INFINEON PMB2333

ICs for Communications
Mixer/Amplifier
PMB 2333 Version 1.2
Preliminary Data Sheet 09.97
T2333-XV12-P3-7600
Edition 09.97
Published by Siemens AG,
Bereich Halbleiter, MarketingKommunikation, Balanstraße 73,
81541 München
© Siemens AG 1995.
All Rights Reserved.
Attention please!
As far as patents or other rights of third parties
are concerned, liability is only assumed for
components, not for applications, processes
and circuits implemented within components
or assemblies.
The information describes the type of component and shall not be considered as assured
characteristics.
Terms of delivery and rights to change design
reserved.
For questions on technology, delivery and
prices please contact the Semiconductor
Group Offices in Germany or the Siemens
Companies and Representatives worldwide
(see address list).
Due to technical requirements components
may contain dangerous substances. For information on the types in question please contact
your nearest Siemens Office, Semiconductor
Group.
Siemens AG is an approved CECC manufacturer.
Packing
Please use the recycling operators known to
you. We can also help you – get in touch with
your nearest sales office. By agreement we
will take packing material back, if it is sorted.
You must bear the costs of transport.
For packing material that is returned to us unsorted or which we are not obliged to accept,
we shall have to invoice you for any costs incurred.
Components used in life-support devices
or systems must be expressly authorized
for such purpose!
Critical components1 of the Semiconductor
Group of Siemens AG, may only be used in
life-support devices or systems2 with the express written approval of the Semiconductor
Group of Siemens AG.
1 A critical component is a component used
in a life-support device or system whose
failure can reasonably be expected to
cause the failure of that life-support device
or system, or to affect its safety or effectiveness of that device or system.
2 Life support devices or systems are intended (a) to be implanted in the human body,
or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable
to assume that the health of the user may
be endangered.
Ausgabe 09.97
Herausgegeben von Siemens AG,
Bereich Halbleiter, MarketingKommunikation, Balanstraße 73,
81541 München
© Siemens AG 1995.
Alle Rechte vorbehalten.
Wichtige Hinweise!
Gewähr für die Freiheit von Rechten Dritter leisten wir nur für Bauelemente selbst, nicht für
Anwendungen, Verfahren und für die in Bauelementen oder Baugruppen realisierten
Schaltungen.
Mit den Angaben werden die Bauelemente
spezifiziert, nicht Eigenschaften zugesichert.
Liefermöglichkeiten und technische Änderungen vorbehalten.
Fragen über Technik, Preise und Liefermöglichkeiten richten Sie bitte an den Ihnen
nächstgelegenen Vertrieb Halbleiter in
Deutschland oder an unsere Landesgesellschaften im Ausland.
Bauelemente können aufgrund technischer
Erfordernisse Gefahrstoffe enthalten. Auskünfte darüber bitten wir unter Angabe des betreffenden Typs ebenfalls über den Vertrieb
Halbleiter einzuholen.
Die Siemens AG ist ein Hersteller von CECCqualifizierten Produkten.
Verpackung
Bitte benutzen Sie die Ihnen bekannten Verwerter. Wir helfen Ihnen auch weiter – wenden
Sie sich an Ihren für Sie zuständigen Vertrieb
Halbleiter. Nach Rücksprache nehmen wir
Verpackungsmaterial sortiert zurück. Die
Transportkosten müssen Sie tragen.
Für Verpackungsmaterial, das unsortiert an
uns zurückgeliefert wird oder für das wir keine
Rücknahmepflicht haben, müssen wir Ihnen
die anfallenden Kosten in Rechnung stellen.
Bausteine in lebenserhaltenden Geräten
oder Systemen müssen ausdrücklich dafür
zugelassen sein!
Kritische Bauelemente1 des Bereichs Halbleiter der Siemens AG dürfen nur mit ausdrücklicher schriftlicher Genehmigung des Bereichs
Halbleiter der Siemens AG in lebenserhaltenden Geräten oder Systemen2 eingesetzt werden.
1 Ein kritisches Bauelement ist ein in einem
lebenserhaltenden Gerät oder System eingesetztes Bauelement, bei dessen Ausfall
berechtigter Grund zur Annahme besteht,
daß das lebenserhaltende Gerät oder System ausfällt bzw. dessen Sicherheit oder
Wirksamkeit beeinträchtigt wird.
2 Lebenserhaltende Geräte und Systeme
sind (a) zur chirurgischen Einpflanzung in
den menschlichen Körper gedacht, oder (b)
unterstützen bzw. erhalten das menschliche Leben. Sollten sie ausfallen, besteht
berechtigter Grund zur Annahme, daß die
Gesundheit des Anwenders gefährdet werden kann.
PMB 2333
Revision History:
Previous Version:
Current Version: 09.97
06.96
Page
(in 06.96
Version)
Page
(in new
Version)
Subjects (major changes since last revision)
10
10
Supply Voltage -> 5.0V max.
10
10
Input Voltage VLO/X -> 5.0V max.
10
10
Input Voltage VAI -> VAO+0.3V max.
10
Input Voltage VAI AC Peak -> -2V min.
10
10
Input Voltage VGC -> -0.3V min. / VS+0.3 max.
10
10
Input Voltage VSTB -> 5.0V max.
10
10
Open Collector Output Voltage VMO/X ->1.7V min. / 5.0V max.
10
Amplifier Current (Base, Peak) IAI -> 6mA
10
Amplifier Power dissipation PAMPtot -> 105mW
11
Thermal Resistance RthJA -> 213K/W
11
Thermal Resistance RthSO -> 160K/W
11
ESD Integrity
25
26
Amplifier f=0.9GHz -> ΓOPT
26
27
Amplifier f=1.8GHz -> ΓOPT
32
33
Diagram 5 - Identical Values - New Printout
10
Update Of / Additional Application Information
Correction Of Printing Mistakes
PMB 2333
Revision History:
Previous Version:
Page
(in 11.95
Version)
Page
(in 06.96
Version)
Current Version: 06.96
11.95
Subjects (major changes since last revision)
Update of RF/S-parameters becauce of cavitiy change, correction of
printing mistakes, update of application circuits
PMB 2333
Table of Contents
Page
1
1.1
1.2
1.3
1.4
1.5
1.6
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Functional Description, Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Circuit Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
2
2.1
2.2
2.3
2.4
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Operational Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
AC/DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Test Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
3
3.1
3.1.1
3.1.2
3.1.3
3.1.4
3.2
3.2.1
3.2.2
3.2.3
3.3
3.3.1
3.3.2
3.3.3
3.3.4
Application Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Receiver Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Shortform Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Measurement results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
Application hint - Mixer metrics versus mixer current . . . . . . . . . . . . . . . . . . .40
Circuit diagram and PCB layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
Upconversion Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
Shortform Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
Measurement results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
Circuit diagram and PCB layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
Receiver/SAW Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
Shortform Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
System calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
Measurement results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
Circuit diagram and PCB layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
4
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
Semiconductor Group
4
09.97
Mixer/Amplifier
PMB 2333
Version 1.2
Bipolar IC
1
Overview
1.1
Functional Description, Benefits
•
•
•
•
•
•
New B6HF bipolar technology, 25GHz fT
Small outline P-TSSOP 16 package
Reduced external components
Frequency range up to 3.0GHz
Amplifier may be used as LNA or Driver
LNA mode
•1.7dB typ. noise figure at 1.8GHz
•5mA typ. current consumption
P-TSSOP-16
• Driver mode
• +12dBm output at 1dB compression
• 20mA current consumption
•
•
•
•
•
•
Gilbert cell mixer with high gain
2.7 - 4.5V voltage supply
-40°C to +85°C operational temperature range
Standby function
High isolation values for amplifier and mixer
Good crosstalk performance
1.2
Applications
• Cellular radio systems
• Cordless telephone systems
• WLAN-Systems
Type
PMB 2333
Semiconductor Group
Version
V1.2
5
Ordering Code
Package
Q67006-A6128
P-TSSOP-16
09.97
PMB 2333
1.3
Pin Configuration
(top view)
1
16
GC
AI
2
15
AO
GND1
3
14
GND1
GND1
4
13
STB
MO
5
12
MIX
MOX
6
11
MI
VCC
7
10
GND2
LOX
8
9
AREF
LO
P-TSSOP16
Semiconductor Group
6
09.97
PMB 2333
1.4
Pin No.
Pin Definitions and Functions
Symbol
Function
1
AREF
Amplifier bias supply for signal input
2
AI
Amplifier signal base input
3
GND1
Amplifier ground
4
GND1
Amplifier ground
5
MO
Mixer signal open collector output
6
MOX
Mixer signal open collector output
7
VCC
Voltage supply total circuit
8
LOX
Mixer local oscillator signal base input, inverted
9
LO
Mixer local oscillator signal base input, not inverted
10
GND2
Mixer ground
11
MI
Mixer signal emitter input, not inverted
12
MIX
Mixer signal emitter input, inverted
13
STB
Standby mixer and bandgap
14
GND1
Amplifier ground
15
AO
Amplifier signal open collector output
16
GC
Amplifier gain control
Semiconductor Group
7
09.97
PMB 2333
MO
LO
MOX
LO
Bias1
Amplifier
9
10 GND2
11 MI
12 MIX
13 STB
14 GND1
15 AO
Functional Block Diagram
16 GC
1.5
LOX
Bias
Bias2
Mixer
8
LOX 8
VCC 7
MI
MOX 6
MO
5
GND1 4
3
2
AI
Semiconductor Group
GND1
1
AREF
MIX
09.97
PMB 2333
1.6
Circuit Description
MIXER
The mixer used in this design is a general purpose up-/down conversion gilbert cell
mixer. Via the pins MI/MIX the RF enters the IC. Using an external supplied local
oscillator at LO/LOX a converted output signal is created at the open collector output
pins MO/MOX. The open collector pins need to be connected to an external voltage
supply. The RF connection to the mixer inputs can be single ended on balanced,
capacitive or inductive. To improve the mixer performance external resistors at MI/MIX
make it possible to adjust the mixer current. Voltage supply for the mixer has to be
connected to the pin VCC and to GND2.
AMPLIFIER
The amplifier may be used as a low noise amplifier LNA or as a driver. At pin AI the RF
signal enters the IC, at the open collector output AO, which need to be connected to
supply voltage, the amplified signal is external available for further use. Matching
networks at in-/and output can be used for improving the gain and the noise
performance. To reduce the series feedback of the emitter line the amplifier is connected
to ground via three GND1 pins. At AREF a internal supplied reference voltage is
available for the DC biasing of AI. This dc output should be implemented in an input
matching network. The voltage supply for the amplifier is also VCC. The dc-level at the
pin GC allows to adjust the amplifier current.
Lower current is recommended for using the amplifier as an LNA, high current for using
it as a driver.
COMMON
Differential signals and symmetrical circuits are used throughout the mixer part of the IC.
An internal bias driver generates supply voltage and temperature compensated
reference voltages. The STB pin allows the mixer and bandgap part of the IC to be
switched in a low power mode.
All pins with the exception of GND1,2 and AI/AO are ESD protected.
Semiconductor Group
9
09.97
PMB 2333
2
Electrical Characteristics
2.1
Absolute Maximum Ratings
The maximum ratings may not be exceeded under any circumstances, not even
momentarily and individually, as permanent damage to the IC will result.
Ambient temperature Tamb = -40°C...+85°C
#
Parameter
Symbol
Limit Values
Min
Units
Max
1
Supply Voltage
VS
-0.3
5.0
V
2a
Input Voltage
VMI/MIX
-0.3
1.9
V
2b
Input Voltage
VLO/LOX
0.6
VS+0.3
V
5.0max.
V
VAO+0.3
V
3.5max.
V
2c
2d
Input Voltage
Input Voltage (AC Peak)
-0.3
VAI
-2
VAI
Remarks
V
VS = 0
Freq.>1MHz
IAI < nA
2e
2f
Input Voltage
Input Voltage
-0.3
VGC
-0.3
VSTB
VS+0.3
V
2.7max.
V
VS+0.3
V
5.0max.
V
3a
Output Voltage
VAREF
-0.3
2.0
V
3b
Open Collector Output Voltage
VMO/MOX
1.7
VS+0.3
V
5.0max.
V
3c
Open Collector Output Voltage
VAO
-0.3
3.5
V
Base open
3d
Open Collector Output Voltage
VAO
-0.3
7.0
V
RB<50kΩ
4a
Amplifier Current (Collector)
IAO
30
mA
4b
Amplifier Current (Base, Peak)
IAI
6.0
mA
4c
Amplifier Power Dissipation
PAMPtot
105
mW
5
Differential Input Voltage
VIDIFF
2.0
VPP
6
Junction Temperature
Tj
125
°C
Semiconductor Group
10
DC and AC
09.97
PMB 2333
Absolute Maximum Ratings
The maximum ratings may not be exceeded under any circumstances, not even
momentarily and individually, as permanent damage to the IC will result.
Ambient temperature Tamb = -40°C...+85°C
#
Parameter
Symbol
Limit Values
Min
7
Storage Temperature
TS
8a
Thermal Resistance
8b
9
-40
Units
Remarks
Max
125
°C
RthJA
213
K/W
1)
Thermal Resistance
RthSO
160
K/W
2)
ESD integrity, all pins without
VESD
500
V
3)
-500
AI,AO and GND1/2
1) Attention: Do not exceed the max. junction temperature
2) Junction to soldering point, simulated with FEM
3) HBM according MIL STD 883D, method 3015.7,and EOS/ESD assn. standard
S5.1-1993
Semiconductor Group
11
09.97
PMB 2333
2.2
Operational Range
Within the operational range the IC operates as described in the circuit description.
The AC/DC characteristic limits are not guaranteed.
Supply voltage VVCC = 2.7V...4.5V, Ambient temperature Tamb = -40°C...85°C
#
Parameter
Symbol
Limit Values
Min
Units
Remarks
Max
1
AI Input Frequency
fAI
3000
MHz
2
MI/X Input Frequency
fMI
3000
MHz
3
LO/X Input Frequency
fLO
3000
MHz
4
IF Intermediate Frequency
fIF
3000
MHz
5
Standby Voltage On
STBON
2.0
VS
V
6
Standby Voltage Off
STBOFF
0
0.5
V
7
Gain Control Voltage, High
GCHigh
2.0
2.7
V
Diagram 5
8
Gain Control Voltage, Low
GCLow
0
0.6
V
Diagram 5
Note: Power levels refer to 50 Ohms impedance
Semiconductor Group
12
09.97
PMB 2333
2.3
AC/DC Characteristics
AC/DC characteristics involve the spread of values guaranteed within the specified
supply voltage and ambient temperature range. Typical characteristics are the median
of the production.
Supply voltage VVCC = 2.7V...4.5V, Ambient temperature Tamb = +25°C
#
Parameter
Symbol
Limit Values
Min
Typ
Units Test
Test
Conditions Circuit
Max
Supply Current
1a
Supply current, total IC
I5,6,7,15
23.6
mA
STB ON,
no external
resistors at
MI/MIX*
1,
IAO=20
mA
1b
Supply current, total IC
I5,6,7,15
1.6
mA
STB ON,
no external
resistors at
MI/MIX*
1,
IAO=0
mA
2
Supply current, total IC
I5,6,7,15
<20
µA
STB OFF,
GC=0V
1
* Minimum value for external resistors at MI/MIX: R1=R2=33Ohm
Semiconductor Group
13
09.97
PMB 2333
AC/DC Characteristics
AC/DC characteristics involve the spread of values guaranteed within the specified
supply voltage and ambient temperature range. Typical characteristics are the median
of the production.
Supply voltage VVCC = 2.7V to 4.5V, Ambient temperature Tamb = +25°
#
Parameter
Symbol
Limit Values
Min
Typ
Unit Test
Test
Conditions Circuit
Max
AMPLIFIER-Driver, Signal Input AI, IAO=20mA, VAO=3.3V, f=2.5GHz
3
Input impedance, vs. freq. S11
4
Max. input level, 1db
compression
5
Input intercept, third order IICPDAI
PAI
Diagram 3a
3
0.0
dbm
f=2.5GHz
1
10.0
dbm
f=2.5GHz
1
AMPLIFIER-Driver, Signal Output AO, IAO=20mA, VAO=3.3V, f=2.5GHz
6
Output current
7
Output
freq.
8
Power gain
20.0
IAO
impedance
mA
vs. S22
+12.5
S21Amp
db
1
Diagram 3a
3
f=2.5GHz
1
AMPLIFIER-Driver, Signal Input AI, IAO=0mA, VAO=3.3V, f=2.5GHz
9
Input impedance, vs. freq. S11
10
Max. input
change
11
Input intercept, third order IICPAI
level,
1db PAI
Diagram 3c
3
0.0
dbm
f=2.5GHz
1
20.0
dbm
f=2.5GHz
1
AMPLIFIER-Driver, Signal Output AO, IAO=0mA, VAO=3.3V, f=2.5GHz
12
Output current
13
Output
freq.
14
Power gain
impedance
0
IAO
mA
vs. S22
< -13
S21Amp
db
1
Diagram 3c
3
f=2.5GHz
1
All amplifier measurements have be done with Siemens RT5880 Duroid (Teflon) Boards
Semiconductor Group
14
09.97
PMB 2333
AC/DC Characteristics
AC/DC characteristics involve the spread of values guaranteed within the specified
supply voltage and ambient temperature range. Typical characteristics are the median
of the production.
Supply voltage VVCC = 2.7V to 4.5V, Ambient temperature Tamb = +25°
#
Parameter
Symbol
Limit Values
Min
Typ
Unit Test
Test
Conditions Circuit
Max
AMPLIFIER-LNA, Signal Input AI, IAO=5mA, VAO=3.3V, f=1.8GHz
15 Input impedance, vs. freq. S11
Diagram 3b
3
16
Max.input level, 1dB
compression
PAI
-12.0
dBm
f=1.8GHz
1
17
Input intercept, third order
IICPAI
1.0
dBm
f=1.8GHz
1
18
Noise figure
FAI
1.7
dB
f=1.8GHz
1
AMPLIFIER-LNA, Signal Output AO, IAO=5mA, VAO=3.3V, f=1.8GHz
19
Output current
20
Output impedance vs. freq. S22
21
Power gain
5.0
IAO
12.0
S21LNA
mA
dB
1
Diagram 3b
3
f=1.8GHz
1
AMPLIFIER-LNA, Signal Input AI, IAO=0mA, VAO=3.3V, f=1.8GHz
22
Input impedance, vs. freq.
S11
23
Max. input level, 1db
change
PAI
0.0
23
Input intercept, third order
IICPAI
20.0
Diagram 3c
3
dbm
f=1.8GHz
1
dbm
f=1.8GHz
1
AMPLIFIER-LNA, Signal Output AO, IAO=0mA, VAO=3.3V, f=1.8GHz
24
Output current
25
Output impedance vs. freq. S22
26
Power gain
0
IAO
< -17
S21A
mA
db
1
Diagram 3c
3
f=1.8GHz
1
All LNA measurements have be done with Siemens RT5880 Duroid (Teflon) Boards
Semiconductor Group
15
09.97
PMB 2333
AC/DC Characteristics
AC/DC characteristics involve the spread of values guaranteed within the specified
supply voltage and ambient temperature range. Typical characteristics are the median
of the production.
Supply voltage VVCC = 2.7V to 4.5V, Ambient temperature Tamb = +25°
#
Parameter
Symbol
Limit Values
Min
Typ
Unit Test
Test
Conditions Circuit
Max
MIXER, Signal Input MI/MIX, Upconversion, R1,2=33Ohm
27
Input impedance vs .freq.
ZMI
28
Max. input level, 1 db
compression
PMI
-7
29
Input intercept point
IICP3MI
6
Diagram 4a
4
dbm
fMI=0.66GHz
1*
dbm
fMI=0.66GHz
1*
Diagram 4c
4
fLO=2.0GHz
1*
MIXER, Local Oscillator Input LO/LOX, Upconversion, R1,2=33Ohm
30
Input impedance vs freq.
ZLO
31
Input level
PLO
0
dbm
MIXER, Signal Output MO/MOX, fout = 2.66GHz, Upconversion, R1,2=33Ohm
32
Output current
IMO/X
10.4
mA
with ext.
resistors
at MI/MIX
33
Output resistance
RMODiff
600
Ohm
fMO=2.66GHz
34
Output capacitance
CMODiff
0.57
pF
fMO=2.66GHz
35
Power gain
PMI
8
db
fMO=2.66GHz 1*
1*
MIXER, Isolation Between In-/Output, fout = 2.66GHz, Upconversion, R1,2=33Ohm
37
LO to MO
ALO-MO
30
db
1*
38
LO to MI
ALO-MI
35
db
1*
39
MO to MI
AMO-MI
40
db
1*
40
MO to LO
AMO-LO
45
db
1*
* MI/MO Input/Output including matching network
Semiconductor Group
16
09.97
PMB 2333
AC/DC Characteristics
AC/DC characteristics involve the spread of values guaranteed within the specified
supply voltage and ambient temperature range. Typical characteristics are the median
of the production.
Supply voltage VVCC = 2.7V to 4.5V, Ambient temperature Tamb = +25°
#
Parameter
Symbol
Limit Values
Min
Typ
Unit Test
Test
Conditions Circuit
Max
MIXER, Signal Input MI/MIX, Downconversion, R1,2=180Ohm
41
Input impedance vs .freq. ZMI
42
Max. input level, 1 db PMI
compression
-15
43
at MO/MOX, IF=45MHz
PMI
44
Diagram 4b
4
dBm
f=0.9GHz
2a
-14
dBm
f=1.8GHz
2a
PMI
-9
dBm
f=2.5GHz
2a
45
Input intercept point,
IICP3MI
0
dBm
f=0.9GHz
2a
46
∆f=800kHz, IF= 45MHz
IICP3MI
-1
dBm
f=1.8GHz
2a
IICP3MI
+5
dBm
f=2.5GHz
2a
47
48
Blocking level,
Pin,unwan.
-16
dBm
f=0.9GHz
2a
49
∆f=800kHz, IF=45MHz
PBL,unwan.
-16
dBm
f=1.8GHz
2a
50
Pin, wanted = -20dBm
PBL,unwan.
-10
dBm
f=2.5GHz
2a
51
Noise figure, ssb
FMI
9
dB
f=0.9GHz
*
52
(NFssb≈NFdsb+3dB)
FMI
11
dB
f=1.8GHz
*
53
IF=45MHz
FMI
14
dB
f=2.5GHz
*
MIXER, Local Oscillator Input LO/LOX, Downconversion, R1,2=180Ohm
54
Input impedance vs freq.
ZLO
55
Input level
PLO
-3
56
PLO
57
PLO
Diagram 4d
4
dBm
f=0.9GHz
2a, **
-3
dBm
f=1.8GHz
2a, **
-3
dBm
f=2.5GHz
2a, **
* matching network used
** referenced for specified mixer performance
Semiconductor Group
17
09.97
PMB 2333
AC/DC Characteristics
AC/DC characteristics involve the spread of values guaranteed within the specified
supply voltage and ambient temperature range. Typical characteristics are the median
of the production.
Supply voltage VVCC = 2.7V to 4.5V, Ambient temperature Tamb = +25°
#
Parameter
Symbol
Limit Values
Min
Typ
Unit
Max
Test
Test
Conditions Circuit
MIXER, Signal Output MO/MOX, Downconversion, R1,2=180Ohm
58
Output current
IMO+MOX
4.0
mA
59
Output resistance
RMODiff
32
kOhm IF=45MHz
2a
RMODiff
25
kOhm IF=300MHz
2b
CMODiff
0.36
pF
IF=45MHz
2a
CMODiff
0.39
pF
IF=300MHz
2b
PMI
15
db
f=0.9GHz
2a
64
PMI
14
db
f=1.8GHz
2a
65
PMI
9
db
f=2.5GHz
2a
PMI
7
db
f=0.9GHz
2b
67
PMI
7
db
f=1.8GHz
2b
68
PMI
2.5
db
f=2.5GHz
2b
60
61
Output capacitance
62
63
66
Power gain, IF=45MHz
Power gain, IF=300MHz
incl. R1,R2
MIXER, Isolation Between In-/Output, 0.9GHz, Downconversion, R1,2=180Ohm
69
MI to MO
AMI-MO
50
db
70
LO to MO
ALO-MO
40
db
“
2a
71
LO to MI
ALO-MI
35
db
“
2a
72
MO to MI
AMO-MI
60
db
“
2a
73
MO to LO
AMO-LO
60
db
“
2a
Semiconductor Group
18
fMI=945MHz, 2a
fLO=900MHz
09.97
PMB 2333
2.4
Test Circuits
Test Circuit 1
LO
Input
Toko Balun
ü=1:2→617DB-1016
TokoBalun
1:2
CK
CK
8
9
CB
33 82nH
L0
C1
C2
L1
C3
33
VCC
82nH
CB
Bias
Tee
VCC
CB
VGC
CB
MO
Output
C2
L1
C3
Bias
Tee
AO
Output
1
16
CB
C1
PMB 2333
MI
Input
VCC
VCC
AI
Input
DC
Mixer/Driver Amplifier, Upconversion mode
Test Circuit
f IF[MHz]
L1[nH]
C1[pF]
C2[pF]
C3[pF]
CK[pF]
1/MI
≈660
8.2
4.7
56
10
15
1/MO
≈2660
2.7
1.8
1.2
1
X
Semiconductor Group
19
09.97
PMB 2333
Test Circuit 2a
LO
Input
Toko Balun
ü=1:1→617DB-1023
Toko
Balun
1:2
CK
ü=1:2→617DB-1016
CK
8
9
CB
VCC
MI
Input
180
Toko
Balun
1:1
CK
VCC
180
CB
Bias
Tee
VCC
MO
Output
PMB 2333
CK
CB
VCC
ü=20:2
Bias
Tee
AO
Output
CB
VGC
AI
Input
DC
1
16
CB
Vogt
Transformer
Kit, 0.05mm
wire ü=20:2
Mixer/Driver Amplifier, Downconversion mode
Test Circuit
f IF[MHz]
CB[pF]
CK[pF]
X
X
2a
45
15/100
15
X
X
Semiconductor Group
20
09.97
PMB 2333
Test Circuit 2b
LO
Input
Toko Balun
ü=1:1→617DB-1023
TokoBalun
1:2
CK
ü=1:2→617DB-1016
CK
8
9
CB
VCC
L0
CK
180
PMB 2333
MI
Input
Toko
Balun
1:1
180
CK
CB
VCC
Bias
Tee
VCC
CB
VGC
C1
L1
C2
MO
Output
C3
Bias
Tee
AO
Output
AI
Input
DC
1
16
CB
VCC
CB
Mixer/Driver Amplifier, Downconversion mode
Test
Circuit
f IF[MHz]
L0[nH]
L1[nH]
C1[pF]
C2[pF]
C3[pF]
CK[pF]
2b
≈300
680
150
2.7
12
1.8
15p
Semiconductor Group
21
09.97
PMB 2333
Test Circuit 3
Pin x
Port 1
Network analyzer
ZL=50Ohm
DUT
Port 2
Pin y
S-Parameter Measurement of Amplifier
S11, S12, S21, S22
The S-Parameters are tested at the indicated frequency on Duroid 5880 Teflon Boards.
Via the NWA the capacitive coupling is done.
The output levels at port1 and 2 for pin x and y are -30dbm.
S11 and S22 have to be considered as design hints and are measured with SIEMENS
testboards.
Test
Test frequency
MHz
Pin X
Pin Y
Amp.S11, S12, S21,
S22
30 - 3000
AI
AO
Semiconductor Group
22
09.97
PMB 2333
25
100
50
Diagram 3a
S-Parameter Amplifier IAO=20mA, VCC=3.3V, f=30-3000MHz
3.0 GHz
250
10
2.4 GHz
3.0 GHz
1k
100
50
25
10
1k
2.4 GHz
250
1.8 GHz
0
s11
1.8 GHz
s22
1k
900 MHz
900 MHz
10
50
25
100
250
900 MHz
900 MHz 1.8 GHz
s21
s12
40
S21
30
20
10
1.8 GHz
2.4 GHz
0.05
3.0 GHz
2.4 GHz
0.1
0.15
0.2
S12
3.0 GHz
Semiconductor Group
23
09.97
PMB 2333
25
100
50
Diagram3b
S-Parameter Amplifier IAO=5mA, VCC=3.3V, f=30-3000MHz
3.0 GHz
250
10
2.4 GHz
3.0 GHz
1k
250
50
25
10
1.8 GHz
100
1k
0
s22
s11
2.4 GHz
1k
1.8 GHz
10
250
900 MHz
50
25
100
900 MHz
900 MHz
1.8 GHz
s21
20
S21
15
s12
10
5
900 MHz
1.8 GHz
2.4 GHz
0.05
3.0 GHz
2.4 GHz
0.1
0.15
0.2
S12
3.0 GHz
Semiconductor Group
24
09.97
PMB 2333
25
100
50
S-Parameter Amplifier IAO=0mA, VCC=3.3V, f=30-3000MHz
250
10
10
1k
250
100
50
3.0 GHz
250
3.0 GHz
1k
10
25
1k
0
s22
s11
900 MHz
900 MHz
1.8 GHz
100
50
25
1.8 GHz
900 MHz
1.8 GHz
s21
0.3
S21
0.2
0.1
0.1
0.2
0.3
S12
2.4 GHz
3.0 GHz
Semiconductor Group
25
09.97
PMB 2333
Diagram 3d
Noise Circles Amplifier IAO=5mA, VCC=3.3V;f=0.9GHz
45
40
80
70
50
90
100
60
0
10
25
50
20
40
14
0
13
0
30
120
75
35
110
0
15
10
500
5
1k
1k
500
250
200
150
100
75
40
45
50
35
30
25
20
15
10
5
1.10
1.20
1.40
1.60
250
200
15
-30
0
-15
500
2.00
2.50
3.00
10
-20
-160
1k
5
-10
-170
0
180
1.055
0
10
170
250
20
160
150
15
30
200
0
10
25
30
-1
75
-90
45
50
-80
40
-70
35
-60
30
0
-1
0
-5
40
0
15
-4
20
-100
0
-12
-110
FMIN = 1.055dB
Rn = 10.17Ω
GOPT = 16.01mS
BOPT = -2.36mS
ΓOPT = 0.128 exp(j 34.4°)
Semiconductor Group
26
09.97
PMB 2333
Diagram 3e
Noise Circles Amplifier IAO=5mA, VCC=3.3V;f=1.8GHz
90
80
50
40
45
100
70
60
0
25
20
14
50
40
0
13
10
0
30
120
75
35
110
0
15
10
500
10
170
250
20
160
150
15
30
200
5
1k
500
250
200
150
100
75
40
45
50
35
30
25
20
15
10
5
0
0
1.40
500
5
2.00
2.50
3.00
200
15
-30
0
-15
250
10
-20
-160
1.60
-10
-170
1.30
1k
180
1k
1.278
00
1
25
30
-1
75
-90
45
50
-80
40
-70
35
-60
30
0
-1
0
-5
40
0
15
-4
20
-100
0
-12
-110
FMIN = 1.278dB
Rn = 7.52Ω
GOPT = 21.54mS
BOPT = -1.59mS
ΓOPT = 0.053 exp(j 136.2°)
Semiconductor Group
27
09.97
PMB 2333
Network analyzer
ZL=50Ohm
Test Circuit 4
Pin x
Port 1
DUT
Port 2
Pin y
S-Parameter Measurement of Mixer
S11, S12, S21, S22
Test
Test Frequency
[MHz]
Pin X
Pin Y
LO-Input impedance
30 - 3000
8
9
Mi-Input impedance
30 - 3000
11
12
MO-Output impedance
30 - 3000
5
6
The S-Parameters are tested at the indicated frequency and the equivalent parallel or
series circuit is calculated on this base.
Via the NWA the capacitive coupling is done and the open collector pins are connected
to VCC. The output levels at port1 and 2 for pin x and y are -30dbm for MI and MOimpedances and -5dbm for the LO impedance.S-Parameters have to be considered as
design hints and are measured with SIEMENS testboards.
Semiconductor Group
28
09.97
PMB 2333
Test Circuit 4a
DC
Supply
R
STB
VS
P1
MI
NWA
50Ω
MO
DUT
MOX
MIX
P2
LO
50Ω
LOX
33p
33p
R
1:2
DC
Supply
50Ω
Mixer Input Impedance Measurement
Test Circuit 4b
DC
Supply
10p
VS
R
STB
MI
50Ω
15n
1µH
MO
DUT
10p
R
5,6p
50Ω
MOX
MIX
1:1
5,6p
LO
680nH
LOX
5,6p
15n
P2
NWA
P1
Mixer Local Oscilllator Impedance Measurement
Semiconductor Group
29
09.97
PMB 2333
Test Circuit 4c
R
1n
10p
50Ω
VS
100n
Internal
Bias Tees
STB
P1
MI
DUT
NWA
MOX
MIX
50Ω
MO
P2
LO
LOX
33p
33p
R
Power
Supply
3.3V
1:2
50Ω
Mixer Output Impedance Measurement
Semiconductor Group
30
09.97
PMB 2333
100
25
50
Diagram 4a
Mixer MI Input Impedance ZMI, IMO/MOX = 10mA, f=30-3000MHz
Rdiff
1.8 GHz
Rsingle
900 MHz
3.0 GHz
3.0 GHz
1.8 GHz
250
10
900 MHz
1k
250
100
50
10
25
1k
0
1k
10
50
25
100
250
25
100
50
Diagram 4b
Mixer MI Input Impedance ZMI, IMO/MOX = 4mA, f=30-3000MHz
3.0 GHz
3.0 GHz
250
1.8 GHz
10
1.8 GHz
900 MHz
Rdiff
900 MHz
1k
250
100
50
10
Rsingle
25
1k
0
1k
10
50
25
100
250
Semiconductor Group
31
09.97
PMB 2333
25
100
50
Diagram 4c
Mixer LO Input Impedance ZLO, IMO/MOX = 10mA, f=30-3000MHz
250
10
1k
250
100
50
10
25
1k
0
1k
3.0 GHz
900 MHz
3.0 GHz
900 MHz
Rdiff
25
2.4 GHz
1.8 GHz
1.8 GHz
50
2.4 GHz
100
Rsingle
250
10
25
100
50
Diagram 4d
Mixer LO Input Impedance ZLO, IMO/MOX = 4mA, f=30-3000MHz
250
10
1k
250
100
50
10
25
1k
0
1k
900 MHz
900 MHz
3.0 GHz
250
10
3.0 GHz
Rdiff
100
Rsingle
1.8 GHz
2.4 GHz
25
1.8 GHz
50
2.4 GHz
Semiconductor Group
32
09.97
PMB 2333
30
20
25
18
20
16
15
14
gain
10
12
5
10
noise figure
0
-5
8
IAO [mA]
gain / noise figure [dB]
Diagram 5
6
-10
4
IAO
-15
2
-20
0
0.5
1
1.5
2
2.5
VGC [V]
Gain, Noise Figure and IAO versus Gain Control voltage
Noise Figure values without correction of attenuation ( 0.4 dB ) at input of the
amplifier ->NFmin=1.7dB at VGC=1.91V, amplifier current IAO=5mA, open collector
voltage VAO=3.3V ( according test circuit 2, f=1.8GHz).
Semiconductor Group
33
09.97
PMB 2333
3
Application Data
3.1
Receiver Application
3.1.1
Shortform Data
Measurement conditions
Ambient temperature TA = 25 °C
Supply voltage VS = 2.7 V
LNA and Mixer input signal fRF = 1960 MHz, PRF = -30 dBm
LO signal fLO = 1735 MHz, PLO = -6 dBm
IF output fIF = 225 MHz
All measurements refer to SMA connectors without consideration of PCB losses
Parameter
Symbol
Limit values
min.
typ.
Unit
Remarks
IMO+IMOX
max.
Mixer section
Mixer current
IMixer
4
mA
Conversion gain
GC
8.5
dB
Noise Figure
(DSB)
NFDSB
6.4
dB
3rd order input
intercept point
IICP3
+1
dBm
1dB-compression
point
P1dB
-8
dBm
Input blocking
level
PBL
-7
dBm
RF return loss
|S11,RF|
12
dB
LO return loss
|S11,LO|
10
dB
IF return loss
|S11,IF|
11
dB
ALO-IF
40
dB
∆f = 800 kHz, -3dB
for wanted signal
Port matching
Isolations
LO to IF output
Semiconductor Group
34
f = 1735 MHz
09.97
PMB 2333
Measurement conditions
Ambient temperature TA = 25 °C
Supply voltage VS = 2.7 V
LNA and Mixer input signal fRF = 1960 MHz, PRF = -30 dBm
LO signal fLO = 1735 MHz, PLO = -6 dBm
IF output fIF = 225 MHz
All measurements refer to SMA connectors without consideration of PCB losses
Parameter
Symbol
Limit values
min.
typ.
Unit
Remarks
max.
LO to RF input
ALO-RF
43
25
35
dB
dB
dB
fLO = 1735 MHz
fimage,min= 1480 MHz
fsignal,max= 1990 MHz
RF input to LO
ARF-LO
48
dB
f = 1960 MHz
LNA current
ILNA
4.6
mA
Gain
G
12.5
dB
Noise Figure
NF
1.8
dB
3rd order input
intercept point
IICP3
0
dBm
1dB-compression
point
P1dB
-10
dBm
AI return loss
|S11,AI|
11
dB
AO return loss
|S11,AO|
14
dB
LNA section
Semiconductor Group
35
assuming a PCB loss
of 0.25 dB at AI,
typical noise figure at
matching circuit
results to 1.55 dB
09.97
PMB 2333
3.1.2
Measurement results
Mixer section
:
12
11
10
Conversion Gain
[dB]
9
8
7
6
DSB Noise Figure
5
4
1200
1400
1600
1800
2000
RF frequency [MHz]
2200
2400
Figure 1: Conversion Gain an Noise Figure versus Frequency
10
Conversion Gain
9
[dB]
8
7
6
DSB Noise Figure
5
4
-20
-18
-16
-14
-12
-10
-8
-6
LO power level [dBm]
-4
-2
0
Figure 2: Conversion Gain and Noise Figure versus LO power
Semiconductor Group
36
09.97
PMB 2333
12
Conversion Gain
10
8
[dB]
DSB Noise Figure
6
4
2
0
200
205
210
215
220 225 230
frequency [MHz]
235
240
245
250
Figure 3: Conversion Gain and Noise Figure versus IF frequency
0
-10
[dB]
-20
-30
-40
fully balanced
LO unbalanced
MI unbalanced
LO+MI unbalanced
-50
-60
1000
1500
2000
frequency [MHz]
2500
3000
Figure 4: Isolation LO to IF
In unbalanced case the matching network is replaced by a 10pF series capacitor to one
port pin. The other port pin is tied to ground via a second 10pF capacitor. This means no
power matching is done.
Semiconductor Group
37
09.97
PMB 2333
0
-5
-10
-15
[dB]
-20
-25
-30
LO+MI unbalanced
fully balanced
MI unbalanced
LO unbalanced
-35
-40
-45
-50
1000
1500
2000
frequency [MHz]
2500
3000
Figure 5: Isolation LO to RF
0
-10
[dB]
-20
-30
-40
LO+MI unbalanced
fully balanced
MI unbalanced
LO unbalanced
-50
-60
-70
1000
1500
2000
frequency [MHz]
2500
3000
Figure 6: Isolation RF to LO
Semiconductor Group
38
09.97
PMB 2333
LNA section
16
3
2.8
Gain
14
2.6
13
2.4
12
2.2
11
2
10
1.8
9
1.6
Noise Figure
8
1.4
7
1.2
6
1000
1500
2000
frequency [MHz]
Noise Figure [dB]
Gain [dB]
15
1
3000
2500
Figure 7: Gain and noise figure versus frequency
0
-5
|S11|
|S22|
[dB]
-10
-15
-20
|S12|
-25
-30
1000
1500
2000
frequency [MHz]
2500
3000
Figure 8: Reverse isolation and return loss versus frequency
Semiconductor Group
39
09.97
PMB 2333
3.1.3
Application hint - Mixer metrics versus mixer current
Mixer current may be increased to obtain a higher Input 3rd Order Intercept (IIP3), higher
1 dB Compression Point (P1dB), and increased Conversion Gain (G). In a typical
application, in order to increase mixer current from the minimum level of 800µA, R5 and
R6 are added as shown in the circuit diagram at the end of this section. These external
resistors are placed in parallel to existing bias resistors internal to the PMB2333, thereby
reducing the aggregate resistance in the emitters and increasing current. As current is
increased by further reduction of the value of R5 and R6, the mixer inputs MI and MIX
may begin to suffer ‘RF Loading’ unless RF chokes are used between the MI/MIX pins
and R5 / R6 (compare test circuit 1).
For the data presented in this section, mixer current was varied in a different manner.
To eliminate the effects of RF impedance variation (due to ‘RF Loading’) at MI / MIX
caused by changing the values of R5 and R6 for different mixer currents, these resistors
were set equal to 1kΩ. Mixer current was then varied by adjusting the power supply
voltage Vx. Note that Vx may take on positive values with respect to ground for low (e.g.
1mA) mixer currents, or negative values for higher currents.
MI
PMB 2333
mixer
1 pF
3.9 nH
MIX
1 kΩ
+
Vx
1 kΩ
-
2.2 pF
10 pF
Figure 9: Modified mixer input circuitry
Semiconductor Group
40
09.97
PMB 2333
Note that the mixer input impedance seen at MI / MIX is a strong function of mixer
current. The mixer input balanced-to-unbalanced transformer/matching circuitry was
originally tuned for a current of 4mA, and was not re-optimized for each of the other
current levels. Despite this limitation, the return loss at the 50Ω port is better than 10dB
over the entire 1 to 10 mA current range. The mixer output (MO / MOX) and local
oscillator (LO / LOX) ports exhibit negligible change in impedance over this same current
range.
Measurement conditions: TA = 25 °C
Vcc = 2.7 V and 4.5V
fRF = 1960 MHz
fLO = 1735 MHz, PLO = -6 dBm
The Effect of Power Supply Voltage on Mixer Metrics
In seeking to improve Mixer Input Third-Order Intercept and 1dB Compression Point, it
is important to understand the constraints on these parameters imposed by power
supply voltage. Refer to Figure 10.
Receiver ‘Blocking’ is predominantly influenced by the Mixer’s 1 dB Compression Point
(P1dB) and not the Input 3rd Order Intercept Point (IIP3). For a supply voltage of 4.5V,
mixer P1dB (referred to the input of the application circuitry) increases with additional
mixer current, and begins to flatten out above 8mA. When supply voltage is decreased
to 2.7V, mixer P1dB starts flattening out at around 5mA.
Note how, at the 2.7V supply voltage, IIP3 continues to increase at currents over
6mA while P1dB flattens out. For a given conversion gain G, while operating at 2.7
Volts, considering only the mixer’s Input 3rd Order Intercept (IIP3) might lead one to
falsely conclude that increasing current beyond 6mA improves receiver blocking. If,
however, conversion gain is decreased, it may be possible to improve the receiver's
blocking level with additional mixer current.
As shown in Figure 10, the 1 dB compression level, referred to the input, is limited by
either current or the available voltage swing at the mixer output. The transition between
these two regions takes place at 4mA for the specified conversion gain and supply
voltage.
Figure 11 gives the DSB mixer noise figure versus the mixer current.
Semiconductor Group
41
09.97
PMB 2333
15
10
IICP3
P1dB / 2.7V
G
P1dB / 4.5V
5
[dB] / 0
[dBm]
-5
-10
-15
0
2
4
6
8
Mixer Current [mA]
10
12
Figure 10: Mixer Input Intercept Point (IIP3), 1 dB Compression Point (P1dB) Referred to Input, Gain (G).
DSB Noise Figure [dB]
10
9
8
7
6
5
0
2
4
6
8
mixer current [mA]
10
12
Figure 11: Mixer DSB Noise Figure
Semiconductor Group
42
09.97
PMB 2333
3.1.4
Circuit diagram and PCB layout
Figure 12: Circuit diagram
Semiconductor Group
43
09.97
PMB 2333
PCB dimensions: 80 x 50 mm
Substrate material: FR4
Substrate height: 0.8 mm
Figure 13: PCB top side
Semiconductor Group
44
09.97
PMB 2333
Figure 14: PCB bottom side
Semiconductor Group
45
09.97
PMB 2333
Figure 15: PCB component placement
Semiconductor Group
46
09.97
PMB 2333
List of Components
Item
1
Value
1.0 pF
Part
SMD/0603
1.5 pF
1.8 pF
2.2 pF
2.7 pF
4.7 pF
10 pF
SMD/0603
SMD/0603
SMD/0603
SMD/0603
SMD/0603
SMD/0603
8
9
10
11
12
Quantity Reference
3
C9, C17,
C23
1
C6
1
C8
1
C16
1
C7
1
C22
10
C3, C5,
C10, C11,
C12, C13,
C14, C15,
C18, C19
1
C2
1
C4
1
C1
1
C20
1
C21
12 pF
33 pF
680 pF
1.0 nF
1 µF
SMD/0603
SMD/0603
SMD/0603
SMD/0603
SMD/A
13
14
15
1
3
2
R1
R3, R5, R6
R4, R7
0Ω
180 Ω
1.0 kΩ
SMD/0603
SMD/0603
SMD/0603
16
17
18
19
20
21
1
1
1
1
1
1
L6
L4
L5
L2
L1
L3
3.3 nH
3.9 nH
6.8 nH
22 nH
82 nH
100 nH
SMD/0805
SMD/0805
SMD/0805
SMD/0805
SMD/0805
SMD/0805
22
1
IC1
PMB 2333
Siemens
23
24
1
5
J1
connector
X1, X2, X3, SMA
X4, X5
connector
2
3
4
5
6
7
Semiconductor Group
Tantalum
Murata LQP21A or LQP11A
Murata LQP21A or LQP11A
Murata LQP21A or LQP11A
Coilcraft 0805
Coilcraft 0805
Coilcraft 0805
Stocko MKS 1655-6-0-505
Suhner 82 SMA 50-0-41 or
Rosenberger 32 K 141-400A2
47
09.97
PMB 2333
3.2
Upconversion Application
3.2.1
Shortform Data
Measurement conditions
Ambient temperature TA = 25 °C
Supply voltage VS = 2.7 V
Mixer input signal fIF = 190 MHz, PIF = -30 dBm
LO signal fLO = 1717 MHz, PLO = -6 dBm
Mixer output and driver amplifier input signal fRF = 1907 MHz
Parameter
Symbol
Limit values
min.
typ.
Unit
Remarks
max.
Mixer section
Mixer current
IMixer
9.5
mA
Conversion gain
GC
6
dB
3rd order input
intercept point
IICP3
+3.5
dBm
1dB-compression
point
P1dB
-7
dBm
RF return loss
|S11,RF|
10
dB
LO return loss
|S11,LO|
18
dB
IF return loss
|S11,IF|
20
dB
RF to LO input
ARF-LO
38
dB
LO to RF output
ALO-RF
30
dB
Driver current
IAO
11.0
mA
Gain
G
13.1
dB
3rd order input
intercept point
IICP3
+4.5
dBm
1dB-compression
point
P1dB
-6
dBm
Port matching
Isolations
Driver section
Semiconductor Group
48
17mA @ 3.3V
09.97
PMB 2333
Measurement conditions
Ambient temperature TA = 25 °C
Supply voltage VS = 2.7 V
Mixer input signal fIF = 190 MHz, PIF = -30 dBm
LO signal fLO = 1717 MHz, PLO = -6 dBm
Mixer output and driver amplifier input signal fRF = 1907 MHz
Parameter
Symbol
Limit values
min.
typ.
Unit
max.
AI return loss
|S11,AI|
14
dB
AO return loss
|S11,AO|
12
dB
3.2.2
Remarks
Measurement results
7
6
gain [dB]
5
4
3
2
1
0
1800
1850
1900
frequency [MHz]
1950
2000
Figure 16: Mixer conversion gain versus frequency
Semiconductor Group
49
09.97
PMB 2333
20
15
|S21|
10
5
[dB]
0
|S22|
-5
-10
|S11|
-15
-20
|S12|
-25
-30
1000
1500
2000
frequency [MHz]
2500
3000
Figure 17: Driver amplifier gain, reverse isolation, return loss versus frequency
0
-10
[dB]
-20
LO to RF
-30
-40
RF to LO
-50
-60
1000
1500
2000
frequency [MHz]
2500
3000
Figure 18: Mixer isolations versus frequency
Semiconductor Group
50
09.97
PMB 2333
3.2.3
Circuit diagram and PCB layout
Figure 19: Circuit diagram
Semiconductor Group
51
09.97
PMB 2333
PCB dimensions: 80 x 50 mm
Substrate material: FR4
Substrate height: 0.8 mm
Figure 20: PCB top side
Semiconductor Group
52
09.97
PMB 2333
Figure 21: PCB bottom side
Semiconductor Group
53
09.97
PMB 2333
Figure 22: Component placement top side
Semiconductor Group
54
09.97
PMB 2333
Figure 23: Component placement bottom side
Semiconductor Group
55
09.97
PMB 2333
Upconversion Application - List of Components
Item
1
2
3
4
5
6
7
Quantity
1
1
1
1
1
2
7
Value
1.0 pF
1.5 pF
1.8 pF
2.2 pF
2.7 pF
3.3 pF
10 pF
Part
SMD/0603
SMD/0603
SMD/0603
SMD/0603
SMD/0603
SMD/0603
SMD/0603
27 pF
68 pF
1.0 nF
SMD/0603
SMD/0603
SMD/0603
1
Reference
C9
C6
C8
C3
C7
C2, C4
C1, C5,
C11, C12,
C13, C14,
C15
C17
C16
C18, C19,
C20
C21
8
9
10
1
1
3
11
1.0 µF
SMD/A
12
13
14
15
16
2
1
1
2
2
J3, J4
R1
R3
R5, R6
R4, R7
0Ω
10 Ω
27 Ω
33 Ω
1 kΩ
SMD/0603
SMD/0603
SMD/0603
SMD/0603
SMD/0603
17
18
19
2
2
1
L1, L6
L4, L5
L3
3.3 nH
22 nH
33 nH
SMD/0603
SMD/0805
SMD/0805
20
1
IC1
PMB 2333
Siemens
21
22
1
5
J1
connector
X1, X2, X3, SMA
X4, X5
connector
Semiconductor Group
Tantalum
Murata LQP11A
Coilcraft 0805
Coilcraft 0805
Stocko MKS 1655-6-0-505
Suhner 82 SMA 50-0-41 or
Rosenberger 32 K 141-400A2
56
09.97
PMB 2333
3.3
Receiver/SAW Application
3.3.1
Shortform Data
Measurement conditions
Ambient temperature TA = 25 °C
Supply voltage VS = 3.6 V
LNA and Mixer input signal fRF = 890 MHz, PRF = -40 dBm
LO signal fLO = 972 MHz, PLO = -6 dBm
IF output fIF = 82 MHz
All measurements refer to SMA connectors without consideration of PCB losses
The figures in the mixer section are calculated from a measurement SAW filter + mixer
assuming an insertion loss of 3.1dB for the filter at measurement frequency (890MHz).
Symbol
typ.
Value
Unit
Remarks
Mixer current
IMixer
10
mA
IMO+IMOX
Conversion gain
GC
4.5
dB
Noise Figure (SSB)
NFSSB
12
dB
3rd order input intercept point
IICP3
+6.5
dBm
input 1dB-compression point
P1dB
-3
dBm
LNA current
ILNA
17
mA
Gain
GLNA
20
dB
Noise Figure
NF
1.75
dB
3rd order input intercept point
IICP3
0
dBm
input 1dB-compression point
P1dB
-11
dBm
AI return loss
|S11, AI|
14
dB
AO return loss
|S11, AO|
15
dB
Parameter
Mixer section
LNA section
Semiconductor Group
57
09.97
PMB 2333
Measurement conditions
Ambient temperature TA = 25 °C
Supply voltage VS = 3.6 V
LNA and Mixer input signal fRF = 890 MHz, PRF = -40 dBm
LO signal fLO = 972 MHz, PLO = -6 dBm
IF output fIF = 82 MHz
All measurements refer to SMA connectors without consideration of PCB losses
The figures in the mixer section are calculated from a measurement SAW filter + mixer
assuming an insertion loss of 3.1dB for the filter at measurement frequency (890MHz).
Symbol
typ.
Value
Unit
Cascade Gain
G
18
dB
Cascade Noise Figure (SSB)
NF
3.35
dB
3rd order input intercept point
IICP3
-8
dBm
input 1dB-compression point
P1dB
-17
dBm
Parameter
Remarks
Cascade figures
LNA, resistive 3.1 dB pad (see
schematic), SAW filter, mixer
Semiconductor Group
58
09.97
PMB 2333
3.3.2
System calculations
Due to the use of a SAW filter for mixer input matching and balancing an isolated
measurement of the mixer figures is not possible. The following system calculations
have valid entries only for the Gain, IP3, and Noise Figure. The input values are either
from extra measurements (e.g. SAW filter insertion loss) or adjusted to give a cascade
figure that can be measured (e.g. filter+mixer IP3). All non-fat typeface figures have no
meaning.
LNA measurement
Hewlett-Packard
NoiseCalc
+---+
+---+
-¦ 1 +---¦ 2 ++---+
+---+
Noise Figure (dB)
0.10
1.65
Gain
(dB)
-0.10
20.00
IP3
(dBm)
100.00
20.00
System Temp. (ºC)
25.0
Input Power (dBm)
-30.0
Pout
(dBm)
-30.1
-10.1
Cascade NF
(dB)
1.75
Noise Temperature (ºK)
143.9
Signal-to-Noise Ratio
(dB)
82.2
Spur Free Dynamic Range (dB)
74.9
Nominal Detectable Sig (dBm) -112.2
1)
PCB loss
2)
PMB 2333 LNA
Semiconductor Group
AppCAD
Reference Temperature (ºC)
Noise Bandwidth
(MHz)
Cascade Gain
(dB)
Input Intercept Point (dBm)
Output Intercept Point (dBm)
IM3 Output Level
(dBm)
59
25.0
1.00000
19.90
0.1
20.0
-70.3
09.97
PMB 2333
SAW filter and Mixer
Hewlett-Packard
NoiseCalc
+---+
+---+
-¦ 1 +---¦ 2 ++---+
+---+
Noise Figure (dB)
3.10
12.00
Gain
(dB)
-3.10
4.50
IP3
(dBm)
100.00
11.00
System Temp. (ºC)
25.0
Input Power (dBm)
-30.0
Pout
(dBm)
-33.1
-28.6
Cascade NF
(dB) 15.10
Noise Temperature (ºK)
9094.2
Signal-to-Noise Ratio
(dB)
68.9
Spur Free Dynamic Range (dB)
72.3
Nominal Detectable Sig (dBm) -98.9
1)
SAW filter S+M B4672
2)
PMB 2333 Mixer
AppCAD
Reference Temperature (ºC)
Noise Bandwidth
(MHz)
Cascade Gain
(dB)
Input Intercept Point (dBm)
Output Intercept Point (dBm)
IM3 Output Level
(dBm)
25.0
1.00000
1.40
9.6
11.0
-107.8
Overall figures
Hewlett-Packard
NoiseCalc
AppCAD
+---+
+---+
+---+
+---+
+---+
-¦ 1 +---¦ 2 +---¦ 3 +---¦ 4 +---¦ 5 ++---+
+---+
+---+
+---+
+---+
Noise Figure (dB)
0.10
1.65
3.10
3.10
12.00
Gain
(dB)
-0.10
20.00
-3.10
-3.10
4.50
IP3
(dBm)
200.00
20.00 200.00
40.00
11.00
System Temp. (ºC)
25.0
Reference Temperature (ºC)
25.0
Input Power (dBm)
-30.0
Noise Bandwidth
(MHz)
1.00000
Pout
(dBm)
-30.1
-10.1
-13.2
-16.3
-11.8
Cascade NF
(dB)
3.35
Cascade Gain
(dB)
18.20
Noise Temperature (ºK)
337.0
Input Intercept Point (dBm)
-7.9
Signal-to-Noise Ratio
(dB)
80.7
Output Intercept Point (dBm)
10.3
Spur Free Dynamic Range (dB)
68.5
IM3 Output Level
(dBm)
-55.9
Nominal Detectable Sig (dBm) -110.6
1)
PCB loss
2)
PMB 2333 LNA
3)
Resistive pad, 3.1dB attenuation
4)
SAW filter S+M B4672
5)
PMB 2333 Mixer
Semiconductor Group
60
09.97
PMB 2333
3.3.3
Measurement results
20
9
15
8
10
7
5
6
0
5
-5
gain
-10
4
NF
3
-15
noise figure [dB]
gain [dB]
Cascaded figure measurements
2
-20
1
image response
-25
800
850
900
frequency [MHz]
0
1000
950
Figure 24: Cascade gain, SSB noise figure versus frequency
20
10
9
gain
16
8
14
7
12
6
10
5
8
4
6
3
NF
4
2
2
1
0
SSB noise figure [dB]
conversion gain [dB]
18
0
-30
-25
-20
-15
-10
LO power level [dBm]
-5
0
5
Figure 25: Cascade gain, SSB noise figure versus LO power
Semiconductor Group
61
09.97
PMB 2333
0
-5
|S11, AI|
-10
-15
-20
-25
0
500
1000
frequency [MHz]
1500
2000
Figure 26: AI input return loss versus frequency
Semiconductor Group
62
09.97
PMB 2333
3.3.4
Circuit diagram and PCB layout
Figure 27: Circuit diagram
Semiconductor Group
63
09.97
PMB 2333
PCB dimensions: 80 x 50 mm
Substrate material: FR4
Substrate height: 0.8 mm
Figure 28: PCB top side
Semiconductor Group
64
09.97
PMB 2333
Figure 29: PCB bottom side
Semiconductor Group
65
09.97
PMB 2333
:
Figure 30: PCB component placement top
Semiconductor Group
66
09.97
PMB 2333
Figure 31: PCB component placement bottom
Semiconductor Group
67
09.97
PMB 2333
Receiver/SAW Application - List of Components
Item
1
2
3
4
5
6
7
Quantity
1
2
2
2
1
2
8
Value
1.8 pF
4.7 pF
5.6 pF
15 pF
18 pF
27 pF
33 pF
Part
SMD/0603
SMD/0603
SMD/0603
SMD/0603
SMD/0603
SMD/0603
SMD/0603
2
1
1
Reference
C9
C8, C18
C6, C7
C2, C3
C4
C16, C17
C5, C10,
C12, C14,
C15, C19,
C24, C25
C11, C20
C1
C21
8
9
10
1 nF
3.3 nF
1 µF
SMD/0603
SMD/0603
SMD/A
11
12
13
14
15
1
1
2
1
2
J2
R1
R5, R6
R3
R4, R7
0Ω
27 Ω
33 Ω
56 Ω
1.0 kΩ
SMD/0603
SMD/0603
SMD/0603
SMD/0603
SMD/0603
16
17
18
19
20
21
1
1
1
1
2
3
L1
L4
L6
L5
L3, L7
L2, L8, L9
3.3 nH
4.7 nH
8.2 nH
33 nH
68 nH
100 nH
SMD/0603
SMD/0603
SMD/0603
SMD/0603
SMD/0805
SMD/0805
22
23
1
1
IC1
FIL1
PMB 2333
B4672
Siemens
S+M
24
25
1
5
J1
connector
X1, X2, X3, SMA
X4, X5
connector
Semiconductor Group
Tantalum
Toko LL1608-FH
Toko LL1608-FH
Toko LL1608-FH
Toko LL1608-FH
Toko LL1608-FH
Toko LL1608-FH
Stocko MKS 1655-6-0-505
Suhner 82 SMA 50-0-41 or
Rosenberger 32 K 141-400A2
68
09.97
PMB 2333
4
Package Outlines
P-TSSOP-16
(Plastic Package)
Sorts of Packing
Package outlines for tubes, trays etc. are contained in our
Data Book “Package Information”.
SMD = Surface Mounted Device
Semiconductor Group
69
Dimensions in mm
09.97