14-Bit, 105/125 MSPS, IF Sampling ADC AD9445 125 MSPS guaranteed sampling rate (AD9445BSV-125) 78.3 dBFS SNR/92 dBFS SFDR with 30 MHz input (3.2 V p-p) 74.8 dBFS SNR/95 dBFS SFDR with 30 MHz input (2.0 V p-p) 77.0 dBFS SNR/87 dBFS SFDR with 170 MHz input (3.2 V p-p) 74.6 dBFS SNR/95 dBFS SFDR with 170 MHz input (2.0 V p-p) 73.0 dBFS SNR/88 dBFS SFDR with 300 MHz input (2.0 V p-p) 102 dBFS 2-tone SFDR with 30 MHz and 31 MHz 92 dBFS 2-tone SFDR with 170 MHz and 171 MHz 60 fsec rms jitter Excellent linearity DNL = ±0.25 LSB typical INL = ±0.8 LSB typical 2.0 V p-p to 4.0 V p-p differential full-scale input Buffered analog inputs LVDS outputs (ANSI-644 compatible) or CMOS outputs Data format select (offset binary or twos complement) Output clock available 3.3 V and 5 V supply operation APPLICATIONS Multicarrier, multimode cellular receivers Antenna array positioning Power amplifier linearization Broadband wireless Radar Infrared imaging Medical imaging Communications instrumentation FUNCTIONAL BLOCK DIAGRAM AGND AVDD1 AVDD2 The ADC requires 3.3 V and 5.0 V power supplies and a low voltage differential input clock for full performance operation. No external reference or driver components are required for many applications. Data outputs are CMOS or LVDS compatible (ANSI-644 compatible) and include the means to reduce the overall current needed for short trace distances. RF ENABLE AD9445 DFS BUFFER VIN+ VIN– CLK+ CLK– T/H CLOCK AND TIMING MANAGEMENT PIPELINE ADC 14 CMOS OR LVDS OUTPUT STAGING 2 DCS MODE OUTPUT MODE OR 28 D13 TO D0 2 DCO REF VREF SENSE REFT REFB Figure 1. Optional features allow users to implement various selectable operating conditions, including input range, data format select, high IF sampling mode, and output data mode. The AD9445 is available in a Pb-free, 100-lead, surface-mount, plastic package (100-lead TQFP/EP) specified over the industrial temperature range −40°C to +85°C. PRODUCT HIGHLIGHTS 1. High performance: outstanding SFDR performance for IF sampling applications such as multicarrier, multimode 3G, and 4G cellular base station receivers. 2. Ease of use: on-chip reference and high input impedance track-and-hold with adjustable analog input range and an output clock simplifies data capture. 3. Packaged in a Pb-free, 100-lead TQFP/EP package. 4. Clock duty cycle stabilizer (DCS) maintains overall ADC performance over a wide range of clock pulse widths. 5. OR (out-of-range) outputs indicate when the signal is beyond the selected input range. 6. RF enable pin allows users to configure the device for optimum SFDR when sampling frequencies above 210 MHz (AD9445-125) or 240 MHz (AD9445-105). GENERAL DESCRIPTION The AD9445 is a 14-bit, monolithic, sampling analog-to-digital converter (ADC) with an on-chip IF sampling track-and-hold circuit. It is optimized for performance, small size, and ease of use. The product operates at up to a 125 MSPS conversion rate and is designed for multicarrier, multimode receivers, such as those found in cellular infrastructure equipment. DRGND DRVDD 05489-001 FEATURES Rev. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 © 2005 Analog Devices, Inc. All rights reserved. AD9445 TABLE OF CONTENTS Features .............................................................................................. 1 Terminology .......................................................................................9 Applications....................................................................................... 1 Pin Configurations and Function Descriptions ......................... 10 General Description ......................................................................... 1 Equivalent Circuits......................................................................... 15 Functional Block Diagram .............................................................. 1 Typical Performance Characteristics ........................................... 16 Product Highlights ........................................................................... 1 Theory of Operation ...................................................................... 24 Revision History ............................................................................... 2 Analog Input and Reference Overview ................................... 24 Specifications..................................................................................... 3 Clock Input Considerations...................................................... 26 DC Specifications ......................................................................... 3 Power Considerations................................................................ 27 AC Specifications.......................................................................... 4 Digital Outputs ........................................................................... 27 Digital Specifications ................................................................... 6 Timing ......................................................................................... 27 Switching Specifications .............................................................. 6 Operational Mode Selection ..................................................... 28 Timing Diagrams.......................................................................... 7 Evaluation Board ............................................................................ 29 Absolute Maximum Ratings............................................................ 8 Outline Dimensions ....................................................................... 37 Thermal Resistance ...................................................................... 8 Ordering Guide .......................................................................... 37 ESD Caution.................................................................................. 8 REVISION HISTORY 10/05—Revision 0: Initial Version Rev. 0 | Page 2 of 40 AD9445 SPECIFICATIONS DC SPECIFICATIONS AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, LVDS mode, specified minimum sampling rate, 2.0 V p-p differential input, internal trimmed reference (1.0 V mode), AIN = −1.0 dBFS, DCS on, unless otherwise noted. RF ENABLE = AGND. Table 1. Parameter RESOLUTION ACCURACY No Missing Codes Offset Error Gain Error Differential Nonlinearity (DNL) 1 Integral Nonlinearity (INL)1 VOLTAGE REFERENCE Output Voltage VREF = 1.0 V Load Regulation @ 1.0 mA Reference Input Current (External VREF = 1.6 V) INPUT REFERRED NOISE ANALOG INPUT Input Span VREF = 1.6 V VREF = 1.0 V Internal Input Common-Mode Voltage External Input Common-Mode Voltage Input Resistance 2 Input Capacitance2 POWER SUPPLIES Supply Voltage AVDD1 AVDD2 DRVDD—LVDS Outputs DRVDD—CMOS Outputs Supply Current1 AVDD1 AVDD21, 3 IDRVDD1—LVDS Outputs IDRVDD1—CMOS Outputs PSRR Offset Gain POWER CONSUMPTION LVDS Outputs CMOS Outputs (DC Input) Temp Full Full Full 25°C Full 25°C Full 25°C Full Full Full Full 25°C Full Full Full Full Full Full Full Full Full Full AD9445BSVZ-105 Min Typ Max 14 AD9445BSVZ-125 Min Typ Max 14 Guaranteed −7 Guaranteed +7 −7 ±3 −3 −2 −0.6 5 ±0.25 0.9 1.0 ±2 +3 +2 +0.65 −3 −2 −0.6 5 +1.6 −2 1.1 0.9 1.0 ±2 1.0 3.2 2.0 3.5 3.2 2.0 3.5 3.9 3.3 5.0 3.3 Full Full Full Full 335 169 63 14 Full Full 1 0.2 Full Full 2.2 2.0 +3 +2 +0.65 mV mV % FSR % FSR LSB +2 LSB LSB ±0.8 3.1 1 6 1 ±0.25 1.0 3.1 3.14 4.75 3.0 3.0 +7 ±3 ±0.65 −1.6 Unit Bits 1.1 3.9 1 6 3.46 5.25 3.6 3.6 364 196 78 3.14 4.75 3.0 3.0 3.3 5.0 3.3 384 172 63 14 2.3 2.1 V p-p V p-p V V kΩ pF 3.46 5.25 3.6 3.6 V V V V 424 199 78 mA mA mA mA 1 0.2 2.4 V mV μA LSB rms mV/V %/V 2.6 W W Measured at the maximum clock rate, fIN = 15 MHz, full-scale sine wave, with a 100 Ω differential termination on each pair of output bits for LVDS output mode and approximately 5 pF loading on each output bit for CMOS output mode. Input capacitance or resistance refers to the effective impedance between one differential input pin and AGND. Refer to Figure 6 for the equivalent analog input structure. 3 For RF ENABLE = AVDD1, IAVDD2 increases by ~30 mA, which increases power dissipation. 2 Rev. 0 | Page 3 of 40 AD9445 AC SPECIFICATIONS AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, LVDS mode, specified minimum sample rate, 2.0 V p-p differential input, internal trimmed reference (1.0 V mode), AIN = −1.0 dBFS, DCS on, RF ENABLE = ground, unless otherwise noted. Table 2. Parameter SIGNAL-TO-NOISE RATIO (SNR) fIN = 10 MHz fIN = 30 MHz fIN = 170 MHz fIN = 225 MHz 1 fIN = 300 MHz 2 fIN = 400 MHz2 fIN = 450 MHz2 fIN = 10 MHz (3.2 V p-p Input) fIN = 30 MHz (3.2 V p-p Input) fIN = 170 MHz (3.2 V p-p Input) fIN = 225 MHz (3.2 V p-p Input)1 fIN = 300 MHz (3.2 V p-p Input)2 SIGNAL-TO-NOISE AND DISTORTION (SINAD) fIN = 10 MHz fIN = 30 MHz fIN = 170 MHz fIN = 225 MHz1 fIN = 300 MHz2 fIN = 400 MHz2 fIN = 450 MHz2 fIN = 10 MHz (3.2 V p-p Input) fIN = 30 MHz (3.2 V p-p Input) fIN = 170 MHz (3.2 V p-p Input) fIN = 225 MHz (3.2 V p-p Input)1 fIN = 300 MHz (3.2 V p-p Input)2 EFFECTIVE NUMBER OF BITS (ENOB) fIN = 10 MHz fIN = 30 MHz fIN = 170 MHz fIN = 225 MHz1 fIN = 300 MHz2 fIN = 400 MHz2 fIN = 450 MHz2 Temp 25°C 25°C Full 25°C 25°C Full 25°C 25°C 25°C Min 73.3 73 72.9 72.2 72.2 71.4 25°C 25°C 25°C 25°C 25°C 25°C 25°C Full 25°C 25°C Full 25°C 25°C 25°C AD9445BSVZ-105 Typ Max 74.3 74.3 73.6 73 72.1 71 70.5 Min 72.9 72.5 72.3 72 71.4 71.3 77.6 77.5 76 75.3 73.7 73.2 72.8 72.3 71.4 71.3 70.2 74.2 74.2 73.3 72.5 71.7 67.2 65.2 72.8 72.3 72.4 71.9 70.7 69.3 AD9445BSVZ-125 Typ Max 74.1 73.8 Unit 72 71 70.5 dB dB dB dB dB dB dB dB dB 77.3 77.3 76 75.4 73.5 dB dB dB dB dB 73.9 73.7 71.5 66.3 64.3 dB dB dB dB dB dB dB dB dB 73.2 72.9 73.0 72.5 25°C 25°C 25°C 25°C 25°C 77.4 77.3 75.7 75.1 72.5 76.9 76.8 75.4 75.2 71.8 dB dB dB dB dB 25°C 25°C 25°C 25°C 25°C 25°C 25°C 12.2 12.2 12.1 12.0 11.8 11.7 11.6 12.2 12.1 12.0 12.0 11.8 11.7 11.6 Bits Bits Bits Bits Bits Bits Bits Rev. 0 | Page 4 of 40 AD9445 Parameter SPURIOUS-FREE DYNAMIC RANGE (SFDR, Second or Third Harmonic) fIN = 10 MHz fIN = 30 MHz fIN = 170 MHz fIN = 225 MHz1 fIN = 300 MHz2 fIN = 400 MHz2 fIN = 450 MHz2 fIN = 10 MHz (3.2 V p-p Input) fIN = 30 MHz (3.2 V p-p Input) fIN = 170 MHz (3.2 V p-p Input) fIN = 225 MHz (3.2 V p-p Input)1 fIN = 300 MHz (3.2 V p-p Input)2 WORST SPUR EXCLUDING SECOND OR THIRD HARMONICS fIN = 10 MHz fIN = 30 MHz fIN = 170 MHz fIN = 225 MHz1 fIN = 300 MHz2 fIN = 400 MHz2 fIN = 450 MHz2 fIN = 10 MHz (3.2 V p-p Input) fIN = 30 MHz (3.2 V p-p Input) fIN = 170 MHz (3.2 V p-p Input) fIN = 225 MHz (3.2 V p-p Input)1 fIN = 300 MHz (3.2 V p-p Input)2 TWO-TONE SFDR fIN = 30.3 MHz @ −7 dBFS, 31.3 MHz @ −7 dBFS fIN = 170.3 MHz @ −7 dBFS, 171.3 MHz @ −7 dBFS ANALOG BANDWIDTH 1 2 Temp 25°C 25°C Full 25°C 25°C Full 25°C 25°C 25°C Min AD9445BSVZ-105 Typ Max 84 83 82 76 75 76 95 92 85 82 80 83 75 75 94 87 87 75 70 25°C 25°C 25°C 25°C 25°C 92 88 86 81 77 25°C 25°C Full 25°C 25°C Full 25°C 25°C 25°C −97 −99 −99 −94 −97 −93 −82 Min −90 −90 −92 −88 −86 −90 AD9445BSVZ-125 Typ Max 95 94 Unit 87 73 69 dBc dBc dBc dBc dBc dBc dBc dBc dBc 92 91 86 80 76 dBc dBc dBc dBc dBc 91 88 −97 −98 −93 −94 −92 −93 −87 −89 −88 −85 −84 −80 −82 dBc dBc dBc dBc dBc dBc dBc dBc dBc 25°C 25°C 25°C 25°C 25°C −97 −97 −97 −95 −93 −95 −95 −95 −94 −91 dBc dBc dBc dBc dBc 25°C 102 102 dBFS 25°C 92 91 dBFS Full 615 615 MHz RF ENABLE = low (AGND ) for AD9445-105; RF ENABLE = high (AVDD1) for AD9445-125. RF ENABLE = high (AVDD1). Rev. 0 | Page 5 of 40 AD9445 DIGITAL SPECIFICATIONS AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, RLVDS_BIAS = 3.74 kΩ, unless otherwise noted. Table 3. Parameter CMOS LOGIC INPUTS (DFS, DCS MODE, OUTPUT MODE) High Level Input Voltage Low Level Input Voltage High Level Input Current Low Level Input Current Input Capacitance DIGITAL OUTPUT BITS—CMOS MODE (D0 to D13, OTR) 1 DRVDD = 3.3 V High Level Output Voltage Low Level Output Voltage DIGITAL OUTPUT BITS—LVDS MODE (D0 to D13, OTR) VOD Differential Output Voltage 2 VOS Output Offset Voltage CLOCK INPUTS (CLK+, CLK−) Differential Input Voltage Common-Mode Voltage Differential Input Resistance Differential Input Capacitance 1 2 Temp Full Full Full Full Full AD9445BSVZ-105 Min Typ Max AD9445BSVZ-125 Min Typ Max 2.0 2.0 0.8 200 +10 −10 −10 2 Full Full 3.25 Full Full 247 1.125 Full Full Full Full 0.2 1.3 1.1 0.8 200 +10 2 3.25 0.2 1.5 1.4 2 545 1.375 247 1.125 1.6 1.7 0.2 1.3 1.1 1.5 1.4 2 Unit V V μA μA pF 0.2 V V 545 1.375 mV V 1.6 1.7 V V kΩ pF Output voltage levels measured with 5 pF load on each output. LVDS RTERM = 100 Ω. SWITCHING SPECIFICATIONS AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, unless otherwise noted. Table 4. Parameter CLOCK INPUT PARAMETERS Maximum Conversion Rate Minimum Conversion Rate CLK Period CLK Pulse Width High 1 (tCLKH) CLK Pulse Width Low1 (tCLKL) DATA OUTPUT PARAMETERS Output Propagation Delay—CMOS (tPD) 2 (Dx, DCO+) Output Propagation Delay—LVDS (tPD) 3 (Dx+), (tCPD)3 (DCO+) Pipeline Delay (Latency) Aperture Delay (tA) Aperture Uncertainty (Jitter, tJ) 1 2 3 Temp Full Full Full Full Full Full Full Full Full Full AD9445BSVZ-105 Min Typ Max AD9445BSVZ-125 Min Typ Max 105 125 10 9.5 3.8 3.8 2.1 8.0 3.2 3.2 3.35 3.6 13 4.8 60 With duty cycle stabilizer (DCS) enabled. Output propagation delay is measured from clock 50% transition to data 50% transition with 5 pF load. LVDS RTERM = 100 Ω. Measured from the 50% point of the rising edge of CLK+ to the 50% point of the data transition. Rev. 0 | Page 6 of 40 10 2.3 3.35 3.6 13 60 4.8 Unit MSPS MSPS ns ns ns ns ns Cycles ns fsec rms AD9445 TIMING DIAGRAMS N–1 N N+1 AIN tCLKL tCLKH 1/fS CLK+ CLK– tPD N N – 12 N – 13 DATA OUT N+1 13 CLOCK CYCLES 05489-002 DCO+ DCO– tCPD Figure 2. LVDS Mode Timing Diagram N–1 N N+1 VIN N+2 tCLKL tCLKH CLK– CLK+ tPD DX 13 CLOCK CYCLES N – 13 N – 12 N–1 N 05489-003 DCO+ DCO– Figure 3. CMOS Timing Diagram Rev. 0 | Page 7 of 40 AD9445 ABSOLUTE MAXIMUM RATINGS Table 5. Parameter ELECTRICAL AVDD1 AVDD2 DRVDD AGND AVDD1 AVDD2 AVDD2 D0± to D13± CLK+/CLK− OUTPUT MODE, DCS MODE, DFS, SFDR, RF ENABLE VIN+, VIN− VREF SENSE REFT, REFB ENVIRONMENTAL Storage Temperature Range Operating Temperature Range Lead Temperature (Soldering 10 sec) Junction Temperature With Respect To Rating AGND AGND DGND DGND DRVDD DRVDD AVDD1 DGND AGND AGND −0.3 V to +4 V −0.3 V to +6 V −0.3 V to +4 V −0.3 V to +0.3 V −4 V to +4 V −4 V to +6 V −4 V to +6 V –0.3 V to DRVDD + 0.3 V –0.3 V to AVDD1 + 0.3 V –0.3 V to AVDD1 + 0.3 V AGND AGND AGND AGND –0.3 V to AVDD2 + 0.3 V –0.3 V to AVDD1 + 0.3 V –0.3 V to AVDD1 + 0.3 V –0.3 V to AVDD1 + 0.3 V –65°C to +125°C –40°C to +85°C 300°C 150°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. THERMAL RESISTANCE The heat sink of the AD9445 package must be soldered to ground. Table 6. Package Type 100-lead TQFP/EP θJA 19.8 θJB 8.3 θJC 2 Unit °C/W Typical θJA = 19.8°C/W (heat sink soldered) for multilayer board in still air. Typical θJB = 8.3°C/W (heat sink soldered) for multilayer board in still air. Typical θJC = 2°C/W (junction to exposed heat sink) represents the thermal resistance through heat sink path. Airflow increases heat dissipation, effectively reducing θJA. Also, more metal directly in contact with the package leads from metal traces through holes, ground, and power planes reduces the θJA. It is required that the exposed heat sink be soldered to the ground plane. ESD CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. Rev. 0 | Page 8 of 40 AD9445 TERMINOLOGY Analog Bandwidth (Full Power Bandwidth) The analog input frequency at which the spectral power of the fundamental frequency (as determined by the FFT analysis) is reduced by 3 dB. Minimum Conversion Rate The clock rate at which the SNR of the lowest analog signal frequency drops by no more than 3 dB below the guaranteed limit. Aperture Delay (tA) The delay between the 50% point of the rising edge of the clock and the instant at which the analog input is sampled. Offset Error The major carry transition should occur for an analog value of ½ LSB below VIN+ = VIN−. Offset error is defined as the deviation of the actual transition from that point. Aperture Uncertainty (Jitter, tJ) The sample-to-sample variation in aperture delay. Clock Pulse Width and Duty Cycle Pulse width high is the minimum amount of time that the clock pulse should be left in the Logic 1 state to achieve rated performance. Pulse width low is the minimum time the clock pulse should be left in the low state. At a given clock rate, these specifications define an acceptable clock duty cycle. Differential Nonlinearity (DNL, No Missing Codes) An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal value. Guaranteed no missing codes to 14-bit resolution indicates that all 16,384 codes must be present over all operating ranges. (SINAD − 1.76 ) 6.02 Gain Error The first code transition should occur at an analog value of ½ LSB above negative full scale. The last transition should occur at an analog value of 1½ LSB below the positive full scale. Gain error is the deviation of the actual difference between first and last code transitions and the ideal difference between first and last code transitions. Integral Nonlinearity (INL) The deviation of each individual code from a line drawn from negative full scale through positive full scale. The point used as negative full scale occurs ½ LSB before the first code transition. Positive full scale is defined as a level 1½ LSB beyond the last code transition. The deviation is measured from the middle of each particular code to the true straight line. Maximum Conversion Rate The clock rate at which parametric testing is performed. Output Propagation Delay (tPD) The delay between the clock rising edge and the time when all bits are within valid logic levels. Power-Supply Rejection Ratio The change in full scale from the value with the supply at the minimum limit to the value with the supply at the maximum limit. Signal-to-Noise and Distortion (SINAD) The ratio of the rms input signal amplitude to the rms value of the sum of all other spectral components below the Nyquist frequency, including harmonics but excluding dc. Effective Number of Bits (ENOB) The effective number of bits for a sine wave input at a given input frequency can be calculated directly from its measured SINAD using the following formula: ENOB = Out-of-Range Recovery Time The time it takes for the ADC to reacquire the analog input after a transition from 10% above positive full scale to 10% above negative full scale, or from 10% below negative full scale to 10% below positive full scale. Signal-to-Noise Ratio (SNR) The ratio of the rms input signal amplitude to the rms value of the sum of all other spectral components below the Nyquist frequency, excluding the first six harmonics and dc. Spurious-Free Dynamic Range (SFDR) The ratio of the rms signal amplitude to the rms value of the peak spurious spectral component. The peak spurious component may be a harmonic. SFDR can be reported in dBc (that is, degrades as signal level is lowered) or dBFS (always related back to converter full scale). Temperature Drift The temperature drift for offset error and gain error specifies the maximum change from the initial (25°C) value to the value at TMIN or TMAX. Total Harmonic Distortion (THD) The ratio of the rms input signal amplitude to the rms value of the sum of the first six harmonic components. Two-Tone SFDR The ratio of the rms value of either input tone to the rms value of the peak spurious component. The peak spurious component may or may not be an IMD product. Rev. 0 | Page 9 of 40 AD9445 DRVDD D9– D9+ D10– D10+ D11– D11+ D12– D12+ D13– D13+ (MSB) DRGND DRVDD OR– OR+ AGND AVDD1 AVDD1 AVDD1 AVDD1 AVDD1 AVDD1 AGND AGND RF ENABLE PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 DCS MODE 1 75 DRGND 74 D8+ 3 73 D8– DFS 4 72 D7+ LVDS_BIAS 5 71 D7– AVDD1 6 70 D6+ SENSE 7 69 D6– VREF 8 68 DCO+ AGND 9 67 DCO– 66 D5+ 65 D5– AVDD2 12 64 DRVDD AVDD2 13 63 DRGND AVDD2 14 62 D4+ AVDD2 15 61 D4– AVDD2 16 60 D3+ AVDD2 17 59 D3– AVDD1 18 58 D2+ AVDD1 19 57 D2– AVDD1 20 56 D1+ AGND 21 55 D1– VIN+ 22 54 D0+ VIN– 23 53 D0– (LSB) AGND 24 52 DNC AVDD2 25 51 DNC DNC 2 OUTPUT MODE PIN 1 AD9445 LVDS MODE REFT 10 TOP VIEW (Not to Scale) REFB 11 Figure 4. 100-Lead TQFP/EP Pin Configuration in LVDS Mode Rev. 0 | Page 10 of 40 05489-004 DNC DNC DRVDD DRGND AGND AVDD1 AVDD1 AVDD1 AGND CLK– CLK+ AGND AVDD1 AVDD2 AVDD1 AVDD2 AVDD1 AVDD1 AVDD1 AVDD2 AVDD2 AVDD2 AVDD2 AVDD2 AVDD2 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 DNC = DO NOT CONNECT AD9445 Table 7. Pin Function Descriptions—100-Lead TQFP/EP in LVDS Mode Pin No. 1 Mnemonic DCS MODE 2, 49 to 52 3 DNC OUTPUT MODE 4 DFS 5 6, 18 to 20, 32 to 34, 36, 38, 43 to 45, 92 to 97 7 LVDS_BIAS AVDD1 8 VREF 9, 21, 24, 39, 42, 46, 91, 98, 99, Exposed Heat Sink 10 AGND 11 REFB 12 to 17, 25 to 31, 35, 37 22 23 40 41 47, 63, 75, 87 48, 64, 76, 88 53 54 55 56 57 58 59 60 61 62 65 66 67 68 69 70 71 72 73 74 77 78 79 80 81 82 AVDD2 VIN+ VIN− CLK+ CLK− DRGND DRVDD D0− (LSB) D0+ D1− D1+ D2− D2+ D3− D3+ D4− D4+ D5− D5+ DCO− DCO+ D6− D6+ D7− D7+ D8− D8+ D9− D9+ D10− D10+ D11− D11+ SENSE REFT Description Clock Duty Cycle Stabilizer (DCS) Control Pin. CMOS compatible. DCS = low (AGND) to enable DCS (recommended); DCS = high (AVDD1) to disable DCS. Do Not Connect. These pins should float. CMOS-Compatible Output Logic Mode Control Pin. OUTPUT MODE = 0 for CMOS mode; OUTPUT MODE = 1 (AVDD1) for LVDS outputs. Data Format Select Pin. CMOS control pin that determines the format of the output data. DFS = high (AVDD1) for twos complement; DFS = low (ground) for offset binary format. Set Pin for LVDS Output Current. Place 3.7 kΩ resistor terminated to DRGND. 3.3 V (±5%) Analog Supply. Reference Mode Selection. Connect to AGND for internal 1 V reference; connect to AVDD1 for external reference. 1.0 V Reference I/O. Function dependent on SENSE and external programming resistors. Decouple to ground with 0.1 μF and 10 μF capacitors. Analog Ground. The exposed heat sink on the bottom of the package must be connected to AGND. Differential Reference Output. Decoupled to ground with 0.1 μF capacitor and to REFB (Pin 14) with 0.1 μF and 10 μF capacitors. Differential Reference Output. Decoupled to ground with a 0.1 μF capacitor and to REFT (Pin 13) with 0.1 μF and 10 μF capacitors. 5.0 V Analog Supply (±5%). Analog Input—True. Analog Input—Complement. Clock Input—True. Clock Input—Complement. Digital Output Ground. 3.3 V Digital Output Supply (3.0 V to 3.6 V). D0 Complement Output Bit (LVDS Levels). D0 True Output Bit. D1 Complement Output Bit. D1 True Output Bit. D2 Complement Output Bit. D2 True Output Bit. D3 Complement Output Bit. D3 True Output Bit. D4 Complement Output Bit. D4 True Output Bit. D5 Complement Output Bit. D5 True Output Bit. Data Clock Output—Complement. Data Clock Output—True. D6 Complement Output Bit. D6 True Output Bit. D7 Complement Output Bit. D7 True Output Bit. D8 Complement Output Bit. D8 True Output Bit. D9 Complement Output Bit. D9 True Output Bit. D10 Complement Output Bit. D10 True Output Bit. D11 Complement Output Bit. D11 True Output Bit. Rev. 0 | Page 11 of 40 AD9445 Pin No. 83 84 85 86 89 90 100 Mnemonic D12− D12+ D13− D13+ (MSB) OR− OR+ RF ENABLE Description D12 Complement Output Bit. D12 True Output Bit. D13 Complement Output Bit. D13 True Output Bit. Out-of-Range Complement Output Bit. Out-of-Range True Output Bit. RF ENABLE Control Pin. CMOS-compatible control pin to optimize the configuration of the AD9445 analog front end. Connecting RF ENABLE to AGND optimizes SFDR performance for applications with analog input frequencies <210 MHz for 125 MSPS speed grade and <230 MHz for the 105 MSPS speed grade. For applications with analog inputs >225 MHz for the 125 MSPS speed grade and >230 MHz for the 105 MSPS speed grade, this pin should be connected to AVDD1 for optimum SFDR performance. Power dissipation from AVDD2 increases by 150 mW to 200 mW. Rev. 0 | Page 12 of 40 DRVDD D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 DRGND DRVDD D13 (MSB) OR AGND AVDD1 AVDD1 AVDD1 AVDD1 AVDD1 AVDD1 AGND AGND RF ENABLE AD9445 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 DCS MODE 1 75 DRGND 74 D2 3 73 D1 DFS 4 72 D0 (LSB) LVDS_BIAS 5 71 DNC AVDD1 6 70 DNC SENSE 7 69 DNC VREF 8 68 DCO+ AGND 9 67 DCO– 66 DNC 65 DNC AVDD2 12 64 DRVDD AVDD2 13 63 DRGND AVDD2 14 62 DNC AVDD2 15 61 DNC AVDD2 16 60 DNC AVDD2 17 59 DNC AVDD1 18 58 DNC AVDD1 19 57 DNC AVDD1 20 56 DNC AGND 21 55 DNC VIN+ 22 54 DNC VIN– 23 53 DNC AGND 24 52 DNC AVDD2 25 51 DNC DNC 2 OUTPUT MODE PIN 1 AD9445 CMOS MODE REFT 10 TOP VIEW (Not to Scale) REFB 11 Figure 5. 100-Lead TQFP/EP Pin Configuration in CMOS Mode Rev. 0 | Page 13 of 40 05489-005 DNC DNC DRVDD DRGND AGND AVDD1 AVDD1 AVDD1 AGND CLK– CLK+ AGND AVDD1 AVDD2 AVDD1 AVDD2 AVDD1 AVDD1 AVDD1 AVDD2 AVDD2 AVDD2 AVDD2 AVDD2 AVDD2 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 DNC = DO NOT CONNECT AD9445 Table 8. Pin Function Descriptions—100-Lead TQFP/EP in CMOS Mode Pin No. 1 Mnemonic DCS MODE 2, 49 to 62, 65 to 66, 69 to 71 3 DNC OUTPUT MODE DFS 4 5 6, 18 to 20, 32 to 34, 36, 38, 43 to 45, 92 to 97 7 LVDS_BIAS AVDD1 8 VREF 9, 21, 24, 39, 42, 46, 91, 98, 99, Exposed Heat Sink 10 AGND 11 REFB 12 to 17, 25 to 31, 35, 37 22 23 40 41 47, 63, 75, 87 48, 64, 76, 88 67 68 72 73 74 77 78 79 80 81 82 83 84 85 86 89 90 100 AVDD2 VIN+ VIN− CLK+ CLK− DRGND DRVDD DCO− DCO+ D0 (LSB) D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 (MSB) OR RF ENABLE SENSE REFT Description Clock Duty Cycle Stabilizer (DCS) Control Pin. CMOS compatible. DCS = low (AGND) to enable DCS (recommended); DCS = high (AVDD1) to disable DCS. Do Not Connect. These pins should float. CMOS-Compatible Output Logic Mode Control Pin. OUTPUT MODE = 0 for CMOS mode; OUTPUT MODE = 1 (AVDD1) for LVDS outputs. Data Format Select Pin. CMOS control pin that determines the format of the output data. DFS = high (AVDD1) for twos complement; DFS = low (ground) for offset binary format. Set Pin for LVDS Output Current. Place 3.7 kΩ resistor terminated to DRGND. 3.3 V (±5%) Analog Supply. Reference Mode Selection. Connect to AGND for internal 1 V reference; connect to AVDD1 for external reference. 1.0 V Reference I/O. Function dependent on SENSE and external programming resistors. Decouple to ground with 0.1 μF and 10 μF capacitors. Analog Ground. The exposed heat sink on the bottom of the package must be connected to AGND. Differential Reference Output. Decoupled to ground with 0.1 μF capacitor and to REFB (Pin 14) with 0.1 μF and 10 μF capacitors. Differential Reference Output. Decoupled to ground with a 0.1 μF capacitor and to REFT (Pin 13) with 0.1 μF and 10 μF capacitors. 5.0 V Analog Supply (±5%). Analog Input—True. Analog Input—Complement. Clock Input—True. Clock Input—Complement. Digital Output Ground. 3.3 V Digital Output Supply (3.0 V to 3.6 V). Data Clock Output—Complement. Data Clock Output—True. D0 True Output Bit (CMOS levels). D1 True Output Bit. D2 True Output Bit. D3 True Output Bit. D4 True Output Bit. D5 True Output Bit. D6 True Output Bit. D7 True Output Bit. D8 True Output Bit. D9 True Output Bit. D10 True Output Bit. D11 True Output Bit. D12 True Output Bit. D13 True Output Bit. Out-of-Range True Output Bit. RF ENABLE CMOS-compatible Control Pin. Optimizes the configuration of the analog front end. Connecting RF ENABLE to AGND optimizes SFDR performance for applications with analog input frequencies <210 MHz for 125 MSPS speed grade and <230 MHz for the 105 MSPS speed grade. For applications with analog inputs >225 MHz for the 125 MSPS speed grade and >230 MHz for the 105 MSPS speed grade, this pin should be connected to AVDD1 for optimum SFDR. Power dissipation from AVDD2 increases by 150 mW to 200 mW. Rev. 0 | Page 14 of 40 AD9445 EQUIVALENT CIRCUITS AVDD2 VIN+ 1kΩ 6pF DRVDD 3.5V T/H X1 AVDD2 1kΩ DX 6pF 05489-009 05489-006 VIN– Figure 6. Equivalent Analog Input Circuit Figure 9. Equivalent CMOS Digital Output Circuit VDD DRVDD DRVDD RF ENABLE, DCS MODE, OUTPUT MODE, DFS K 1.2V ILVDSOUT 05489-007 3.74kΩ 05489-010 30kΩ LVDS_BIAS Figure 10. Equivalent Digital Input Circuit, DFS, DCS MODE, OUTPUT MODE Figure 7. Equivalent LVDS_BIAS Circuit AVDD2 DRVDD 3kΩ 3kΩ CLK– CLK+ V DX– DX+ V V 2.5kΩ 2.5kΩ 05489-011 05489-008 V Figure 11. Equivalent Sample Clock Input Circuit Figure 8. Equivalent LVDS Digital Output Circuit Rev. 0 | Page 15 of 40 AD9445 TYPICAL PERFORMANCE CHARACTERISTICS AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, rated sample rate, LVDS mode, DCS enabled, TA = 25°C, 2.0 V p-p differential input, AIN = −1.0 dBFS, internal trimmed reference (nominal VREF = 1.0 V), unless otherwise noted. 0 0 125MSPS 30.3MHz @ –1.0dBFS SNR = 73.4dB ENOB = 12.1BITS SFDR = 94dBc –10 –20 –20 –30 –40 AMPLITUDE (dBFS) –50 –60 –70 –80 –90 –100 –40 –50 –60 –70 –80 –90 –100 –110 05489-012 –110 –120 –130 0 15.625 31.250 46.875 05489-015 AMPLITUDE (dBFS) –30 125MSPS 225.3MHz @ –1.0dBFS SNR = 72.9dB ENOB = 12.1BITS SFDR = 88dBc –10 –120 –130 62.500 0 15.625 FREQUENCY (MHz) Figure 12. AD9445-125 64k Point Single-Tone FFT/125 MSPS/30.3 MHz 62.500 0 125MSPS 100.3MHz @ –1.0dBFS SNR = 0dB ENOB = 12.1BITS SFDR = 96dBc –20 –30 125MSPS 300.3MHz @ –1.0dBFS SNR = 72.0dB ENOB = 11.8BITS SFDR = 87dBc –10 –20 –30 –40 AMPLITUDE (dBFS) –50 –60 –70 –80 –90 –100 –40 –50 –60 –70 –80 –90 –100 –110 05489-013 –110 –120 –130 0 15.625 31.250 46.875 05489-016 AMPLITUDE (dBFS) 46.875 Figure 15. AD9445-125 64k Point Single-Tone FFT/125 MSPS/225.3 MHz 0 –10 –120 –130 62.500 0 15.625 FREQUENCY (MHz) 31.250 46.875 62.500 FREQUENCY (MHz) Figure 13. AD9445-125 64k Point Single-Tone FFT/125 MSPS/100.3 MHz Figure 16. AD9445-125 64k Point Single-Tone FFT/125 MSPS/300.3 MHz 0 0 125MSPS 170.3MHz @ –1.0dBFS SNR = 73.2dB ENOB = 12.0BITS SFDR = 91dBc –10 –20 –30 125MSPS 450.3MHz @ –1.0dBFS SNR = 70.5dB ENOB = 11.6BITS SFDR = 69dBc –10 –20 –30 –40 AMPLITUDE (dBFS) –50 –60 –70 –80 –90 –100 –40 –50 –60 –70 –80 –90 –100 –110 05489-014 –110 –120 –130 0 15.625 31.250 46.875 05489-017 AMPLITUDE (dBFS) 31.250 FREQUENCY (MHz) –120 –130 62.500 0 FREQUENCY (MHz) 15.625 31.250 46.875 62.500 FREQUENCY (MHz) Figure 14. AD9445-125 64k Point Single-Tone FFT/125 MSPS/170.3 MHz Figure 17. AD9445-125 64k Point Single-Tone FFT/125 MSPS/450.3 MHz Rev. 0 | Page 16 of 40 AD9445 100 100 SFDR +85°C SFDR +85°C 95 95 SFDR –40°C SFDR +25°C 90 90 SFDR –40°C SFDR +25°C 85 85 SNR –40°C (dB) (dB) SNR +25°C 80 80 SNR –40°C 75 75 70 70 SNR +25°C SNR +85°C SNR +85°C 60 55 0 50 100 150 200 250 300 350 400 05489-021 65 05489-018 65 60 55 450 0 50 100 ANALOG INPUT FREQUENCY (MHz) Figure 18. AD9445-125 SNR/SFDR vs. Analog Input Frequency, 125 MSPS, 2.0 V p-p Input Range 100 150 200 250 300 350 400 450 ANALOG INPUT FREQUENCY (MHz) Figure 21. AD9445-125 SNR/SFDR vs. Analog Input Frequency, 125 MSPS, 3.2 V p-p Input Range 105 SFDR +25°C SFDR +85°C 95 125M SFDR dBc 100 90 95 105M SFDR dBc 85 SFDR –40°C 90 SNR –40°C 80 (dB) (dB) SNR +25°C 75 85 70 80 SNR +85°C 65 125M SNR dB 60 55 10 20 30 40 50 60 70 80 90 105M SNR dB 70 100 0 20 40 ANALOG INPUT FREQUENCY (MHz) 100 120 140 Figure 22. AD9445 Single-Tone SNR/SFDR vs. Sample Rate 2.3 MHz 120 120 SFDR dBFS SFDR dBFS 100 100 80 80 SNR dBFS (dB) SNR dBFS 60 40 60 40 SFDR dBc SFDR dBc 20 20 05489-020 (dB) 80 SAMPLE RATE (MSPS) Figure 19. AD9445-125 SNR/SFDR vs. Analog Input Frequency, 3.2 V p-p Input Range, 125 MSPS, CMOS Output Mode SNR dB 0 –100 60 –90 –80 –70 –60 –50 –40 –30 –20 –10 05489-023 0 05489-022 05489-019 75 SNR dB 0 –100 0 ANALOG INPUT AMPLITUDE (dB) –90 –80 –70 –60 –50 –40 –30 –20 –10 ANALOG INPUT AMPLITUDE (dB) Figure 20. AD9445-125 SNR/SFDR vs. Analog Input Level, 125 MSPS/225.3 MHz Figure 23. AD9445-125 SNR/SFDR vs. Analog Input Level, 125 MSPS/225.3 MHz, CMOS Output Mode Rev. 0 | Page 17 of 40 0 AD9445 0 0 105MSPS 30.3MHz @ –1.0dBFS SNR = 74.3dB ENOB = 12.2BITS SFDR = 92dBc –10 –20 –20 –30 –40 AMPLITUDE (dBFS) –50 –60 –70 –80 –90 –100 –40 –50 –60 –70 –80 –90 –100 –110 05489-024 –110 –120 –130 0 13.125 26.250 39.375 05489-027 AMPLITUDE (dBFS) –30 105MSPS 225.3MHz @ –1.0dBFS SNR = 73.0dB ENOB = 12.0BITS SFDR = 87dBc –10 –120 –130 52.500 0 13.125 FREQUENCY (MHz) Figure 24. AD9445-105 64k Point Single-Tone FFT/105 MSPS/30.3 MHz 52.500 0 105MSPS 100.3MHz @ –1.0dBFS SNR = 73.5dB ENOB = 11.8BITS SFDR = 93dBc –20 –30 105MSPS 300.3MHz @ –1.0dBFS SNR = 72.1dB ENOB = 11.8BITS SFDR = 87dBc –10 –20 –30 –40 AMPLITUDE (dBFS) –50 –60 –70 –80 –90 –100 –40 –50 –60 –70 –80 –90 –100 –110 05489-025 –110 –120 –130 0 13.125 26.250 39.375 05489-028 AMPLITUDE (dBFS) 39.375 Figure 27. AD9445-105 64k Point Single-Tone FFT/105 MSPS/225.3 MHz 0 –10 –120 –130 52.500 0 13.125 FREQUENCY (MHz) 26.250 39.375 52.500 FREQUENCY (MHz) Figure 25. AD9445-105 64k Point Single-Tone FFT/105 MSPS/100.3 MHz Figure 28. AD9445-105 64k Point Single-Tone FFT/105 MSPS/300.3 MHz 0 0 105MSPS 170.3MHz @ –1.0dBFS SNR = 73.6dB ENOB = 12.1BITS SFDR = 94dBc –10 –20 –30 105MSPS 450.3MHz @ –1.0dBFS SNR = 70.5dB ENOB = 11.6BITS SFDR = 70dBc –10 –20 –30 –40 AMPLITUDE (dBFS) –50 –60 –70 –80 –90 –100 –40 –50 –60 –70 –80 –90 –100 –110 05489-026 –110 –120 –130 0 13.125 26.250 39.375 05489-029 AMPLITUDE (dBFS) 26.250 FREQUENCY (MHz) –120 –130 52.500 0 FREQUENCY (MHz) 13.125 26.250 39.375 52.500 FREQUENCY (MHz) Figure 26. AD9445-105 64k Point Single-Tone FFT/105 MSPS/170.3 MHz Figure 29. AD9445-105 64k Point Single-Tone FFT/105 MSPS/450.3 MHz Rev. 0 | Page 18 of 40 AD9445 100 100 SFDR +25°C SFDR –40°C 95 95 SFDR +25°C 90 90 SFDR +85°C SFDR +85°C SFDR –40°C 85 80 (dB) (dB) 85 SNR –40°C 80 75 75 70 70 SNR –40°C SNR +25°C SNR +85°C SNR +85°C SNR +25°C 60 55 0 50 100 150 200 250 300 350 400 05489-033 65 05489-030 65 60 55 450 0 50 100 ANALOG INPUT FREQUENCY (MHz) Figure 30. AD9445-105 SNR/SFDR vs. Analog Input Frequency, 105 MSPS, 2.0 V p-p 200 250 300 350 400 450 Figure 33. AD9445-105 SNR/SFDR vs. Analog Input Frequency, 105 MSPS, 3.2 V p-p 100 100 SFDR +25°C SFDR +85°C 95 95 90 90 85 SFDR –40°C 80 SFDR dBc 85 SNR –40°C (dB) (dB) 150 ANALOG INPUT FREQUENCY (MHz) 80 75 SNR dB 75 70 SNR +25°C SNR +85°C 70 65 55 0 20 40 60 80 100 120 140 160 60 2.7 180 05489-034 65 05489-031 60 2.9 Figure 31. AD9445-105 SNR/SFDR vs. Analog Input Frequency, 3.2 V p-p Input Range, 105 MSPS, CMOS Output Mode 3.5 3.7 3.9 4.1 4.3 120 SFDR dBFS SFDR dBFS 100 100 80 80 SNR dBFS (dB) SNR dBFS 60 SFDR dBc 60 40 SFDR dBc 20 SNR dB 0 –100 –90 –80 –70 –60 –50 –40 –30 –20 –10 05489-035 20 05489-032 (dB) 3.3 Figure 34. AD9445-105 SNR/SFDR vs. Analog Input Common Mode, 105 MSPS/10.3 MHz 120 40 3.1 ANALOG INPUT COMMON-MODE VOLTAGE ANALOG INPUT FREQUENCY (MHz) SNR dB 0 –100 0 ANALOG INPUT AMPLITUDE (dB) –90 –80 –70 –60 –50 –40 –30 –20 –10 ANALOG INPUT AMPLITUDE (dB) Figure 32. AD9445-105 SNR/SFDR vs. Analog Input Level, 105 MSPS/225.3 MHz Figure 35. AD9445-105 SNR/SFDR vs. Analog Input Level, 105 MSPS/225.3 MHz, CMOS Output Mode Rev. 0 | Page 19 of 40 0 AD9445 0 0 125MSPS 30.3MHz @ –7.0dBFS 31.3MHz @ –7.0dBFS SFDR = 102dBFS –10 –20 –20 SFDR dBc –30 –40 SPUR AND IMD3 (dB) –50 –60 –70 –80 –90 –100 –40 WORST IMD3 dBc –50 –60 –70 –80 –90 –110 SFDR dBFS 05489-037 –120 –130 –140 13.625 0 27.250 40.875 –110 WORST IMD3 dBFS –120 –100 54.500 –90 –80 FREQUENCY (MHz) –60 –50 –40 0 0 –10 –10 –30 AMPLITUDE (dBFS) SFDR dBc –40 –50 WORST IMD3 dBc –70 –80 SFDR dBFS –90 –90 –80 –70 –40 –50 –60 –70 –80 –90 –100 –60 –50 –40 –120 05489-038 WORST IMD3 dBFS –120 –100 0 –110 –100 –110 –10 –30 –20 –10 05489-042 –60 –20 105MSPS 30.3MHz @ –7.0dBFS 31.3MHz @ –7.0dBFS SFDR = 102dBFS –20 –30 –30 Figure 39. AD9445-125 Two-Tone SFDR vs. Analog Input Level 125 MSPS/170.3 MHz, 171.3 MHz –20 SPUR AND IMD3 (dB) –70 FUNDAMENTAL LEVEL (dB) Figure 36. AD9445-125 64k Point Two-Tone FFT/ 125 MSPS/30.3 MHz, 31.3 MHz –130 –140 0 0 13.125 FUNDAMENTAL LEVEL (dB) 26.250 39.375 52.500 FREQUENCY (MHz) Figure 37. AD9445-125 Two-Tone SFDR vs. Analog Input Level 125 MSPS/30.3 MHz, 31.3 MHz Figure 40. AD9445-105 64k Point Two-Tone FFT/105 MSPS/30.3 MHz, 31.3 MHz 0 0 125MSPS 170.3MHz @ –7.0dBFS 171.3MHz @ –7.0dBFS SFDR = 91dBFS –10 –20 –30 –10 –20 –30 SPUR AND IMD3 (dB) –40 –50 –60 –70 –80 –90 –100 SFDR dBc –40 –50 WORST IMD3 dBc –60 –70 –80 –90 –110 SFDR dBFS –100 –120 05489-040 AMPLITUDE (dBFS) 05489-041 –100 –130 –140 0 13.625 27.250 40.875 –110 –120 –100 54.500 FREQUENCY (MHz) 05489-043 AMPLITUDE (dBFS) –30 –10 WORST IMD3 dBFS –90 –80 –70 –60 –50 –40 –30 –20 –10 0 FUNDAMENTAL LEVEL (dB) Figure 38. AD9445-125 64k Point Two-Tone FFT/ 125 MSPS/170.3 MHz, 171.3 MHz Figure 41. AD9445-105 Two-Tone SFDR vs. Analog Input Level 105 MSPS/30.3 MHz, 31.3 MHz Rev. 0 | Page 20 of 40 AD9445 25000 30000 23754 SAMPLE SIZE = 65538 22190 26294 25000 20000 FREQUENCY 10000 9003 7968 10000 5000 05489-044 5000 1355 1127 75 62 0 N–4 N–3 N–2 N–1 N 2 3493 3350 3 0 N+1 N+2 N+3 N+4 307 227 N–4 N–3 N–2 N–1 OUTPUT CODE N 2 N+1 N+2 N+3 N+4 OUTPUT CODE Figure 42. AD9445-125 Grounded Input Histogram Figure 45. AD9445-105 Grounded Input Histogram 0 0 105MSPS 170.3MHz @ –7.0dBFS 171.3MHz @ –7.0dBFS SFDR = 92dBFS –10 –20 –30 –0.1 –0.2 –40 GAIN ERROR (%FSR) –50 –60 –70 –80 –90 –100 –0.3 –0.4 –0.5 –0.6 –110 –0.7 05489-045 –120 –130 –140 0 13.125 26.250 39.375 –0.8 –40 52.500 05489-048 AMPLITUDE (dBFS) 16117 15743 15000 05489-047 FREQUENCY 20000 15000 –20 0 FREQUENCY (MHz) 20 40 60 80 TEMPERATURE (°C) Figure 43. AD9445-105 64k Point Two-Tone FFT/105 MSPS/170.3 MHz, 171.3 MHz Figure 46. AD9445-125 Gain vs. Temperature 0.4 0 –10 0.3 –20 0.2 DNL ERROR (LSB) SFDR dBc –40 WORST IMD3 dBc –60 –70 –80 –90 –100 –120 –100 WORST IMD3 dBFS –90 –80 –70 0 –0.1 –0.2 SFDR dBFS –110 0.1 –60 –0.3 –50 –40 –30 –20 –10 –0.4 0 0 4096 8192 12288 16384 OUTPUT CODE FUNDAMENTAL LEVEL (dB) Figure 44. AD9445-105 Two-Tone SFDR vs. Analog Input Level 105 MSPS/170.3 MHz, 171.3 MHz 05489-049 –50 05489-046 SPUR AND IMD3 (dB) –30 Figure 47. AD9445-105 DNL Error vs. Output Code, 105 MSPS, 10.3 MHz Rev. 0 | Page 21 of 40 AD9445 0.4 1.0 0.8 0.3 0.6 0.4 INL ERROR (LSB) DNL ERROR (LSB) 0.2 0.1 0 –0.1 0.2 0 –0.2 –0.4 –0.2 05489-050 –0.4 0 4096 8192 12288 05489-053 –0.6 –0.3 –0.8 –1.0 0 16384 4096 8192 OUTPUT CODE 12288 16384 OUTPUT CODE Figure 48. AD9445-125 DNL Error vs. Output Code, 125 MSPS, 10.3 MHz Figure 51. AD9445-125 INL Error vs. Output Code, 125 MSPS, 10.3 MHz 400 1.014 350 1.012 300 AVDD1 ISUPPLY (mA) VREF 1.010 1.008 250 200 AVDD2 150 1.006 100 DRVDD 1.004 –20 0 20 40 60 05489-066 05489-051 1.002 –40 50 0 20 0 80 40 60 80 120 140 160 Figure 52. AD9445-105 Power Supply Current vs. Sample Rate 10.3 MHz @ −1 dBFS Figure 49. AD9445-125 VREF vs. Temperature 78 0.5 0.4 77 170.3MHz SNR dB 0.3 76 0.2 0.1 75 225.3MHz SNR dB (dB) INL ERROR (LSB) 100 SAMPLE RATE (MSPS) TEMPERATURE (°C) 0 74 –0.1 300.3MHz SNR dB 73 –0.2 –0.3 –0.5 0 4096 8192 12288 71 1.8 16384 05489-067 05489-052 72 –0.4 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 ANALOG INPUT RANGE (V p-p) OUTPUT CODE Figure 50. AD9445-105 INL Error vs. Output Code, 105 MSPS, 10.3 MHz Figure 53. AD9445-125 SNR vs. Analog Input Range, 125 MSPS/170.3 MHz, 225.3 MHz, 300.3 MHz Rev. 0 | Page 22 of 40 AD9445 78 95 77 170.3MHz SFDR dBc 90 76 170.3MHz SFDR dBc 75 85 (dB) (dB) 225.3MHz SFDR dBc 225.3MHz SFDR dBc 74 80 300.3MHz SFDR dBc 73 05489-068 71 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 300.3MHz SFDR dBc 70 1.8 4.2 2.0 2.2 ANALOG INPUT RANGE (V p-p) 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 ANALOG INPUT RANGE (V p-p) Figure 54. AD9445-105 SNR vs. Analog Input Range, 105 MSPS/170.3 MHz, 225.3 MHz, 300.3 MHz Figure 57. AD9445-105 SFDR vs. Analog Input Range, 105 MSPS/170.3 MHz, 225.3 MHz, 300.3 MHz 400 81 350 80 300 79 AVDD1 250 105M SNR dBFS 78 (dB) ISUPPLY (mA) 05489-071 75 72 200 AVDD2 77 125M SNR dBFS 150 76 100 DRVDD 0 20 0 40 60 80 100 120 140 74 1.8 160 SAMPLE RATE (MSPS) 170.3MHz SFDR dBc (dB) 85 80 225.3MHz SFDR dBc 05489-070 75 300.3MHz SFDR dBc 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 Figure 58. SNR vs. Analog Input Range, 2.3 MHz @ −30 dBFS 95 70 1.8 2.0 ANALOG INPUT RANGE (V p-p) Figure 55. AD9445-125 Power Supply Current vs. Sample Rate 10.3 MHz @ −1 dBFS 90 05489-039 75 05489-069 50 3.6 3.8 4.0 4.2 ANALOG INPUT RANGE (V p-p) Figure 56. AD9445-125 SFDR vs. Analog Input Range, 125 MSPS/170.3 MHz, 225.3 MHz, 300.3 MHz Rev. 0 | Page 23 of 40 AD9445 THEORY OF OPERATION The AD9445 architecture is optimized for high speed and ease of use. The analog inputs drive an integrated, high bandwidth track-and-hold circuit that samples the signal prior to quantization by the 14-bit pipeline ADC core. The device includes an on-board reference and input logic that accepts TTL, CMOS, or LVPECL levels. The digital output logic levels are user selectable as standard 3 V CMOS or LVDS (ANSI-644 compatible) via the OUTPUT MODE pin. connected to AGND). Because of this trim and the maximum ac performance provided by the 2.0 V p-p analog input range, there is little benefit to using analog input ranges <2 V p-p. Users are cautioned that the differential nonlinearity of the ADC varies with the reference voltage. Configurations that use <2.0 V p-p may exhibit missing codes and, therefore, degraded noise and distortion performance. VIN+ ANALOG INPUT AND REFERENCE OVERVIEW VIN– A stable and accurate 0.5 V band gap voltage reference is built into the AD9445. The input range can be adjusted by varying the reference voltage applied to the AD9445, using either the internal reference or an externally applied reference voltage. The input span of the ADC tracks reference voltage changes linearly. REFT ADC CORE 0.1μF 0.1μF + 10μF REFB 0.1μF VREF 10μF + 0.1μF SELECT LOGIC Internal Reference Connection A comparator within the AD9445 detects the potential at the SENSE pin and configures the reference into three possible states, which are summarized in Table 9. If SENSE is grounded, the reference amplifier switch is connected to the internal resistor divider (see Figure 59), setting VREF to ~1.0 V. Connecting the SENSE pin to VREF switches the reference amplifier output to the SENSE pin, completing the loop and providing a ~1.0 V reference output. If a resistor divider is connected as shown in Figure 60, the switch again sets to the SENSE pin. This puts the reference amplifier in a noninverting mode with the VREF output defined as SENSE 05489-054 0.5V AD9445 Figure 59. Internal Reference Configuration VIN+ VIN– REFT ADC CORE R2 ⎞ VREF = 0.5 V × ⎛⎜1 + ⎟ ⎝ R1 ⎠ 0.1μF 0.1μF + 10μF REFB 0.1μF VREF In all reference configurations, REFT and REFB drive the analog-to-digital conversion core and establish its input span. The input range of the ADC always equals twice the voltage at the reference pin for either an internal or an external reference. + 10μF 0.1μF SELECT LOGIC R2 SENSE R1 0.5V The internal reference voltage is trimmed during the production test to adjust the gain (analog input voltage range) of the AD9445. Therefore, there is little advantage to the user supplying an external voltage reference to the AD9445. The gain trim is performed with the AD9445 input range set to 2.0 V p-p nominal (SENSE AD9445 Figure 60. Programmable Reference Configuration Table 9. Reference Configuration Summary Selected Mode External Reference Programmable Reference SENSE Voltage AVDD1 0.2 V to VREF Resulting VREF (V) N/A Internal Fixed Reference AGND to 0.2 V 1.0 R2 ⎞ (See Figure 60) 0.5 × ⎛⎜ 1 + ⎟ R1 ⎠ ⎝ Resulting Differential Span (V p-p) 2 × external reference 2 × VREF 2.0 Rev. 0 | Page 24 of 40 05489-055 Internal Reference Trim AD9445 External Reference Operation Analog Inputs As with most new high speed, high dynamic range ADCs, the analog input to the AD9445 is differential. Differential inputs improve on-chip performance because signals are processed through attenuation and gain stages. Most of the improvement is a result of differential analog stages having high rejection of even-order harmonics. There are also benefits at the PCB level. First, differential inputs have high common-mode rejection of stray signals, such as ground and power noise. Second, they provide good rejection of common-mode signals, such as local oscillator feedthrough. The specified noise and distortion of the AD9445 cannot be realized with a single-ended analog input, so such configurations are discouraged. Contact sales for recommendations of other 14-bit ADCs that support singleended analog input configurations. 1V p-p 3.5V VIN– DIGITAL OUT = ALL 1s Figure 61. Differential Analog Input Range for VREF = 1.0 V Therefore, the analog source driving the AD9445 should be accoupled to the input pins. The recommended method for driving the analog input of the AD9445 is to use an RF transformer to convert single-ended signals to differential (see Figure 62). Series resistors between the output of the transformer and the AD9445 analog inputs help isolate the analog input source from switching transients caused by the internal sample-and-hold circuit. The series resistors, along with the 1 kΩ resisters connected to the internal 3.5 V bias, must be considered in impedance matching the transformer input. For example, if RT is set to 51 Ω, RS is set to 33 Ω, and there is a 1:1 impedance ratio transformer, the input will match a 50 Ω source with a full-scale drive of 10.0 dBm. The 50 Ω impedance matching can also be incorporated on the secondary side of the transformer, as shown in the evaluation board schematic (see Figure 67). ANALOG INPUT SIGNAL RT RS ADT1–1WT VIN+ AD9445 RS With the 1 V reference, which is the nominal value (see the Internal Reference Trim section), the differential input range of the AD9445 analog input is nominally 2.0 V p-p or 1.0 V p-p on each input (VIN+ or VIN−). The AD9445 analog input voltage range is offset from ground by 3.5 V. Each analog input connects through a 1 kΩ resistor to the 3.5 V bias voltage and to the input of a differential buffer. The internal bias network on the input properly biases the buffer for maximum linearity and range (see the Equivalent Circuits section). DIGITAL OUT = ALL 0s 05489-056 When the SENSE pin is tied to AVDD, the internal reference is disabled, allowing the use of an external reference. An internal reference buffer loads the external reference with an equivalent 7 kΩ load. The internal buffer still generates the positive and negative full-scale references, REFT and REFB, for the ADC core. The input span is always twice the value of the reference voltage; therefore, the external reference must be limited to a maximum of 1.6 V. VIN+ VIN– 0.1μF 05489-057 The AD9445’s internal reference is trimmed to enhance the gain accuracy of the ADC. An external reference may be more stable over temperature, but the gain of the ADC is not likely to improve. Figure 49 shows the typical drift characteristics of the internal reference in both 1 V and 0.5 V modes. Figure 62. Transformer-Coupled Analog Input Circuit High IF Applications In applications where the analog input frequency range is >100 MHz, the phase and amplitude matching at the analog inputs becomes critical to optimize performance of the ADC. The circuit in Figure 63 can be used to optimize the matching of these parameters. This configuration uses a double balun configuration that has low parasitics, high bandwidth, and parasitic cancellation. ETC1–1–13 ETC1–1–13 33Ω 25Ω 50Ω SOURCE 0.1μF 25Ω VIN+ 0.1μF 33Ω AD9445 VIN– 05489-058 CT Figure 63. Double Balun-Coupled Analog Input Circuit Rev. 0 | Page 25 of 40 AD9445 Typical high speed ADCs use both clock edges to generate a variety of internal timing signals and, as a result, may be sensitive to the clock duty cycle. Commonly a 5% tolerance is required on the clock duty cycle to maintain dynamic performance characteristics. The AD9445 contains a clock duty cycle stabilizer (DCS) that retimes the nonsampling edge, providing an internal clock signal with a nominal 50% duty cycle. Noise and distortion performance are nearly flat for a 30% to 70% duty cycle with the DCS enabled. The DCS circuit locks to the rising edge of CLK+ and optimizes timing internally. This allows for a wide range of input duty cycles at the input without degrading performance. Jitter in the rising edge of the input is still of paramount concern and is not reduced by the internal stabilization circuit. The duty cycle control loop does not function for clock rates of less than 30 MHz nominally. The loop is associated with a time constant that should be considered in applications where the clock rate can change dynamically, requiring a wait time of 1.5 μs to 5 μs after a dynamic clock frequency increase or decrease before the DCS loop is relocked to the input signal. During the time that the loop is not locked, the DCS loop is bypassed, and the internal device timing is dependent on the duty cycle of the input clock signal. In such an application, it may be appropriate to disable the duty cycle stabilizer. In all other applications, enabling the DCS circuit is recommended to maximize ac performance. The DCS circuit is controlled by the DCS MODE pin; a CMOS logic low (AGND) on DCS MODE enables the duty cycle stabilizer, and logic high (AVDD1 = 3.3 V) disables the controller. The AD9445 input sample clock signal must be a high quality, extremely low phase noise source to prevent degradation of performance. Maintaining 14-bit accuracy places a premium on the encode clock phase noise. SNR performance can easily degrade by 3 dB to 4 dB with 70 MHz analog input signals when using a high jitter clock source. (See the AN-501 Application Note, Aperture Uncertainty and ADC System Performance.) For optimum performance, the AD9445 must be clocked differentially. The sample clock inputs are internally biased to ~2.2 V, and the input signal is usually ac-coupled into the CLK+ and CLK− pins via a transformer or capacitors. Figure 64 shows one preferred method for clocking the AD9445. The clock source (low jitter) is converted from singleended to differential using an RF transformer. The back-to-back If a low jitter clock is available, it may help to band-pass filter the clock reference before driving the ADC clock inputs. Another option is to ac couple a differential ECL/PECL signal to the encode input pins, as shown in Figure 65. ADT1–1WT CLOCK SOURCE CLK+ 0.1μF AD9445 CLK– HSMS2812 DIODES 05489-059 Any high speed ADC is extremely sensitive to the quality of the sampling clock provided by the user. A track-and-hold circuit is essentially a mixer, and any noise, distortion, or timing jitter on the clock is combined with the desired signal at the analog-todigital output. For that reason, considerable care was taken in the design of the clock inputs of the AD9445, and the user is advised to give careful thought to the clock source. Schottky diodes across the secondary of the transformer limit clock excursions into the AD9445 to approximately 0.8 V p-p differential. This helps prevent the large voltage swings of the clock from feeding through to other portions of the AD9445 and limits the noise presented to the sample clock inputs. Figure 64. Crystal Clock Oscillator, Differential Encode VT 0.1μF ENCODE ECL/ PECL 0.1μF AD9445 ENCODE VT 05489-060 CLOCK INPUT CONSIDERATIONS Figure 65. Differential ECL for Encode Jitter Considerations High speed, high resolution ADCs are sensitive to the quality of the clock input. The degradation in SNR at a given input frequency (fINPUT) and rms amplitude due only to aperture jitter (tJ) can be calculated using the following equation: SNR = 20 log[2πfINPUT × tJ] In the equation, the rms aperture jitter represents the rootmean-square of all jitter sources, which includes the clock input, analog input signal, and ADC aperture jitter specification. IF undersampling applications are particularly sensitive to jitter, see Figure 66. The clock input should be treated as an analog signal in cases where aperture jitter may affect the dynamic range of the AD9445. Power supplies for clock drivers should be separated from the ADC output driver supplies to avoid modulating the clock signal with digital noise. Low jitter crystal-controlled oscillators make the best clock sources. If the clock is generated from another type of source (by gating, dividing, or another method), it should be synchronized by the original clock during the last step. Rev. 0 | Page 26 of 40 AD9445 75 0.2ps 70 65 SNR (dBc) 0.5ps 60 1.0ps 1.5ps 55 2.0ps 2.5ps 50 3.0ps 40 1 10 100 INPUT FREQUENCY (MHz) 1000 05489-061 45 Figure 66. SNR vs. Input Frequency and Jitter POWER CONSIDERATIONS Care should be taken when selecting a power source. The use of linear dc supplies is highly recommended. Switching supplies tend to have radiated components that may be received by the AD9445. Each of the power supply pins should be decoupled as closely to the package as possible using 0.1 μF chip capacitors. The AD9445 has separate digital and analog power supply pins. The analog supplies are denoted AVDD1 (3.3 V) and AVDD2 (5 V), and the digital supply pins are denoted DRVDD. Although the AVDD1 and DRVDD supplies can be tied together, best performance is achieved when the supplies are separate. This is because the fast digital output swings can couple switching current back into the analog supplies. Note that both AVDD1 and AVDD2 must be held within 5% of the specified voltage. The DRVDD supply of the AD9445 is a dedicated supply for the digital outputs in either LVDS or CMOS output mode. When in LVDS mode, the DRVDD should be set to 3.3 V. In CMOS mode, the DRVDD supply can be connected from 2.5 V to 3.6 V for compatibility with the receiving logic. DIGITAL OUTPUTS LVDS Mode The off-chip drivers on the chip can be configured to provide LVDS-compatible output levels via Pin 3 (OUTPUT MODE). LVDS outputs are available when OUTPUT MODE is CMOS logic high (or AVDD1 for convenience) and a 3.74 kΩ RSET resistor is placed at Pin 5 (LVDS_BIAS) to ground. Dynamic performance, including both SFDR and SNR, is maximized when the AD9445 is used in LVDS mode; designers are encouraged to take advantage of this mode. The AD9445 outputs include complimentary LVDS outputs for each data bit (Dx+/Dx−), the overrange output (OR+/OR−), and the output data clock output (DCO+/DCO−). The RSET resistor current is multiplied on-chip, setting the output current at each output equal to a nominal 3.5 mA (11 × IRSET). A 100 Ω differential termination resistor placed at the LVDS receiver inputs results in a nominal 350 mV swing at the receiver. LVDS mode facilitates interfacing with LVDS receivers in custom ASICs and FPGAs that have LVDS capability for superior switching performance in noisy environments. Single point-to-point net topologies are recommended, with a 100 Ω termination resistor placed as close to the receiver as possible. It is recommended to keep the trace length less than 2 inches and to keep differential output trace lengths as equal as possible. CMOS Mode In applications that can tolerate a slight degradation in dynamic performance, the AD9445 output drivers can be configured to interface with 2.5 V or 3.3 V logic families by matching DRVDD to the digital supply of the interfaced logic. CMOS outputs are available when OUTPUT MODE is CMOS logic low (or AGND for convenience). In this mode, the output data bits, Dx, are single-ended CMOS, as is the overrange output, OR. The output clock is provided as a differential CMOS signal, DCO+/DCO−. Lower supply voltages are recommended to avoid coupling switching transients back to the sensitive analog sections of the ADC. The capacitive load to the CMOS outputs should be minimized, and each output should be connected to a single gate through a series resistor (220 Ω) to minimize switching transients caused by the capacitive loading. TIMING The AD9445 provides latched data outputs with a pipeline delay of 13 clock cycles. Data outputs are available one propagation delay (tPD) after the rising edge of CLK+. Refer to Figure 2 and Figure 3 for detailed timing diagrams. Rev. 0 | Page 27 of 40 AD9445 OPERATIONAL MODE SELECTION RF ENABLE Data Format Select The RF ENABLE pin is a CMOS-compatible control pin that optimizes the configuration of the AD9445 analog front end. The crossover analog input frequency for determining the RF ENABLE connection differs for the 105 MSPS and 125 MSPS speed grades. For the 125 MSPS speed grade, connecting the RF ENABLE to AGND optimizes SFDR performance for applications with analog input frequencies <210 MHz. For applications with analog inputs >210 MHz, this pin should be connected to AVDD1 for optimum SFDR performance. Connecting this pin to AVDD1 reconfigures the ADC, thereby improving high IF and RF spurious performance. Operating in this mode increases power dissipation from AVDD2 by 150 mW to 200 mW. For the 105 MSPS speed grade, connecting RF ENABLE to AGND optimizes SFDR performance for applications with analog input frequencies <230 MHz. For applications with analog inputs >230 MHz, this pin should be connected to AVDD1 to optimize performance. The data format select (DFS) pin of the AD9445 determines the coding format of the output data. This pin is 3.3 V CMOScompatible, with logic high (or AVDD1, 3.3 V) selecting twos complement and DFS logic low (AGND) selecting offset binary format. Table 10 summarizes the output coding. Output Mode Select The OUPUT MODE pin controls the logic compatibility, as well as the pinout of the digital outputs. This pin is a CMOS-compatible input. With OUTPUT MODE = 0 (AGND), the AD9445 outputs are CMOS compatible, and the pin assignment for the device is as defined in Table 8. With OUTPUT MODE = 1 (AVDD1, 3.3 V), the AD9445 outputs are LVDS compatible, and the pin assignment for the device is as defined in Table 7. Duty Cycle Stabilizer The DCS circuit is controlled by the DCS MODE pin; a CMOS logic low (AGND) on DCS MODE enables the DCS, and logic high (AVDD1, 3.3 V) disables the controller. Table 10. Digital Output Coding Code 16,383 8192 8191 0 VIN+ − VIN− Input Span = 3.2 V p-p (V) +1.600 0 −0.000195 −1.60 VIN+ − VIN− Input Span = 2 V p-p (V) +1.000 0 −0.000122 −1.00 Digital Output Offset Binary (D13••••••D0) 11 1111 1111 1111 10 0000 0000 0000 01 1111 1111 1111 00 0000 0000 0000 Rev. 0 | Page 28 of 40 Digital Output Twos Complement (D13••••••D0) 01 1111 1111 1111 00 0000 0000 0000 11 1111 1111 1111 10 0000 0000 0000 AD9445 EVALUATION BOARD Evaluation boards are offered to configure the AD9445 in either CMOS or LVDS mode only. This design represents a recommended configuration for using the device over a wide range of sampling rates and analog input frequencies. These evaluation boards provide all the support circuitry required to operate the ADC in its various modes and configurations. Complete schematics are shown in Figure 67 through Figure 70. Gerber files are available from engineering applications demonstrating the proper routing and grounding techniques that should be applied at the system level. The LVDS mode evaluation boards include an LVDS-to-CMOS translator, making them compatible with the high speed ADC FIFO evaluation kit (HSC-ADC-EVALA-SC). The kit includes a high speed data capture board that provides a hardware solution for capturing up to 32 kB samples of high speed ADC output data in a FIFO memory chip (user upgradeable to 256 kB samples). Software is provided to enable the user to download the captured data to a PC via the USB port. This software also includes a behavioral model of the AD9445 and many other high speed ADCs. It is critical that signal sources with very low phase noise (<60 fsec rms jitter) be used to realize the ultimate performance of the converter. Proper filtering of the input signal to remove harmonics and lower the integrated noise at the input is also necessary to achieve the specified noise performance. Behavioral modeling of the AD9445 is also available at www.analog.com/ADIsimADC. The ADIsimADC™ software supports virtual ADC evaluation using ADI proprietary behavioral modeling technology. This allows rapid comparison between the AD9445 and other high speed ADCs with or without hardware evaluation boards. The evaluation boards are shipped with a 115 V ac to 6 V dc power supply. The evaluation boards include low dropout regulators to generate the various dc supplies required by the AD9445 and its support circuitry. Separate power supplies are provided to isolate the DUT from the support circuitry. Each input configuration can be selected by proper connection of various jumpers (see Figure 67). The user can choose to remove the translator and terminations to access the LVDS outputs directly. Rev. 0 | Page 29 of 40 Rev. 0 | Page 30 of 40 Figure 67. AD9445 Evaluation Board Schematic C5 0.1μF PRI SEC TOUTB CT 4 3 2 5 1 GND T2 GND GND C8 0.1μF R6 36Ω R4 36Ω C7 0.1μF C51 10μF R28 33Ω R35 33Ω R9 DNP C9 0.1μF C3 0.1μF OPTIONAL TINB 4 3 TOUT PRI 6 2 GND ETC1-1-13 1 5 TOUTB C12 0.1μF TOUT GND C40 0.1μF GND C86 0.1μF C91 0.1μF NC E15 SEC CT PRI 5 4 2 3 1 T5 ADT1-1WT TINB GND C98 DNP GND C39 10μF GND C13 DNP U1 AD9445/AD9446 ENC AGND AVDD1 AVDD2 AVDD1 AVDD2 AVDD1 AVDD1 AVDD1 AVDD2 AVDD2 AVDD2 AVDD2 AVDD2 AVDD2 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 GND ANALOG L1 10nH E25 E27 D0_T D0_C DRVDD DRGND AGND AVDD1 AVDD1 AVDD1 AGND ENCB 05489-062 J4 SMBMST T1 ETC1-1-13 E41 E24 GND EXTREF GND E26 + R5 DNP GND R2 GND DNP R1 DNP VCC EPAD DCS MODE DNC OUTPUT MODE DFS LVDSBIAS AVDD1 SENSE VREF AGND REFT REFB AVDD2 AVDD2 AVDD2 AVDD2 AVDD2 AVDD2 AVDD1 AVDD1 AVDD1 AGND VIN+ VIN– AGND AVDD2 DRVDD D11_C D11_T D12_C D12_T D13_C D13_T D14_C D14_T D15_C D15_T DRGND DRVDD OR_C OR_T AGND AVDD1 AVDD1 AVDD1 AVDD1 AVDD1 AVDD1 AGND AGND AGND R3 3.74kΩ GND VCC SCLK 1 2 3 4 5 6 VCC 7 8 9 GND 10 11 12 5V C2 13 5V 0.1μF 14 5V 5V 15 16 5V 17 5V 18 VCC 19 VCC 20 VCC 21 GND 22 23 24 GND 25 5V R11 1kΩ GND DRGND D10_T D10_C D9_T D9_C D8_T D8_C DCO DCOB D7_T D7_C DRVDD DRGND D6_T D6_C D5_T D5_C D4_T D4_C D3_T D3_C D2_T D2_C D1_T D1_C 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 GND VCC GND 5V E2 E3 D5_T D5_C D4_T D4_C D3_T D3_C D2_T D2_C D1_T D1_C D7_T D7_C DRVDD DRGND D6_T D6_C D8_T/D1_Y D8_C/D0_Y DR DRB D10_T/D5_Y D10_C/D4_Y D9_T/D3_Y D9_C/D2_Y DRGND XTALPWR EXTREF DRGND DRVDD GND VCC 101 E9 D12_C/D8_Y D12_T/D9_Y D13_C/D10_Y D13_T/D11_Y D14_C/D12_Y D14_T/D13_Y D15_C/D14_Y (MSB) D15_T/D15_Y DRGND DRVDD DOR_C DOR_T/DOR_Y GND VCC VCC VCC VCC VCC VCC GND 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 GND GND DRVDD D11_C/D6_Y D11_T/D7_Y E14 E10 VCC E1 E5 GND E4 DRGND E6 H3 MTHOLE6 E18 H4 MTHOLE6 VCC H2 MTHOLE6 E19 H1 MTHOLE6 E66 GND VCC 1 P1 2 P2 3 P3 4 P4 1 P1 2 P2 3 P3 4 P4 GND P22 P21 PTMICRO4 PTMICRO4 AD9445 D0_T D0_C (LSB) DRVDD DRGND GND VCC VCC VCC GND ENCB ENC GND VCC 5V VCC 5V VCC VCC VCC 5V SEC GND R8 50Ω Rev. 0 | Page 31 of 40 Figure 68. AD9445 Evaluation Board Schematic (Continued) 05489-063 1 3 1 3 2 C33 10μF GND + GND VIN 5VX + 4 GND C89 10μF OUT 5V IN OUT1 GND ADP3338 L3 FERRITE L4 FERRITE L5 FERRITE PJ-102A 5V VCC DRVDD U14 2 C26 0.1μF 4 3 DNP CR2 3 2 1 3 C34 10μF VIN 5VX GND 5VX VCCX GND + 2 DRVDDX C42 PRI SEC 0.1μF GND 6 2 1 NC 5 1 VCCX 4 VXTAL 3.3V U7 IN OUT1 GND ADP3338 OUT C87 10μF GND + ENC ENCB CR2 TO MAKE LAYOUT AND PARASITIC LOADING SYMMETRICAL T3 ADT1-1WT P4 POWER OPTIONS XTALINPUT J1 SMBMST C36 DNP R39 0Ω ENCODE 1 GND 2 3 J5 SMBMST R7 DNP CR1 GND 3 2 1 C6 10μF GND + VIN VCCX GND GND GND VEE VCC DRVDDX L2 DNP 7 14 + C88 10μF DRGND + 4 DRGND U3 3.3V IN OUT1 GND + C4 10μF VIN DRVDDX DRGND DRGND 3 2 1 XTALINPUT C41 0.1μF ADP3338 1 8 C1 10μF OUT ~OUT OUT U6 ECLOSC GND XTALPWR 5V C44 10μF GND + E30 VXTAL E20 E31 VXTAL OPTIONAL ENCODE CIRCUITS AD9445 AD9445 BYPASS CAPACITORS VCC + C64 10μF C43 0.1μF C35 0.1μF C32 0.1μF C14 XX C17 XX C30 0.01μF C28 0.1μF C27 0.1μF C90 0.1μF C50 0.1μF C60 0.1μF C10 0.1μF C61 0.1μF C75 0.1μF GND VCC C11 XX C16 XX C15 XX C31 XX C38 XX C29 XX C19 XX C69 XX C70 XX C45 XX C37 0.1μF C48 0.1μF C18 0.1μF GND DRVDD DRVDD + C65 10μF C47 0.1μF C23 0.1μF C21 0.1μF C20 0.1μF DRGND C49 XX DRGND 5V EXTREF + C56 10μF C85 0.1μF C53 0.1μF C52 0.1μF C58 0.01μF GND + C55 10μF GND 5V C72 XX C73 XX C94 0.1μF C95 0.1μF C108 XX C109 XX C110 XX C59 0.1μF C93 0.1μF C96 0.1μF GND C22 0.1μF C97 0.1μF C84 0.1μF GND Figure 69. AD9445 Evaluation Board Schematic (Continued) Rev. 0 | Page 32 of 40 C46 0.1μF 05489-064 5V Rev. 0 | Page 33 of 40 Figure 70. AD9445 Evaluation Board Schematic (Continued) 05489-065 DRGND D0_T D1_T D2_T D3_T D4_T D5_T D6_T D7_T DR D8_T/D1_Y D9_T/D3_Y D10_T/D5_Y D11_T/D7_Y D12_T/D9_Y D13_T/D11_Y D14_T/D13_Y D15_T/D15_Y DOR_T/DOR_Y DRGND 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 D3_C D2_C D1_C D0_C DRGND P9 9 P7 7 P5 5 P3 3 P1 1 DRGND DRVDD D4_C P11 11 D5_C DRB P19 19 P13 13 D8_C/DO_Y P21 21 D6_C D9_C/D2_Y P23 23 P15 15 D10_C/D4_Y P25 25 D7_C D11_C/D6_Y P27 27 P17 17 D12_C/D8_Y D14_C/D12_Y P33 33 P29 29 D15_C/D14_Y P35 35 D13_C/D10_Y DOR_C P37 37 P31 31 DRGND P6 C40MS P2 P4 P6 P8 P10 P12 P14 P16 P18 P20 P22 P24 P26 P28 P30 P32 P34 P36 P38 P40 P39 39 C76 0.1μF D15_T/D15_Y D15_C/D14_Y D14_T/D13_Y D14_C/D12_Y D13_T/D11_Y D13_C/D10_Y D12_T/D9_Y D12_C/D8_Y D11_T/D7_Y D11_C/D6_Y D10_T/D5_Y D10_C/D4_Y D9_T/D3_Y D9_C/D2_Y D8_T/D1_Y D8_C/D0_Y D7_T D7_C D6_T D6_C D5_T D5_C D4_T D4_C D3_T D3_C D2_T D2_C D1_T D1_C D0_T D0_C DOR_T/DOR_Y DOR_C DR DRB C82 0.1μF 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 1 2 3 4 5 6 7 8 EN_1_2 1Y 2Y VCC GND 3Y 4Y EN_3_4 C77 0.1μF A1A A1B A2A A2B A3A A3B A4A A4B B1A B1B B2A B2B B3A B3B B4A B4B C1A C1B C2A C2B C3A C3B C4A C4B D1A D1B D2A D2B D3A D3B D4A D4B C78 0.1μF GND VCC1 VCC2 GND1 ENA A1Y A2Y A3Y A4Y ENB B1Y B2Y B3Y B4Y GND2 VCC3 VCC4 GND3 C1Y C2Y C3Y C4Y ENC D1Y D2Y D3Y D4Y END GND4 VCC5 VCC6 GND5 U8 SN75LVDS386 1A 1B 2A 2B 3A 3B 4A 4B U15 SN75LVDT390 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 16 15 14 13 12 11 10 9 DRVDD DRGND DRVDD DRVDD DRGND DRVDD DRGND DRVDD DRVDD DRGND DRVDD DRGND DRVDD DRVDD DRGND DRVDD DRVDD 0Ω R19 DRVDD 0Ω DRGND R10 DRVDD ORO DRO 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 9 10 11 12 13 14 15 16 RZ4 R8 R7 R6 R5 R4 R3 R2 R1 9 10 11 12 13 14 15 16 220 RSO16ISO R8 R7 R6 R5 R4 R3 R2 R1 RZ5 220 RSO16ISO D0O D1O D2O D3O D4O D5O D6O D7O D8O D9O D10O D11O D12O D13O D14O D15O DRGND ORO DRGND 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 P1 1 P3 3 P5 5 P7 7 P9 9 P11 11 P13 13 P15 15 P17 17 P19 19 P21 21 P23 23 P25 25 P27 27 P29 29 P31 31 P33 33 P35 35 P37 37 P39 39 P7 C40MS P2 P4 P6 P8 P10 P12 P14 P16 P18 P20 P22 P24 P26 P28 P30 P32 P34 P36 P38 P40 DRGND D0O D1O D2O D3O D4O D5O D6O D7O D8O D9O D10O D11O D12O D13O D14O D15O GNDN DRO DRGND AD9445 AD9445 Table 11. AD9445-125 Baseband Customer Evaluation Board Bill of Materials Item 1 Qty. 7 2 44 3 4 5 6 7 8 2 4 1 1 1 20 9 10 11 2 1 3 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 1 1 1 1 4 1 2 2 2 1 1 2 1 1 2 2 23 29 30 31 32 33 34 35 1 2 3 1 Reference Designator C4, C6, C33, C34, C87, C88, C89 C2, C3, C5, C7, C8, C9, C10, C11, C12, C15, C20, C21, C22, C23, C26, C27, C28, C32, C35, C38, C40, C42, C43, C46, C47, C48, C50, C52, C53, C59, C60, C76, C77, C78, C82, C84, C85, C86, C90, C91, C94, C95, C96, C97 C30, C58 C39, C56, C64, C65 C51 CR1 CR2 E1, E2, E3, E4, E5, E6, E9, E10, E14, E18, E19, E20, E24, E25, E26, E27, E30, E31, E36, E41 J1, J4 L1 L3, L4, L5 P4 P7 R3 R8 R10, R19, R39, L2 R11 R28, R35 RZ4, RZ5 T3, T5 U1 U14 U3, U7 U8 U15 R4, R6 C1, C44, C55 1 C13, C14, C16, C17, C18, C19, C29, C31, C36, C37, C41, C45, C49, C61, C69, C70, C72, C73, C75, C93, C108, C109, C1101 C981 E151 J51 P61 R1, R21 R5, R7, R91 U21 Description Capacitor Package TAJD Value 10 μF Manufacturer Digi-Key Corporation Mfg. Part No. 478-1699-2 Capacitor 402 0.1 μF Digi-Key Corporation PCC2146CT-ND Capacitor Capacitor Capacitor Diode Diode Header 201 TAJD 805 SOT23M5 SOT23M5 EHOLE 0.01 μF 10 μF 10 μF Digi-Key Corporation Digi-Key Corporation Digi-Key Corporation Digi-Key Corporation Digi-Key Corporation Mouser Electronics 445-1796-1-ND 478-1699-2 490-1717-1-ND MA3X71600LCT-ND MA3X71600LCT-ND 517-6111TG SMA Inductor EMIFIL® BLM31PG500SN1L PJ-002A Header Resistor Resistor Resistor BRES402 Resistor Resistor array Transformer AD9445BSVZ-125 ADP3338-5 ADP3338-3.3 SN75LVDT386 SN75LVDT390 Resistor Capacitor CAP402 SMA 0603A 1206MIL Digi-Key Corporation Coilcraft, Inc. Mouser Electronics ARFX1231-ND 0603CS-10NXGBU 81-BLM31P500S PJ-002A C40MS 402 402 402 402 402 16PIN ADT1-1WT SV-100-3 SOT-223HS SOT-223HS TSSOP64 SOIC16PW 402 TAJD 402 Digi-Key Corporation Samtec, Inc. Digi-Key Corporation Digi-Key Corporation Digi-Key Corporation Digi-Key Corporation Digi-Key Corporation Digi-Key Corporation Mini-Circuits Analog Devices, Inc. Analog Devices, Inc. Analog Devices, Inc. Arrow Electronics, Inc. Arrow Electronics, Inc. Digi-Key Corporation Digi-Key Corporation CP-002A-ND TSW-120-08-L-D-RA P3.74KLCT-ND P49.9LCT-ND P0.0JCT-ND P1.0KLCT-ND P33JCT-ND 742C163220JCT-ND ADT1-1WT AD9445BSVZ-125 ADP3338-5 ADP3338-33 SN75LVDT386DGG SN75LVDT390PW P36JCT-ND 478-1699-2 Capacitor Header SMA Header BRES402 BRES402 ECLOSC 805 EHOLE SMA C40MS 402 402 DIP4(14) Digi-Key Corporation Mouser Electronics Digi-Key Corporation Samtec, Inc. 490-1717-1-ND 517-6111TG ARFX1231-ND TSW-120-08-L-D-RA Rev. 0 | Page 34 of 40 10 nH 3.74 kΩ 50 Ω 0Ω 1 kΩ 33 Ω 22 Ω 36 Ω 10 μF XX 10 μF XX XX AD9445 Item 36 37 38 1 Qty. 4 2 2 Reference Designator H1, H2, H3, H41 T1, T21 P21, P221 Description MTHOLE6 Balun transformer Term strip Package MTHOLE6 SM-22 PTMICRO4 Value Manufacturer Mfg. Part No. M/A-COM Newark Electronics ETC1-1-13 Parts not populated. Table 12. AD9445-125 IF Customer Evaluation Board Bill of Materials Item 1 Qty. 7 2 1 3 1 1 1 1 4 1 2 2 1 1 Reference Designator C4, C6, C33, C34, C87, C88, C89 C2, C3, C5, C7, C8, C9, C10, C11, C12, C15, C20, C21, C22, C23, C26, C27, C28, C32, C35, C38, C40, C42, C43, C46, C47, C48, C50, C52, C53, C59, C60, C76, C77, C78, C82, C84, C85, C86, C90, C91, C94, C95, C96, C97 C30, C58 C39, C56, C64, C65 C51 CR1 CR2 E1, E2, E3, E4, E5, E6, E9, E10, E14, E18, E19, E20, E24, E25, E26, E27, E30, E31, E36, E41 J1, J4 L1 L3, L4, L5 P4 P7 R3 R8 R10, R19, R39, L2 R11 R28, R35 RZ4, RZ5 U1 U14 2 44 3 4 5 6 7 8 2 4 1 1 1 20 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Description Capacitor Package TAJD Value 10 μF Manufacturer Digi-Key Corporation MFG_PART_NO 478-1699-2 Capacitor 402 0.1 μF Digi-Key Corporation PCC2146CT-ND Capacitor Capacitor Capacitor Diode Diode Header 201 TAJD 805 SOT23M5 SOT23M5 EHOLE 0.01 μF 10 μF 10 μF Digi-Key Corporation Digi-Key Corporation Digi-Key Corporation Digi-Key Corporation Digi-Key Corporation Mouser Electronics 445-1796-1-ND 478-1699-2 490-1717-1-ND MA3X71600LCT-ND MA3X71600LCT-ND 517-6111TG SMA Inductor EMIFIL® BLM31PG500SN1L PJ-002A Header Resistor Resistor Resistor BRES402 Resistor Resistor array AD9445BSVZ-125 ADP3338-5 SMA 0603A 1206MIL PJ-002A C40MS 402 402 402 402 402 16PIN SV-100-3 SOT223HS SOT-223HS TSSOP64 SOIC16PW SM-22 402 ADT1-1WT TAJD Digi-Key Corporation Coilcraft, Inc. Mouser Electronics Digi-Key Corporation Samtec, Inc. Digi-Key Corporation Digi-Key Corporation Digi-Key Corporation Digi-Key Corporation Digi-Key Corporation Digi-Key Corporation Analog Devices, Inc. Analog Devices, Inc. ARFX1231-ND 0603CS-10NXGBU 81-BLM31P500S CP-002A-ND TSW-120-08-L-D-RA P3.74KLCT-ND P49.9LCT-ND P0.0JCT-ND P1.0KLCT-ND P33JCT-ND 742C163220JCT-ND AD9445BSVZ-125 ADP3338-5 2 1 1 2 1 1 2 U3, U7 U8 U15 T1, T2 R5 T3 C1, C44, C55 1 ADP3338-3.3 SN75LVDT386 SN75LVDT390 Balun transformer Resistor Transformer Capacitor Analog Devices, Inc. Arrow Electronics, Inc. Arrow Electronics, Inc. M/A-COM Digi-Key Corporation Mini-Circuits Digi-Key Corporation ADP3338-3.3 SN75LVDT386DGG SN75LVDT390PW ETC-1-1-13 P49.9LCT-ND ADT1-1WT 478-1699-2 Rev. 0 | Page 35 of 40 10 nH 3.74 kΩ 50 Ω 0Ω 1 kΩ 33 Ω 22 Ω 36 Ω 10 μF AD9445 Item 29 Qty. 23 30 31 32 33 34 35 36 37 38 39 40 1 1 2 3 1 4 2 1 2 Reference Designator C13, C14, C16, C17, C18, C19, C29, C31, C36, C37, C41, C45, C49, C61, C69, C70, C72, C73, C75, C93, C108, C109, C1101 C981 E151 J51 P61 R1, R21 R5, R7, R91 U21 H1, H2, H3, H41 R4, R61 T51 P21, P221 Description CAP402 Package 402 Value XX Manufacturer MFG_PART_NO Capacitor Header SMA Header BRES402 BRES402 ECLOSC MTHOLE6 Resistor Transformer Term strip 805 EHOLE SMA C40MS 402 402 DIP4(14) MTHOLE6 402 ADT1-1WT PTMICRO4 10 μF Digi-Key Corporation Mouser Electronics Digi-Key Corporation Samtec, Inc. 409-1717-1-ND 517-6111TG ARFX1231-ND TSW-120-08-L-D-RA Digi-Key Corporation Mini-Circuits Newark Electronics P36JCT-ND ADT1-1WT Parts not populated. Rev. 0 | Page 36 of 40 XX XX 36 AD9445 OUTLINE DIMENSIONS 0.75 0.60 0.45 16.00 BSC SQ 1.20 MAX 14.00 BSC SQ 100 1 76 75 76 75 100 1 PIN 1 EXPOSED PAD TOP VIEW (PINS DOWN) 9.50 SQ 0° MIN 1.05 1.00 0.95 0.15 0.05 SEATING PLANE 0.20 0.09 7° 3.5° 0° 0.08 MAX COPLANARITY 50 25 26 49 BOTTOM VIEW (PINS UP) 51 26 0.50 BSC LEAD PITCH VIEW A 25 50 0.27 0.22 0.17 VIEW A ROTATED 90° CCW COMPLIANT TO JEDEC STANDARDS MS-026-AED-HD NOTES 1. CENTER FIGURES ARE TYPICAL UNLESS OTHERWISE NOTED. 2. THE PACKAGE HAS A CONDUCTIVE HEAT SLUG TO HELP DISSIPATE HEAT AND ENSURE RELIABLE OPERATION OF THE DEVICE OVER THE FULL INDUSTRIAL TEMPERATURE RANGE. THE SLUG IS EXPOSED ON THE BOTTOM OF THE PACKAGE AND ELECTRICALLY CONNECTED TO CHIP GROUND. IT IS RECOMMENDED THAT NO PCB SIGNAL TRACES OR VIAS BE LOCATED UNDER THE PACKAGE THAT COULD COME IN CONTACT WITH THE CONDUCTIVE SLUG. ATTACHING THE SLUG TO A GROUND PLANE WILL REDUCE THE JUNCTION TEMPERATURE OF THE DEVICE WHICH MAY BE BENEFICIAL IN HIGH TEMPERATURE ENVIRONMENTS. Figure 71. 100-Lead Thin Quad Flat Package, Exposed Pad [TQFP_EP] (SV-100-3) Dimensions shown in millimeters ORDERING GUIDE Model AD9445BSVZ-125 1 AD9445BSVZ-1051 AD9445-IF-LVDS/PCB AD9445-BB-LVDS/PCB 1 Temperature Range –40°C to +85°C –40°C to +85°C Package Description 100-Lead TQFP_EP 100-Lead TQFP_EP AD9445-125 IF (>100 MHz) LVDS Mode Evaluation Board AD9445-125 Baseband (<100 MHz) LVDS Mode Evaluation Board Z = Pb-free part. Rev. 0 | Page 37 of 40 Package Option SV-100-3 SV-100-3 AD9445 NOTES Rev. 0 | Page 38 of 40 AD9445 NOTES Rev. 0 | Page 39 of 40 AD9445 NOTES © 2005 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05489–0–10/05(0) Rev. 0 | Page 40 of 40