semiconductor Group GND1 1 AREF MIX 09.97 PMB 2333 1.6 Circuit Description MIXER The mixer used in this design is a general purpose up-/down conversion gilbert cell mixer. Via the pins MI/MIX the RF enters the IC. Using an external supplied local oscillator at LO/LOX a converted output signal is created at the open collector output pins MO/MOX. The open collector pins need to be connected to an external voltage supply. The RF connection to the mixer inputs can be single ended on balanced, capacitive or inductive. To improve the mixer performance external resistors at MI/MIX make it possible to adjust the mixer current. Voltage supply for the mixer has to be connected to the pin VCC and to GND2. AMPLIFIER The amplifier may be used as a low noise amplifier LNA or as a driver. At pin AI the RF signal enters the IC, at the open collector output AO, which need to be connected to supply voltage, the amplified signal is external available for further use. Matching networks at in-/and output can be used for improving the gain and the noise performance. To reduce the series feedback of the emitter line the amplifier is connected to ground via three GND1 pins. At AREF a internal supplied reference voltage is available for the DC biasing of AI. This dc output should be implemented in an input matching network. The voltage supply for the amplifier is also VCC. The dc-level at the pin GC allows to adjust the amplifier current. Lower current is recommended for using the amplifier as an LNA, high current for using it as a driver. COMMON Differential signals and symmetrical circuits are used throughout the mixer part of the IC. An internal bias driver generates supply voltage and temperature compensated reference voltages. The STB pin allows the mixer and bandgap part of the IC to be switched in a low power mode. All pins with the exception of GND1,2 and AI/AO are ESD protected. Semiconductor Group 9 09.97 PMB 2333 2 Electrical Characteristics 2.1 Absolute Maximum Ratings The maximum ratings may not be exceeded under any circumstances, not even momentarily and individually, as permanent damage to the IC will result. Ambient temperature Tamb = -40°C...+85°C # Parameter Symbol Limit Values Min Units Max 1 Supply Voltage VS -0.3 5.0 V 2a Input Voltage VMI/MIX -0.3 1.9 V 2b Input Voltage VLO/LOX 0.6 VS+0.3 V 5.0max. V VAO+0.3 V 3.5max. V 2c 2d Input Voltage Input Voltage (AC Peak) -0.3 VAI -2 VAI Remarks V VS = 0 Freq.>1MHz IAI < nA 2e 2f Input Voltage Input Voltage -0.3 VGC -0.3 VSTB VS+0.3 V 2.7max. V VS+0.3 V 5.0max. V 3a Output Voltage VAREF -0.3 2.0 V 3b Open Collector Output Voltage VMO/MOX 1.7 VS+0.3 V 5.0max. V 3c Open Collector Output Voltage VAO -0.3 3.5 V Base open 3d Open Collector Output Voltage VAO -0.3 7.0 V RB<50kΩ 4a Amplifier Current (Collector) IAO 30 mA 4b Amplifier Current (Base, Peak) IAI 6.0 mA 4c Amplifier Power Dissipation PAMPtot 105 mW 5 Differential Input Voltage VIDIFF 2.0 VPP 6 Junction Temperature Tj 125 °C Semiconductor Group 10 DC and AC 09.97 PMB 2333 Absolute Maximum Ratings The maximum ratings may not be exceeded under any circumstances, not even momentarily and individually, as permanent damage to the IC will result. Ambient temperature Tamb = -40°C...+85°C # Parameter Symbol Limit Values Min 7 Storage Temperature TS 8a Thermal Resistance 8b 9 -40 Units Remarks Max 125 °C RthJA 213 K/W 1) Thermal Resistance RthSO 160 K/W 2) ESD integrity, all pins without VESD 500 V 3) -500 AI,AO and GND1/2 1) Attention: Do not exceed the max. junction temperature 2) Junction to soldering point, simulated with FEM 3) HBM according MIL STD 883D, method 3015.7,and EOS/ESD assn. standard S5.1-1993 Semiconductor Group 11 09.97 PMB 2333 2.2 Operational Range Within the operational range the IC operates as described in the circuit description. The AC/DC characteristic limits are not guaranteed. Supply voltage VVCC = 2.7V...4.5V, Ambient temperature Tamb = -40°C...85°C # Parameter Symbol Limit Values Min Units Remarks Max 1 AI Input Frequency fAI 3000 MHz 2 MI/X Input Frequency fMI 3000 MHz 3 LO/X Input Frequency fLO 3000 MHz 4 IF Intermediate Frequency fIF 3000 MHz 5 Standby Voltage On STBON 2.0 VS V 6 Standby Voltage Off STBOFF 0 0.5 V 7 Gain Control Voltage, High GCHigh 2.0 2.7 V Diagram 5 8 Gain Control Voltage, Low GCLow 0 0.6 V Diagram 5 Note: Power levels refer to 50 Ohms impedance Semiconductor Group 12 09.97 PMB 2333 2.3 AC/DC Characteristics AC/DC characteristics involve the spread of values guaranteed within the specified supply voltage and ambient temperature range. Typical characteristics are the median of the production. Supply voltage VVCC = 2.7V...4.5V, Ambient temperature Tamb = +25°C # Parameter Symbol Limit Values Min Typ Units Test Test Conditions Circuit Max Supply Current 1a Supply current, total IC I5,6,7,15 23.6 mA STB ON, no external resistors at MI/MIX* 1, IAO=20 mA 1b Supply current, total IC I5,6,7,15 1.6 mA STB ON, no external resistors at MI/MIX* 1, IAO=0 mA 2 Supply current, total IC I5,6,7,15 <20 µA STB OFF, GC=0V 1 * Minimum value for external resistors at MI/MIX: R1=R2=33Ohm Semiconductor Group 13 09.97 PMB 2333 AC/DC Characteristics AC/DC characteristics involve the spread of values guaranteed within the specified supply voltage and ambient temperature range. Typical characteristics are the median of the production. Supply voltage VVCC = 2.7V to 4.5V, Ambient temperature Tamb = +25° # Parameter Symbol Limit Values Min Typ Unit Test Test Conditions Circuit Max AMPLIFIER-Driver, Signal Input AI, IAO=20mA, VAO=3.3V, f=2.5GHz 3 Input impedance, vs. freq. S11 4 Max. input level, 1db compression 5 Input intercept, third order IICPDAI PAI Diagram 3a 3 0.0 dbm f=2.5GHz 1 10.0 dbm f=2.5GHz 1 AMPLIFIER-Driver, Signal Output AO, IAO=20mA, VAO=3.3V, f=2.5GHz 6 Output current 7 Output freq. 8 Power gain 20.0 IAO impedance mA vs. S22 +12.5 S21Amp db 1 Diagram 3a 3 f=2.5GHz 1 AMPLIFIER-Driver, Signal Input AI, IAO=0mA, VAO=3.3V, f=2.5GHz 9 Input impedance, vs. freq. S11 10 Max. input change 11 Input intercept, third order IICPAI level, 1db PAI Diagram 3c 3 0.0 dbm f=2.5GHz 1 20.0 dbm f=2.5GHz 1 AMPLIFIER-Driver, Signal Output AO, IAO=0mA, VAO=3.3V, f=2.5GHz 12 Output current 13 Output freq. 14 Power gain impedance 0 IAO mA vs. S22 < -13 S21Amp db 1 Diagram 3c 3 f=2.5GHz 1 All amplifier measurements have be done with Siemens RT5880 Duroid (Teflon) Boards Semiconductor Group 14 09.97 PMB 2333 AC/DC Characteristics AC/DC characteristics involve the spread of values guaranteed within the specified supply voltage and ambient temperature range. Typical characteristics are the median of the production. Supply voltage VVCC = 2.7V to 4.5V, Ambient temperature Tamb = +25° # Parameter Symbol Limit Values Min Typ Unit Test Test Conditions Circuit Max AMPLIFIER-LNA, Signal Input AI, IAO=5mA, VAO=3.3V, f=1.8GHz 15 Input impedance, vs. freq. S11 Diagram 3b 3 16 Max.input level, 1dB compression PAI -12.0 dBm f=1.8GHz 1 17 Input intercept, third order IICPAI 1.0 dBm f=1.8GHz 1 18 Noise figure FAI 1.7 dB f=1.8GHz 1 AMPLIFIER-LNA, Signal Output AO, IAO=5mA, VAO=3.3V, f=1.8GHz 19 Output current 20 Output impedance vs. freq. S22 21 Power gain 5.0 IAO 12.0 S21LNA mA dB 1 Diagram 3b 3 f=1.8GHz 1 AMPLIFIER-LNA, Signal Input AI, IAO=0mA, VAO=3.3V, f=1.8GHz 22 Input impedance, vs. freq. S11 23 Max. input level, 1db change PAI 0.0 23 Input intercept, third order IICPAI 20.0 Diagram 3c 3 dbm f=1.8GHz 1 dbm f=1.8GHz 1 AMPLIFIER-LNA, Signal Output AO, IAO=0mA, VAO=3.3V, f=1.8GHz 24 Output current 25 Output impedance vs. freq. S22 26 Power gain 0 IAO < -17 S21A mA db 1 Diagram 3c 3 f=1.8GHz 1 All LNA measurements have be done with Siemens RT5880 Duroid (Teflon) Boards Semiconductor Group 15 09.97 PMB 2333 AC/DC Characteristics AC/DC characteristics involve the spread of values guaranteed within the specified supply voltage and ambient temperature range. Typical characteristics are the median of the production. Supply voltage VVCC = 2.7V to 4.5V, Ambient temperature Tamb = +25° # Parameter Symbol Limit Values Min Typ Unit Test Test Conditions Circuit Max MIXER, Signal Input MI/MIX, Upconversion, R1,2=33Ohm 27 Input impedance vs .freq. ZMI 28 Max. input level, 1 db compression PMI -7 29 Input intercept point IICP3MI 6 Diagram 4a 4 dbm fMI=0.66GHz 1* dbm fMI=0.66GHz 1* Diagram 4c 4 fLO=2.0GHz 1* MIXER, Local Oscillator Input LO/LOX, Upconversion, R1,2=33Ohm 30 Input impedance vs freq. ZLO 31 Input level PLO 0 dbm MIXER, Signal Output MO/MOX, fout = 2.66GHz, Upconversion, R1,2=33Ohm 32 Output current IMO/X 10.4 mA with ext. resistors at MI/MIX 33 Output resistance RMODiff 600 Ohm fMO=2.66GHz 34 Output capacitance CMODiff 0.57 pF fMO=2.66GHz 35 Power gain PMI 8 db fMO=2.66GHz 1* 1* MIXER, Isolation Between In-/Output, fout = 2.66GHz, Upconversion, R1,2=33Ohm 37 LO to MO ALO-MO 30 db 1* 38 LO to MI ALO-MI 35 db 1* 39 MO to MI AMO-MI 40 db 1* 40 MO to LO AMO-LO 45 db 1* * MI/MO Input/Output including matching network Semiconductor Group 16 09.97 PMB 2333 AC/DC Characteristics AC/DC characteristics involve the spread of values guaranteed within the specified supply voltage and ambient temperature range. Typical characteristics are the median of the production. Supply voltage VVCC = 2.7V to 4.5V, Ambient temperature Tamb = +25° # Parameter Symbol Limit Values Min Typ Unit Test Test Conditions Circuit Max MIXER, Signal Input MI/MIX, Downconversion, R1,2=180Ohm 41 Input impedance vs .freq. ZMI 42 Max. input level, 1 db PMI compression -15 43 at MO/MOX, IF=45MHz PMI 44 Diagram 4b 4 dBm f=0.9GHz 2a -14 dBm f=1.8GHz 2a PMI -9 dBm f=2.5GHz 2a 45 Input intercept point, IICP3MI 0 dBm f=0.9GHz 2a 46 ∆f=800kHz, IF= 45MHz IICP3MI -1 dBm f=1.8GHz 2a IICP3MI +5 dBm f=2.5GHz 2a 47 48 Blocking level, Pin,unwan. -16 dBm f=0.9GHz 2a 49 ∆f=800kHz, IF=45MHz PBL,unwan. -16 dBm f=1.8GHz 2a 50 Pin, wanted = -20dBm PBL,unwan. -10 dBm f=2.5GHz 2a 51 Noise figure, ssb FMI 9 dB f=0.9GHz * 52 (NFssb≈NFdsb+3dB) FMI 11 dB f=1.8GHz * 53 IF=45MHz FMI 14 dB f=2.5GHz * MIXER, Local Oscillator Input LO/LOX, Downconversion, R1,2=180Ohm 54 Input impedance vs freq. ZLO 55 Input level PLO -3 56 PLO 57 PLO Diagram 4d 4 dBm f=0.9GHz 2a, ** -3 dBm f=1.8GHz 2a, ** -3 dBm f=2.5GHz 2a, ** * matching network used ** referenced for specified mixer performance Semiconductor Group 17 09.97 PMB 2333 AC/DC Characteristics AC/DC characteristics involve the spread of values guaranteed within the specified supply voltage and ambient temperature range. Typical characteristics are the median of the production. Supply voltage VVCC = 2.7V to 4.5V, Ambient temperature Tamb = +25° # Parameter Symbol Limit Values Min Typ Unit Max Test Test Conditions Circuit MIXER, Signal Output MO/MOX, Downconversion, R1,2=180Ohm 58 Output current IMO+MOX 4.0 mA 59 Output resistance RMODiff 32 kOhm IF=45MHz 2a RMODiff 25 kOhm IF=300MHz 2b CMODiff 0.36 pF IF=45MHz 2a CMODiff 0.39 pF IF=300MHz 2b PMI 15 db f=0.9GHz 2a 64 PMI 14 db f=1.8GHz 2a 65 PMI 9 db f=2.5GHz 2a PMI 7 db f=0.9GHz 2b 67 PMI 7 db f=1.8GHz 2b 68 PMI 2.5 db f=2.5GHz 2b 60 61 Output capacitance 62 63 66 Power gain, IF=45MHz Power gain, IF=300MHz incl. R1,R2 MIXER, Isolation Between In-/Output, 0.9GHz, Downconversion, R1,2=180Ohm 69 MI to MO AMI-MO 50 db 70 LO to MO ALO-MO 40 db “ 2a 71 LO to MI ALO-MI 35 db “ 2a 72 MO to MI AMO-MI 60 db “ 2a 73 MO to LO AMO-LO 60 db “ 2a Semiconductor Group 18 fMI=945MHz, 2a fLO=900MHz 09.97 PMB 2333 2.4 Test Circuits Test Circuit 1 LO Input Toko Balun ü=1:2→617DB-1016 TokoBalun 1:2 CK CK 8 9 CB 33 82nH L0 C1 C2 L1 C3 33 VCC 82nH CB Bias Tee VCC CB VGC CB MO Output C2 L1 C3 Bias Tee AO Output 1 16 CB C1 PMB 2333 MI Input VCC VCC AI Input DC Mixer/Driver Amplifier, Upconversion mode Test Circuit f IF[MHz] L1[nH] C1[pF] C2[pF] C3[pF] CK[pF] 1/MI ≈660 8.2 4.7 56 10 15 1/MO ≈2660 2.7 1.8 1.2 1 X Semiconductor Group 19 09.97 PMB 2333 Test Circuit 2a LO Input Toko Balun ü=1:1→617DB-1023 Toko Balun 1:2 CK ü=1:2→617DB-1016 CK 8 9 CB VCC MI Input 180 Toko Balun 1:1 CK VCC 180 CB Bias Tee VCC MO Output PMB 2333 CK CB VCC ü=20:2 Bias Tee AO Output CB VGC AI Input DC 1 16 CB Vogt Transformer Kit, 0.05mm wire ü=20:2 Mixer/Driver Amplifier, Downconversion mode Test Circuit f IF[MHz] CB[pF] CK[pF] X X 2a 45 15/100 15 X X Semiconductor Group 20 09.97 PMB 2333 Test Circuit 2b LO Input Toko Balun ü=1:1→617DB-1023 TokoBalun 1:2 CK ü=1:2→617DB-1016 CK 8 9 CB VCC L0 CK 180 PMB 2333 MI Input Toko Balun 1:1 180 CK CB VCC Bias Tee VCC CB VGC C1 L1 C2 MO Output C3 Bias Tee AO Output AI Input DC 1 16 CB VCC CB Mixer/Driver Amplifier, Downconversion mode Test Circuit f IF[MHz] L0[nH] L1[nH] C1[pF] C2[pF] C3[pF] CK[pF] 2b ≈300 680 150 2.7 12 1.8 15p Semiconductor Group 21 09.97 PMB 2333 Test Circuit 3 Pin x Port 1 Network analyzer ZL=50Ohm DUT Port 2 Pin y S-Parameter Measurement of Amplifier S11, S12, S21, S22 The S-Parameters are tested at the indicated frequency on Duroid 5880 Teflon Boards. Via the NWA the capacitive coupling is done. The output levels at port1 and 2 for pin x and y are -30dbm. S11 and S22 have to be considered as design hints and are measured with SIEMENS testboards. Test Test frequency MHz Pin X Pin Y Amp.S11, S12, S21, S22 30 - 3000 AI AO Semiconductor Group 22 09.97 PMB 2333 25 100 50 Diagram 3a S-Parameter Amplifier IAO=20mA, VCC=3.3V, f=30-3000MHz 3.0 GHz 250 10 2.4 GHz 3.0 GHz 1k 100 50 25 10 1k 2.4 GHz 250 1.8 GHz 0 s11 1.8 GHz s22 1k 900 MHz 900 MHz 10 50 25 100 250 900 MHz 900 MHz 1.8 GHz s21 s12 40 S21 30 20 10 1.8 GHz 2.4 GHz 0.05 3.0 GHz 2.4 GHz 0.1 0.15 0.2 S12 3.0 GHz Semiconductor Group 23 09.97 PMB 2333 25 100 50 Diagram3b S-Parameter Amplifier IAO=5mA, VCC=3.3V, f=30-3000MHz 3.0 GHz 250 10 2.4 GHz 3.0 GHz 1k 250 50 25 10 1.8 GHz 100 1k 0 s22 s11 2.4 GHz 1k 1.8 GHz 10 250 900 MHz 50 25 100 900 MHz 900 MHz 1.8 GHz s21 20 S21 15 s12 10 5 900 MHz 1.8 GHz 2.4 GHz 0.05 3.0 GHz 2.4 GHz 0.1 0.15 0.2 S12 3.0 GHz Semiconductor Group 24 09.97 PMB 2333 25 100 50 S-Parameter Amplifier IAO=0mA, VCC=3.3V, f=30-3000MHz 250 10 10 1k 250 100 50 3.0 GHz 250 3.0 GHz 1k 10 25 1k 0 s22 s11 900 MHz 900 MHz 1.8 GHz 100 50 25 1.8 GHz 900 MHz 1.8 GHz s21 0.3 S21 0.2 0.1 0.1 0.2 0.3 S12 2.4 GHz 3.0 GHz Semiconductor Group 25 09.97 PMB 2333 Diagram 3d Noise Circles Amplifier IAO=5mA, VCC=3.3V;f=0.9GHz 45 40 80 70 50 90 100 60 0 10 25 50 20 40 14 0 13 0 30 120 75 35 110 0 15 10 500 5 1k 1k 500 250 200 150 100 75 40 45 50 35 30 25 20 15 10 5 1.10 1.20 1.40 1.60 250 200 15 -30 0 -15 500 2.00 2.50 3.00 10 -20 -160 1k 5 -10 -170 0 180 1.055 0 10 170 250 20 160 150 15 30 200 0 10 25 30 -1 75 -90 45 50 -80 40 -70 35 -60 30 0 -1 0 -5 40 0 15 -4 20 -100 0 -12 -110 FMIN = 1.055dB Rn = 10.17Ω GOPT = 16.01mS BOPT = -2.36mS ΓOPT = 0.128 exp(j 34.4°) Semiconductor Group 26 09.97 PMB 2333 Diagram 3e Noise Circles Amplifier IAO=5mA, VCC=3.3V;f=1.8GHz 90 80 50 40 45 100 70 60 0 25 20 14 50 40 0 13 10 0 30 120 75 35 110 0 15 10 500 10 170 250 20 160 150 15 30 200 5 1k 500 250 200 150 100 75 40 45 50 35 30 25 20 15 10 5 0 0 1.40 500 5 2.00 2.50 3.00 200 15 -30 0 -15 250 10 -20 -160 1.60 -10 -170 1.30 1k 180 1k 1.278 00 1 25 30 -1 75 -90 45 50 -80 40 -70 35 -60 30 0 -1 0 -5 40 0 15 -4 20 -100 0 -12 -110 FMIN = 1.278dB Rn = 7.52Ω GOPT = 21.54mS BOPT = -1.59mS ΓOPT = 0.053 exp(j 136.2°) Semiconductor Group 27 09.97 PMB 2333 Network analyzer ZL=50Ohm Test Circuit 4 Pin x Port 1 DUT Port 2 Pin y S-Parameter Measurement of Mixer S11, S12, S21, S22 Test Test Frequency [MHz] Pin X Pin Y LO-Input impedance 30 - 3000 8 9 Mi-Input impedance 30 - 3000 11 12 MO-Output impedance 30 - 3000 5 6 The S-Parameters are tested at the indicated frequency and the equivalent parallel or series circuit is calculated on this base. Via the NWA the capacitive coupling is done and the open collector pins are connected to VCC. The output levels at port1 and 2 for pin x and y are -30dbm for MI and MOimpedances and -5dbm for the LO impedance.S-Parameters have to be considered as design hints and are measured with SIEMENS testboards. Semiconductor Group 28 09.97 PMB 2333 Test Circuit 4a DC Supply R STB VS P1 MI NWA 50Ω MO DUT MOX MIX P2 LO 50Ω LOX 33p 33p R 1:2 DC Supply 50Ω Mixer Input Impedance Measurement Test Circuit 4b DC Supply 10p VS R STB MI 50Ω 15n 1µH MO DUT 10p R 5,6p 50Ω MOX MIX 1:1 5,6p LO 680nH LOX 5,6p 15n P2 NWA P1 Mixer Local Oscilllator Impedance Measurement Semiconductor Group 29 09.97 PMB 2333 Test Circuit 4c R 1n 10p 50Ω VS 100n Internal Bias Tees STB P1 MI DUT NWA MOX MIX 50Ω MO P2 LO LOX 33p 33p R Power Supply 3.3V 1:2 50Ω Mixer Output Impedance Measurement Semiconductor Group 30 09.97 PMB 2333 100 25 50 Diagram 4a Mixer MI Input Impedance ZMI, IMO/MOX = 10mA, f=30-3000MHz Rdiff 1.8 GHz Rsingle 900 MHz 3.0 GHz 3.0 GHz 1.8 GHz 250 10 900 MHz 1k 250 100 50 10 25 1k 0 1k 10 50 25 100 250 25 100 50 Diagram 4b Mixer MI Input Impedance ZMI, IMO/MOX = 4mA, f=30-3000MHz 3.0 GHz 3.0 GHz 250 1.8 GHz 10 1.8 GHz 900 MHz Rdiff 900 MHz 1k 250 100 50 10 Rsingle 25 1k 0 1k 10 50 25 100 250 Semiconductor Group 31 09.97 PMB 2333 25 100 50 Diagram 4c Mixer LO Input Impedance ZLO, IMO/MOX = 10mA, f=30-3000MHz 250 10 1k 250 100 50 10 25 1k 0 1k 3.0 GHz 900 MHz 3.0 GHz 900 MHz Rdiff 25 2.4 GHz 1.8 GHz 1.8 GHz 50 2.4 GHz 100 Rsingle 250 10 25 100 50 Diagram 4d Mixer LO Input Impedance ZLO, IMO/MOX = 4mA, f=30-3000MHz 250 10 1k 250 100 50 10 25 1k 0 1k 900 MHz 900 MHz 3.0 GHz 250 10 3.0 GHz Rdiff 100 Rsingle 1.8 GHz 2.4 GHz 25 1.8 GHz 50 2.4 GHz Semiconductor Group 32 09.97 PMB 2333 30 20 25 18 20 16 15 14 gain 10 12 5 10 noise figure 0 -5 8 IAO [mA] gain / noise figure [dB] Diagram 5 6 -10 4 IAO -15 2 -20 0 0.5 1 1.5 2 2.5 VGC [V] Gain, Noise Figure and IAO versus Gain Control voltage Noise Figure values without correction of attenuation ( 0.4 dB ) at input of the amplifier ->NFmin=1.7dB at VGC=1.91V, amplifier current IAO=5mA, open collector voltage VAO=3.3V ( according test circuit 2, f=1.8GHz). Semiconductor Group 33 09.97 PMB 2333 3 Application Data 3.1 Receiver Application 3.1.1 Shortform Data Measurement conditions Ambient temperature TA = 25 °C Supply voltage VS = 2.7 V LNA and Mixer input signal fRF = 1960 MHz, PRF = -30 dBm LO signal fLO = 1735 MHz, PLO = -6 dBm IF output fIF = 225 MHz All measurements refer to SMA connectors without consideration of PCB losses Parameter Symbol Limit values min. typ. Unit Remarks IMO+IMOX max. Mixer section Mixer current IMixer 4 mA Conversion gain GC 8.5 dB Noise Figure (DSB) NFDSB 6.4 dB 3rd order input intercept point IICP3 +1 dBm 1dB-compression point P1dB -8 dBm Input blocking level PBL -7 dBm RF return loss |S11,RF| 12 dB LO return loss |S11,LO| 10 dB IF return loss |S11,IF| 11 dB ALO-IF 40 dB ∆f = 800 kHz, -3dB for wanted signal Port matching Isolations LO to IF output Semiconductor Group 34 f = 1735 MHz 09.97 PMB 2333 Measurement conditions Ambient temperature TA = 25 °C Supply voltage VS = 2.7 V LNA and Mixer input signal fRF = 1960 MHz, PRF = -30 dBm LO signal fLO = 1735 MHz, PLO = -6 dBm IF output fIF = 225 MHz All measurements refer to SMA connectors without consideration of PCB losses Parameter Symbol Limit values min. typ. Unit Remarks max. LO to RF input ALO-RF 43 25 35 dB dB dB fLO = 1735 MHz fimage,min= 1480 MHz fsignal,max= 1990 MHz RF input to LO ARF-LO 48 dB f = 1960 MHz LNA current ILNA 4.6 mA Gain G 12.5 dB Noise Figure NF 1.8 dB 3rd order input intercept point IICP3 0 dBm 1dB-compression point P1dB -10 dBm AI return loss |S11,AI| 11 dB AO return loss |S11,AO| 14 dB LNA section Semiconductor Group 35 assuming a PCB loss of 0.25 dB at AI, typical noise figure at matching circuit results to 1.55 dB 09.97 PMB 2333 3.1.2 Measurement results Mixer section : 12 11 10 Conversion Gain [dB] 9 8 7 6 DSB Noise Figure 5 4 1200 1400 1600 1800 2000 RF frequency [MHz] 2200 2400 Figure 1: Conversion Gain an Noise Figure versus Frequency 10 Conversion Gain 9 [dB] 8 7 6 DSB Noise Figure 5 4 -20 -18 -16 -14 -12 -10 -8 -6 LO power level [dBm] -4 -2 0 Figure 2: Conversion Gain and Noise Figure versus LO power Semiconductor Group 36 09.97 PMB 2333 12 Conversion Gain 10 8 [dB] DSB Noise Figure 6 4 2 0 200 205 210 215 220 225 230 frequency [MHz] 235 240 245 250 Figure 3: Conversion Gain and Noise Figure versus IF frequency 0 -10 [dB] -20 -30 -40 fully balanced LO unbalanced MI unbalanced LO+MI unbalanced -50 -60 1000 1500 2000 frequency [MHz] 2500 3000 Figure 4: Isolation LO to IF In unbalanced case the matching network is replaced by a 10pF series capacitor to one port pin. The other port pin is tied to ground via a second 10pF capacitor. This means no power matching is done. Semiconductor Group 37 09.97 PMB 2333 0 -5 -10 -15 [dB] -20 -25 -30 LO+MI unbalanced fully balanced MI unbalanced LO unbalanced -35 -40 -45 -50 1000 1500 2000 frequency [MHz] 2500 3000 Figure 5: Isolation LO to RF 0 -10 [dB] -20 -30 -40 LO+MI unbalanced fully balanced MI unbalanced LO unbalanced -50 -60 -70 1000 1500 2000 frequency [MHz] 2500 3000 Figure 6: Isolation RF to LO Semiconductor Group 38 09.97 PMB 2333 LNA section 16 3 2.8 Gain 14 2.6 13 2.4 12 2.2 11 2 10 1.8 9 1.6 Noise Figure 8 1.4 7 1.2 6 1000 1500 2000 frequency [MHz] Noise Figure [dB] Gain [dB] 15 1 3000 2500 Figure 7: Gain and noise figure versus frequency 0 -5 |S11| |S22| [dB] -10 -15 -20 |S12| -25 -30 1000 1500 2000 frequency [MHz] 2500 3000 Figure 8: Reverse isolation and return loss versus frequency Semiconductor Group 39 09.97 PMB 2333 3.1.3 Application hint - Mixer metrics versus mixer current Mixer current may be increased to obtain a higher Input 3rd Order Intercept (IIP3), higher 1 dB Compression Point (P1dB), and increased Conversion Gain (G). In a typical application, in order to increase mixer current from the minimum level of 800µA, R5 and R6 are added as shown in the circuit diagram at the end of this section. These external resistors are placed in parallel to existing bias resistors internal to the PMB2333, thereby reducing the aggregate resistance in the emitters and increasing current. As current is increased by further reduction of the value of R5 and R6, the mixer inputs MI and MIX may begin to suffer ‘RF Loading’ unless RF chokes are used between the MI/MIX pins and R5 / R6 (compare test circuit 1). For the data presented in this section, mixer current was varied in a different manner. To eliminate the effects of RF impedance variation (due to ‘RF Loading’) at MI / MIX caused by changing the values of R5 and R6 for different mixer currents, these resistors were set equal to 1kΩ. Mixer current was then varied by adjusting the power supply voltage Vx. Note that Vx may take on positive values with respect to ground for low (e.g. 1mA) mixer currents, or negative values for higher currents. MI PMB 2333 mixer 1 pF 3.9 nH MIX 1 kΩ + Vx 1 kΩ - 2.2 pF 10 pF Figure 9: Modified mixer input circuitry Semiconductor Group 40 09.97 PMB 2333 Note that the mixer input impedance seen at MI / MIX is a strong function of mixer current. The mixer input balanced-to-unbalanced transformer/matching circuitry was originally tuned for a current of 4mA, and was not re-optimized for each of the other current levels. Despite this limitation, the return loss at the 50Ω port is better than 10dB over the entire 1 to 10 mA current range. The mixer output (MO / MOX) and local oscillator (LO / LOX) ports exhibit negligible change in impedance over this same current range. Measurement conditions: TA = 25 °C Vcc = 2.7 V and 4.5V fRF = 1960 MHz fLO = 1735 MHz, PLO = -6 dBm The Effect of Power Supply Voltage on Mixer Metrics In seeking to improve Mixer Input Third-Order Intercept and 1dB Compression Point, it is important to understand the constraints on these parameters imposed by power supply voltage. Refer to Figure 10. Receiver ‘Blocking’ is predominantly influenced by the Mixer’s 1 dB Compression Point (P1dB) and not the Input 3rd Order Intercept Point (IIP3). For a supply voltage of 4.5V, mixer P1dB (referred to the input of the application circuitry) increases with additional mixer current, and begins to flatten out above 8mA. When supply voltage is decreased to 2.7V, mixer P1dB starts flattening out at around 5mA. Note how, at the 2.7V supply voltage, IIP3 continues to increase at currents over 6mA while P1dB flattens out. For a given conversion gain G, while operating at 2.7 Volts, considering only the mixer’s Input 3rd Order Intercept (IIP3) might lead one to falsely conclude that increasing current beyond 6mA improves receiver blocking. If, however, conversion gain is decreased, it may be possible to improve the receiver's blocking level with additional mixer current. As shown in Figure 10, the 1 dB compression level, referred to the input, is limited by either current or the available voltage swing at the mixer output. The transition between these two regions takes place at 4mA for the specified conversion gain and supply voltage. Figure 11 gives the DSB mixer noise figure versus the mixer current. Semiconductor Group 41 09.97 PMB 2333 15 10 IICP3 P1dB / 2.7V G P1dB / 4.5V 5 [dB] / 0 [dBm] -5 -10 -15 0 2 4 6 8 Mixer Current [mA] 10 12 Figure 10: Mixer Input Intercept Point (IIP3), 1 dB Compression Point (P1dB) Referred to Input, Gain (G). DSB Noise Figure [dB] 10 9 8 7 6 5 0 2 4 6 8 mixer current [mA] 10 12 Figure 11: Mixer DSB Noise Figure Semiconductor Group 42 09.97 PMB 2333 3.1.4 Circuit diagram and PCB layout Figure 12: Circuit diagram Semiconductor Group 43 09.97 PMB 2333 PCB dimensions: 80 x 50 mm Substrate material: FR4 Substrate height: 0.8 mm Figure 13: PCB top side Semiconductor Group 44 09.97 PMB 2333 Figure 14: PCB bottom side Semiconductor Group 45 09.97 PMB 2333 Figure 15: PCB component placement Semiconductor Group 46 09.97 PMB 2333 List of Components Item 1 Value 1.0 pF Part SMD/0603 1.5 pF 1.8 pF 2.2 pF 2.7 pF 4.7 pF 10 pF SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603 8 9 10 11 12 Quantity Reference 3 C9, C17, C23 1 C6 1 C8 1 C16 1 C7 1 C22 10 C3, C5, C10, C11, C12, C13, C14, C15, C18, C19 1 C2 1 C4 1 C1 1 C20 1 C21 12 pF 33 pF 680 pF 1.0 nF 1 µF SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/A 13 14 15 1 3 2 R1 R3, R5, R6 R4, R7 0Ω 180 Ω 1.0 kΩ SMD/0603 SMD/0603 SMD/0603 16 17 18 19 20 21 1 1 1 1 1 1 L6 L4 L5 L2 L1 L3 3.3 nH 3.9 nH 6.8 nH 22 nH 82 nH 100 nH SMD/0805 SMD/0805 SMD/0805 SMD/0805 SMD/0805 SMD/0805 22 1 IC1 PMB 2333 Siemens 23 24 1 5 J1 connector X1, X2, X3, SMA X4, X5 connector 2 3 4 5 6 7 Semiconductor Group Tantalum Murata LQP21A or LQP11A Murata LQP21A or LQP11A Murata LQP21A or LQP11A Coilcraft 0805 Coilcraft 0805 Coilcraft 0805 Stocko MKS 1655-6-0-505 Suhner 82 SMA 50-0-41 or Rosenberger 32 K 141-400A2 47 09.97 PMB 2333 3.2 Upconversion Application 3.2.1 Shortform Data Measurement conditions Ambient temperature TA = 25 °C Supply voltage VS = 2.7 V Mixer input signal fIF = 190 MHz, PIF = -30 dBm LO signal fLO = 1717 MHz, PLO = -6 dBm Mixer output and driver amplifier input signal fRF = 1907 MHz Parameter Symbol Limit values min. typ. Unit Remarks max. Mixer section Mixer current IMixer 9.5 mA Conversion gain GC 6 dB 3rd order input intercept point IICP3 +3.5 dBm 1dB-compression point P1dB -7 dBm RF return loss |S11,RF| 10 dB LO return loss |S11,LO| 18 dB IF return loss |S11,IF| 20 dB RF to LO input ARF-LO 38 dB LO to RF output ALO-RF 30 dB Driver current IAO 11.0 mA Gain G 13.1 dB 3rd order input intercept point IICP3 +4.5 dBm 1dB-compression point P1dB -6 dBm Port matching Isolations Driver section Semiconductor Group 48 17mA @ 3.3V 09.97 PMB 2333 Measurement conditions Ambient temperature TA = 25 °C Supply voltage VS = 2.7 V Mixer input signal fIF = 190 MHz, PIF = -30 dBm LO signal fLO = 1717 MHz, PLO = -6 dBm Mixer output and driver amplifier input signal fRF = 1907 MHz Parameter Symbol Limit values min. typ. Unit max. AI return loss |S11,AI| 14 dB AO return loss |S11,AO| 12 dB 3.2.2 Remarks Measurement results 7 6 gain [dB] 5 4 3 2 1 0 1800 1850 1900 frequency [MHz] 1950 2000 Figure 16: Mixer conversion gain versus frequency Semiconductor Group 49 09.97 PMB 2333 20 15 |S21| 10 5 [dB] 0 |S22| -5 -10 |S11| -15 -20 |S12| -25 -30 1000 1500 2000 frequency [MHz] 2500 3000 Figure 17: Driver amplifier gain, reverse isolation, return loss versus frequency 0 -10 [dB] -20 LO to RF -30 -40 RF to LO -50 -60 1000 1500 2000 frequency [MHz] 2500 3000 Figure 18: Mixer isolations versus frequency Semiconductor Group 50 09.97 PMB 2333 3.2.3 Circuit diagram and PCB layout Figure 19: Circuit diagram Semiconductor Group 51 09.97 PMB 2333 PCB dimensions: 80 x 50 mm Substrate material: FR4 Substrate height: 0.8 mm Figure 20: PCB top side Semiconductor Group 52 09.97 PMB 2333 Figure 21: PCB bottom side Semiconductor Group 53 09.97 PMB 2333 Figure 22: Component placement top side Semiconductor Group 54 09.97 PMB 2333 Figure 23: Component placement bottom side Semiconductor Group 55 09.97 PMB 2333 Upconversion Application - List of Components Item 1 2 3 4 5 6 7 Quantity 1 1 1 1 1 2 7 Value 1.0 pF 1.5 pF 1.8 pF 2.2 pF 2.7 pF 3.3 pF 10 pF Part SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603 27 pF 68 pF 1.0 nF SMD/0603 SMD/0603 SMD/0603 1 Reference C9 C6 C8 C3 C7 C2, C4 C1, C5, C11, C12, C13, C14, C15 C17 C16 C18, C19, C20 C21 8 9 10 1 1 3 11 1.0 µF SMD/A 12 13 14 15 16 2 1 1 2 2 J3, J4 R1 R3 R5, R6 R4, R7 0Ω 10 Ω 27 Ω 33 Ω 1 kΩ SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603 17 18 19 2 2 1 L1, L6 L4, L5 L3 3.3 nH 22 nH 33 nH SMD/0603 SMD/0805 SMD/0805 20 1 IC1 PMB 2333 Siemens 21 22 1 5 J1 connector X1, X2, X3, SMA X4, X5 connector Semiconductor Group Tantalum Murata LQP11A Coilcraft 0805 Coilcraft 0805 Stocko MKS 1655-6-0-505 Suhner 82 SMA 50-0-41 or Rosenberger 32 K 141-400A2 56 09.97 PMB 2333 3.3 Receiver/SAW Application 3.3.1 Shortform Data Measurement conditions Ambient temperature TA = 25 °C Supply voltage VS = 3.6 V LNA and Mixer input signal fRF = 890 MHz, PRF = -40 dBm LO signal fLO = 972 MHz, PLO = -6 dBm IF output fIF = 82 MHz All measurements refer to SMA connectors without consideration of PCB losses The figures in the mixer section are calculated from a measurement SAW filter + mixer assuming an insertion loss of 3.1dB for the filter at measurement frequency (890MHz). Symbol typ. Value Unit Remarks Mixer current IMixer 10 mA IMO+IMOX Conversion gain GC 4.5 dB Noise Figure (SSB) NFSSB 12 dB 3rd order input intercept point IICP3 +6.5 dBm input 1dB-compression point P1dB -3 dBm LNA current ILNA 17 mA Gain GLNA 20 dB Noise Figure NF 1.75 dB 3rd order input intercept point IICP3 0 dBm input 1dB-compression point P1dB -11 dBm AI return loss |S11, AI| 14 dB AO return loss |S11, AO| 15 dB Parameter Mixer section LNA section Semiconductor Group 57 09.97 PMB 2333 Measurement conditions Ambient temperature TA = 25 °C Supply voltage VS = 3.6 V LNA and Mixer input signal fRF = 890 MHz, PRF = -40 dBm LO signal fLO = 972 MHz, PLO = -6 dBm IF output fIF = 82 MHz All measurements refer to SMA connectors without consideration of PCB losses The figures in the mixer section are calculated from a measurement SAW filter + mixer assuming an insertion loss of 3.1dB for the filter at measurement frequency (890MHz). Symbol typ. Value Unit Cascade Gain G 18 dB Cascade Noise Figure (SSB) NF 3.35 dB 3rd order input intercept point IICP3 -8 dBm input 1dB-compression point P1dB -17 dBm Parameter Remarks Cascade figures LNA, resistive 3.1 dB pad (see schematic), SAW filter, mixer Semiconductor Group 58 09.97 PMB 2333 3.3.2 System calculations Due to the use of a SAW filter for mixer input matching and balancing an isolated measurement of the mixer figures is not possible. The following system calculations have valid entries only for the Gain, IP3, and Noise Figure. The input values are either from extra measurements (e.g. SAW filter insertion loss) or adjusted to give a cascade figure that can be measured (e.g. filter+mixer IP3). All non-fat typeface figures have no meaning. LNA measurement Hewlett-Packard NoiseCalc +---+ +---+ -¦ 1 +---¦ 2 ++---+ +---+ Noise Figure (dB) 0.10 1.65 Gain (dB) -0.10 20.00 IP3 (dBm) 100.00 20.00 System Temp. (ºC) 25.0 Input Power (dBm) -30.0 Pout (dBm) -30.1 -10.1 Cascade NF (dB) 1.75 Noise Temperature (ºK) 143.9 Signal-to-Noise Ratio (dB) 82.2 Spur Free Dynamic Range (dB) 74.9 Nominal Detectable Sig (dBm) -112.2 1) PCB loss 2) PMB 2333 LNA Semiconductor Group AppCAD Reference Temperature (ºC) Noise Bandwidth (MHz) Cascade Gain (dB) Input Intercept Point (dBm) Output Intercept Point (dBm) IM3 Output Level (dBm) 59 25.0 1.00000 19.90 0.1 20.0 -70.3 09.97 PMB 2333 SAW filter and Mixer Hewlett-Packard NoiseCalc +---+ +---+ -¦ 1 +---¦ 2 ++---+ +---+ Noise Figure (dB) 3.10 12.00 Gain (dB) -3.10 4.50 IP3 (dBm) 100.00 11.00 System Temp. (ºC) 25.0 Input Power (dBm) -30.0 Pout (dBm) -33.1 -28.6 Cascade NF (dB) 15.10 Noise Temperature (ºK) 9094.2 Signal-to-Noise Ratio (dB) 68.9 Spur Free Dynamic Range (dB) 72.3 Nominal Detectable Sig (dBm) -98.9 1) SAW filter S+M B4672 2) PMB 2333 Mixer AppCAD Reference Temperature (ºC) Noise Bandwidth (MHz) Cascade Gain (dB) Input Intercept Point (dBm) Output Intercept Point (dBm) IM3 Output Level (dBm) 25.0 1.00000 1.40 9.6 11.0 -107.8 Overall figures Hewlett-Packard NoiseCalc AppCAD +---+ +---+ +---+ +---+ +---+ -¦ 1 +---¦ 2 +---¦ 3 +---¦ 4 +---¦ 5 ++---+ +---+ +---+ +---+ +---+ Noise Figure (dB) 0.10 1.65 3.10 3.10 12.00 Gain (dB) -0.10 20.00 -3.10 -3.10 4.50 IP3 (dBm) 200.00 20.00 200.00 40.00 11.00 System Temp. (ºC) 25.0 Reference Temperature (ºC) 25.0 Input Power (dBm) -30.0 Noise Bandwidth (MHz) 1.00000 Pout (dBm) -30.1 -10.1 -13.2 -16.3 -11.8 Cascade NF (dB) 3.35 Cascade Gain (dB) 18.20 Noise Temperature (ºK) 337.0 Input Intercept Point (dBm) -7.9 Signal-to-Noise Ratio (dB) 80.7 Output Intercept Point (dBm) 10.3 Spur Free Dynamic Range (dB) 68.5 IM3 Output Level (dBm) -55.9 Nominal Detectable Sig (dBm) -110.6 1) PCB loss 2) PMB 2333 LNA 3) Resistive pad, 3.1dB attenuation 4) SAW filter S+M B4672 5) PMB 2333 Mixer Semiconductor Group 60 09.97 PMB 2333 3.3.3 Measurement results 20 9 15 8 10 7 5 6 0 5 -5 gain -10 4 NF 3 -15 noise figure [dB] gain [dB] Cascaded figure measurements 2 -20 1 image response -25 800 850 900 frequency [MHz] 0 1000 950 Figure 24: Cascade gain, SSB noise figure versus frequency 20 10 9 gain 16 8 14 7 12 6 10 5 8 4 6 3 NF 4 2 2 1 0 SSB noise figure [dB] conversion gain [dB] 18 0 -30 -25 -20 -15 -10 LO power level [dBm] -5 0 5 Figure 25: Cascade gain, SSB noise figure versus LO power Semiconductor Group 61 09.97 PMB 2333 0 -5 |S11, AI| -10 -15 -20 -25 0 500 1000 frequency [MHz] 1500 2000 Figure 26: AI input return loss versus frequency Semiconductor Group 62 09.97 PMB 2333 3.3.4 Circuit diagram and PCB layout Figure 27: Circuit diagram Semiconductor Group 63 09.97 PMB 2333 PCB dimensions: 80 x 50 mm Substrate material: FR4 Substrate height: 0.8 mm Figure 28: PCB top side Semiconductor Group 64 09.97 PMB 2333 Figure 29: PCB bottom side Semiconductor Group 65 09.97 PMB 2333 : Figure 30: PCB component placement top Semiconductor Group 66 09.97 PMB 2333 Figure 31: PCB component placement bottom Semiconductor Group 67 09.97 PMB 2333 Receiver/SAW Application - List of Components Item 1 2 3 4 5 6 7 Quantity 1 2 2 2 1 2 8 Value 1.8 pF 4.7 pF 5.6 pF 15 pF 18 pF 27 pF 33 pF Part SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603 2 1 1 Reference C9 C8, C18 C6, C7 C2, C3 C4 C16, C17 C5, C10, C12, C14, C15, C19, C24, C25 C11, C20 C1 C21 8 9 10 1 nF 3.3 nF 1 µF SMD/0603 SMD/0603 SMD/A 11 12 13 14 15 1 1 2 1 2 J2 R1 R5, R6 R3 R4, R7 0Ω 27 Ω 33 Ω 56 Ω 1.0 kΩ SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603 16 17 18 19 20 21 1 1 1 1 2 3 L1 L4 L6 L5 L3, L7 L2, L8, L9 3.3 nH 4.7 nH 8.2 nH 33 nH 68 nH 100 nH SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0805 SMD/0805 22 23 1 1 IC1 FIL1 PMB 2333 B4672 Siemens S+M 24 25 1 5 J1 connector X1, X2, X3, SMA X4, X5 connector Semiconductor Group Tantalum Toko LL1608-FH Toko LL1608-FH Toko LL1608-FH Toko LL1608-FH Toko LL1608-FH Toko LL1608-FH Stocko MKS 1655-6-0-505 Suhner 82 SMA 50-0-41 or Rosenberger 32 K 141-400A2 68 09.97 PMB 2333 4 Package Outlines P-TSSOP-16 (Plastic Package) Sorts of Packing Package outlines for tubes, trays etc. are contained in our Data Book “Package Information”. SMD = Surface Mounted Device Semiconductor Group 69 Dimensions in mm 09.97